Solutions of

Electronics Engineering GATE-2016

Session 3 | Set-2

MRDE ERS

IRPDE ERSㅂ

India's Best Institute for IES, GATE \& PSUs

Section - I (General Aptitude)

One Mark Questions

Q. 1 Based on the given statements, select the appropriate option with respect to grammar and usage. Statements
I. The height of Mr. X is 6 feet.
II. The height of Mr. Y is 5 feet.
(a) Mr. X is longer than Mr. Y.
(b) $\mathrm{Mr} . X$ is more elongated than $\mathrm{Mr} . Y$
(c) Mr. X is taller than Mr. Y
(d) Mr. X is lengthier than Mr. Y

Ans. (c)
End of Solution
Q. 2 The students \qquad the teacher on teachers' day for twenty years of dedicated teaching.
(a) facilitated
(b) felicitated
(c) fantasized
(d) facillitated

Ans. (b)
Q. 3 After India's cricket world cup victory in 1985, Shrotria who was playing both tennis and cricket till then, decided to concentrate only on cricket. And the rest is history.
What does the underlined phrase mean in this context?
(a) history will rest in peace
(b) rest is recorded in history books
(c) rest is well known
(d) rest is archaic

Ans. (c)
Q. 4 Given $(9 \text { inches })^{1 / 2}=(0.25 \text { yards })^{1 / 2}$, which one of the following statements is TRUE?
(a) 3 inches $=0.5$ yards
(b) 9 inches $=1.5$ yards
(c) 9 inches $=0.25$ yards
(d) 81 inches $=0.0625$ yards

Ans. (c)
Q. $5 \quad \boldsymbol{S}, \boldsymbol{M}, \boldsymbol{E}$ and \boldsymbol{F} are working in shifts in a team to finish a project. \boldsymbol{M} works with twice the efficiency of others but for half as many days as \boldsymbol{E} worked. \boldsymbol{S} and \boldsymbol{M} have 6 hour shifts in a day. whereas \boldsymbol{E} and \boldsymbol{F} have 12 hours shifts. What is the ratio of contribution of \boldsymbol{M} to contribution of \boldsymbol{E} in the project?
(a) $1: 1$
(b) $1: 2$
(c) $1: 4$
(d) $2: 1$

Ans. (b)
' M ' works with twice efficiency as E but worked for half as many days. So in this repsect they will do equal work if their shifts would have been for same timings. But M's shift is for hrs, while E's shift for 12 hrs . Hence E will do twice the work as M.

Ratio of contribution of $\mathrm{M}: \mathrm{E}$ in work, 1:2

Two Marks Questions

Q. 6 The Venn diagram shows the preference of the student population for leisure activities.

From the data given, the number of students who like to read books or play sports is \qquad _.
(a) 44
(b) 51
(c) 79
(d) 108

Ans. (d)

The number of student who like to read books or play sports have been shown

$$
\begin{aligned}
& =13+12+44+7+15+1 \\
& =108
\end{aligned}
$$

Q. 7 Social science disciplines were in existence in an amorphous form until the colonial period when they were institutionalized. In varying degrees, they were intended to further the colonial interest. In the time of globalization and the economic rise of postcolonial countries like India, conventional ways of knowledge production have become obsolete.
Which of the following can be logically inferred from the above statements?
I. Social science disciplines have become obsolete.
II. Social science disciplines had a pre-colonial origin.
III. Social science disciplines always promote colonialism.
IV. Social science must maintain disciplinary boundaries.
(a) II only
(b) I and III only
(c) II and IV only
(d) III and IV only

Ans. (a)
Q. 8 Two and a quarter hours back, when seen in a mirror, the reflection of a wall clock without number markings seemed to show $1: 30$. What is the actual current time shown by the clock?
(a) $8: 15$
(b) $11: 15$
(c) $12: 15$
(d) $12: 45$

Ans. (d)

Mirror image of $1: 20$ is $10: 30$
$10: 30$ was the time two and quarter hour back so time now will be $12: 45$
Q. $9 \boldsymbol{M}$ and \boldsymbol{N} start from the same location. \boldsymbol{M} travels 10 km East and then 10 km North-East. \boldsymbol{N} travels 5 km South and then 4 km south-East. What is the shortest distance (in km) between \boldsymbol{M} and \boldsymbol{N} at the end of their travel?
(a) 18.60
(b) 22.50
(c) 20.61
(d) 25.00

Ans. (c)

See the adjoining figure for solution

$$
\begin{aligned}
\mathrm{MM}^{\prime} & =5 \sqrt{2}+5+2 \sqrt{2}=5+7 \sqrt{2} \\
\mathrm{NM}^{\prime} & =10+5 \sqrt{2}-2 \sqrt{2}=10+3 \sqrt{2} \\
\mathrm{MN} & =\sqrt{\left(\mathrm{MM}^{\prime}\right)^{2}+\left(\mathrm{NM}^{\prime}\right)^{2}} \\
\mathrm{M}^{\prime} & =\sqrt{(5+7 \sqrt{2})+(10+3 \sqrt{2})^{2}} \\
& \approx 20.61
\end{aligned}
$$

Q. 10 A wire of length 340 mm is to be cut into two parts. One of the parts is to be made into a square and the other into a rectangle where sides are in the ratio of $1: 2$. What is the length of the side of the square (in mm) such that the combined area of the square and the rectangle is a MINIMUM?
(a) 30
(b) 40
(c) 120
(d) 180

Ans. (b)

Section - II (Electronics Engineering)

One Mark Questions

Q. 1 The value of x for which the matrix

$$
A=\left[\begin{array}{ccc}
3 & 2 & 4 \\
9 & 7 & 13 \\
-6 & -4 & -9+x
\end{array}\right] \text { has zero as an eigenvalue is }
$$

\qquad -.

Ans.
 (1)

A has an eigen value is zero

$$
\therefore \quad|A|=0
$$

$\left|\begin{array}{ccc}3 & 2 & 4 \\ 9 & 7 & 13 \\ -6 & -4 & -9+x\end{array}\right|=0$

$$
3(-63+7 x+52)-2(-81+9 x+78)+4(-36+42)=0
$$

$$
3(7 x-11)-2(9 x-3)+4(6)=0
$$

$$
21 x-33-18 x+6+24=0
$$

$$
\begin{array}{r}
3 x-3=0 \\
x=1
\end{array}
$$

Q. 2 Consider the complex valued function
$f(z)=2 z^{3}+b|z|^{3}$ where z is a complex variable. The value of b for which the function $f(z)$ is analytic is \qquad
Ans. (0)

$$
f(z)=2 z^{3}+b_{1}|z|^{3}
$$

Given that $f(z)$ is analytic.
which is possible only when $b=0$
since $\left|z^{3}\right|$ is differentiable at the origin but not analytic.
$2 z^{3}$ is analytic everywhere

$$
\begin{array}{lrl}
\therefore & f(z) & =2 z^{3}+b\left|z^{3}\right| \text { is analytic } \\
\text { only when } & b & =0
\end{array}
$$

Q. 3 As x varies from -1 to +3 , which one of the following describes the behaviour of the function $f(x)=x^{3}-3 x^{2}+1$?
(a) $f(x)$ increases monotonically.
(b) $f(x)$ increases, then decreases and increases again.
(c) $f(x)$ decreases, then increases and decreases again.
(d) $f(x)$ increases and then decreases

Ans. (b)
$f(x)=x^{3}-3 x^{2}+1$
$f^{\prime}(x)=3 x^{2}-6 x$
$f^{\prime}(x)=0$

$$
\begin{aligned}
3 x^{2}-6 x & =0 \\
3 x(x-2) & =0 \\
x & =0,2 \\
f^{\prime \prime}(x) & =6 x-6
\end{aligned}
$$

At

$$
\begin{array}{llll}
x=0 & f^{\prime \prime}(0) & = & -6 \text { maxima } \\
x=2 & f^{\prime \prime}(2) & = & 6 \text { minima }
\end{array}
$$

Q. 4 How many distinct values of x satisfy the equation $\sin (x)=x / 2$, where x is in radians?
(a) 1
(b) 2
(c) 3
(d) 4 or more

Ans. (c)

Hence 3 solutions.
Q. 5 Consider the time-varying vector
$I=\hat{x} 15 \cos (\omega t)+\hat{y} 5 \sin (\omega t)$ in Cartesian coordinates, where $\omega>0$ is a constant.
When the vector magnitude $|I|$ is at its minimum value, the angle θ that I makes with the x axis (in degrees, such that $0 \leq \theta \leq 180$) is \qquad —.

