BSNL Junior Telecom Officers-JTO 2002 Paper

Section – I : Technical

We have marked each question with a unique notation to understand its weightage of subject.

PE1 : Power Electronics

- MI1 : Measurement Instrumentations
- CS1 : Communication System
- EMT1 : Electromagnetic Theory
- MW1 : Microwave Engineering
- EDC1 : Electronics Devices
- AE1 : Analog Electronics NT1 : Network theory
- CT1 : Control System

MS1: Material Science

MD1. Miserene server

MP1: Microprocessor DE1: Digital Electronics

CE1: Computer Engineering

EDC1

- (1.) The threshold voltage of an n-channel MOSFET can be increased by
 - (a) Increasing the channel doping concentration
 - (b) Reducing the channel length
 - (c) Reducing gate oxide thickness
 - (d) Decreasing the channel doping concentration NT1
- (2.) In the circuit shown in figure it is desired to have a constant direct current i(t) through the ideal inductor L. The nature of the voltage source v(t) must be

- (a) Constant voltage
- (b) Linearly increasing voltage
- (c) An ideal impulse
- (d) Exponential increasing voltage AE1
- CMOS has the following advantage over PMOS/NMOS?
 - (a) Simpler fabrication process
 - (b) Lower P_D

(3.)

- (c) Lower input capacitance
- (d) Greater suitability for LSI

MI1

(4.) A 35 V d.c supply is connected across a combined resistance of 600 ohms and an unknown resistance of R ohms in series. A

voltmeter having a resistance of $1.2k\Omega$ is connected across 600 ohm resistor and reads 5V. The resistance R will be

- (a) 120 ohms
- (b) 500 ohms
- (c) 1.7 K ohms
- (d) 2.4 K ohms

EMT1

- (5.) Two parallel wires separated by a distance are carrying a DC current I in the same direction. The magnetic field along a line running parallel to the wire and midway between them
 - (a) depends upon I
 - (b) zero
 - (c) depends upon d
 - (d) depends upon the permeability of the medium between the wires EDC1
- (6.) The MOSFET switch in its on-state may be considered equivalent to
 - (a) Resistor
 - (b) Inductor
 - (c) Capacitor
 - (d) Battery
 - NT1
- (7.) The effective inductance of the circuit across the terminal AB in the figure shown below, is
 - (a) 9H
 - (b) 21H
 - (c) 11H
 - (d) 6H
 - (u) 011

EMT1

- (8.) A microstrip line on alumina substrate ($\in = 9$) has a zero thickness strip of width, W = 3mm. Substrate thickness h = 0.5mm. Assuming TEM wave propagation and negligible fringing field, the characteristic impedance of the line will be approximately
 - (a) 10 ohm
 - (b) 21 ohm
 - (c) 26 ohm
 - (d) 50 ohm
 - CS1

- (9.) When a route carries no subscriber dialed traffic, the internationally accepted worst grade of service is
 - (a) 1%
 - (b) 3%
 - (c) 10%
 - (d) 20%

EMT1

- (10.) Maximum voltage is induced in a loop antenna if
 - (a) It is placed parallel to the incoming wave
 - (b) It is placed at right angles to the incoming wave
 - (c) It is placed at 45° to the incoming wave
 - (d) Its width is more than $\frac{1}{2}$

MW1

- (11.) Rhombic antenna is a
 - (a) Non-resonant antenna
 - (b) Resonant antenna
 - (c) Directional high frequency antenna
 - (d) None of these
 - DE1
- (12.) Dual slope integration type Analog-to-Digital converters provide
 - (a) Higher speeds compared to all other types of A/D converters
 - (b) Very god accuracy without putting extreme requirements on component stability
 - (c) Poor rejection of power supply hum
 - (d) Deter resolution compared to all other types of A/D converters for the same number of bits AE1
- (13.) A double tuned circuit amplifier provides
 - (a) High gain for passband frequencies
 - (b) More flat response for all frequencies
 - (c) More flat response for all passband frequencies
 - (d) Less harmonic distortion

MI1

(14.) A galvanometer is tested as shown in the figure, in the circuit where E = 1.5V, $R_1 = 1.0$ ohm, $R_2 = 2500$ ohm and R_3 is variable. With R_3 set at 450 ohm, the galvanometer deflections is 140 mm and with R_3 set at 950 ohm, the galvanometer deflection is 70 mm. The resistance of the galvanometer is

