Solutions of

Electronics Engineering GATE-2016

Session 4 | Set-3

MRDE ERS

ITPDE ERS노

India's Best Institute for IES, GATE \& PSUs

IMRDE ERS노
India's Best Institute for IES, GATE \& PSUs

GATE 2016 : Solutions

Dearstudents,
MADE EASY team has tried to provide the best possible/closest answers, however if you find any discrepancy then write your doubts to MADE EASY at: info@madeeasy.in. MADE EASY owes no responsibility for any kind of error due to data insufficiency/misprint/human errors etc.
B. Singh (Ex. IES), Chairman \& Managing Director, MADE EASY Group

Rewaris \& Honours

MADE EASY will honour its GATE 2016: Top-100 Rankers

AIR 1 Gold Medal + Car

AIR 2 Gold Medal + Bike

AIR 3 Gold Medal + Laptop

AIR 4 Silver Medal + Tab

AIR 11-100 Bronze Medal + Prize

 requested to inform us about your result and avail free Interview \& Counseling Guidance for M.Tech \& PSUs.For more details, visit: www.madeeasy.in
|

Section - I (General Aptitude)

One Mark Questions

Q. $1 \quad$ An apple costs ₹ 10 . An onion costs ₹ 8 .

Select the most suitable sentence with respect to grammar and usage.
(a) The price of an apple is greater than an onion.
(b) The price of an apple is more than onion.
(c) The price of an apple is greater than of an onion.
(d) Apples are more costlier than onions.

Ans. (c)
Q. 2 The Buddha said, "Holding on to anger is like grasping a hot coal with the intent of throwing it at someone else; you are the one who gets burnt."
Select the word below which is closest in meaning to the word underlined above.
(a) burning
(b) igniting
(c) clutching
(d) flinging

Ans. (c)
Q. $3 \quad \mathrm{M}$ has a son Q and a daughter R. He has no other children. E is the mother of P and daughter-in-law of M. How is P related to M ?
(a) P is the son-in-law of M
(b) P is the grandchild of M
(c) P is the daughter-in law of M
(d) P is the grandfather of M

Ans. (b)
Q. 4 The number that least fits this set: (324, 441, 97 and 64) is \qquad .
(a) 324
(b) 441
(c) 97
(d) 64

Ans. (c)
97 is not a perfect square.
Q. 5 It takes 10 s and 15s, respectively, for two trains travelling at different constant speeds to completely pass a telegraph post. The length of the first train is 120 m and that of the second train is 150 m . The magnitude of the difference in the speeds of the two trains (in m / s) is \qquad .
(a) 2.0
(b) 10.0
(c) 12.0
(d) 22.0

Ans. (a)

Two Marks Questions

Q. 6 The velocity V of a vehicle along a straight line is measured in m / s and plotted as shown with respect to time in seconds. At the end of the 7 seconds, how much will the odometer reading increase by (in m)?

(a) 0
(b) 3
(c) 4
(d) 5

Ans. (d)
The odometer reading increases from starting point to end point
Magnitude of area of the given diagram = Odometer reading Magnitude of area of the velocity and time graph per second
$1^{\text {st }} \mathrm{sec} \Rightarrow$ triangle $=\frac{1}{2} \times 1 \times 1=\frac{1}{2}$
$2^{\text {nd }} \sec \Rightarrow$ square $=1 \times 1=1$
$3^{\text {rd }}$ sec \Rightarrow square + triangle $=1+1+\frac{1}{2} \times 1 \times 1=1 \frac{1}{2}$
$4^{\text {th }}$ sec \Rightarrow triangle $=\frac{1}{2} \times 1 \times 2=1$
$5^{\text {th }}$ sec \Rightarrow straight line $=0$
$6^{\text {th }}$ sec \Rightarrow triangle $=\frac{1}{2} \times 1 \times 1=\frac{1}{2}$
$7^{\text {th }}$ sec \Rightarrow triangle $=\frac{1}{2} \times 1 \times 1=\frac{1}{2}$
Total Odometer reading at 7 seconds $=\frac{1}{2}+1+1 \frac{1}{2}+1+0+\frac{1}{2}+\frac{1}{2}=5$
Q. 7 The overwhelming number of people infected with rabies in India has been flagged by the World Health Organization as a source of concern. It is estimated that inoculating 70% of pets and stray dogs against rabies can lead to a significant reduction in the number of people infected with rabies.
Which of the following can be logically inferred from the above sentences?
(a) The number of people in India infected with rabies is high.
(b) The number of people in other parts of the world who are infected with rabies is low
(c) Rabies can be eradicated in India by vaccinating 70% of stray dogs
(d) Stray dogs are the main source of rabies worldwide

Ans. (a)

End of Solution

Q. 8 A flat is shared by four first year undergraduate students. They agreed to allow the oldest of them to enjoy some extra space in the flat. Manu is two months older than Sravan, who is three months younger than Trideep. Pavan is one month older than Sravan. Who should occupy the extra space in the flat?
(a) Manu
(b) Sravan
(c) Trideep
(d) Pavan

Ans. (c)

$$
\begin{aligned}
\text { Manu's age } & =\text { Sravan's age }+2 \text { months } \\
\text { Manu's age } & =\text { Trideep's age }-3 \text { months } \\
\text { Pavan's age } & =\text { Sravan's age }+1 \text { month }
\end{aligned}
$$

From this Trideep's age > Manu > Pavan > Sravan
\therefore Trideep can occupy the extra spane in the flat.

End of Solution

Q. 9 Find the area bounded by the lines $3 x+2 y=14,2 x-3 y=5$ in the first quadrant.
(a) 14.95
(b) 15.25
(c) 15.70
(d) 20.35

Ans. (b)

$$
\begin{aligned}
\text { Required area } & =\text { Area of } \triangle \mathrm{ABC}+\text { Area of trapezoid BCDO } \\
& =\frac{1}{2} \times 4 \times 6+\frac{1}{2} \times(4+2.5) \times 1 \\
& =12+3.25=15.25 \text { sq. units }
\end{aligned}
$$

Q. 10 A straight line is fit to a data set $(\ln x, y)$. This line intercepts the abscissa at \ln $x=0.1$ and has a slope of -0.02 . What is the value of y at $x=5$ from the fit?
(a) -0.030
(b) -0.014
(c) 0.014
(d) 0.030

Ans. (a)

$$
\begin{aligned}
\text { Straight line equation } \mathrm{y} & =\mathrm{mx}+\mathrm{c} \\
\mathrm{~m} & =\text { slope }=-0.02
\end{aligned}
$$

(ln $\mathrm{x}, \mathrm{y})$

$$
\begin{aligned}
& \text { If } \ln \mathrm{x}=\mathrm{X}, \text { then set }(\mathrm{x}, \mathrm{y}) \\
& \downarrow \\
& \mathrm{y}=\mathrm{mX}+\mathrm{C} \\
& \mathrm{o}=-0.02 \times 0.1+\mathrm{C} \\
& \mathrm{C}=0.002 \\
& \mathrm{y}=\mathrm{mX}+\mathrm{C} \\
& \mathrm{y}=-0.02 \times \log \mathrm{x}+\mathrm{C} \\
& \text { at } \mathrm{x}=5 \\
& \mathrm{y}=-0.02 \times \log 5+0.002 \\
&=-0.030
\end{aligned}
$$

Section - II (Electronics Engineering)

One Mark Questions

Q. $1 \quad$ Consider a 2×2 square matrix

$$
A=\left[\begin{array}{ll}
\sigma & x \\
\omega & \sigma
\end{array}\right]
$$

where x is unknown. If the eigenvalues of the matrix A are $(\sigma+j \omega)$ and $(\sigma-j \omega)$, then x is equal to
(a) $+j \omega$
(b) $-j \omega$
(c) $+\omega$
(d) $-\omega$

Ans. (d)

$$
\begin{aligned}
A & =\left[\begin{array}{cc}
\sigma & x \\
\omega & \sigma
\end{array}\right] \\
\text { Trace } & =\text { sum of eigen values } \\
2 \sigma & =\sigma+j \omega+\sigma-j \omega \\
|A| & =\text { product of eigens } \\
\sigma^{2}-x \omega & =(\sigma+j \omega)(\sigma-j \omega)=\sigma^{2}+\omega^{2}
\end{aligned}
$$

which is possible only when $x=-\omega$
Q. 2 For $f(z)=\frac{\sin (z)}{z^{2}}$, the residue of the pole at $z=0$ is \qquad .