Ans. (90)

$$
I=\hat{x} 15 \cos \omega t+\hat{y} 5 \sin \omega t
$$

$$
\begin{aligned}
|I| & =\sqrt{(15 \cos \omega t)^{2}+(5 \sin \omega t)^{2}} \\
& =\sqrt{225 \cos ^{2} \omega t+25 \sin ^{2} \omega t} \\
& =\sqrt{25+200 \cos ^{2} \omega t}
\end{aligned}
$$

$|I|$ is minimum when $\cos ^{2} \omega t=0$
or

$$
\theta=\omega t=90^{\circ}
$$

Q. 6 In the circuit shown below, V_{s} is constant voltage source and I_{L} is a constant current load.

The value of I_{L} that maximizes the power absorbed by the constant current load is
(a) $\frac{V_{s}}{4 R}$
(b) $\frac{V_{s}}{2 R}$
(c) $\frac{V_{s}}{R}$
(d) ∞

Ans. (b)
In maximum power transformation, half of the voltage drop across source resistance, remaining half across the load.
$\therefore \quad$ voltage across source (R)

$$
\begin{aligned}
I_{L} R & =\frac{V_{s}}{2} \\
I_{L} & =\frac{V_{s}}{2 R}
\end{aligned}
$$

Q. 7 The switch has been in position 1 for a long time and abruptly changes to position 2 at $t=0$.

MRDE ERS논
India's Best Institute for IES, GATE \& PSUs

\author{

- Best Faculty • Best Study Material • Best Results
}

Features of Classroom Gourses

- Experienced Faculty
- GATE/ESE Test Series
- Updated Books and Reading References
- Regular classroom tests followed by discussions
- Doubt clearing sessions
- Interview Guidance Program
- Coverage of syllabus before GATE/ESE exams.
- Orientation sessions for GATE/ESE

ADMISSIONS OPEN for Session 2016-17 at all centre of MADE EASY

44-A/1, Kalu Sarai, Near Hauz Khas Metro Station, New Delhi-16; E-mail : infodelhi@madeeasy.in Ph.: 011-45124612, 09958995830

Abstract

Noida D-28 Sector-63 Noida, Uttar Pradesh; E-mail: infonoida@madeeasy.in Ph.: 0120-6524612, 08860378009

Iucknow
B1/67, Sector P, Aliganj, Lucknow; E-mail : infolucknow@madeeasy.in Ph.: 09919111168,08400029422

Jaipur AB-559, Kings Road, Nirman Nagar, Jaipur, Rajasthan; E-mail : infojaipur@madeeasy.in Ph.: 0141-4024612, 09166811228

Bhopal
Plot No. 46, Zone-2 M.P. Nagar, Bhopal (Madhya Pradesh)- 462021; E-mail : infobhopal@madeeasy.in Ph.: 0755-4004612, 08120035652

Indore

Gemini Mall, PU3, Opp. Orbit Mall, A.B. Road, Vijay Nagar, Indore; E-mail : infoindore@madeeasy.in Ph.: 0731-4029612, 07566669612

Pune

II Floor, Business Bay, Plot No. 84, Near R.T.O. Shivaji Nagar, Pune; E-mail : infopune@madeeasy.in Ph.: 020-26058612, 09168884343

Hyderahad
5-1-744, Bank Street, Koti, Hyderabad-95; E-mail : infohyderabad@madeeasy.in Ph.: 040-24652324, 09160002324

Bhubancswar Plot No-1441, CRPF Square, Opposite to IOCL Petrol Pump; E-mail : infobhubaneswar@madeeasy.in Ph.: 0674-6999888, 9040999888

Kolkata

755, Anandapur Next to Fortis Hospital Off-EM Bypass Kolkata; E-mail : infokolkata@madeeasy.in Ph.: 033-68888880, 08282888880

Patia

If time t is in seconds, the capacitor voltage V_{C} (in volts) for $t>0$ is given by
(a) $4(1-\exp (-t / 0.5)$
(b) $10-6 \exp (-t / 0.5)$
(c) $4(1-\exp (-t / 0.6)$
(d) $10-6 \exp (-t / 0.6)$

Ans. (d)
at $t=0^{-}$, Switch is at position-1

where,

$$
\begin{equation*}
V_{c}\left(0^{-}\right)=\frac{10 \times 2}{2+3}=4 \mathrm{~V} \tag{1}
\end{equation*}
$$

$\therefore \quad V_{c}\left(0^{-}\right)=V_{c}\left(0^{+}\right)=4 \mathrm{~V}$
at $t=\infty$

$$
\begin{equation*}
V_{c}(\infty)=5 \times 2=10 \mathrm{~V} \tag{2}
\end{equation*}
$$

The time constant of the circuit is

$$
\begin{aligned}
V_{c}(t) & =V_{c}(\infty)+\left[V_{c}\left(0^{+}\right)-V_{c}(\infty)\right] e^{-t / \tau} \\
& =10+(4-10) e^{-t / 0.6} \\
V_{c}(t) & =\left(10-6 e^{-t / 0.6}\right) \mathrm{V}
\end{aligned}
$$

Q. 8 The figure shows an RLC circuit with a sinusoidal current source.

GATE-2016 Exam Solutions

At resonance, the ratio $\frac{\left|I_{L}\right|}{\left|I_{R}\right|}$, i.e., the ratio of the magnitudes of the inductor current phasor and the resistor current phasor, is \qquad
Ans. (0.316)
At resonance (for parallel RLC circuit)

$$
\begin{aligned}
I_{R} & =I \\
I_{L} & =Q I \angle-90^{\circ} \\
I_{C} & =Q I \angle 90^{\circ}
\end{aligned}
$$

For parallel RLC circuit

$$
\begin{aligned}
\frac{\left|I_{L}\right|}{\left|I_{R}\right|} & =\frac{I Q}{I}=Q=R \sqrt{\frac{C}{L}}=10 \sqrt{\frac{10 \times 10^{-6}}{10 \times 10^{-3}}} \\
& =0.316
\end{aligned}
$$

Q. 9 The Z-parameter matrix for the two-port network shown is

$$
\left[\begin{array}{cc}
2 j \omega & j \omega \\
j \omega & 3+2 j \omega
\end{array}\right]
$$

Where the entries are in Ω.
Suppose $Z_{b}(j \omega)=R_{b}+j \omega$

Then the value of R_{b} (in Ω) equals \qquad
Ans. (3)
For T-network
and

$$
Z_{11}=Z_{a}+Z_{c}
$$

$$
Z_{22}=Z_{b}+Z_{c}
$$

$$
Z_{12}=Z_{21}=Z_{c}
$$

Given

$$
[Z]=\left[\begin{array}{cc}
2 j \omega & j \omega \\
j \omega & 3+2 j \omega
\end{array}\right]
$$

Therefore

$$
\begin{aligned}
& Z_{12}=j \omega \\
& Z_{22}=3+2 j \omega
\end{aligned}
$$

$$
\begin{aligned}
& =3+j \omega+j \omega \\
& =Z_{b}+Z_{c} \\
& =R_{b}+j \omega+Z_{c} \\
\therefore \quad R_{b} & =3 \Omega
\end{aligned}
$$

Q. 10 The energy of the signal $x(t)=\frac{\sin (4 \pi t)}{4 \pi t}$ is \qquad -.

Ans. (0.25)

$$
\frac{\sin a t}{\pi t} \leftrightarrow \underset{-a}{a_{-a}} \begin{array}{|c|c|}
\hline 1 & \\
\hline
\end{array} \omega
$$

$$
\frac{\sin 4 \pi t}{4 \pi t}=
$$

$$
\text { Energy, } \begin{aligned}
E_{x(t)} & =\frac{1}{2 \pi} \int_{-\infty}^{\infty}|X(\omega)|^{2} d \omega=\frac{1}{2 \pi} \int_{-4 \pi}^{4 \pi}\left(\frac{1}{4}\right)^{2} d \omega \\
& =\frac{1}{2 \pi} \times \frac{1}{16}[8 \pi]=\frac{1}{4}=0.25 \mathrm{~J}
\end{aligned}
$$

Q. 11 The Ebers-Moll model of a BJT is valid
(a) only in a active mode
(b) only in active and saturation modes
(c) only in active and cut-off modes
(d) in active, saturation and cut-off modes

Ans. (d)
Ebers-Moll model is valid for all the region of operation.
Q. 12 A long-channel NMOS transistor is biased in the linear region with $V_{D S}=50 \mathrm{mV}$ and is used as a resistance. Which one of the following statements is NOT correct?
(a) If the device width W is increased, the resistance decreases.
(b) If the threshold voltage is reduced, the resistance decreases.
(c) If the device length L is increased, the resistance increase.
(d) If $V_{G S}$ is increased, the resistance increases.