- (a) 99 ohm
- (b) 49 ohm
- (c) 28 ohm
- (d) 10 ohm
 - MI1
- (15.) Precision measurement of resistances is generally carried out by
 - (a) Potentiometer method
 - (b) CRO method
 - (c) Voltmeter-ammeter method
 - (d) Bridge method

EMT1

(16.) The average power flow per unit area in a uniform plane wave in an electric field of maximum voltage E_0 and impedance Z_0 is

(a)
$$\frac{E_0^2}{2Z_0}$$

(b)
$$\frac{L_0}{Z_0}$$

(c)
$$\frac{E_0^2}{Z_0^2}$$

- (d) I₀E₀ MI1
- (17.) When a voltage $v_0 \sin w_0 t$ is applied to the pure inductor, the ammeter shown in the figure reads I₀. If the voltage applied is

$$-V_0\sin\check{S}_0t + 2V_0\sin 2\check{S}_0t$$

$$+3V_0\sin 3\check{S}_0t + 4V_0\sin 4\check{S}_0t$$

The ammeter reading would be

5

- (a) 0
- (b) $10I_0$
- (c) $\sqrt{4^2 + 3^2 + 2^2 + 1^2}$
- (d) $2I_0$
 - NT1
- (18.) In a series RLC circuit, at the resonant frequency
 - (a) Current is minimum
 - (b) Voltage across C is maximum
 - (c) Impedance is maximum
 - (d) Current is maximum

EDC1

- (19.) In a bipolar transistor at room temperature, if the emitter current is doubled the voltage across its base-emitter junction
 - (a) Doubles
 - (b) Halves
 - (c) Increases by about 20mV
 - (d) Decrease by about 20mV EDC1
- (20.) The diffusion potential across a p-n junction
 - (a) Decreases with increasing doping concentration
 - (b) Increases with decreasing band gap
 - (c) Does not depend on doping concentration
 - (d) Increases with increase in doping concentrations MI1
- (21.) A metal strain guage has factor of 2. Its nominal resistance is 120 ohms. It undergoes strain at 10^{-5} , the value of change of resistance in response to the strain is
 - (a) 240 ohms
 - (b) 2×10^5 ohms
 - (c) 2×10^{-5} ohms
 - (d) 2.4×10^{-3} ohms

MI1

- (22.) In a LVDT, the two secondary voltages
 - (a) are independent of the core position
 - (b) vary unequally depending on the core position
 - (c) very equally depending on the core position
 - (d) are always in phase quadrature
 - AE1
- (23.) An RC-coupled amplifier has an open loop gain of 100 and a upper cut off frequency of 100kHz. If negative feedback with a feedback factor of 0.02 is used, the upper cut off frequency will be
 - (a) 100kHz
 - (b) 33.3kHz
 - (c) 300kHz

(d) 1000kHz

AE1

- (24.) If D_n represents the ratio of amplitudes of *n*th harmonics to the fundamental components of a signal, then distortion factor of the signal will be
 - (a) $\sqrt{D_1^2 + D_2^2 + D_3^2}$

(b)
$$\sqrt{D_1^3 + D_2^3 + D_4^3}$$

(c)
$$\sqrt{D_2^2 + D_3^2 + D_3^2}$$

(d)
$$\sqrt{D_2 + D_3 + D_4}$$

MI1

- (25.) Two meters X and Y required 40mA and 50mA respectively, to give full-scale reflection, then
 - (a) X is more sensitive
 - (b) Y is more sensitive
 - (c) Both are equally sensitive
 - (d) Sensitivity cannot be judged with the given information
 - MI1
- (26.) In moving-coil instrument, the scale used is
 - (a) Non-linear
 - (b) Linear scale
 - (c) Square law scale
 - (d) Log scale MI1
- (27.) A 100mA meter has accuracy of ± 2 percent. Its accuracy while reading 100mA will be
 - (a) $\pm 0.2\%$
 - (b) ±9%
 - (c) ±4%
 - (d) ±20%
 - MI1
- (28.) In two wattmeter method of measuring 3-phase power, power factor is 0.5, then one of the wattmeter will read
 - (a) $\frac{W}{2}$
 - 2
 - (b) Zero
 - (c) $\sqrt{2}W$