Ans. (1)

$$
\begin{aligned}
\text { Residue of } \frac{\sin z}{z^{2}} & =\text { coefficient of } \frac{1}{z} \text { in }\left\{\frac{z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}---}{z^{2}}\right\} \\
& =\text { coefficient of } \frac{1}{z} \text { in }\left\{\frac{1}{z}-\frac{z}{3!}+\frac{z^{3}}{5!}---\right\} \\
& =1
\end{aligned}
$$

Q. 3 T he probability of getting a "head" in a single toss of a biased coin is 0.3 . The coin is tossed repeatedly till a "head" is obtained. If the tosses are independent, then the probability of getting "head" for the first time in the fifth toss is \qquad .

Ans. (0.072)

$$
\begin{aligned}
& P(H)=0.3 \\
& P(T)=0.7
\end{aligned}
$$

since all tosses are independent
so, probability of getting head for the first time in $5^{\text {th }}$ toss is

$$
=P(T) P(T) P(T) P(T) P(H)
$$

$$
\begin{aligned}
& =0.7 \times 0.7 \times 0.7 \times 0.7 \times 0.3 \\
& =0.072
\end{aligned}
$$

Q. 4 The integral $\int_{0}^{1} \frac{d x}{\sqrt{(1-x)}}$ is equal to \qquad .

Ans. (2)

$$
\begin{aligned}
\int_{0}^{1} \frac{1}{\sqrt{1-x}} d x & =-2 \int_{0}^{1} \frac{1}{2 \sqrt{1-x}} d x=-\left.2(\sqrt{1-x})\right|_{0} ^{1} \\
& =-2(0-1)=2
\end{aligned}
$$

Q. 5 Consider the first order initial value problem
$y^{\prime}=y+2 x-x^{2}, y(0)=1,(0 \leq x<\infty$
with exact solution $\mathrm{y}(x)=x^{2}+e^{x}$. For $x=0.1$, the percentage difference between the exact solution and the solution obtained using a single iteration of the secondorder Runge-Kutta method with step-size $h=0.1$ is \qquad -

Ans. (0.044)

$$
y^{\prime}=y+2 x-x^{2}
$$

Given that
Exact solution is given by $y(x)=x^{2}+e^{x}$

$$
\begin{align*}
y(0.1) & =(0.1)^{2}+e^{0.1}=1.115 \\
\frac{d y}{d x} & =y+2 x-x^{2} \\
y(0) & =1, \quad h=0.1 \\
f(x, y) & =y+2 x-x^{2}, \quad y_{0}=1, \quad x_{0}=0 \\
k_{1} & =h f\left(x_{0}, y_{0}\right)=h\left(y_{0}+2 x_{0}-x_{0}^{2}\right) \tag{i}\\
& =0.1(1+0+0)=0.1 \\
k_{2} & =h\left(f\left(x_{0}+h, y_{0}+k_{1}\right)\right. \\
& =h\left(y_{0}+k_{1}+2\left(x_{0}+h\right)-\left(x_{0}+h\right)^{2}\right) \\
& =0.1\left(1+0.1+2(0+0.1)-(0+0.1)^{2}\right) \\
& =0.1(1+0.1+0.2-0.01)=0.129
\end{align*}
$$

(ii)
(iii)

$$
k=\frac{k_{1}+k_{2}}{2}=\frac{0.1+0.129}{2}=0.1145
$$

(iv)

$$
\begin{aligned}
y_{1} & =y_{0}+k=1+0.1145=1.1145 \\
x_{1} & =x_{0}+h=0+0.1=0.1 \\
\text { error } & =\text { exact value }- \text { approximate value } \\
& =1.115-1.1145=0.0005
\end{aligned}
$$

The percentage difference

$$
=\frac{0.0005}{1.115} \times 100=0.044 \%
$$

Q. $6 \quad$ Consider the signal $x(t)=\cos (6 \pi t)+\sin (8 \pi t)$, where t is in seconds. The Nyquist sampling rate (in samples/second) for the signal $y(t)=x(2 t+5)$ is
(a) 8
(b) 12
(c) 16
(d) 32

Ans. (c)

$$
\begin{aligned}
X(t) & =\cos (6 \pi t)+\sin (8 \pi t) \\
Y(t) & =x(2 t+5) \\
Y(t) & =\cos [6 \pi(2 t+5)+\sin (8 \pi(2 t+5)] \\
& =\cos (12 \pi t+30 \pi)+\sin (16 \pi t+40 \pi) \\
f_{m_{1}} & =6 \mathrm{~Hz} ; \quad f_{m_{2}}=8 \mathrm{~Hz}
\end{aligned}
$$

Nyquist sampling rate, $f_{s}=2 f_{\max }$

$$
=16 \text { samples/second }
$$

End of Solution
Q. 7 If the signal $x(t)=\frac{\sin (t)}{\pi t} * \frac{\sin (t)}{\pi t}$ with * denoting the convolution operation, then $x(t)$ is equal to
(a) $\frac{\sin (t)}{\pi t}$
(b) $\frac{\sin (2 t)}{2 \pi t}$
(c) $\frac{2 \sin (t)}{\pi t}$
(d) $\left(\frac{\sin (t)}{\pi t}\right)^{2}$

Ans. (a)

$$
x(t)=x_{1}(t) * x_{1}(t)
$$

$$
X(\omega)=X_{1}(\omega) \cdot X_{1}(\omega)
$$

$$
\therefore \quad x(t)=\frac{\sin t}{\pi t}
$$

$$
\begin{aligned}
& x_{1}(t)=\frac{\sin a t}{\pi t} \leftrightarrow \underset{-a}{\square} \omega \\
& x_{1}(t)=\frac{\sin t}{\pi t} \leftrightarrow
\end{aligned}
$$

Q. 8 A discrete-time signal $x[n]=\delta[n-3]+2 \delta[n-5]$ has z-transform $X(z)$. If $Y(z)=X(-z)$ is the z-transform of another signal $y[n]$, then
(a) $y[n]=x[n]$
(b) $y[n]=x[-n]$
(c) $y[n]=-x[n]$
(d) $y[n]=-x[-n]$

Ans. (c)
Given,

$$
\begin{aligned}
x[n] & =\delta[n-3]+2 \delta[n-5] \\
X(z) & =z^{-3}+2 z^{-5} \\
X(-z) & =(-z)^{-3}+2(-z)^{-5} \\
Y(z) & =X(-z)=-z^{-3}-2 z^{-5}=-\left[z^{-3}+2 z^{-5}\right] \\
y[n] & =-x[n]
\end{aligned}
$$

Q. 9 In the RLC circuit shown in the figure, the input voltage is given by $V_{i}(t)=2 \cos (200 t)+4 \sin (500 t)$
The output voltage $V_{0}(t)$ is

(a) $\cos (200 t)+2 \sin (500 t)$
(b) $2 \cos (200 t)+4 \sin (500 t)$
(c) $\sin (200 t)+2 \cos (500 t)$
(d) $2 \sin (200 t)+4 \cos (500 t)$

Ans. (b)

Where,

$$
V_{i}(t)=2 \cos (200 t)+4 \sin (500 t)
$$

As different frequencies are operating, using superposition theorem, we get for $\omega=200$

$$
\begin{aligned}
& X_{L}=\omega L=(200)(0.25)=50 \Omega ; \\
& X_{C}=\frac{1}{\omega C}=\frac{1}{200 \times 100 \times 10^{-6}}=50 \Omega
\end{aligned}
$$

for $\omega=500 \mathrm{rad} / \mathrm{sec}$

$$
X_{L}=0.4 \times 500=200 \Omega
$$

$$
X_{C}=\frac{1}{10 \times 10^{-6} \times 500}=200 \Omega
$$

$\therefore \quad V_{0}(t)=V_{i}(t)$
Therefore
$V_{0}(t)=2 \cos (200 t)+4 \sin (500 t)$
Q. 10 The I-V characteristics of three types of diodes at the room temperature, made of semiconductors X, Y and Z, are shown in the figure. Assume that the diodes are uniformly doped and identical in all respects except their materials. If $E_{g X}$, $E_{g Y}$, and $E_{g Z}$ are the band gaps of X, Y and Z, respectively, then

(a) $E_{g X}>E_{g Y}>E_{g Z}$
(b) $E_{g X}=E_{g Y}=E_{g Z}$
(c) $E_{g X}<E_{g Y}<E_{g Z}$
(d) no relationship among these band gaps exists

Ans. (c)
$X \rightarrow$ Ge Diode $E_{G}=0.2 \mathrm{~V}$
$Y \rightarrow$ Si Diode $E_{G}=0.7 \mathrm{~V}$
$Z \rightarrow$ GaAs Diode (or) LED $E_{G}=1.3 \mathrm{~V}$
Q. 11 The figure shows the band diagram of a Metal Oxide Semiconductor (MOS). The surface region of this MOS is in

(a) inversion
(b) accumulation
(c) depletion
(d) flat band

Ans. (a)
Substrate is N-type SC.
Q. 12 The figure shows the I-V characteristics of a solar cell illuminated uniformly with solar light of power $100 \mathrm{~mW} / \mathrm{cm}^{2}$. The solar cell has an area of $3 \mathrm{~cm}^{2}$ and a fill factor of 0.7 . The maximum efficiency (in \%) of the device is \qquad -.