Ans. (d)

$$
\begin{aligned}
& r_{d s}=\frac{1}{\mu_{n} C_{o \mathrm{x}} \frac{W}{L}\left(V_{G S}-V_{T}\right)} \\
& r_{d s}=\text { channel resistance }
\end{aligned}
$$

$W \uparrow r \downarrow A \rightarrow$ correct
$V_{T} \downarrow r \downarrow B \rightarrow$ correct
$L \uparrow r \uparrow C \rightarrow$ correct
$V_{G S} \uparrow r \downarrow \therefore D \rightarrow$ Wrong statement
Q. 13 Assume that the diode in the figures has $V_{\text {on }}=0.7 \mathrm{~V}$, but is otherwise ideal.

The magnitude of the current i_{2} (in mA) is equal to \qquad
Ans. (0.25)

Let diode : ON
\Rightarrow

$$
\begin{aligned}
V_{A} & =2-0.7=1.3 \mathrm{~V} \\
i_{2} & =\frac{1.3}{6 K} ; \\
i_{d} & =i_{2}-i_{1}=\frac{1.3}{6} \mathrm{~mA}-\frac{0.7}{2} \mathrm{~mA}=-\mathrm{ve}
\end{aligned}
$$

not possible
\Rightarrow diode is OFF
Q. 14 Resistor R_{1} in the circuit below has been adjusted so that $I_{1}=1 \mathrm{~mA}$. The bipolar transistors Q_{1} and Q_{2} are perfectly matched and have very high current gain, so their base currents are negligible. The supply voltage $V_{C C}$ is 6 V . The thermal voltage $k T / q$ is 26 mV .

The value of R_{2} (in Ω) for which $I_{2}=100 \mu \mathrm{~A}$ is \qquad
Ans. (598.67)

$$
\begin{aligned}
R_{2} & =\frac{V_{T}}{I_{2}} \ln \left(\frac{I_{1}}{I_{2}}\right)=\frac{26 \times 10^{-3}}{100 \times 10^{-6}} \ln \left(\frac{1 \times 10^{-3}}{100 \times 10^{-6}}\right) \\
& =598.67 \Omega
\end{aligned}
$$

Q. 15 Which one of the following statements is correct about an ac-coupled commonemitter amplifier operating in the mid-band region?
(a) The device parasitic capacitances behave like open circuits, whereas coupling and bypass capacitances behave like short circuits.
(b) The device parasitic capacitances, coupling capacitances and bypass capacitances behave like open circuits.
(c) The device parasitic capacitances, coupling capacitances and bypass capacitances behave like short circuits.
(d) The device parasitic capacitances behave like short circuits, whereas coupling and bypass capacitances behave like open circuits.
Ans. (a)

India's Best Institute for IES, GATE \& PSUs

Online Test Series of ESE:-2016

Objective \& Conventional Tests

- 24 Subjectwise Tests • 19 Objective Tests
- 10 Full Syllabus Tests • 15 Conventional Tests

STREAMS OFFERED
CE ME EE ERT

Technical Queries : 011-45124612,09818098817

Classroom Test Series ofor :S52016

Including CBT [Classroom Tests + Centre Based Tests)

Objective \& Conventional Tests

- 6 Subjectwise Objective
- 6 Subjectwise Conventional
- 2 Full Syllabus Objective
- 2 Full Syllabus Conventional
- 1 Full Syllabus General Ability
- 2 Subjectwise General Ability

Exactly same pattern as UPSC Engineering Services Exam $\left.\begin{array}{l}\text { STREAMS } \\ \text { OFFERED }\end{array}\right\}$ CE EE ERT

To enroll online, visit www.madeeasy.in

Tests starting ofrom
$5^{\text {II }}$ Mar, 2016

Technical Queries : 011-45124612,09818098817

Admissions Open

For detailed schedule \& fee structure, visit: www.madeeasy.in
Corporate Office : 44-A/1, Kalu Sarai, New Delhi-110016; Ph: 011-45124612, 09958995830

MADE EASY Centres	$\underset{\substack{\text { Defhi } \\ 01-45124612 \\ 0995895830}}{ }$	Hyderahad $040-24652324$ 09160002324	Noida$0120-6524612$ 08860378009	Jainul $0141-402412$ 0916881228	Bhopal $0755-4004612$ 08120035652	Luctnow 09991111168 08400029422	Indore $\mathbf{0 7 3 1 4 0 2 9 6 1 2}$ 756669612	Bhubaneswar 0674-6999888 09040999888	Pune $020-26558672$ 0968884343	$\underset{\substack{\text { Kolfrata } \\ \text { 03-388888880 } \\ \text { 828288880 }}}{ }$	$\begin{aligned} & \text { Patina } \\ & \text { P955991166 } \end{aligned}$

Q. 16 Transistor geometries in a CMOS inverter have been adjusted to meet the requirement for worst case charge and discharge times for driving a load capacitor C. This design is to be converted to that of a NOR circuit in the same technology, so that its worst case charge and discharge times while driving the same capacitor are similar. The channel lengths of all transistors are to be kept unchanged. Which one of the following statements is correct?

(a) Widths of PMOS transistors should be doubled, while widths of NMOS transistors should be halved.
(b) Widths of PMOS transistors should be doubled, while widths of NMOS transistors should not be changed.
(c) Widths of PMOS transistors should be halved, while widths of NMOS transistors should not be changed.
(d) Widths of PMOS transistors should be unchanged, while widths of NMOS transistors should be halved.

Ans. (b)
Q. 17 Assume that all the digital gates in the circuit shown in the figure are ideal, the resistor $R=10 \mathrm{k} \Omega$ and the supply voltage is 5 V . The D flip-flops D_{1}, D_{2}, D_{3}, D_{4} and D_{5} are initialized with logic values $0,1,0,1$ and 0 , respectively. The clock has a 30% duty cycle.

The average power dissipated (in mW) in the resistor R is \qquad .

Ans. (1.5)

CLK	Q_{1}	Q_{2}	Q_{3}	Q_{4}	Q_{5}	$Y=Q_{3}+Q_{5}$
0	0	1	0	1	0	0
1	0	0	1	0	1	1
2	1	0	0	1	0	0
3	0	1	0	0	1	1
4	1	0	1	0	0	1
5	0	1	0	1	0	0

The waveform of the gate output

$$
Y=Q_{3}+Q_{5}
$$

$\longleftarrow T_{1}=5 T \longrightarrow 1$
Average power dissipated

$$
\begin{aligned}
P & =\frac{V^{2}}{R} \times \frac{T_{\mathrm{ON}}}{T}=\frac{5^{2}}{10 \mathrm{k}} \times \frac{3 T}{5 T} \\
& =1.5 \mathrm{~mW}
\end{aligned}
$$

Q. 18 A 4:1 multiplexer is to be used for generating the output carry of a full adder. A and B are the bits to be added while $C_{\text {in }}$ is the input carry and $C_{\text {out }}$ is the output carry. A and B are to be used as the select bits with A being the more significant select bit.

Which one of the following statements correctly describes the choice of signals to be connected to the inputs I_{0}, I_{1}, I_{2} and I_{3} so that the output is $C_{\text {out }}$?
(a) $I_{0}=0, I_{1}=C_{\mathrm{in}}, I_{2}=C_{\mathrm{in}}$ and $I_{3}=1$
(b) $I_{0}=1, I_{1}=C_{\mathrm{in}}, I_{2}=C_{\mathrm{in}}$ and $I_{3}=1$
(c) $I_{0}=C_{\mathrm{in}}, I_{1}=0, I_{2}=1$ and $I_{3}=C_{\mathrm{in}}$
(d) $I_{0}=0, I_{1}=C_{\mathrm{in}}, I_{2}=1$ and $I_{3}=C_{\mathrm{in}}$

Ans. (a)
In case of a full adder,

$$
\therefore \quad \begin{aligned}
I_{0} & =0 \\
& I_{1}=C_{\text {in }} \\
& I_{2}=C_{\text {in }} \\
& I_{3}=1
\end{aligned}
$$

Q. 19 The response of the system $G(s)=\frac{s-2}{(s+1)(s+3)}$ to the unit step input $u(t)$ is $y(t)$. The value of $\frac{d y}{d t}$ at $t=0^{+}$is \qquad
Ans. (1)

$$
\begin{aligned}
L\left(\frac{d y}{d t}\right) & =(s Y(s)-y(0)) \\
Y(s) & =G(s) \times \frac{1}{s}=\frac{s-2}{s(s+1)(\mathrm{s}+3)} \\
y(0) & =\operatorname{Lt}_{s \rightarrow \infty} s Y(s) \quad \text { (Applying initial value theorem) } \\
& =\underset{s \rightarrow \infty}{\operatorname{Lt}} \frac{s-2}{(s+1)(s+3)}=\frac{\left(1-\frac{2}{s}\right)}{\left(1+\frac{1}{s}\right)\left(1+\frac{3}{s}\right)} \\
y(0) & =0 \\
L\left(\frac{d y}{d t}\right) & =s Y(s)=\frac{s \times(\mathrm{s}-2)}{s(\mathrm{~s}+1)(\mathrm{s}+3)}=\frac{s-2}{(\mathrm{~s}+1)(\mathrm{s}+3)} \\
\left.\frac{d y}{d t}\right|_{t=0} & =\underset{s \rightarrow \infty}{L t} s L\left(\frac{d y}{d t}\right) \\
& =\underset{s \rightarrow \infty}{L t} \frac{s \times(s-2)}{(s+1)(s+3)}=\frac{\left(1-\frac{2}{s}\right)}{\left(1+\frac{1}{s}\right)\left(1+\frac{3}{s}\right)}=1
\end{aligned}
$$

Q. 20 The number and direction of encirclements around the point $-1+j 0$ in the complex plane by the Nyquist plot of $G(s)=\frac{1-s}{4+2 s}$ is
(a) zero
(b) one, anti-clockwise.
(c) one, clockwise.
(d) two, clockwise.

