Solutions of

Electronics Engineering GATE-2016

Session 1 | Set-1

MRDE ERS

IRPDE ERSㅂ

India's Best Institute for IES, GATE \& PSUs

IMRDE ERS노
India's Best Institute for IES, GATE \& PSUs

GATE 2016 : Solutions

Dearstudents,
MADE EASY team has tried to provide the best possible/closest answers, however if you find any discrepancy then write your doubts to MADE EASY at: info@madeeasy.in. MADE EASY owes no responsibility for any kind of error due to data insufficiency/misprint/human errors etc.
B. Singh (Ex. IES), Chairman \& Managing Director, MADE EASY Group

Rewaris \& Honours

MADE EASY will honour its GATE 2016: Top-100 Rankers

AIR 1 Gold Medal + Car

AIR 2 Gold Medal + Bike

AIR 3 Gold Medal + Laptop

AIR 4 Silver Medal + Tab

AIR 11-100 Bronze Medal + Prize

 requested to inform us about your result and avail free Interview \& Counseling Guidance for M.Tech \& PSUs.For more details, visit: www.madeeasy.in
|

Section - I (General Aptitude)

One Mark Questions

Q. 1 Which of the following is CORRECT with respect to grammar and usage? Mount Everest is \qquad _.
(a) the highest peak in the world
(b) highest peak in the world
(c) one of highest peak in the world
(d) one of the highest peak in the world

Ans. (a)
Q. 2 The policeman asked the victim of a theft, "What did you \qquad ?
(a) loose
(b) lose
(c) loss
(d) louse

Ans. (b)
Q. 3 Despite the new medicine's \qquad in treating diabetes, it is not \qquad widely.
(a) effectiveness - prescribed
(b) availability - used
(c) prescription - available
(d) acceptance - proscribed

Ans. (a)
End of Solution
Q. 4 In a huge pile of apples and oranges, both ripe and unripe mixed together, 15% are unripe fruits. Of the unripe fruits, 45% are apples. Of the ripe ones, 66% are oranges. If the pile contains a total of 5692000 fruits, how many of them are apples?
(a) 2029198
(b) 2467482
(c) 2789080
(d) 3577422

Ans. (a)

Total number of apples $=$ Ripe apples + Unripe apples

$$
\begin{aligned}
& =(0.85 \times 0.45+0.15 \times 0.34) 569200 \\
& =2029198
\end{aligned}
$$

Q. 5 Michael lives 10 km away from where I live. Ahmed lives 5 km away and Susan lives 7 km away from where I live. Arun is farther away than Ahmed but closer than Susan from where I live. From the information provided here, what is one possible distance (in km) at which I live from Arun's place?
(a) 3.00
(b) 4.99
(c) 6.02
(d) 7.01

Ans. (c)
Following line with respective distances can be drawn

Arun can reside anywhere between Ahmed and Susan i.e. between 5 km and 7 km from I.
$5<6.02<7$

Two Marks Questions

Q.6. A person moving through a tuberculosis prone zone has a 50% probability of becoming infected. However, only 30% of infected people develop the disease. What percentage of people moving through a tuberculosis prone zone remains infected but does not show symptoms of disease?
(a) 15
(b) 33
(c) 35
(d) 37

Ans. (c)
The required probability

$$
0.5 \times 0.7=0.35 \approx \frac{35}{100}=35 \%
$$

Q. 7 In a world filled with uncertainty, he was glad to have many good friends. He has always assisted them in times of need and was confident that they would reciprocate. However, the events of the last week proved him wrong.
Which of the following inference(s) is/are logically valid and can be inferred from the above passage?
I. His friends were always asking him to help them.
II. He felt that when in need of help, his friends would let him down.
III. He was sure that his friends would help him when in need.
IV. His friends did not help him last week.

$\mathcal{N a t i o n a l}$ Scholarship Test

 for GATE \& ESE 2017 aspirants Scholarship upto 100\% in classroom coursesThousands of talented engineering graduates dream about prestigious engineering service examination, public sectors, IITs etc. But due to unfavorable economic conditions, these students are unable to take coaching guidance. Therefore MADE EASY has taken a initiative to acknowledge the talented in the form of scholarships. MADE EASY will provide scholarship worth more than 1.25 crores for those students who wish to enroll classroom courses for the session 2016-17.