Ans. (21)

$$
\begin{aligned}
\text { Fill factor } & =\frac{\text { Maximum obtained power }}{V_{O C} \cdot I_{S C}} \\
0.7 & =\frac{\text { Maximum obtained power }}{0.5 \times 180 \times 10^{-3}}
\end{aligned}
$$

\therefore Maximum obtained power, $P_{m}=0.063 \mathrm{~W}$

$$
\begin{aligned}
\text { Efficiency } \eta & =\frac{P_{m}}{G \cdot A}=\frac{0.063}{100 \times 10^{-3} \times 3}=21 \% \\
G & \rightarrow \text { input light in } \mathrm{W} / \mathrm{cm}^{2}
\end{aligned}
$$

Q. 13 The diodes $D 1$ and $D 2$ in the figure are ideal and the capacitors are identical. The product RC is very large compared to the time period of the ac voltage. Assuming that the diodes do not breakdown in the reverse bias, the output voltage V_{O} (in volt) at the steady state is \qquad -.

Ans. (0)
During first positive quarter cycle both diodes $D 1$ and $D 2$ conduct and at $t=\frac{T}{4}$ both will be OFF.

Both the capacitors will charge to 10 V as shown is above figure and $V_{0}=0$ in steady state.
Q. 14 Consider the circuit shown in the figure. Assuming $V_{B E 1}=V_{E B 2}=0.7$ volt, the value of the dc voltage $V_{C 2}$ (in volt) is \qquad -.

Ans. (0.5)

$Q_{1}: \quad V_{C B}=0$
We know $\quad \mathrm{V}_{C B 1}+V_{B E 1}=V_{C E 1}$
$\Rightarrow \quad V_{C E 1}=V_{B E 1}=0.7 \mathrm{~V}$
KVL to loop 1
$-2.5+V_{C E 1}+0.7+I_{B 2} \times 10 \mathrm{~K}+1 \mathrm{~V}=0$
$\rightarrow \quad I_{B 2}=\frac{2.5-1.4-1}{10 K}=0.01 \mathrm{~mA}$
$I_{C 2}=\beta_{2} I_{B 2}=0.5 \mathrm{~mA}$
$V_{C 2}=I_{C 2} \times 1 \mathrm{~K}=0.5 \times 10^{-3} \times 1 \times 10^{3}$

$$
=0.5 \mathrm{~V}
$$

Q. 15 In the astable multivibrator circuit shown in the figure, the frequency of oscillation (in kHz) at the output pin 3 is \qquad .

Ans. (5.6818)

$$
\begin{aligned}
f & =\frac{1}{0.69\left(R_{A}+2 R_{B}\right) C} \\
& =\frac{1}{0.69\left(2.2 \times 10^{3}+2 \times 4.7 \times 10^{3}\right) \times 0.022 \times 10^{-6}} \\
& =5.6818 \mathrm{kHz}
\end{aligned}
$$

Q. 16 In an 8085 microprocessor, the contents of the accumulator and the carry flag are A 7 (in hex) and 0 , respectively. If the instruction RLC is executed, then the contents of the accumulator (in hex) and the carry flag, respectively, will be
(a) 4 E and 0
(b) 4 E and 1
(c) 4 F and 0
(d) 4 F and 1

Ans. (d)
Given,
$C Y=0:$
$[A]=\mathrm{A} 7 \mathrm{H}$
RLC - Rotate accumulator content 1 bit left without carry

$$
\therefore \quad[A]=4 \mathrm{~F} \text { and } \quad C Y=1
$$

Q. 17 The logic functionality realized by the circuit shown below is

(a) OR
(b) XOR
(c) NAND
(d) AND

Ans. (d)
The output Y will be logic 1, when
$A=1, B=1$ and $\bar{B}=0$
$\Rightarrow \quad Y=A \cdot B \cdot \overline{\bar{B}}=A \cdot B$
\Rightarrow AND operation
Q. 18 The minimum number of 2-input NAND gates required to implement a 2 -input XOR gate is
(a) 4
(b) 5
(c) 6
(d) 7

Ans. (a)

Q. 19 The block diagram of a feedback control system is shown in the figure. The overall closed-loop gain G of the system is

(a) $G=\frac{G_{1} G_{2}}{1+G_{1} H_{1}}$
(b) $G=\frac{G_{1} G_{2}}{1+G_{1} G_{2}+G_{1} H_{1}}$
(c) $\quad G=\frac{G_{1} G_{2}}{1+G_{1} G_{2} H_{1}}$
(d) $G=\frac{G_{1} G_{2}}{1+G_{1} G_{2}+G_{1} G_{2} H_{1}}$

Ans. (b)

Q. 20 For the unity feedback control system shown in the figure, the open-loop transfer function $G(s)$ is given as

$$
G(s)=\frac{2}{s(s+1)}
$$

The steady state error $e_{s s}$ due to a unit step input is

(a) 0
(b) 0.5
(c) 1.0
(d) ∞

Ans.
(a)

$$
\begin{aligned}
E(s) & =\frac{R(s)}{1+G(s) H(s)} \\
R(s) & =\frac{1}{s} ; G(s)=\frac{2}{s(s+1)} ; H(s)=1 \\
E(s) & =\frac{\frac{1}{s}}{1+\frac{2}{s(\mathrm{~s}+1)}}=\frac{s+1}{s^{2}+s+2} \\
e_{s s} & =\underset{s \rightarrow 0}{L t} s E(s)=\underset{s \rightarrow 0}{L t} \frac{s(s+1)}{s^{2}+s+2} \\
e_{s s} & =0
\end{aligned}
$$

Q. 21 For a superheterodyne receiver, the intermediate frequency is 15 MHz and the local oscillator frequency is 3.5 GHz . If the frequency of the received signal is greater than the local oscillator frequency, then the image frequency (in MHz) is \qquad _.

Ans. (3485)

$$
\begin{aligned}
\mathrm{IF} & =15 \mathrm{MHz} \\
f_{l} & =3.5 \mathrm{GHz} \\
\Rightarrow \quad f_{\mathrm{si}} & =f_{l}-\mathrm{IF} \\
& =3500-15 \mathrm{MHz}=3485 \mathrm{MHz}
\end{aligned}
$$

Q. 22 An analog baseband signal, bandlimited to 100 Hz , is sampled at the Nyquist rate. The samples are quantized into four message symbols that occur independently with probabilities $p_{1}=p_{4}=0.125$ and $p_{2}=p_{3}$. The information rate (bits/sec) of the message source is \qquad .

Ans. (362.2)

$$
\begin{aligned}
f_{m} & =100 \mathrm{~Hz} \\
f_{s} & =2 f_{m}=200 \mathrm{samples} / \mathrm{sec} \\
P_{1} & =P_{4}=\frac{1}{8} \\
\Rightarrow \quad P_{1}+P_{2}+P_{3}+P_{4} & =1 \\
2 P_{2} & =2 P_{3}=1-\frac{1}{4}=\frac{3}{4} \\
\Rightarrow \quad P_{2} & =P_{3}=\frac{3}{8} \\
H & =\sum_{i=1}^{N} P_{i} \log \frac{1}{P_{i}} \\
& =\frac{1}{8} \log _{2} 8+\frac{1}{8} \log _{2} 8+\frac{3}{8} \log _{2} \frac{8}{3}+\frac{3}{8} \log _{2} \frac{8}{3} \\
H & =1.811 \mathrm{bits} / \mathrm{sample} \\
R & =H(\text { bits } / \mathrm{sample}) \times r(\text { samples } / \mathrm{sec}) \\
& =1.811 \times 200 \\
& =362.2 \mathrm{bits} / \mathrm{sec}
\end{aligned}
$$

Q. 23 A binary baseband digital communication system employs the signal

$$
p(t)=\left\{\begin{array}{lc}
\frac{1}{\sqrt{T_{s}}}, 0 \leq t \leq T_{s} \\
0, & \text { otherwise }
\end{array}\right.
$$

for transmission of bits. The graphical representation of the matched filter output $y(t)$ for this signal will be
(a)

(b)

(c)

(d)

Ans. (c)

Impulse response of matched filter, $h(t)=P\left(T_{s}-t\right)$

Output of matched filter, $y(t)=P(t) * h(\mathrm{t})$

Q. 24 If a right-handed circularly polarized wave is incident normally on a plane perfect conductor, then the reflected wave will be
(a) right-handed circularly polarized
(b) left-handed circularly polarized
(c) elliptically polarized with a tilt angle of 45°
(d) horizontally polarized