Ans. (a)

$$
G(s)=\frac{1-s}{4+2 s} \quad \text { and } \quad \angle G(s) \left\lvert\,=-\tan ^{-1} \omega-\tan ^{-1} \frac{\omega}{2}\right.
$$

at

$$
s=0,|G(s)|=\frac{1}{4}=0.25 \quad \text { and }\left.\quad \angle G(s)\right|_{\omega=0}=0^{\circ}
$$

at

$$
s=\infty,|G(s)|=-\frac{1}{2}=-0.5 \text { and }\left.\quad \angle G(s)\right|_{\omega=\infty}=-180^{\circ}
$$

Nyquist plot is

Hence number of encirclements of $(-1+j 0)=0$
Q. 21 A discrete memoryless source has an alphabet $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ with corresponding probabilities $\left\{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8}\right\}$. The minimum required average codeword length in bits to represent this source for error-free reconstruction is \qquad
Ans. (1.75)
Minimum required average codeword length in bits for error free reconstruction

$$
\begin{aligned}
L_{\min } & =H \quad \text { (Entropy) } \\
H & =\frac{1}{2} \log _{2} 2+\frac{1}{4} \log _{2} 4+\frac{1}{8} \log _{2} 8+\frac{1}{8} \log _{2} 8 \\
& =\frac{1}{2}+\frac{1}{2}+\frac{3}{8}+\frac{3}{8}=1.75 \\
\Rightarrow \quad L_{\min } & =1.75 \text { bits/word }
\end{aligned}
$$

Q. 22 A speech signal is sampled at 8 kHz and encoded into PCM format using 8 bits/sample. The PCM data is transmitted through a baseband channel via 4-level PAM. The minimum bandwidth (in kHz) required for transmission is \qquad .

Ans.
(16)

$$
\begin{aligned}
f_{s} & =8 \mathrm{kHz} \\
n & =8 \mathrm{bits} / \text { sample } ; \quad M=4 \\
B W_{\min } & =\frac{R_{b}}{2 \log _{2} M}=\frac{R_{b}}{4}=\frac{8 \times 8}{4}=16 \mathrm{kHz}
\end{aligned}
$$

Q. 23 A uniform and constant magnetic field $B=\hat{z} B$ exists in the \hat{z} direction in vacuum. A particle of mass m with a small charge q is introduced into this region with an initial velocity $v=\hat{x} v_{x}+\hat{z} v_{z}$. Given that B, m, q, v_{x} and v_{z} are all nonzero, which one of the following describes the eventual trajectory of the particle?
(a) Helical motion in the \hat{z} direction.
(b) Circular motion in the $x y$ plane.
(c) Linear motion in the \hat{z} direction.
(d) Linear motion in the \hat{x} direction.

Ans. (a)

$$
\begin{aligned}
& B a_{z} \text { magnetic field } \\
& \begin{aligned}
v_{x} a_{x}+v_{z} a_{z} \text { velocity } & \\
\qquad & =Q(v \times B) \quad \text { by Lorent's law } \\
& =Q\left(v_{x} a_{x}+v_{z} a_{z}\right) \times B a_{z} \\
F y & =Q v_{x} \cdot B\left(-a_{y}\right)
\end{aligned}
\end{aligned}
$$

This results in a circular path in the XY plane with $v_{z} a_{z}$ component causing a linear path.

Both result in a helical path in Z axis.
Q. 24 Let the electric field vector of a plane electromagnetic wave propagating in a homogenous medium
be expressed as $E=\hat{x} E_{x} e^{-j(\omega t-\beta z)}$, where the propagation constant β is a function of the angular frequency ω. Assume that $\beta(\omega)$ and E_{x} are known and are real. From the information available, which one of the following CANNOT be determined?
(a) The type of polarization of the wave.
(b) The group velocity of the wave.
(c) The phase velocity of the wave.
(d) The power flux through the $z=0$ plane.

Ans. (d)
$v_{p}=\omega / \beta$ can be calculated. Polarization can be identified.
μ_{r} and ϵ_{r} cannot be found, due to which power flux cannot be calculated as power flux
$P=\frac{1}{2} \frac{|E|^{2}}{\eta}$, where $\eta=120 \pi \times \sqrt{\frac{\mu_{r}}{\epsilon_{r}}}$
Q. 25 Light from free space is incident at an angle θ_{i} to the normal of the facet of a step-index large core optical fibre. The core and cladding refractive indices are $n_{1}=1.5$ and $n_{2}=1.4$, respectively.

The maximum value of θ_{i} (in degrees) for which the incident light will be guided in the core of the fibre is \qquad .

Ans. (32.58)

$$
\begin{array}{rlrl}
& \sin \alpha_{\max } & =\sqrt{n_{1}^{2}-n_{2}^{2}}=\sqrt{1.5^{2}-1.4^{2}} \\
\Rightarrow \quad \alpha_{\max } & =\sin ^{-1}(0.5385)=32.58^{\circ}
\end{array}
$$

Two Marks Questions

Q. 26 The ordinary differential equation

$$
\frac{d x}{d t}=-3 x+2, \text { with } x(0)=1
$$

is to be solved using the forward Euler method. The largest time step that can be used to solve the equation without making the numerical solution unstable is \qquad .

Ans. (0.66)

$$
\frac{d y}{d x}=-3 y+2, \quad y(0)=1
$$

If $|1-3 h|<1$, then solution of differential equation is stable.

$$
\begin{aligned}
-1 & <1-3 h<1 \\
-2 & <-3 h<0 \\
0 & <h<\frac{2}{3} \\
h_{\max } & =\frac{2}{3}=0.66
\end{aligned}
$$

GATE-2016 Exam Solutions
Q. 27 Suppose C is the closed curve defined as the circle $x^{2}+y^{2}=1$ with C oriented anti clockwise. The value of $\oint\left(x y^{2} d x+x^{2} y d y\right)$ over the curve C equals \qquad -

Ans. (0)
By Green's theorem

$$
\begin{aligned}
\int x y^{2} d x+x^{2} y d y & =\iint_{R}\left(\frac{d}{d x}\left(x^{2} y\right)-\frac{d}{d y}\left(x y^{2}\right)\right) d x d y \\
& =\iint_{R}(2 x y-2 x y)=0
\end{aligned}
$$

Q. 28 Two random variables X and Y are distributed according to

$$
f_{X, Y}(x, y)=\left\{\begin{array}{cl}
(x+y) & 0 \leq x \leq 1, \quad 0 \leq y \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

The probability $P(X+Y \leq 1)$ is \qquad -

Ans. (0.33)

$$
\begin{aligned}
P(X+Y \leq 1) & =\int_{x=0}^{1} \int_{y=0}^{(1-x)} f_{x y}(x, y) d x d y \\
& =\int_{x=0}^{1} \int_{y=0}^{1-x}(x+y) d x d y=\int_{x=0}^{1}\left(x y+\frac{y^{2}}{2}\right)_{0}^{1-x} \\
& =\int_{x=0}^{1}\left(x(1-x)+\frac{(1-x)^{2}}{2}\right) d x \\
& =\int_{x=0}^{1}\left(\frac{1}{2}-\frac{x^{2}}{2}\right) d x=\left(\frac{x}{2}-\frac{x^{3}}{6}\right)_{0}^{1} \\
& =\frac{1}{2}-\frac{1}{6}=\frac{1}{3}=0.33
\end{aligned}
$$

Q. 29 The matrix $A=\left[\begin{array}{llll}a & 0 & 3 & 7 \\ 2 & 5 & 1 & 3 \\ 0 & 0 & 2 & 4 \\ 0 & 0 & 0 & b\end{array}\right] \operatorname{has~} \operatorname{det}(A)=100$ and trace $(A)=14$. The value of $\mid a$ $-b \mid$ is \qquad
Ans. (3)

$$
\begin{align*}
\text { Trace of } A & =14 \\
a+5+2+b & =14 \\
a+b & =7 \tag{i}\\
\operatorname{det}(A) & =100 \\
5\left|\begin{array}{ccc}
a & 3 & 7 \\
0 & 2 & 4 \\
0 & 0 & b
\end{array}\right| & =100 \\
5 \times 2 \times a \times b & =100 \\
10 a b & =100 \\
a b & =10 \tag{ii}
\end{align*}
$$