(d)
$$\frac{W}{\sqrt{3}}$$

MI1

(29.) A CRO can display

- (a) a.c signals
- (b) d.c signals
- (c) Both a.c and d.c signals

(d) None of these

PE1

- (30.) In a single phase one-pulse circuit with RL load and a freewheeling diode, extinction angle β is less than π . For a firing angle α , the SCR and freewheeling diode would respectively, conductor for
 - (a) $(s-r), 0^{\circ}$
 - (b) (f r), (f s)
 - (c) r, (s−r)
 - (d) (s-r), r

NT1

(31.) How many loop current in the cut-set analysis?

- (a) 3
- (b) 4
- (c) 5
- (d) None of these
 - AE1
- (32.) In inverted operation of a transistor
 - (a) Both junctions are reverse biased
 - (b) Both junctions are forward biased
 - (c) Emitter junctions is reversed biased while collector junction is forward biased
 - (d) Emitter junctions is forward biased while collector junction is reversed biased CT1
- (33.) In a circuit the current transform

$$I(s) = \frac{6(s+10)}{s(s+12)}$$

The value of i(t) or $t \to \infty$ is

- (a) $\frac{1}{2}$
- (a) $\frac{-}{2}$
- (b) 5
- (c) 6
- (d) ∞
- PE1
- (34.) In the three-phase converter α is in the range 0< α <90. When it operates in inverter the range of α is
 - (a) $0 < \alpha < 90$

- (b) $90 < \alpha \le 180$
- (c) $180 < \alpha \le 270$
- (d) None of these
 - PE1
- (35.) For series connected SCRs, dynamic equalizing circuit consists of
 - (a) Resistors R and capacitor C in series but with a diode D across C
 - (b) Series R and D circuit but with across R
 - (c) Series R and C but with D across R
 - (d) Series C and D circuit but with R across C

PE1

- (36.) For an SCR, with L in series with SCR, the what type of protection is
 - (a) $\frac{dv}{dt}$ protection

(b)
$$\frac{di}{dt}$$
 protection

- (c) Voltages protection
- (d) None of these EMT1
- (37.) Maxwell's divergence equation for the magnetic field is given by
 - (a) $\nabla \times \mathbf{E} = 0$
 - (b) $\nabla \cdot \mathbf{B} = 0$
 - (c) $\nabla \times \mathbf{B} = 0$
 - (d) None of these
 - NT1

(38.) If there are b branches and n nodes, the number of KCL equations required will be

- (a) *b*
- (b) *n*
- (c) (n-1)
- (d) b n + 1

MISCELLANEOUS

- (39.) What is the state equation for the *n*th order of differential equation?
 - (a) *n*
 - (b) (n+1)
 - (c) $\frac{(n+1)}{2}$
 - (d) $(n-1)^2$

AE1

(40.) Two capacitors are connected in series. The first capacitor is of capacitance 40μ F and breakdown voltage 60V and capacitance of second capacitor is 60μ F and break down voltage is 40V. What condition is satisfied?

- (a) First capacitor break down in first
- (b) Second capacitor break down in first
- (c) The charge equal to the both capacitor
- (d) None of these EMT1
- (41.) In a vector field, given condition is,

 $\overline{A} \times \overline{B} = \overline{A} \times \overline{C}$ and $\overline{A} \cdot \overline{B} = \overline{A} \cdot \overline{C}$ the vector \overline{C} is not null vector, which the following condition satisfies the equation

- (a) $\vec{A} = 0$
- (b) $\vec{B} = 0$
- (c) $\vec{A} = \vec{B}$
- (d) $\vec{B} = \vec{C}$
- AE1

(42.) In a full-wave rectifier the supply frequency is 50Hz. What is the ripple frequency?