Ans. (b)
Left circularly polarized

- due to 180° phase difference between reflected and incident wave.
- due to direction change after the reflection from conductor.
Q. 25 Faraday's law of electromagnetic induction is mathematically described by which one of the following equations?
(a) $\nabla \cdot \vec{B}=0$
(b) $\nabla \cdot \vec{D}=\rho_{v}$
(c) $\nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}$
(d) $\nabla \times \vec{H}=\sigma \vec{E}+\frac{\partial \vec{D}}{\partial t}$

Ans. (c)
Rate of change of magnetic field results in induced voltage

$$
\nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}
$$

Two Marks Questions

Q. 26 The particular solution of the initial value problem given below is

$$
\frac{d^{2} y}{d x^{2}}+12 \frac{d y}{d x}+36 y=0 \text { with } y(0)=3 \text { and }\left.\frac{d y}{d x}\right|_{x=0}=-36
$$

(a) $(3-18 x) e^{-6 x}$
(b) $(3+25 x) e^{-6 x}$
(c) $(3+20 x) e^{-6 x}$
(d) $(3-12 x) e^{-6 x}$

Ans. (a)

$$
\begin{aligned}
\left(D^{2}+12 D+36\right)^{4} & =0 \\
(D+6)^{2} y & =0 \\
D & =-6,-6 \\
y & \left.=C_{1}+x C_{2}\right) e^{-6 x} \\
\mathrm{y} & =C_{1} \mathrm{e}^{-6 x}+C_{2} x e^{-6 x} \\
y(0) & =3=C_{1}+0 \quad \Rightarrow \\
y^{\prime} & =-6 C_{1} e^{-6 x}+C_{2} e^{-6 x}-6 C_{2} x \mathrm{e}^{-6 x} \\
y^{\prime}(0) & =-36 \\
-36 & =-6 C_{1}+C_{2} \\
-36 & =-18+C_{2} \quad C_{1}=3 \\
y & =3 e^{-6 x}-18 x \mathrm{e}^{-6 x} \\
& C_{2}=-18 \\
\therefore \quad y & =(3-18 x) \mathrm{e}^{-6 x}
\end{aligned}
$$

Q. 27 If the vectors $e_{1}=(1,0,2), e_{2}=(0,1,0)$ and $e_{3}=(-2,0,1)$ form an orthogonal basis of the three-dimensional real space R^{3}, then the vector $u=(4,3,-3) \in R^{3}$ can be expressed as
(a) $u=-\frac{2}{5} e_{1}-3 e_{2}-\frac{11}{5} e_{3}$
(b) $u=-\frac{2}{5} e_{1}-3 e_{2}+\frac{11}{5} e_{3}$
(c) $u=-\frac{2}{5} e_{1}+3 e_{2}+\frac{11}{5} e_{3}$
(d) $u=-\frac{2}{5} e_{1}+3 e_{2}-\frac{11}{5} e_{3}$

Ans. (d)

$$
\begin{aligned}
{\left[\begin{array}{l}
4 \\
3 \\
-3
\end{array}\right] } & =a\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]+b\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+c\left[\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right] \\
a-2 c & =4 \\
b & =3 \\
2 \mathrm{a}+c & =-3
\end{aligned}
$$

from here

$$
\begin{aligned}
a & =-\frac{2}{5} \\
b & =3 \\
c & =-\frac{11}{5} \\
u & =-\frac{2}{5} e_{1}+3 e_{2}-\frac{11}{5} e_{3}
\end{aligned}
$$

Q. 28 A triangle in the $x y$-plane is bounded by the straight lines $2 x=3 y, y=0$ and $x=3$. The volume above the triangle and under the plane $x+y+z=6$ is \qquad _.

Ans. (10)

$$
\begin{aligned}
\text { Volume } & =\iiint d z d x d y=\iint z d y d x \\
& =\int_{0}^{3} \int_{0}^{2 / 3 x}(6-x-y) d y d x=\left.\int_{0}^{3}\left(6 y-x y-\frac{y^{2}}{2}\right)\right|_{0} ^{2 / 3 x} d x \\
& =\int_{0}^{3}\left(4 x-\frac{8}{9} x^{2}\right) d x=\left.\left(4 \frac{x^{2}}{2}-\frac{8}{9} \cdot \frac{x^{3}}{3}\right)\right|_{0} ^{3} \\
& =\left.\left[2 x^{2}-\frac{8}{9}\left(\frac{x^{3}}{3}\right)\right]\right|_{0} ^{3} \\
& =18-8=10
\end{aligned}
$$

End of Solution

Q. 29 The values of the integral $\frac{1}{2 \pi j} \oint_{c} \frac{e^{z}}{z-2} d z$ along a closed contour c in anti-clockwise direction for
(i) the point $z_{0}=2$ inside the contour c, and
(ii) the point $z_{0}=2$ outside the contour c, respectively, are
(a) (i) 2.72 , (ii) 0
(b) (i) 7.39 , (ii) 0
(c) (i) 0 , (ii) 2.72
(d) (i) 0 , (ii) 7.39

Ans. (b)
(i)

$$
Z_{0}=2 \text {-lies inside } C \text {, }
$$

so

$$
\operatorname{Res} f(z)=\lim _{z \rightarrow 2}(z-2) \cdot \frac{e^{z}}{z-2}=e^{2}=7.39
$$

$$
\frac{1}{2 \pi i} \int_{c} \frac{e^{z}}{z-2} d z=2 \pi i \cdot \frac{1}{2 \pi i}(7.39)=7.39
$$

(ii)
$Z_{0}=-2$ lies out side C then
$\operatorname{Res} f(z)=0$
so

$$
\int_{c} \frac{e^{z}}{z-2} d z=2 \pi i \cdot \frac{1}{2 \pi i}(0)=0
$$

Q. 30 A signal $2 \cos \left(\frac{2 \pi}{3} t\right)-\cos (\pi t)$ is the input to an LTI system with the transfer function

$$
H(s)=e^{s}+e^{-s}
$$

If C_{k} denote the $k^{\text {th }}$ coefficient in the exponential Fourier series of the output signal, then c_{3} is equal to
(a) 0
(b) 1
(c) 2
(d) 3

Ans. (b)
Given,

$$
\begin{aligned}
H(s) & =e^{s}+e^{-s} \\
H\left(e^{j \omega}\right) & =e^{j \omega}+e^{-j \omega}=2 \cos \omega
\end{aligned}
$$

If

$$
\begin{aligned}
x(t) & =2 \cos \left(\frac{2 \pi}{3} t\right) \\
\omega_{0} & =\frac{2 \pi}{3}
\end{aligned}
$$

$$
H\left(j \omega_{0}\right)=2 \cos \left(\frac{2 \pi}{3}\right)=2\left(-\frac{1}{2}\right)=-1
$$

$$
y(t)=2 \cos \left(\frac{2 \pi}{3} t+180^{\circ}\right)
$$

$$
x(t)=\cos \pi t
$$

if

$$
x(t)=\cos \pi t
$$

$$
\omega_{0}=\pi
$$

$$
H\left(e^{j \omega_{0}}\right)=2 \cos (\pi)=-2
$$

$$
\begin{aligned}
& y(t)=2 \cos \left(\pi t+180^{\circ}\right) \\
& y(t)=2 \cos \left(\frac{2 \pi}{3} t+\pi\right)-2 \cos (\pi t+\pi) \\
& \omega_{1}=\frac{2 \pi}{3}, \quad \omega_{2}=\pi \\
& T_{1}=3 \quad T_{2}=2 \\
& \therefore \quad T_{0}=6 \\
& \Rightarrow \quad \omega_{0}=\frac{2 \pi}{T_{0}}=\frac{\pi}{3} \\
& y(t)=2 \cos \left(2 \omega_{0} t+\pi\right)-2 \cos \left(3 \omega_{0} t+\pi\right) \\
& y(t)=e^{j\left(2 \omega_{0} t+\pi\right)}+e^{-j\left(2 \omega_{0} t+\pi\right)}-e^{j\left(3 \omega_{0} t+\pi\right)}-e^{-j\left(3 \omega_{0} t+\pi\right)} \\
& y(t)=-e^{j\left(2 \omega_{0} t\right)}-e^{-j\left(2 \omega_{0} t\right)}+e^{j\left(3 \omega_{0} t\right)}+e^{-j\left(3 \omega_{0} t\right)} \\
& \therefore \quad C_{3}=1
\end{aligned}
$$

Q. 31 The ROC (region of convergence) of the z-transform of a discrete-time signal is represented by the shaded region in the z-plane. If the signal $x[n]=(2.0)^{|n|},-\infty<n<+\infty$, then the ROC of its z-transform is represented by
(a)

(b)

(c)

(d)

Ans. (d)
Given,

$$
\begin{aligned}
x[n] & =(2.0)^{|n|},-\infty<n<+\infty \\
& =2^{n} u[n]+\left(\frac{1}{2}\right)^{n} u[-n-1] \\
\mathrm{ROC} & :|Z|>2 \quad \text { ROC }:|Z|<\frac{1}{2}
\end{aligned}
$$

\therefore No ROC.
Q. 32 Assume that the circuit in the figure has reached the steady state before time $t=0$ when the 3Ω resistor suddenly burns out, resulting in an open circuit. The current $i(t)$ (in ampere) at $t=0^{+}$is \qquad —.