From equation (i) and (ii)
either
or
$a=5, \quad b=2$
$a=2 \quad b=5$

$$
|a-b|=|5-2|=3
$$

Q. 30 In the given circuit, each resistor has a value equal to 1Ω.

What is the equivalent resistance across the terminals a and b ?
(a) $1 / 6 \Omega$
(b) $1 / 3 \Omega$
(c) $9 / 20 \Omega$
(d) $8 / 15 \Omega$

Ans. (d)

By using delta to star conversion

Again by star to delta conversion

$$
\begin{aligned}
R_{\mathrm{ab}} & =\{4 \| 1)+(4 \| 1)\} \|\{1 \| 4)\} \\
& =\left(\frac{4}{5}+\frac{4}{5}\right) \| \frac{4}{5} \\
& =\frac{8}{15} \Omega
\end{aligned}
$$

Q. 31 In the circuit shown in the figure, the magnitude of the current (in amperes) through R_{2} is \qquad

Ans. (5)

Using KVL in the outer loop
$60-5\left(0.16 V_{x}\right)-\frac{V_{x}}{5} \times 3-V_{x}=0$
or

$$
V_{x}=25 \mathrm{~V}
$$

\therefore The current flowing through $R_{2}=\frac{V_{x}}{5}=\frac{25}{5}=5 \mathrm{~A}$
Q. 32 A continuous-time filter with transfer function $H(s)=\frac{2 s+6}{s^{2}+6 s+8}$ is converted to a discrete time filter with transfer function $G(s)=\frac{2 z^{2}-0.5032 z}{z^{2}-0.5032 z+k}$ so that the impulse response of the continuous-time filter, sampled at 2 Hz , is identical at the sampling instants to the impulse response of the discrete time filter. The value of k is \qquad .

Ans. (0.049)
Given,

$$
H(s)=\frac{2 s+6}{s^{2}+6 s+8}=\frac{1}{s+2}+\frac{1}{s+4}
$$

$$
h(t)=e^{-2 t} u(t)+e^{-4 t} u(t)
$$

Given,

$$
f_{s}=2 \mathrm{~Hz}
$$

For discrete time,

$$
t=n T_{s}=\frac{n}{2}
$$

$$
\begin{aligned}
h[n] & =\left(e^{-n}+e^{-2 n}\right) u[n] \\
H(z) & =\frac{1}{1-e^{-1} Z^{-1}}+\frac{1}{1-e^{-2} Z^{-1}} \\
& =\frac{Z}{Z-e^{-1}}+\frac{Z}{Z-e^{-2}} \\
& =\frac{2 Z^{2}-0.5032 Z}{Z^{2}-0.5032 Z+0.049} \\
K & =0.049
\end{aligned}
$$

Q. 33 The Discrete Fourier Transform (DFT) of the 4-point sequence
$x[n]=\{x[0], x[1], x[2], x[3]\}=\{3,2,3,4\}$ is
$X[k]=\{X[0], X[1], X[2], X[3]\}=\{12,2 j, 0,-2 j\}$.
If $X_{1}[k]$ is the DFT of the 12 -point sequence $x_{1}[n]=\{3,0,0,2,0,0,3,0,0,4$, $0,0\}$, the value of $\left|\frac{X_{1}[8]}{X_{1}[11]}\right|$ is \qquad

Ans. (6)
From the given question

$$
\begin{aligned}
\mathrm{x}_{1}[n] & =x\left[\frac{n}{3}\right] \\
X_{1}[K] & =\{12,2 j, 0,-2 j, 12,2 j, 0,-2 j, 12,2 j, 0,-2 j\} \\
X_{1}[8] & =12 ; \quad X_{1}(11)=-2 j \\
\therefore \quad\left|\frac{X_{1}(8)}{X_{1}(11)}\right| & =\left|\frac{12}{-2 j}\right|=6
\end{aligned}
$$

Q. 34 The switch S in the circuit shown has been closed for a long time. It is opened at time $t=0$ and remains open after that. Assume that the diode has zero reverse current and zero forward voltage drop.

The steady state magnitude of the capacitor voltage V_{C} (in volts) is \qquad .

Ans. (100)
at $t=0^{-}$

$$
i_{L}\left(0^{-}\right)=\frac{10}{1}=10 \mathrm{~A}
$$

for $t>0$ (using Laplace transform)

$$
\begin{aligned}
I(s) & =\frac{10 \times 10^{-3}}{10^{-3} s+\frac{10^{6}}{10 s}} \\
V_{c}(s) & =I(s) \times \frac{10^{6}}{10 s} \\
V_{c}(s) & =\frac{10^{6}}{s^{2}+10^{8}}
\end{aligned}
$$

Taking inverse Laplace, we get

$$
V_{c}(t)=100 \sin 10^{4} t \mathrm{~V}
$$

$\therefore \quad$ steady state magnitude voltage across capacitor is 100 V .
Q. 35 A voltage V_{G} is applied across a MOS capacitor with metal gate and p-type silicon substrate at $T=300 \mathrm{~K}$. The inversion carrier density (in number of carriers per unit area) for $V_{G}=0.8 \mathrm{~V}$ is $2 \times 10^{11} \mathrm{~cm}^{-2}$. For $V_{G}=1.3 \mathrm{~V}$, the inversion carrier density is $4 \times 10^{11} \mathrm{~cm}^{-2}$. What is the value of the inversion carrier density for $V_{G}=1.8 \mathrm{~V}$?
(a) $4.5 \times 10^{11} \mathrm{~cm}^{-2}$
(b) $6.0 \times 10^{11} \mathrm{~cm}^{-2}$
(c) $7.2 \times 10^{11} \mathrm{~cm}^{-2}$
(d) $8.4 \times 10^{11} \mathrm{~cm}^{-2}$

Ans. (b)
In a MOS - Capacitor

$$
\begin{gathered}
\left(V_{G 1}-V_{T}\right) \propto Q \\
\frac{\left(V_{G 1}-V_{T}\right)}{\left(V_{G 2}-V_{T}\right)}=\frac{Q_{1}}{Q_{2}}
\end{gathered}
$$

$$
\begin{aligned}
& \frac{0.8-V_{T}}{1.3-V_{T}}=\frac{2 \times 10^{11}}{4 \times 10^{11}} \\
& V_{T}=0.3 \mathrm{~V} \\
& V_{G 2}-V_{T} \\
& V_{G 3}-V_{T}=\frac{Q_{2}}{Q_{3}} \\
& \frac{1.3-0.3}{1.8-0.3}=\frac{4 \times 10^{11}}{Q_{3}}
\end{aligned}
$$

On solving
Now Consider $\frac{V_{G 2}-V_{T}}{V_{G 3}-V_{T}}=\frac{Q_{2}}{Q_{3}}$

Inverse charge density with $V_{G}=1.8 \mathrm{~V}$

$$
Q_{3}=6 \times 10^{11} / \mathrm{cm}^{2}
$$

Q. 36 Consider avalanche breakdown in a silicon $p^{+} n$ junction. The n-region is uniformly doped with a donor density N_{D}. Assume that breakdown occurs when the magnitude of the electric field at any point in the device becomes equal to the critical field $E_{\text {crit }}$. Assume $E_{\text {crit }}$ to be independent of N_{D}.
If the built-in voltage of the $p^{+} n$ junction is much smaller than the breakdown voltage, $V_{B R}$, the relationship between $V_{B R}$ and N_{D} is given by
(a) $V_{B R} \times \sqrt{N_{D}}=$ constant
(b) $N_{D} \times \sqrt{V_{B R}}=$ constant
(c) $N_{D} \times V_{B R}=$ constant
(d) $N_{D} / V_{B R}=$ constant

Ans. (c)
In any type of PN junction
i.e.

$$
V_{B r} \propto \frac{1}{\text { Doping Concentration }}
$$

$$
V_{B r} \propto \frac{1}{N_{D}} \text { (or) } V_{B r}=\frac{\varepsilon E^{2}}{2 q N_{D}}
$$

$\therefore \quad V_{B r} \times N_{D} \rightarrow$ is a constant
Q. 37 Consider a region of silicon devoid of electrons and holes, with an ionized donor density of $N_{d}^{+}=10^{17} \mathrm{~cm}^{-3}$. The electric field at $x=0$ is $0 \mathrm{~V} / \mathrm{cm}$ and the electric field at $x=L$ is $50 \mathrm{kV} / \mathrm{cm}$ in the positive x direction. Assume that the electric field is zero in the y and z directions at all points.