- (a) 50Hz
- (b) 100Hz
- (c) 25Hz
- (d) None
 - EDC1

(43.) The electron and hole concentrations in an intrinsic, semiconductor are n_i and p_i respectively. When doped p type material, these change to n and p respectively, then

- (a) $n+p=n_i+p_i$
- (b) $n+n_i = p+p_i$
- (c) $np_i = n_i p$
- (d) $np = n_i p_i$

PE1

- (44.) A 3-phase, 50Hz, 6pole squirrel, case induction motor will run at a speed approximately
 - (a) 960 rpm
 - (b) 1000 rpm
 - (c) 1500 rpm
 - (d) 1600 rpm

EMT1

- (45.) Who was the first to give the theory of electromagnetic induction?
 - (a) Faraday
 - (b) Ampere
 - (c) Maxwell
 - (d) None of these

NT1

- (46.) Two capacitors of capacitance $1\mu F$ each. When they are connected in parallel, what is the resultant capacitance?
 - (a) 1µF
 - (b) 2µF

- (c) 0.5µF
- (d) None of these
 - NT1
- (47.) In a circuit current passing through the capacitor is 1 mA. The capacitance of the capacitor is 1μ F. Find the voltage decay of the capacitor?
 - (a) 1V/S
 - (b) $1 \times 10^3 \text{ V/S}$
 - (c) $2 \times 10^3 \text{ V/S}$
 - (d) None of these

NT1

- (48.) In a circuit, voltage in the inductor is 2V and inductance of the inductor is 1mH. What is the rate of the current decay?
 - (a) $\frac{2A}{S}$
 - (b) $1 \times 10^3 \text{ A/S}$
 - (c) $2 \times 10^3 \text{ A/S}$
 - (d) None of these NT1
- (49.) A capacitor of capacitance C_1 and distance between the plate is d_1 . A second capacitor of capacitance C_2 and distance between the plate is d_2 . When they are connected to series what is the equivalent capacitance?

(a)
$$\frac{d_1 d_2}{d_1 + d_2}$$
$$d_1 + d_2$$

(b)
$$\frac{a_1 + a_2}{d_1 d_2}$$

(c)
$$C_1 + C_2$$

(d)
$$\frac{C_1 C_2}{C_1 + C_2}$$
NT1

(50.) The steady state voltage of the capacitor is

(d) 0.5V

EMT1

- (51.) A circular waveguide has internal diameter of 5cm. The cutoff frequency for TE₁₁ mode will be
 (a) 5MHz
 - (b) 35MHz
 - (c) 3.5GHz
 - (d) 35GHz

CS1

- (52.) The bite rate of digital communication system is 34 Mbit/s. The modulation scheme is QPSK. The baud rate of the system is
 - (a) 68 Mbit/s
 - (b) 34 Mbit/s
 - (c) 17 Mbit/s
 - (d) 8.5 Mbit/s
 - DE1
- (53.) Each cell of a static Random Access memory contains
 - (a) 6 MOS transistor
 - (b) 4 MOS transistors and 2 capacitors
 - (c) Two 2-input NORs and One X-NOR gate
 - (d) XOR gates and shift registers CT1
- (54.) Signal flow graph is used to obtain the
 - (a) Stability of the system
 - (b) Transfer function of the system
 - (c) Controllability of the system
 - (d) Observability of the system CS1
- (55.) A broadcast ratio receiver with IF = 455 kHz is tuned to 1500KHz. The image frequency will be
 - (a) 1045 kHz
 - (b) 1500 kHz
 - (c) 1955 kHz
 - (d) 2410 kHz MW1

(56.) The usable band width of a microwave beacon transponder for $\frac{6}{4}$ GHz satellite communication is

- generally
- (a) 360 MHz
- (b) 40 MHz
- (c) 36 MHz
- (d) 1 MHz

MP1

- (57.) A microprocessor with 12 address lines is capable of addressing
 - (a) 1024 locations

- (b) 2028 locations
- (c) 4096 locations
- (d) 64 K locations
- MP1
- (58.) In an 8085 microprocessor system with memory mapped I/O
 - (a) I/O device has 16 bit address
 - (b) I/O devices are accessed using IN and OUT instructions
 - (c) There can be a maximum of 256 input devices and 256 output devices
 - (d) Arithmetic and logic operations can be directly performed with I/O CS1
- (59.) Companding is used
 - (a) To protect small signals in PCM from quantizing distortion
 - (b) To overcome quantized noise in PCM
 - (c) To overcome impulse noise
 - (d) None of the above MW1
- (60.) For a shot wave radio link between two stations via the ionosphere. The ratio of the maximum usable frequency to the critical frequency
 - (a) is always less than 1
 - (b) is always greater than 1
 - (c) may be \leq 1 dependign on the distance between the two stations
 - (d) does not depend on the distance between the two station
 - CT1
- (61.) For a gain constant K, the phase-lead compensator
 - (a) Reduce the slope of the magnitude curve in the entire range of frequency domain
 - (b) Deceases the gain cross-over frequency
 - (c) Reduce the phase margin
 - (d) Reduce the resonance peak M_P CT1
- (62.) Bose plots of an open-loop transfer function of a control system are shown in the given figure:

The gain margin of the system is

- (a) K
- (b) –K
- (c) $\frac{1}{K}$

(d)
$$-\frac{1}{K}$$

DE1

- (63.) In standard TTL, the 'totem pole' stage refers to
 - (a) The multi-emitter input stage
 - (b) The phase-splitter
 - (c) The output buffer
 - (d) Open collector output

DE1

(64.) The block diagram shown below represents

- (a) Modulo-3 ripple counter
- (b) Modulo-5 ripple counter
- (c) Modulo-7 ripple counter
- (d) Modulo-7 synchronous counter DE1
- (65.) The initial contents of the 4 bit serial-in-parallel-out, right-shift. Shift Register shown in the figure is 0110. After three clock pulses are applied, the contents of the shift register will be

- (a) 0000
- (b) 0101
- (c) 1010
- (d) 1111
 - AE1
- (66.) The OP Amp circuit given below is

- (a) An integrator
- (b) A voltage follower
- (c) Sample and hold circuit
- (d) An inverter

CS1

- (67.) All the output pulses are at full transmitter power for a strong signal in all of the following except
 - (a) PWM
 - (b) PAM
 - (c) PFM
 - (d) PCM
 - CS1
- (68.) The AM broadcast band (medium wave band) extends from
 - (a) 200 kHz to 1000 kHz
 - (b) 500 kHz to 1600 kHz
 - (c) 3 MHz to 30 MHz
 - (d) 30 MHz to 300 MHz
 - CS1
- (69.) The bandwidth needed for transmitting 4 kHz signal using PCM with 128 quantizing level is
 - (a) 4kHz
 - (b) 16kHz
 - (c) 28kHz
 - (d) 64kHz
 - CT1
- (70.) For the system having characteristic equation

$$1 + \frac{k}{s(s+1)(s+2)} = 0$$
, the centroid of the asymptotes in root locus is given by

- (a) 0
- (b) -1
- (c) 2
- (d) -2
- CT1
- (71.) For the characteristic equation $s^4 + 5s^3 + 5s^2 + 4s + k = 0$, the system is stable if k lies in the range
 - (a) $\frac{84}{25} > k > 0$ (b) $\frac{84}{25} < k < 4$

ENGINEERS INSTITUTE OF INDIA • • 2016 All Rights Reserved Address : 28-B/7, Jia Sarai, Near IIT, Hauz Khas, New Delhi-110016. Ph. 011-26514888. www.engineersinstitute.com

- (c) 3 > k > 1
- (d) 4 > k > 3
 - CT1
- (72.) A system has characteristic equation as $s^2 + 2s + 8 = 0$. The damping ratio and the natural frequency of oscillation of the system respectively are
 - (a) $2\sqrt{2}$, 0.5
 - (b) $0.52, \sqrt{2}$
 - (c) 0.353, $2\sqrt{2}$
 - (d) 2, 0.353
 - EDC1
- (73.) The input resistance of MOSFET
 - (a) is very high as compare to that of a bipolar transistor
 - (b) is low as compared to that of a bipolar transistor
 - (c) is of the same order as in a bipolar transistor
 - (d) none of these

PE1

- (74.) A circuit in which the output voltage remains constant irrespective of the value of load resistance, uses
 - (a) Silicon diode
 - (b) Zener diode
 - (c) SCR
 - (d) None of above CS1
- (75.) The Quadrature Amplitude Modulation is a combination of
 - (a) ASK and PSK
 - (b) ASK and FSK
 - (c) PSK and FSK
 - (d) None of these

CT1

(76.) Consider a system shown in the given figure with
$$G(s) = \frac{k(s+1)}{s^3 + as^2 + 2s + 1}$$

What value of 'k' and 'a' should be chosen so that the system oscillates at 2 rad/sec.