Ans. (-1)
at $t=0^{-}$

$$
I=\frac{12}{6}=2 \mathrm{~A}
$$

$$
V_{3 F}=10 \times \frac{2}{5}=4 \mathrm{~V}
$$

$$
V_{2 F}=10 \times \frac{3}{5}=6 \mathrm{~V}
$$

at $t=0^{+}$

$$
i\left(0^{+}\right)=\frac{-4}{2+2}=-1 \mathrm{~A}
$$

Q. 33 In the figure shown, the current i (in ampere) is \qquad .

Ans. (-1)

Using KCL at V_{1}

$$
\frac{V_{1}}{1}+\frac{V_{1}-8}{1}+\frac{V_{1}-8}{1}+\frac{V_{1}}{1}=0
$$

or

$$
V_{1}=4 \mathrm{~V}
$$

considering KVL, we get

Q. 34 The Z-parameter matrix $\left[\begin{array}{ll}Z_{11} & Z_{12} \\ Z_{21} & Z_{22}\end{array}\right]$ for the two-port network shown is

(a) $\left[\begin{array}{cc}2 & -2 \\ -2 & 2\end{array}\right]$
(b) $\left[\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right]$
(c) $\left[\begin{array}{cc}9 & -3 \\ 6 & 9\end{array}\right]$
(d) $\left[\begin{array}{ll}9 & 3 \\ 6 & 9\end{array}\right]$

Ans. (a)
Redrawing the circuit

$$
\begin{array}{ll}
& Z_{11}=\frac{V_{1}}{I_{1}}=3 \| 6=2 \Omega \\
& V_{2}=-3 \times I_{3 \Omega}=-3 \times I_{1} \times \frac{6}{9}=-2 I_{1} \\
\therefore & Z_{21}=\frac{V_{2}}{I_{1}}=-2 \\
\text { now, } & Z_{22}=\left.\frac{V_{2}}{I_{2}}\right|_{I_{1}=0}=3 \| 6=2 \Omega
\end{array}
$$

$$
V_{1}=-6 \times I_{6 \Omega}=-6 \times I_{2} \times \frac{3}{9}=-2
$$

$$
\therefore \quad[Z]=\left[\begin{array}{cc}
2 & -2 \\
-2 & 2
\end{array}\right]
$$

Q. 35 A continuous-time speech signal $x_{a}(t)$ is sampled at a rate of 8 kHz and the samples are subsequently grouped in blocks, each of size N. The DFT of each block is to be computed in real time using the radix- 2 decimation-in-frequency FFT algorithm. If the processor performs all operations sequentially, and takes 20μ s for computing each complex multiplication (including multiplications by 1 and -1) and the time required for addition/subtraction is negligible, then the maximum value of N is \qquad .

Ans. (4096)

$$
\begin{aligned}
f_{s} & =8000 \text { samples } / \mathrm{sec} \\
\Rightarrow \quad & T_{s}
\end{aligned}=\frac{1}{f_{s}}=\frac{1}{8000} \mathrm{sec} .
$$

Time for each multiplication $=T_{m}=20 \mu \mathrm{sec}$.

$$
T_{m}=20 \times 10^{-6} \mathrm{sec}
$$

Suppose block is of size N, then time taken to generate each block $=N \times T_{s}=N \times \frac{1}{8000}$. No. of multiplications that can be performed by processor in the time taken for each block $=\frac{N \times T_{s}}{T_{m}}$
No. of multiplications required to compute DFT by Radix - 2 FFT algorithm

$$
=\frac{N}{2} \log _{2} N
$$

No. of multiplication required by $\mathrm{FFT} \leq$ No. of multiplications that can be performed by the processor in the time taken in each block
[Reason: real time]

$$
\begin{aligned}
\frac{N}{2} \log _{2} N & \leq \frac{N \times T_{s}}{T_{m}} \\
\log _{2} N & \leq \frac{2 \times \frac{1}{8000}}{20 \times 10^{-6}}=12.5 \\
N & \leq 2^{12.5} \\
\Rightarrow \quad N & \leq 2^{12}=4096
\end{aligned}
$$

Q. 36 The direct form structure of an FIR (finite impulse response) filter is shown in the figure.

The filter can be used to approximate a
(a) low-pass filter
(b) high-pass filter
(c) band-pass filter
(d) band-stop filter

Ans. (c)

$$
\begin{aligned}
& y[n]=5[x[n]-x[n-2]] \\
& H(z)=\frac{Y(z)}{X(z)}=5\left[1-z^{-2}\right]
\end{aligned}
$$

But,

$$
z=e^{j_{0}}
$$

$$
H\left(e^{j \omega}\right)=5\left[1-e^{\left.-j{ }^{2 \omega}\right]}\right]
$$

$\omega=0 \quad\left|H\left(e^{j \omega}\right)\right|=0$
$\omega=\frac{\pi}{2} \quad\left|H\left(e^{j \omega}\right)\right|=10$
$\omega=\pi \quad\left|H\left(e^{j \omega}\right)\right|=0$
\therefore The given one is bandpass filter.
Q. 37 The injected excess electron concentration profile in the base region of an $n p n$ BJT, biased in the active region, is linear, as shown in the figure. If the area of the emitter-base junction is $0.001 \mathrm{~cm}^{2}, \mu_{n}=800 \mathrm{~cm}^{2} /(\mathrm{V}-\mathrm{s})$ in the base region and depletion layer widths are negligible, then the collector current I_{C} (in mA) at room temperature is
(Given: thermal voltage $V_{T}=26 \mathrm{mV}$ at room temperature, electronic charge $q=1.6 \times 10^{-19} \mathrm{C}$)

Ans. (6.656)

$$
\begin{aligned}
I_{c} & =A q D_{n} \frac{d n}{d x} \text { where } D_{n}=\mu_{n} V_{T} \\
& =0.001\left(1.6 \times 10^{-19}\right) 800 \times 26 \times 10^{-3}\left[\frac{10^{14}}{0.5 \times 10^{-4}}\right] \\
& =66.56 \times 10^{-4} \mathrm{~A}=6.656 \mathrm{~mA}
\end{aligned}
$$

Q. 38 Figures I and II show two MOS capacitors of unit area. The capacitor in Figure I has insulator materials X (of thickness $t_{1}=1 \mathrm{~nm}$ and dielectric constant $\varepsilon_{1}=4$) and Y (of thickness $t_{2}=3 \mathrm{~nm}$ and dielectric constant $\varepsilon_{2}=20$). The capacitor in Figure II has only insulator material X of thickness t_{Eq}. If the capacitors are of equal capacitance, then the value of t_{Eq} (in nm) is -.

Figure I

Figure II

Ans. (1.6)
From the figure I
Both the capacitors C_{1} and C_{2} are in series
Total Capacitance $\quad C=\frac{C_{1} C_{2}}{C_{1}+C_{2}}$

$$
\begin{aligned}
& C=\frac{\frac{A \varepsilon_{1}}{t_{1}} \cdot \frac{A \varepsilon_{2}}{t_{2}}}{\frac{A \varepsilon_{1}}{t_{1}}+\frac{A \varepsilon_{2}}{t_{2}}}=\frac{\frac{A \times 4}{10^{-9}} \cdot \frac{A \times 20}{3 \times 10^{-9}}}{\frac{\mathrm{~A} \times 4}{10^{-9}}+\frac{A \times 20}{3 \times 10^{-9}}} \\
& C=2.5 \times 10^{9} \times A
\end{aligned}
$$

From figure II

$$
C=\frac{\varepsilon A}{t_{e q}}
$$

Since both capacitors must be equal in figures I and II

$$
\begin{array}{rlrl}
2.5 \times 10^{9} \times A & =\frac{A \times 4}{t_{e q}} \\
\therefore & t_{\mathrm{eq}} & =1.6 \mathrm{~nm}
\end{array}
$$

Q. 39 The I-V characteristics of the zener diodes $D 1$ and $D 2$ are shown in Figure I. These diodes are used in the circuit given in Figure II. If the supply voltage is varied from 0 to 100 V , then breakdown occurs in

Figure I

Figure II
(a) $D 1$ only
(b) D2 only
(c) both $D 1$ and $D 2$
(d) none of $D 1$ and $D 2$

Ans. (d)
Zener Diode D_{1} has $V_{B r}=80 \mathrm{~V}$
Zener Diode D_{2} has $V_{B r}=70 \mathrm{~V}$
In series connection of $Z D, V_{B r}$ are added total

$$
V_{B r}=150 \mathrm{~V}
$$

Since applied voltage is variable from $0-100 \mathrm{~V}$.
so, None of the $Z D$ will enter into breakdown.
Q. 40 For the circuit shown in the figure, $R_{1}=R_{2}=R_{3}=1 \Omega, L=1 \mu \mathrm{H}$ and $C=1 \mu \mathrm{~F}$. $V_{\text {in }}=\cos \left(10^{6} t\right)$, then the overall voltage gain ($\left.V_{\text {out }} / V_{\text {in }}\right)$ of the circuit is \qquad .