Given $q=1.6 \times 10^{-19}$ coulomb,
$\epsilon_{0}=8.85 \times 10^{-14} \mathrm{~F} / \mathrm{cm}, \epsilon_{r}=11.7$ for silicon, the value of L in nm is \qquad
Ans. (32.36)

$$
\begin{aligned}
|\varepsilon| & =\frac{q}{\varepsilon} N_{D} X_{N} \\
\text { On solving } \quad 50 \times 10^{3} & =\frac{1.6 \times 10^{-19}}{8.85 \times 10^{-14} \times 11.7} \times 10^{17} \times X_{N} \\
X_{N} & =3.2356 \times 10^{-6} \mathrm{~cm} \\
& =3.236 \times 10^{-8} \mathrm{~m} \\
X_{N} & =L=32.36 \mathrm{~nm}
\end{aligned}
$$

Q. 38 Consider a long-channel NMOS transistor with source and body connected together.

Assume that the electron mobility is independent of $V_{G S}$ and $V_{D S}$. Given,
$g_{m}=0.5 \mu \mathrm{~A} / \mathrm{V}$ for $V_{D S}=50 \mathrm{mV}$ and $V_{G S}=2 \mathrm{~V}$,
$g_{d}=8 \mu \mathrm{~A} / \mathrm{V}$ for $V_{G S}=2 \mathrm{~V}$ and $V_{D S}=0 \mathrm{~V}$,
where $g_{m}=\frac{\partial I_{D}}{\partial V_{G S}}$ and $g_{d}=\frac{\partial I_{D}}{\partial V_{D S}}$
The threshold voltage (in volts) of the transistor is \qquad
Ans. (1.2)
Since $V_{G S}>V_{D S}$, MOSFET is in linear operation

$$
\begin{aligned}
I_{D} & =K_{N}^{\prime}\left[V_{G S}-V_{T}\right] V_{D S} \\
\frac{d I_{D}}{d V_{G S}} & =K_{N}^{\prime} V_{D S} \\
g_{m} & =K_{N}^{\prime} V_{D S} \\
0.5 \times 10^{-6} & =K_{N}^{\prime}\left[50 \times 10^{-3}\right] \quad \therefore K_{N}^{\prime}=10^{-5} \\
I_{D} & =K_{N}^{\prime}\left[V_{G S}-V_{T}\right] V_{D S} \\
\frac{d I_{D}}{d V_{d S}} & =K_{N}^{\prime}\left[V_{G S}-V_{T}\right] \\
g_{d} & =K_{N}^{\prime}\left[V_{G S}-V_{T}\right] \\
8 \times 10^{-6} & =10^{-5}\left[2-V_{T}\right] \\
V_{T} & =1.2 \mathrm{~V}
\end{aligned}
$$

Q. 39 The figure shows a half-wave rectifier with a $475 \mu \mathrm{~F}$ filter capacitor. The load draws a constant current $I_{0}=1 \mathrm{~A}$ from the rectifier. The figure also shows the input voltage V_{i}, the output voltage V_{C} and the peak-to-peak voltage ripple u on V_{C}. The input voltage V_{i} is a triangle-wave with an amplitude of 10 V and a period of 1 ms .

The value of the ripple u (in volts) is \qquad
Ans. (2.105)

$$
V_{\text {ripple }}=\frac{I_{D C} \cdot T}{C}=\frac{1 \times 1 \times 10^{-3}}{475 \times 10^{-6}}=2.105 \text { Volts }
$$

Q. 40 In the opamp circuit shown, the Zener diodes Z_{1} and Z_{2} clamp the output voltage V_{0} to +5 V or -5 V . The switch S is initially closed and is opened at time $t=0$.

The time $t=t_{1}$ (in seconds) at which V_{0} changes state is \qquad

Ans. (0.7985)
Initially switch is closed and $V_{B}=10 \mathrm{~V}$

$$
\begin{array}{ll}
\Rightarrow & V_{01}=-10 \mathrm{~V} \\
\Rightarrow & V_{0}=-V_{2}=-5 \mathrm{~V} \\
\Rightarrow & V_{A}=\frac{V_{0}}{4 \mathrm{~K}+1 \mathrm{~K}} \times 1 \mathrm{~K}=-1 \mathrm{~V}
\end{array}
$$

At $t=0$;
The switch is opened and as $t \rightarrow \infty, V_{B}$ approaches -10 V .
Let at $t=T_{1}$,
V_{B} exceeds $V_{A}(-1 \mathrm{~V})$ so that V_{01} changes from -10 V to 10 V
$\Rightarrow V_{0}$ charges from -5 V to 5 V

$$
V_{B}=V_{f}+\left(V_{i}-V_{f}\right) e^{-t / \tau}=-10+[10-1-10] e^{-t / R C}
$$

At $t=T_{1}$

$$
V_{B}=-1
$$

$$
-1 \mathrm{~V}=-10+20 e^{-T 1 / R C}
$$

$$
\begin{aligned}
\Rightarrow \quad T_{1} & =R C \ln \frac{20}{9} \\
& =10 \times 10^{3} \times 100 \times 10^{-6} \times 0.798 \\
& =0.798 \mathrm{sec}
\end{aligned}
$$

Q. 41 An opamp has a finite open loop voltage gain of 100. Its input offset voltage $V_{\text {ios }}(=+5 \mathrm{mV})$ is modeled as shown in the circuit below. The amplifier is ideal in all other respects. $V_{\text {input }}$ is 25 mV .

The output voltage (in millivolts) is \qquad

Ans. (413.8)

$$
\begin{aligned}
\text { Overall input } & =V_{\text {ios }}+V_{\text {input }} \\
& =5 \mathrm{mV}+25 \mathrm{mV}=30 \mathrm{mV} \\
V_{0} & =\frac{\left(1+\frac{R_{F}}{R_{1}}\right)}{1+\frac{1}{A_{O L}}\left(1+\frac{R_{F}}{R_{1}}\right)} \times \text { Overall input } \\
& =\frac{1+\frac{15 K}{1 K}}{1+\frac{1}{100}\left(1+\frac{15 K}{1 K}\right)} \times 30 \times 10^{-3}=413.79 \mathrm{mV}
\end{aligned}
$$

Q. 42 An 8 Kbyte ROM with an active low Chip Select input ($\overline{C S}$) is to be used in an 8085 microprocessor based system. The ROM should occupy the address range 1000 H to 2 FFFH . The address lines are designated as A_{15} to A_{0}, where A_{15} is the most significant address bit.

Which one of the following logic expressions will generate the correct $\overline{C S}$ signal for this ROM?
(a) $A_{15}+A_{14}+\left(A_{13} \cdot A_{12}+\overline{A_{13}} \cdot \overline{A_{12}}\right)$
(b) $A_{15} \cdot A_{14} \cdot\left(A_{13}+A_{12}\right)$
(c) $\overline{A_{15}} \cdot \overline{A_{14}} \cdot\left(A_{13}+\overline{A_{12}}+\overline{A_{13}} \cdot A_{12}\right)$
(d) $\overline{A_{15}}+\overline{A_{14}}+A_{13} \cdot A_{12}$

Ans. (a)
8 kB ROM is given
$\therefore 2^{\mathrm{n}}=8 \mathrm{kB}=2^{3}\left(2^{10}\right)=2^{13}$

$\therefore 13$ Address lines are required for memory chip.
But the address range given as $1000 \mathrm{H}-2 \mathrm{FFF} \mathrm{H}$

A_{15}	A_{14}	A_{13}	A_{12}	A_{11}	A_{10}	A_{9}	A_{8}	A_{7}	A_{6}	A_{5}	A_{4}	A_{3}	A_{2}	A_{1}	A_{0}
0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	1	1	1	1	1	1	1	1	1	1	1	1

In order to get $\overline{\mathrm{CS}}$ as low, the condition is
$A_{15}=A_{14}=0$ and $A_{13}=0 / 1, A_{12}=1 / 0$.
Q. 43 In an N bit flash ADC, the analog voltage is fed simultaneously to $2^{N}-1$ comparators. The output of the comparators is then encoded to a binary format using digital circuits. Assume that the analog voltage source $V_{\text {in }}$ (whose output is being converted to digital format) has a source resistance of 75Ω as shown in the circuit diagram below and the input capacitance of each comparator is 8 pF .
The input must settle to an accuracy of $1 / 2 \mathrm{LSB}$ even for a full scale input change for proper conversion. Assume that the time taken by the thermometer to binary encoder is negligible.