- (a) k = 2, a = 1
- (b) k = 2, a = 0.75
- (c) k = 4, a = 1
- (d) k = 4, a = 0.75

NT1

(77.) In a differential amplifier, V_1 and V_2 is input voltage. Common mode rejection ratio is 1000. Which equation represent the outputs of the amplifier?

(a)
$$0.1 \frac{(V_1 + V_2)}{2} + 100 \frac{(V_1 - V_2)}{2}$$

(b) $100 \frac{(V_1 + V_2)}{2} + 0.1 \frac{(V_1 - V_2)}{2}$
(c) $0.1 \frac{(V_1 + V_2)}{2} + 10 \frac{(V_1 - V_2)}{2}$

(d) None

DE1

- (78.) In a A/D converter input voltage is $\pm 5V$. In a 10 bit converter, what is the error voltage?
 - (a) 10mV
 - (b) 20mV
 - (c) 15mV
 - (d) None
 - NT1
- (79.) A series RLC circuit is over damped when

(a)
$$\frac{R^2}{4L^2} > \frac{1}{LC}$$

(b)
$$\frac{R^2}{4L^2} = \frac{1}{LC}$$
$$R^2 = \frac{1}{LC}$$

(c)
$$\frac{\pi}{4L^2} < \frac{1}{LC}$$

(d)
$$\mathbf{R} = \text{initially}$$

CS1

- (80.) For signal amplitude modulated to a depth of 100% by a sinusoidal signal, power is
 - (a) Same as the power of unmodualted carrier
 - (b) Twice as the power of unmodulated carrier
 - (c) $\frac{3}{2}$ times the power of unmodulated carrier
 - (d) $\frac{2}{3}$ times the power of unmodulated carrier
 - CS1
- (81.) Frequency shift keying is used mostly in
 - (a) Radio transmission
 - (b) Telegraphy
 - (c) Telephony
 - (d) None of these

EDC1

- (82.) An n-channel JFET, having a pinch-off voltage (V_p) of -5V shows a transconductance (g_m) of 1mA A/V. When the applied gate-to-source voltage (V_{GS}) is -3V, its maximum transconductance (in mA/V) is
 - (a) 1.5
 - (b) 2.0
 - (c) 2.5
 - (d) 3.0

CT1

(83.) The polar plot of a type -1, 3-pole open-loop system is shown in the figure. The closed loop system is

- (a) Always stable
- (b) Marginally stable
- (c) Unstable with one pole on the right half splane
- (d) Unstable with two poles on the right half splane AE1
- (84.) In a single state transistor amplifier circuit shown in the figure, the capacitance C_E is removed. Then the as small signal mid band voltage gain of amplifier

- (a) Increases
- (b) Decreases
- (c) Remain's unaffected
- (d) Drops to zero
 - NT1
- (85.) Two-port network are connected in cascade. The combination is to be represented as a single two port network. The parameters of the network are obtained by multiplying the individual
 - (a) Z-parameters matrix
 - (b) *h*-parameter matrix

- (c) Y-parameters matrix
- (d) ABCD parameter matrix

CS1

- (86.) The Fourier transform of a real valued time signal has
 - (a) Odd symmetry
 - (b) Even symmetry
 - (c) Conjugate symmetry
 - (d) No symmetry

MW1

- (87.) 1 km long microwave link uses two antennas each having 30 dB gain. If the power transmitted by one antenna is 1W at 3GHz, the power received by the other antenna is
 - (a) 98.6 µW
 - (b) 76.8 µW
 - (c) 63.4 µW
 - (d) 55.2 µW
 - DE1
- (88.) In a 3 bit-MUX output y_1 is in the figure is

- (a) $I_1 + I_2 + I_3$
- (b) $I_2 + I_5 + I_6$
- (c) $I_2 + I_4 + I_5$
- (d) $I_1 + I_3 + I_5 + I_7$ CT1
- (89.) A system with an input x(t) and an output y(t) is described by the relation : y(t) = tx(t)This system is
 - (a) Linear and time-invariant
 - (b) Linear and time varying
 - (c) Non-linear and time-invariant
 - (d) Non-linear and time-varying MP1
- (90.) The following sequence of instructions are executed by an 8085 microprocessor:

1000	LXI	SP,	27FF
1003	CALL		1006
1006	POPH		

The contents of the stack pointer (SP) and the HL, register pair on completion of execution of these instructions are

- (a) SP = 27 FF, HL = 1003
- (b) SP = 27 FD, HL = 1003
- (c) SP = 27 FF, HL = 1006
- (d) SP = 27 FD, HL = 1006

DE1

(91.) The logic realized by the circuit shown in the figure is

- (a) F = A.C
- (b) $F = A \oplus C$
- (c) F = B.C
- (d) $F = B \oplus C$
 - EMT1

(92.) A rectangular waveguide a = 5 cm b = 3.75 cm and the frequency is 10 GHz, the wave length is 7cm. Which of the following is mode of operation of wave guide?

- (a) TE₁₀
- (b) TE₁₁
- (c) TM₀₁
- (d) TE_{2.0}
 - EMT1
- (93.) A parabolic reflector is designed to have a directivity of 30dB at 300 MHz. If the aperture of efficiency is 55%, then the diameter of reflector is
 - (a) 2m
 - (b) 4m
 - (c) 8m
 - (d) None of these

MP1

(94.) The following program is run on an 8085 microprocessor:

Memory Address in Hex	Instruction
2000	LXISP,1000
2003	Push H
2004	Push D
2005	Call 2050
2008	POP H
2009	HLT

At the completion of execution of the program, the program counter of the 8085 contains ... and the stack pointer contains

- (a) 2050, OFFC
- (b) 2020, OCCF
- (c) 2000, CCFO
- (d) 2020, OFFC

AE1

- (95.) In the current-shunt feedback
 - (a) High input and output impedance
 - (b) High input and low output
 - (c) Low input and high output
 - (d) Low input and low output DE1
- (96.) The data bus width of a 4×1024 bits is
 - (a) 10
 - (b) 11
 - (c) 12
 - (d) 13
 - EMT1
- (97.) Given that $\vec{E}_x = E_x \sin(\tilde{S}t + W)$ and $\vec{E}_y = E_y \sin(\tilde{S}t + W)$. These are which types of polarization?
 - (a) Straight line
 - (b) Parabolic
 - (c) Left circulation
 - (d) Right circulation

EMT1

(98.) Given the electric field in electromagnetic wave is

 $E = 10e^{(6x+8y)}a_{x}$

What is the wave speed?

- (a) 10^7 m/s
- (b) 10^8 m/s
- (c) 10^9 m/s
- (d) $10^{10}/ms$
- DE1
- (99.) How many J-K flip-flop is required in 5-modulo synchronous counter?
 - (a) 4
 - (b) 5
 - (c) 3
 - (d) 2
 - MP1
- (100.) What is machine cycle in SIM instruction?
 - (a) 1
 - (b) 2

- (c) 3
- (d) 4

Section-II : General Study

- (101.) Which of the following is in order of the time of introduction for large scale communication.
 - 1. Fibre optics
 - 2. Under ground cables
 - 3. Satellite communication
 - 4. Total wireless loop
 - (a) 1, 2, 3, 4
 - (b) 1, 3, 2, 4
 - (c) 2, 1, 3, 4
 - (d) 2, 3, 1, 4
- (102.) Which of the following will not match for environmental friendly Automobile?
 - (a) MPFI
 - (b) Turbo Charging
 - (c) Catalytic Converters
 - (d) Electric Ignition
- (103.) Who directed the movie 'Mansoon wedding'?
 - (a) Mira Nair
 - (b) Shekhar Kapoor
 - (c) Shekhar Suman
 - (d) Deepa Metha
- (104.) Which of the following can be transferred to any human body?
 - (a) 0 –ve
 - (b) A-ve
 - (c) AB + ve
 - (d) None of these
- (105.) Jonas Sark discovered
 - (a) Viagra
 - (b) Silicon devices
 - (c) Wet photography
 - (d) Polio vaccine
- (106.) Author of "Wings of Fire" is
 - (a) C.N. Rao