Ans. (-1)

$$
\begin{aligned}
H_{1}(s) & =\frac{V_{01}}{V_{i}} \\
& =1+\frac{R_{1}}{s L}=1+\frac{1}{\frac{s L}{R_{1}}}=1+\frac{1}{s \times 10^{-6}} \\
H_{2}(s) & =\frac{V_{0}}{V_{01}}=-\frac{R_{3}}{\frac{R_{2} C s+1}{C s}} \\
& =\frac{-s R_{3} C}{1+s R_{3} C}=\frac{-C s}{1+C s}=\frac{-1}{1+\frac{1}{C s}} \\
H(s) & =H_{1}(s) H_{2}(s) \\
& =\left(1+\frac{1}{s \times 10^{-6}}\right)\left(\frac{-s \times 1 \times 10^{-6}}{1+s \times 10^{-6}}\right)=-1
\end{aligned}
$$

Q. 41 In the circuit shown in the figure, the channel length modulation of all transistors is non-zero $(\lambda \neq 0)$. Also, all transistors operate in saturation and have negligible body effect. The ac small signal voltage gain $\left(V_{\mathrm{o}} / V_{\mathrm{in}}\right)$ of the circuit is

(a) $-g_{m 1}\left(r_{01}\left\|r_{02}\right\| r_{03}\right)$
(b) $-g_{m 1}\left(r_{01}\left\|\frac{1}{g_{m 3}}\right\| r_{03}\right)$
(c) $-g_{m 1}\left(r_{01}\left\|\left(\frac{1}{g_{m 2}} \| r_{02}\right)\right\| r_{03}\right)$
(d) $-g_{m 1}\left(r_{01}\left\|\left(\frac{1}{g_{m 3}} \| r_{03}\right)\right\| r_{02}\right)$

Ans. (c)

Node equation at P_{1} :
$g_{m 1} V_{g s 1}+\frac{V_{0}}{r_{01}}+\frac{V_{0}}{r_{03}}+\frac{V_{0}}{r_{02}}-g_{m_{2}} V_{g s_{2}}=0$

$$
V_{0}\left(\frac{1}{r_{01}}+\frac{1}{r_{02}}+g_{m 2}+\frac{1}{r_{03}}\right)=-g_{m 1} V_{\mathrm{in}}
$$

$$
\Rightarrow \quad A_{v}=\frac{V_{0}}{V_{\mathrm{in}}}=-g_{m 1}\left[r_{01}\left\|\left[r_{02} \| \frac{1}{g_{m 2}}\right]\right\| r_{03}\right]
$$

Q. 42 In the circuit shown in the figure, transistor M1 is in saturation and has transconductance $g_{m}=0.01$ siemens. Ignoring internal parasitic capacitances and assuming the channel length modulation λ to be zero, the small signal input pole frequency (in kHz) is \qquad .

Ans. (57.85)
With respect to A.C

Taking miller's equivalent and assume $r_{0}=\propto$

$$
A_{V}=-g_{m} R_{D}=-0.01 \times 10^{3}=-10
$$

small signal input pole frequency

$$
=\frac{1}{2 \pi \times 5 \times 10^{3} \times 50 \times 10^{-12}(1+10)}=57.87 \mathrm{kHz}
$$

Q. 43 Following is the K-map of a Boolean function of five variables P, Q, R, S and X. The minimum sum-of-product (SOP) expression for the function is

$P Q$				
$R S$	00	01	11	10
00	0	0	0	0
01	1	0	0	1
11	1	0	0	1
10	0	0	0	0

(a) $\bar{P} \bar{Q} S \bar{X}+P \bar{Q} S \bar{X}+Q \bar{R} \bar{S} X+Q R \bar{S} X$
(c) $\bar{Q} S X+Q \bar{S} \bar{X}$
(b)

\therefore minimum sum of product expression of the function is

$$
=\bar{Q} S \bar{X}+Q \bar{S} X
$$

Q. 44 For the circuit shown in the figure, the delays of NOR gates, multiplexers and inverters are $2 \mathrm{~ns}, 1.5 \mathrm{~ns}$ and 1 ns , respectively. If all the inputs P, Q, R, S and T are applied at the same time instant, the maximum propagation delay (in ns) of the circuit is \qquad .

Ans. (6)
When, $T=$ logic 0 , the path followed by the circuit would be,
NOR gate \rightarrow MUX $1 \rightarrow$ MUX 2
$\Rightarrow 2 \mathrm{~ns} \rightarrow 1.5 \mathrm{~ns} \rightarrow 1.5 \mathrm{~ns}$
$\Rightarrow 5 \mathrm{~ns}$
When, $T=$ logic 1 , the path followed by the circuit would be,
NOR gate \rightarrow MUX $1 \rightarrow$ NOR gate \rightarrow MUX 2
$\Rightarrow 1 \mathrm{~ns} \rightarrow 1.5 \mathrm{~ns} \rightarrow 2 \mathrm{~ns} \rightarrow 1.5 \mathrm{~ns}$
$\Rightarrow 6 \mathrm{~ns}$
$\therefore \quad$ Maximum propagation delay is 6 ns
End of Solution
Q. 45 For the circuit shown in the figure, the delay of the bubbled NAND gate is 2 ns and that of the counter is assumed to be zero.

If the clock (Clk) frequency is 1 GHz , then the counter behaves as a
(a) mod-5 counter
(b) mod-6 counter
(c) mod-7 counter
(d) mod-8 counter

Ans. (d)
Clock frequency $=1 \mathrm{GHz}$
\Rightarrow Clock time period $=1 \mathrm{~ns}$
If the propagation delay of the NAND gate were 0 ns , the circuit would have behaved as MOD 6 counter.
However, the delay of NAND gate is 2 ns . During this time, two more clock pulses would reach the counter, and therefore it would count two more states. Hence, it acts as MOD 8 counter.
Q. 46 The first two rows in the Routh table for the characteristic equation of a certain closed-loop control system are given as

s^{3}	1	$(2 K+3)$
s^{2}	$2 K$	4

The range of K for which the system is stable is
(a) $-2.0<K<0.5$
(b) $0<K<0.5$
(c) $0<K<\infty$
(d) $0.5<K<\infty$

Ans.
(d)

$$
\begin{align*}
& s^{3} \quad 1 \quad(2 K+3) \\
& s^{2} \quad 2 K \quad 4 \\
& s \frac{4 K^{2}+6 K-4}{2 K} \quad 0 \\
& s^{\circ} \quad 4 \\
& \text { For stability, } \quad K>0 \tag{i}\\
& 4 K^{2}+6 K-4>0 \\
& 2 K^{2}+3 K-2>0 \\
& (2 K-1)(K+2)>0 \\
& \Rightarrow \quad K>\frac{1}{2} \text { or, } K<-2 \tag{ii}
\end{align*}
$$

Hence,

$$
0.5<K<\infty
$$

End of Solution

Q. 47 A second-order linear time-invariant system is described by the following state equations

$$
\begin{aligned}
& \frac{d}{d t} x_{1}(t)+2 x_{1}(t)=3 u(t) \\
& \frac{d}{d t} x_{2}(t)+x_{2}(t)=u(t)
\end{aligned}
$$

where $x_{1}(t)$ and $x_{2}(t)$ are the two state variables and $u(t)$ denotes the input. If the output $c(t)=x_{1}(t)$, then the system is
(a) controllable but not observable
(b) observable but not controllable
(c) both controllable and observable
(d) neither controllable nor observable