If the flash ADC has 8 bit resolution, which one of the following alternatives is closest to the maximum sampling rate ?
(a) 1 megasamples per second
(b) 6 megasamples per second
(c) 64 megasamples per second
(d) 256 megasamples per second

Ans. (a)
The total capacitance $=\left(2^{n}-1\right) \times C=\left(2^{8}-1\right) \times 8 \mathrm{pF}=2.04 \mathrm{nF}$

The time constant $=\tau=\mathrm{RC}=153 \mathrm{~ns}$
$\because \quad$ Settling time $=5 \tau=5 \mathrm{RC}=765 \mathrm{~ns}$
\therefore Sampling rate $=\frac{1}{\text { Settling time }} \approx 1 \mathrm{M}$ samples $/ \mathrm{sec}$
Q. 44 The state transition diagram for a finite state machine with states A, B and C, and binary inputs X, Y and Z, is shown in the figure. Which one of the following statements is correct?

(a) Transitions from State A are ambiguously defined.
(b) Transitions from State B are ambiguously defined.
(c) Transitions from State C are ambiguously defined.
(d) All of the state transitions are defined unambiguously.

Ans. (c)
For State A

\boldsymbol{X}	\boldsymbol{Y}	\boldsymbol{Z}	Present State	Next State
0	0	0	A	B
0	0	1	A	A
0	1	0	A	A
0	1	1	A	A
1	0	0	A	C
1	0	1	A	C
1	1	0	A	A
1	1	1	A	A

For State B

\boldsymbol{X}	\boldsymbol{Y}	\boldsymbol{Z}	Present State	Next State
0	0	0	B	A
0	0	1	B	C
0	1	0	B	B
0	1	1	B	B
1	0	0	B	A
1	0	1	B	B
1	1	0	B	B
1	1	1	B	B

For State C

\boldsymbol{X}	\boldsymbol{Y}	\mathbf{Z}	Present State	Next State
0	0	0	C	C
0	0	1	C	C
0	1	0	C	C
0	1	1	C	B
1	0	0	C	C
1	0	1	C	A
1	1	0	C	C
1	1	1	C	$A B$

In state ' C ' when $X Y Z=111$; the ambiguity occurs. Because from state ' C '

When,
$X=1$,
$Z=1 \Rightarrow$ Next state $=A$
$Z=1 \Rightarrow$ Next state $=B$
Q. 45 In the feedback system shown below $G(s)=\frac{1}{\left(s^{2}+2 s\right)}$.

The step response of the closed-loop system should have minimum settling time and have no overshoot.

The required value of gain k to achieve this is \qquad
Ans. (1)

$$
\begin{aligned}
G(s) & =\frac{1}{s^{2}+2 s} \\
\frac{Y(s)}{R(s)} & =\frac{\frac{K}{s^{2}+2 s}}{1+\frac{K}{s^{2}+2 s}}=\frac{K}{s^{2}+2 s+K}
\end{aligned}
$$

Minimum settling time and no overshoot implies

$$
\begin{aligned}
\xi & =1 \\
\omega_{n} & =\sqrt{K} \\
2 \times \xi \cdot \omega_{n} & =2 \\
\omega_{n} & =1 \\
\Rightarrow \quad \sqrt{K} & =1 \text { or } K=1
\end{aligned}
$$

Q. 46 In the feedback system shown below $G(s)=\frac{1}{(s+1)(s+2)(s+3)}$

The positive value of k for which the gain margin of the loop is exactly 0 dB and the phase margin of the loop is exactly zero degree is \qquad
Ans. (60)

$$
\begin{aligned}
& \qquad 1+G(s) H(s)=1+\frac{K}{(\mathrm{~s}+1)(\mathrm{s}+2)(\mathrm{s}+3)}=0 \\
& (s+1)\left(s^{2}+5 \mathrm{~s}+6\right)+K=0 \\
& s^{3}+5 \mathrm{~s}^{2}+6 \mathrm{~s}+s^{2}+5 \mathrm{~s}+6+K=0 \\
& \Rightarrow s^{3}+6 \mathrm{~s}^{2}+11 \mathrm{~s}+6+K=0 \\
& \quad \text { Gain margin }=0 \mathrm{~dB} \text { and phase margin }=0^{\circ} \\
& \text { It implies marginal stable system } \\
& \text { By Routh Array }
\end{aligned}
$$

s^{3}	1	11
s^{2}	6	$(6+K)$
s	$\frac{66-6-K}{6}$	0
s°	$6+K$	

For marginal stable system,

$$
\begin{array}{rlrl}
& & 60-K & =0 \\
\Rightarrow & K & =60
\end{array}
$$

Q. 47 The asymptotic Bode phase plot of $G(s)=\frac{k}{(s+0.1)(s+10)\left(s+p_{1}\right)}$, with k and p_{1} both positive, is shown below.

The value of p_{1} is \qquad

Ans. (1)

$$
\begin{aligned}
& G(s)=\frac{K}{(s+0.1)(s+10)\left(s+p_{1}\right)} \\
& \angle G(s)=-\tan ^{-1} \frac{\omega}{0.1}-\tan ^{-1} \frac{\omega}{10}-\tan ^{-1} \frac{\omega}{p_{1}} \\
&\left.\angle G(s)\right|_{\omega=1}=-\tan ^{-1} \frac{1}{0.1}-\tan ^{-1} \frac{1}{10}-\tan ^{-1} \frac{1}{p_{1}}=-135^{\circ} \\
&-\tan ^{-1} 10-\tan ^{-1} 0.1-\tan ^{-1} \frac{1}{p_{1}}=-135^{\circ} \\
&-84.28^{\circ}-5.71^{\circ}-\tan ^{-1} \frac{1}{p_{1}}=-135^{\circ} \\
&-\tan ^{-1} \frac{1}{p_{1}}=-135^{\circ}+90^{\circ} \\
& \tan ^{-1} \frac{1}{p_{1}}=45^{\circ} \\
& \frac{1}{p_{1}}=1
\end{aligned}
$$

Q. 48 An information source generates a binary sequence $\left\{\alpha_{n}\right\} . \alpha_{n}$ can take one of the two possible values -1 and +1 with equal probability and are statistically independent and identically distributed. This sequence is precoded to obtain another sequence $\left\{\beta_{n}\right\}$, as $\beta_{n}=\alpha_{n}+k \alpha_{n-3}$. The sequence $\left\{\beta_{n}\right\}$ is used to modulate a pulse $g(t)$ to generate the baseband signal
$X(t)=\sum_{n=-\infty}^{\infty} \beta_{n} g(t-n T)$,
where $g(t)=\left\{\begin{array}{lc}1, & 0 \leq t \leq T \\ 0, & \text { otherwise }\end{array}\right.$
If there is a null at $f=\frac{1}{3 T}$ in the power spectral density of $X(t)$, then k is \qquad

Ans. (-1)
Power spectral density of $x(t)=S_{X}(f)$

$$
\begin{aligned}
& \qquad S_{X}(f)=\frac{|G(f)|^{2}}{T} \sum_{n=-\infty}^{\infty} R_{b}(\tau) e^{j 2 \pi f n \tau} \\
& R_{b}(\tau)=E\left[\beta_{\mathrm{n}} \beta_{n-\tau}\right] \\
& =E\left[\left(\alpha_{n}+k \alpha_{n-3}\right)\left(\alpha_{n-\tau}+k \alpha_{\mathrm{n}-\tau-3}\right)\right] \\
& =E\left[\alpha_{n} \alpha_{n-\tau}\right]+k E\left[\alpha_{\mathrm{n}-3} \alpha_{n-\tau}\right]+k E\left[\alpha_{\mathrm{n}} \alpha_{\mathrm{n}-\tau-3}\right]+\mathrm{k}^{2} \mathrm{E}\left[\alpha_{n-3} \alpha_{n-\tau-3}\right]
\end{aligned}
$$

$=\mathrm{E}\left[\alpha_{n} \alpha_{n-\tau}\right]+\mathrm{kE}\left[\alpha_{n-3} \alpha_{n-\tau-3+3}\right]+\mathrm{kE}\left[\alpha_{n} \alpha_{n-\tau-3}\right]+\mathrm{k}^{2} \mathrm{E}\left[\alpha_{n-3} \alpha_{n-\tau-3}\right]$
$=R(\tau)+k R(\tau-3)+k R(\tau+3)+k^{2} R(\tau)$
$=\left(1+k^{2}\right) R(\tau)+k R(\tau+3)+k R(\tau-3)$
Hence autocorrection function can be defined as :

$$
R_{b}(\tau)=\left\{\begin{array}{cc}
1+k^{2} & \tau=0 \\
k & \tau= \pm 3 \\
0 & \text { otherwise }
\end{array}\right\}
$$

Power spectral density

$$
s_{b}(f)=1+\mathrm{k}^{2}+2 \mathrm{k} \cos (2 \pi \mathrm{f} 3 \mathrm{~T})
$$