- (b) A.P.J Abdul Kalam
- (c) K.R. Narayan
- (107.) Author of future shock, Third wave is
 - (a) Norman Mailer
 - (b) Bod Morris
 - (c) Aldug Hacksley
 - (d) Arvin Toffler
- (108.) Which gas is greenhouse gas?
 - (a) Oxygen
 - (b) Carbon dioxide
 - (c) Nitric acid
 - (d) Nitrogen oxide
- (109.) "Technology Next" is the slogan of which of the following company?
 - (a) Videocon
 - (b) Hewlett factory
 - (c) Compaq
 - (d) Philips
- (110.) Which is not clean gas?
 - (a) L.S.D
 - (b) C.N.G
 - (c) L.P.G
 - (d) H.S.P
- (111.) Suffix dot in suggests
 - (a) Inbox
 - (b) India
 - (c) Internet
 - (d) Infotech
- (112.) Intermediate missile testing is done at
 - (a) Bangalore
 - (b) Sriharikota
 - (c) On sea
 - (d) Chandipur

- (113.) Convergence bill refers to
 - (a) Electronic media
 - (b) Print media, press, electronic items
 - (c) I.T., Tele communication
 - (d) All of the above
- (114.) Who is the chairperson of United Nations Human Rights commission?(a) Sukoto ogada

 - (b) Megavati Sukharnoputri
 - (c) P.N. Bhagavait
 - (d) Mary Robhson
- (115.) What is the percentage of thermal electricity produced in India
 - (a) 40
 - (b) 50
 - (c) 72
 - (d) 80
- (116.) Which American company has produced the insect resistance cotton that successfully test fired in India
 - (a) General cotton
 - (b) Monsanto
 - (c) Greentek
 - (d) American Agro

- (117.) In eye donation which part of the eye is transplanted?
 - (a) Retina
 - (b) Cornea
 - (c) Eye ball
 - (d) Iris
- (118.) Economic liberalisation in India started with
 - (a) Removing the procedure of direct investment of foreign companies
 - (b) Cutting the fares
 - (c) By converting the value of rupee
 - (d) Removed of ban of listed goods
- (119.) The theme of world development report 2001 is
 - (a) Attacking poverty
 - (b) Full employment
 - (c) From plan to market
 - (d) Knowledge for development
- (120.) Which committee has recommended the financial sector reforms?
 - (a) Abid Hussain Committee
 - (b) Narasimhan Committee
 - (c) Chelliah Committee
 - (d) Sarkaria Committee

ANSWER KEY

1	2	3	4	5	6	7	8	9	10
a	с	b	d	b	с	с	b	b	a
11	12	13	14	15	16	17	18	19	20
С	b	с	b	d	a	d	d	с	d
21	22	23	24	25	26	27	28	29	30
d	b	с	с	a	b	d	b	с	a
31	32	33	34	35	36	37	38	39	40
b	с	b	b	с	b	b	d	b	с
41	42	43	44	45	46	47	48	49	50

ENGINEERS INSTITUTE OF INDIA® ©2016 All Rights Reserved Address : 28-B/7, Jia Sarai, Near IIT, Hauz Khas, New Delhi-110016. Ph. 011-26514888. www.engineersinstitute.com

d	с	d	b	a	b	b	с	d	с
51	52	53	54	55	56	57	58	59	60
с	с	a	b	d	с	с	d	a	b
61	62	63	64	65	66	67	68	69	70
a	с	с	с	с	с	b	b	с	b
71	72	73	74	75	76	77	78	79	80
a	с	a	b	a	b	a	a	a	с
81	82	83	84	85	86	87	88	89	90
b	с	a	b	d	с	с	d	b	с
91	92	93	94	95	96	97	98	99	100
b	d	d	d	с	с	a	с	с	a
101	102	103	104	105	106	107	108	109	110
с	a	a	d	d	b	d	b	с	с
111	112	113	114	115	116	117	118	119	120
b	b	d	с	d	b	b	b	a	b

To access and download BSNL JTO Papers & Solutions, visit at our website.

BSNL-JTO 2009 question paper. BSNL-JTO 2005 question paper. BSNL-JTO 2002 question paper. BSNL-JTO 2001 question paper. BSNL-JTO 2009 detailed Solutions. BSNL-JTO 2005 detailed Solutions. BSNL-JTO 2002 detailed Solutions. BSNL-JTO 2001 detailed Solutions.