Ans. (a)

$$
\begin{aligned}
\dot{x}_{1}(t)+2 x_{1}(t) & =3 u(t) \\
\dot{x}_{2}(t)+x_{2}(t) & =u(t) \\
\dot{x}_{1}(t) & =-2 x_{1}(t)+3 u(t) \\
\dot{x}_{2}(t) & =-x_{2}(t)+u(t) \\
{\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right] } & =\left[\begin{array}{cc}
-2 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
3 \\
1
\end{array}\right] U \\
c(t) & =x_{1}(t) \\
& =\left[\begin{array}{cc}
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
A & =\left[\begin{array}{cc}
-2 & 0 \\
0 & -1
\end{array}\right] ; \quad B=\left[\begin{array}{l}
3 \\
1
\end{array}\right] ; \quad C=\left[\begin{array}{ll}
1 & 0
\end{array}\right]
\end{aligned}
$$

For controllability $\quad Q_{C}=\left[\begin{array}{ll}B & A B\end{array}\right]=\left[\begin{array}{ll}3 & -6 \\ 1 & -1\end{array}\right]$

$$
\left|Q_{C}\right| \neq 0 \rightarrow \text { Hence system is controllable. }
$$

For observability

$$
\begin{aligned}
Q_{0} & =\left[\begin{array}{l}
C \\
C A
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
-2 & 0
\end{array}\right] \\
\left|Q_{0}\right| & =0 \quad \rightarrow \text { Hence system is not observable }
\end{aligned}
$$

Q. 48 The forward-path transfer function and the feedback-path transfer function of a single loop negative feedback control system are given as
$G(s)=\frac{K(s+2)}{s^{2}+2 s+2}$ and $H(s)=1$,
respectively. If the variable parameter K is real positive, then the location of the breakaway point on the root locus diagram of the system is \qquad .

Ans. (-3.41)

$$
\begin{aligned}
G(s) & =\frac{K(s+2)}{s^{2}+2 s+2} ; H(s)=1 \\
1+G(s) H(s) & =0 \\
1+\frac{K}{\left(s^{2}\right)+2 s+2}(s+2) & =0 \\
K & =-\frac{\left(s^{2}+2 s+2\right)}{(s+2)}
\end{aligned}
$$

$$
\frac{d K}{d s}=-\left(\frac{(2 s+2)(s+2)-\left(s^{2}+2 s+2\right)}{(s+2)^{2}}\right)
$$

For break away points, $\frac{d K}{d s}=0$
$(2 \mathrm{~s}+2)(s+2)-\left(s^{2}+2 \mathrm{~s}+2\right)=0$
$2 \mathrm{~s}^{2}+6 \mathrm{~s}+4-\mathrm{s}^{2}-2 \mathrm{~s}-2=0$

$$
s^{2}+4 s+2=0
$$

$$
\begin{aligned}
s & =\frac{-4 \pm \sqrt{16-8}}{2} \\
& =\frac{-4 \pm 2 \sqrt{2}}{2}=-2 \pm \sqrt{2} \\
s & =-0.58 ; s=-3.41 \\
s & =-3.41 \text { lies on root locus } \\
s & =-3.41
\end{aligned}
$$

But,
Hence
Q. 49 A wide sense stationary random process $X(t)$ passes through the LTI system shown in the figure. If the autocorrelation function of $X(t)$ is $R_{X}(\tau)$, then the autocorrelation function $R_{Y}(\tau)$ of the output $Y(t)$ is equal to

(a) $2 R_{X}(\tau)+R_{X}\left(\tau-T_{0}\right)+R_{X}\left(\tau+T_{0}\right)$
(b) $2 R_{X}(\tau)-R_{X}\left(\tau-T_{0}\right)-R_{X}\left(\tau+T_{0}\right)$
(c) $2 R_{X}(\tau)+2 R_{X}\left(\tau-2 T_{0}\right)$
(d) $2 R_{X}(\tau)-2 R_{X}\left(\tau-2 T_{0}\right)$

Ans. (b)

$$
\begin{aligned}
y(t) & =x(t)-x\left(t-T_{0}\right) \\
R_{y}(\tau) & =E(y(\tau) y(t-\tau)] \\
y(\tau) & =x(\tau)-x\left(\tau-T_{0}\right) \\
y(t-\tau) & =x(t-\tau)-x\left(t-\tau-T_{0}\right) \\
R_{y}(\tau) & =E\left(\left(x(\tau)-x\left(\tau-T_{0}\right)\right)\left(x(t-\tau)-x\left(t-\tau-T_{0}\right)\right)\right. \\
& =E\left(x(\tau) x(t-\tau)-x(\tau) x\left(t-\tau-T_{0}\right)-x\left(\tau-T_{0}\right) x(t-\tau)+x\left(\tau-T_{0}\right) x\left(t-\tau-T_{0}\right)\right) \\
& =E[x(\tau) x(t-\tau)]-E\left[x(\tau) x\left(t-\tau-T_{0}\right)\right]-E\left[x\left(\tau-T_{0}\right) x(t-\tau)\right]+E\left[x\left(\tau-T_{0}\right) x\left(t-\tau-T_{0}\right)\right] \\
& =R_{x}(\tau)-R_{x}\left(\tau+T_{0}\right)-R_{x}\left(\tau-T_{0}\right)+R_{x}(\tau) \\
R_{y}(\tau) & =2 R_{x}(\tau)-R_{x}\left(\tau+T_{0}\right)-R_{x}\left(\tau-T_{0}\right)
\end{aligned}
$$

Q.50 A voice-grade AWGN (additive white Gaussian noise) telephone channel has a bandwidth of 4.0 kHz and two-sided noise power spectral density
$\frac{\eta}{2}=2.5 \times 10^{-5} \quad$ Watt per Hz . If information at the rate of 52 kbps is to be transmitted over this channel with arbitrarily small bit error rate, then the minimum bit-energy E_{b} (in mJ/bit) necessary is \qquad —.

Ans. (31.5)

$$
\begin{aligned}
& C=B \log _{2}\left(1+\frac{S}{N}\right) \\
& S=E_{b} \cdot R_{b} \quad\left(E_{b}=\text { bit energy, } R_{b}=\text { information rate bits/sec }\right) \\
& C=B \log _{2}\left(1+\frac{E_{b} R_{b}}{N_{o} B}\right)
\end{aligned}
$$

For distortionless transmission, C should be atleast of R_{b}

$$
\begin{aligned}
\frac{R_{b}}{B} & =\log _{2}\left(1+\frac{\mathrm{E}_{b} R_{b}}{N_{o} B}\right) \\
E_{b} & =\left(2^{R b / B}-1\right) \frac{N_{o} B}{R_{b}} \\
& =\frac{\left(2^{52 / 13}-1\right) \times 2 \times 2.5 \times 10^{-5} \times 4}{52} \\
E_{b} & \approx 31.504 \mathrm{~mJ} / \mathrm{bit}
\end{aligned}
$$

Q. 51 The bit error probability of a memoryless binary symmetric channel is 10^{-5}. If 10^{5} bits are sent over this channel, then the probability that not more than one bit will be in error is \qquad .

Ans. (0.7357)
bit error probability, $\quad p=10^{-5}$
Number of bits transmitted,

$$
n=10^{5}
$$

If n-bits are transmitted, probability of getting crror in ' r ' bits is given by

$$
p_{e}={ }^{n} C_{r} p^{r}(1-p)^{n-r}
$$

The probability that not more than one bit will be in crror is

$$
\begin{aligned}
& ={ }^{n} C_{0} p^{0}(1-p)^{n-0}+{ }^{n} C_{1}(p)^{1}(1-p)^{n-1} \\
& =(1-p)^{n}+n p(1-p)^{n-1} \\
& =\left(1-10^{-5}\right)^{10^{5}}+10^{5} \times 10^{-5}\left(1-10^{-5}\right)^{10^{5}-1} \\
& =0.7357
\end{aligned}
$$

Q. 52 Consider an air-filled rectangular waveguide with dimensions $a=2.286 \mathrm{~cm}$ and $b=1.016 \mathrm{~cm}$. At 10 GHz operating frequency, the value of the propagation constant (per meter) of the corresponding propagating mode is \qquad .