Null will occur at $\mathrm{f}=\frac{1}{3 T}$
at

$$
\begin{aligned}
f & =\frac{1}{3 T} \\
s_{b}(f) & =1+k^{2}+2 k \cos (2 \pi)=0
\end{aligned}
$$

$$
\Rightarrow \quad 1+k^{2}+2 k=0
$$

$$
\Rightarrow(k+1)^{2}=0
$$

$$
\therefore \quad k=-1
$$

Q. 49 An ideal band-pass channel $500 \mathrm{~Hz}-2000 \mathrm{~Hz}$ is deployed for communication. A modem is designed to transmit bits at the rate of 4800 bits/s using 16-QAM. The roll-off factor of a pulse with a raised cosine spectrum that utilizes the entire frequency band is \qquad
Ans. (0.25)
Channal spectrum $500 \mathrm{~Hz}-2000 \mathrm{~Hz}$
hence $\mathrm{BW}=1500 \mathrm{~Hz}$

$$
\begin{aligned}
& \mathrm{BW}=\frac{R_{b}}{\log _{2} M}(1+\alpha) \\
& 1500=\frac{R_{b}}{\log _{2} 16}(1+\alpha) \\
& 1500=\frac{4800}{\log _{2} 16}(1+\alpha) \\
& \Rightarrow \quad 1500=1200(1+\alpha) \\
& \alpha \\
&=0.25
\end{aligned}
$$

Q. 50 Consider a random process $X(t)=3 V(t)-8$, where $V(t)$ is a zero mean stationary random process with autocorrelation $R_{v}(\tau)=4 e^{-5|\tau|}$. the power in $X(t)$ is \qquad
Ans. (100)

$$
\begin{aligned}
X(t) & =3 V(t)-8 \quad \text { and } \quad E[V(t)]=0 \\
R_{v}(\tau) & =4 e^{-5|\tau|} \\
\text { Power of } X(t) & =E\left[X^{2}(t)\right] \\
& =E\left[9 V^{2}(t)\right]+64-48 E[V(t)] \\
& =9 E\left[V^{2}(t)\right]+64-48 E[V(t)] \\
E\left[V^{2}(t)\right] & =R_{v}(0)=4 \\
\text { Power of } X(t) & =((9 \times 4)+64) \\
& =100
\end{aligned}
$$

Q. 51 A binary communication system makes use of the symbols "zero" and "one". There are channel errors. Consider the following events:
x_{0} : a "zero" is transmitted
$x_{1}: a$ "one" is transmitted
$y_{0}: a$ "zero" is received
$y_{1}: a$ "one" is received
The following probabilities are given: $P\left(x_{0}\right)=\frac{1}{2}, P\left(y_{0} \mid x_{0}\right)=\frac{3}{4}$, and $P\left(y_{0} \mid x_{1}\right)=\frac{1}{2}$.
The information in bits that you obtain when you learn which symbol has been received (while you know that a "zero" has been transmitted) is \qquad
Ans. (0.405)

$$
\begin{array}{rlrl}
P\left(x_{0}\right) & =\frac{1}{2} ; & & P\left(x_{1}\right)=\frac{1}{2} \\
P\left(\frac{y_{0}}{x_{0}}\right) & =\frac{3}{4} ; & P\left(\frac{y_{0}}{x_{1}}\right)=\frac{1}{2} \\
{[P(x, y)]} & =[P(x)]_{d}[P(y \mid x)] & \\
& =\left[\begin{array}{cc}
1 / 2 & 0 \\
0 & 1 / 2
\end{array}\right]\left[\begin{array}{cc}
3 / 4 & 1 / 4 \\
1 / 2 & 1 / 2
\end{array}\right]
\end{array}
$$

$$
\begin{aligned}
{[P(x, y)] } & =\left[\begin{array}{ll}
3 / 8 & 1 / 8 \\
1 / 4 & 1 / 4
\end{array}\right] \\
P\left(y \mid x_{0}\right) & =-\sum_{k=0}^{1} P\left(x_{0}, y_{k}\right) \log _{2} P\left(\frac{y_{k}}{x_{0}}\right) \\
& =-\left\{P\left(x_{0}, y_{0}\right) \log _{2} P\left(y_{0} \mid x_{0}\right)+P\left(x_{0}, y_{1}\right) \log _{2} P\left(y_{1} \mid x_{0}\right)\right\} \\
& =-\left\{\frac{3}{8} \log _{2} \frac{3}{4}+\frac{1}{8} \log _{2} \frac{1}{4}\right\} \\
& =0.405
\end{aligned}
$$

Q. 52 The parallel-plate capacitor shown in the figure has movable plates. The capacitor is charged so that the energy stored in it is E when the plate separation is d. The capacitor is then isolated electrically and the plates are moved such that the plate separation becomes $2 d$.

At this new plate separation, what is the energy stored in the capacitor, neglecting fringing effects?
(a) $2 E$
(b) $\sqrt{2} E$
(c) E
(d) $E / 2$

Ans. (a)

Let $E=E_{1}$,

$$
\text { Energy } E_{1}=\frac{Q_{1}^{2}}{2 C_{1}}
$$

Electrically isolated \Rightarrow

$$
Q_{2}=Q_{1}
$$

$d_{2}=2 d_{1} \quad \Rightarrow$

$$
C_{2}=\frac{C_{1}}{2}
$$

$$
E_{2}=\frac{Q_{2}^{2}}{2 C_{2}}=\frac{Q_{1}^{2}}{\frac{2 C_{1}}{2}}=2\left(\frac{Q_{1}^{2}}{2 C_{1}}\right)
$$

$$
=2 E_{1}=2 E
$$

Q. 53 A lossless microstrip transmission line consists of a trace of width w. It is drawn over a practically infinite ground plane and is separated by a dielectric slab of thickness t and relative permittivity $\varepsilon_{r}>1$. The inductance per unit length and the characteristic impedance of this line are L and Z_{0}, respectively.

Which one of the following inequalities is always satisfied?
(a) $Z_{0}>\sqrt{\frac{L t}{\varepsilon_{0} \varepsilon_{r} w}}$
(b) $Z_{0}<\sqrt{\frac{L t}{\varepsilon_{0} \varepsilon_{r} w}}$
(c) $Z_{0}>\sqrt{\frac{L w}{\varepsilon_{0} \varepsilon_{r} t}}$
(d) $Z_{0}<\sqrt{\frac{L w}{\varepsilon_{0} \varepsilon_{r} t}}$

Ans. (a)

$$
\begin{array}{rlrl}
Z_{0} & =\sqrt{\frac{L}{C}} \\
\Rightarrow & & Z_{0} & =\sqrt{\frac{L t}{\epsilon_{e f f} W}} \\
\text { as } & \epsilon_{\text {eff }} & <\epsilon_{0} \epsilon_{\mathrm{r}} \\
Z_{0} & >\sqrt{\frac{L t}{\epsilon_{0} \epsilon_{r} W}}
\end{array}
$$

Q. 54 A microwave circuit consisting of lossless transmission lines T_{1} and T_{2} is shown in the figure. The plot shows the magnitude of the input reflection coefficient Γ as a function of frequency f. The phase velocity of the signal in the transmission $8 \mathrm{~m} / \mathrm{s}$.

The length L (in meters) of T_{2} is \qquad

Ans. (0.1)
At frequency of 1 GHz the line behaves as $\frac{\lambda}{2}$ length there by giving open circuit at the input of T_{2} line.
With 50Ω termination at T_{1} the load is matched and $|\Gamma|=0$ as seen in the graph.

$$
\begin{aligned}
f & =1 \mathrm{GHz} \\
\lambda & =\frac{2 \times 10^{10}}{1 \times 10^{9}} \mathrm{~cm} \\
\frac{\lambda}{2} & =L=10 \mathrm{~cm}=0.1 \mathrm{~m}
\end{aligned}
$$

Q. 55 A positive charge q is placed at $x=0$ between two infinite metal plates placed at $x=-d$ and at $x=+d$ respectively. The metal plates lie in the $y z$ plane.

The charge is at rest at $t=0$, when a voltage +V is applied to the plate at d and voltage -V is applied to the plate at $x=+d$. Assume that the quantity of the charge q is small enough that it does not perturb the field set up by the metal plates. The time that the charge q takes to reach the right plate is proportional to
(a) d / V
(b) \sqrt{d} / V
(c) d / \sqrt{V}
(d) $\sqrt{d / V}$

Ans. (c)
Velocity being free velocity,

$$
\begin{aligned}
& \frac{1}{2} \mathrm{mv}^{2}=\mathrm{qV} \\
& \mathrm{v}=\frac{d}{t}=\sqrt{\frac{2 q V}{m}} \\
& \Rightarrow t \propto \frac{d}{\sqrt{V}}
\end{aligned}
$$

"MADE EASY is the only institute which has consistently produced toppers in ESE \& GATE" www.madeeasy.in

mRDE ERSU