Ans.
(158)

$$
\text { Operation frequency }=10 \mathrm{GHz}
$$

Cut off frequency for $\mathrm{TE}_{10} \quad f_{c}=\frac{c}{2 a}$

$$
f_{c}=\frac{3 \times 10^{8}}{2 \times 2.286 \times 10^{-2}}=6.57 \mathrm{GHz}
$$

Next mode $T E_{20}$ has $f_{c}=13 \mathrm{GHz}$
10 GHz operates only in dominant mode.

$$
\begin{aligned}
\bar{\gamma} & =\sqrt{\left(\frac{m \pi}{a}\right)^{2}-\omega^{2} \mu \epsilon} \\
& =\sqrt{\left(\frac{\pi}{a}\right)^{2}-\frac{(2 \pi f)^{2}}{\left(3 \times 10^{8}\right)^{2}}} \\
& =\pi \sqrt{\left(\frac{1}{2.286 \times 10^{-2}}\right)^{2}-\left(\frac{\left.2 \times 10 \times 10^{9}\right)^{2}}{3 \times 10^{8}}\right)^{2}} \\
& =j 158\left(\mathrm{~m}^{-1}\right)
\end{aligned}
$$

Q. 53 Consider an air-filled rectangular waveguide with dimensions $a=2.286 \mathrm{~cm}$ and $b=1.016 \mathrm{~cm}$. The increasing order of the cut-off frequencies for different modes is
(a) $\mathrm{TE}_{01}<\mathrm{TE}_{10}<\mathrm{TE}_{11}<\mathrm{TE}_{20}$
(b) $\mathrm{TE}_{20}<\mathrm{TE}_{11}<\mathrm{TE}_{10}<\mathrm{TE}_{01}$
(c) $\mathrm{TE}_{10}<\mathrm{TE}_{20}<\mathrm{TE}_{01}<\mathrm{TE}_{11}$
(d) $\mathrm{TE}_{10}<\mathrm{TE}_{11}<\mathrm{TE}_{20}<\mathrm{TE}_{01}$

Ans. (c)

$$
\begin{aligned}
a & =2.286 \mathrm{~cm} \\
b & =1.016 \mathrm{~cm} \\
f_{c_{T E_{10}}} & =\frac{c}{2 a} ; \quad f_{c_{T E_{01}}}=\frac{c}{2 b} \\
f_{c_{T E_{20}}} & =\frac{c}{a} ; \quad f_{c_{T E_{11}}}=\frac{c}{2} \sqrt{\left(\frac{1}{a}\right)^{2}+\left(\frac{1}{b}\right)^{2}}
\end{aligned}
$$

As $a>2 b \Rightarrow f_{c_{T E_{10}}}<f_{c_{T E_{20}}}<f_{c_{T E_{01}}}<f_{c_{T E_{11}}}$
Q. 54 A radar operating at 5 GHz uses a common antenna for transmission and reception. The antenna has a gain of 150 and is aligned for maximum directional radiation and reception to a target 1 km away having radar cross-section of $3 \mathrm{~m}^{2}$. If it transmits 100 kW , then the received power (in $\mu \mathrm{W}$) is \qquad .

Ans. (0.012)
$f=5 \mathrm{GHz}, G=150, R=1 \mathrm{~km}, P_{t}=100 \mathrm{~kW}, \sigma=3 \mathrm{~m}^{2}$

$$
\begin{aligned}
P_{r} & =\frac{(G \lambda)^{2} \cdot \sigma}{(4 \pi)^{3} R^{4}} \times P_{t} \\
& =\frac{\left(150 \times \frac{3 \times 10^{8}}{5 \times 10^{9}}\right)^{2} \cdot 3}{(4 \pi)^{3} \cdot 10^{12}} \times 10^{5}=\frac{81 \times 3 \times 10^{5}}{(4 \pi)^{3} \times 10^{12}} \\
& =1.224 \times 10^{-8}=0.012 \mu \mathrm{~W}
\end{aligned}
$$

Q. 55 Consider the charge profile shown in the figure. The resultant potential distribution is best described by

(a)

(b)

(c)

(d)

Ans. (c)
As ρ is given constant (solid charge) E is a linear function of x $V=\int E \cdot d x=$ Non-linear function increasing with x.
with some discontinuity due to different charge on either side, the voltage has a discontinuity as in option (c).

$\mathcal{N a t i o n a l}$ Scholarship Test

 for GATE \& ESE 2017 aspirants Scholarship upto 100\% in classroom coursesThousands of talented engineering graduates dream about prestigious engineering service examination, public sectors, IITs etc. But due to unfavorable economic conditions, these students are unable to take coaching guidance. Therefore MADE EASY has taken a initiative to acknowledge the talented in the form of scholarships. MADE EASY will provide scholarship worth more than 1.25 crores for those students who wish to enroll classroom courses for the session 2016-17.

Category	Scholarship\% in Tuition fee
A	100%
B	75%
C	50%
D	25%
E	10%

Scholarship will vary from 10% to 100%
of tuition fee, based on merit list.

Scholarship
 Worthmos than 1.25 Crores

Scholarship Test
will be conducted in
42 cties
Delhi, Noida, Hyderabad, Lucknow, Bhopal, Jaipur Indore, Pune, Bhubaneswar, Kolkata, Patna, Bhilai, Bangalore, Chennai, Nagpur, Chandigarh, Kanpur, Ranchi, Vijayawada, Dehradun, Kochi, Vishakhapatnam

Test Dates

28 ${ }^{\text {th }}$ Feb, 2016
$06^{\text {th }}$ Mar, 2016
Candidate can appear in any ONE test only
Test Pattern (Objective Type)
Basic Engineering 50 Q
Engineering Mathematics 20 Q
Reasoning \& Aptitude 20 Q
General English 10 Q
100 marks 100 questions 2 hours

Test Syllahus : Basic Engineering

Civil
Strength of materials, Design of Concrete structures, Soil mechanics and Foundation Engg, Environmental Engg, Fluid Mechanics \& Highway Engg.

Mechanical
Basic thermo dynamics, Heat \& Mass transfer, Fluid Mechanics, Industrial Engg, Production Engg and Theory of Machines.

Electrical Network theory, Control System, Electrical machines, Power systems, electrical Measurements, Analog electronics.

Electronics
Network theory, Control System, electronic devices \&Circuits Analog electronics, Digital electronics and Communication systems.

Computer Science
TOC, Algorithms and Programming Methodology, Operating System, DBMS, Computer Networks, Compiler design

- Log on to www.madeeasy.in
- Fill National Scholarship Test online registration form.

PROCEDURE
for
Registration

- Computer generated Admit Card will be mailed to your respective e-mail id.
- Venue \& timing will be mentioned on Admit Card.
- Candidate should produce Admit Card along with photo id proof to enter the examination hall.

Important Dates

Last date to register online
20-Feb-2016
National Scholarship Test-1
28-Feb-2016
National Scholarship Test-2
06-Mar-2016
Results
15-Mar-2016

MRDE ERS논
India's Best Institute for IES, GATE \& PSUs

\author{

- Best Faculty • Best Study Material • Best Results
}

Features of Classroom Gourses

- Experienced Faculty
- GATE/ESE Test Series
- Updated Books and Reading References
- Regular classroom tests followed by discussions
- Doubt clearing sessions
- Interview Guidance Program
- Coverage of syllabus before GATE/ESE exams.
- Orientation sessions for GATE/ESE

ADMISSIONS OPEN for Session 2016-17 at all centre of MADE EASY

44-A/1, Kalu Sarai, Near Hauz Khas Metro Station, New Delhi-16; E-mail : infodelhi@madeeasy.in Ph.: 011-45124612, 09958995830

Abstract

Noida D-28 Sector-63 Noida, Uttar Pradesh; E-mail: infonoida@madeeasy.in Ph.: 0120-6524612, 08860378009

Iucknow
B1/67, Sector P, Aliganj, Lucknow; E-mail : infolucknow@madeeasy.in Ph.: 09919111168,08400029422

Jaipur AB-559, Kings Road, Nirman Nagar, Jaipur, Rajasthan; E-mail : infojaipur@madeeasy.in Ph.: 0141-4024612, 09166811228

Bhopal
Plot No. 46, Zone-2 M.P. Nagar, Bhopal (Madhya Pradesh)- 462021; E-mail : infobhopal@madeeasy.in Ph.: 0755-4004612, 08120035652

Indore

Gemini Mall, PU3, Opp. Orbit Mall, A.B. Road, Vijay Nagar, Indore; E-mail : infoindore@madeeasy.in Ph.: 0731-4029612, 07566669612

Pune

II Floor, Business Bay, Plot No. 84, Near R.T.O. Shivaji Nagar, Pune; E-mail : infopune@madeeasy.in Ph.: 020-26058612, 09168884343

Hyderahad
5-1-744, Bank Street, Koti, Hyderabad-95; E-mail : infohyderabad@madeeasy.in Ph.: 040-24652324, 09160002324

Bhubancswar Plot No-1441, CRPF Square, Opposite to IOCL Petrol Pump; E-mail : infobhubaneswar@madeeasy.in Ph.: 0674-6999888, 9040999888

Kolkata

755, Anandapur Next to Fortis Hospital Off-EM Bypass Kolkata; E-mail : infokolkata@madeeasy.in Ph.: 033-68888880, 08282888880

Patia

"MADE EASY is the only institute which has consistently produced toppers in ESE \& GATE" www.madeeasy.in

mRDE ERSU