Category	Scholarship\% in Tuition fee
A	100%
B	75%
C	50%
D	25%
E	10%

Scholarship will vary from 10% to 100%
of tuition fee, based on merit list.

Scholarship
 Worthmos than 1.25 Crores

Scholarship Test
will be conducted in
42 cties
Delhi, Noida, Hyderabad, Lucknow, Bhopal, Jaipur Indore, Pune, Bhubaneswar, Kolkata, Patna, Bhilai, Bangalore, Chennai, Nagpur, Chandigarh, Kanpur, Ranchi, Vijayawada, Dehradun, Kochi, Vishakhapatnam

Test Dates

28 ${ }^{\text {th }}$ Feb, 2016
$06^{\text {th }}$ Mar, 2016
Candidate can appear in any ONE test only
Test Pattern (Objective Type)
Basic Engineering 50 Q
Engineering Mathematics 20 Q
Reasoning \& Aptitude 20 Q
General English 10 Q
100 marks 100 questions 2 hours

Test Syllahus : Basic Engineering

Civil
Strength of materials, Design of Concrete structures, Soil mechanics and Foundation Engg, Environmental Engg, Fluid Mechanics \& Highway Engg.

Mechanical
Basic thermo dynamics, Heat \& Mass transfer, Fluid Mechanics, Industrial Engg, Production Engg and Theory of Machines.

Electrical Network theory, Control System, Electrical machines, Power systems, electrical Measurements, Analog electronics.

Electronics
Network theory, Control System, electronic devices \&Circuits Analog electronics, Digital electronics and Communication systems.

Computer Science
TOC, Algorithms and Programming Methodology, Operating System, DBMS, Computer Networks, Compiler design

- Log on to www.madeeasy.in
- Fill National Scholarship Test online registration form.

PROCEDURE
for
Registration

- Computer generated Admit Card will be mailed to your respective e-mail id.
- Venue \& timing will be mentioned on Admit Card.
- Candidate should produce Admit Card along with photo id proof to enter the examination hall.

Important Dates

Last date to register online
20-Feb-2016
National Scholarship Test-1
28-Feb-2016
National Scholarship Test-2
06-Mar-2016
Results
15-Mar-2016
(a) I and II
(b) III and IV
(c) III only
(d) IV only

Ans. (b)
Q. 8 Leela is older than her cousin Pavithra, Pavithra's brother Shiva is older than Leela. When Pavithra and Shiva are visiting Leela, all there like to play chess. Pavithra wins more often than Leela does.
Which one of the following statements must be TRUE based on the above?
(a) When Shiva plays chess with Leela and Pavithra, he often loses.
(b) Leela is the oldest of three.
(c) Shiva is better chess player than Pavithra.
(d) Pavithra is the youngest of the three.

Ans. (d)
$\mathrm{L}>\mathrm{P}$ (Leela is older thean Pavithra)
$\mathrm{S}>\mathrm{L}$ (Shiv is older than Leela)
So Pavithra is youngest
Q. 9 If $q^{-a}=\frac{1}{r}$ and $r^{-b}=\frac{1}{s}$ and $s^{-c}=\frac{1}{q}$, the value of $a b c$ is \qquad .
(a) $(r q s)^{-1}$
(b) 0
(c) 1
(d) $r+q+s$

Ans. (c)

$$
\begin{array}{ll}
\Rightarrow & \quad \begin{aligned}
\mathrm{a} \cdot \log q & =\operatorname{logr}, \\
\mathrm{b} \cdot \operatorname{logr} & =\operatorname{logs}, \\
\mathrm{c} \cdot \operatorname{logs} & =\log q
\end{aligned} \\
\text { So, } \quad \mathrm{a} \times \mathrm{b} \times \mathrm{c} & =\frac{\log r}{\log q} \times \frac{\log s}{\log r} \times \frac{\log q}{\log s}=1
\end{array}
$$

Q. $10 \quad P, Q, R$ and S are working on a project. Q can finish the task in 25 days, working alone for 12 hours a day. R can finish the task in 50 days, working alone for 12 hours per day. Q worked 12 hours a day but took sick leave in the beginning for two days. R worked 18 hours a day on all days. What is the ratio of work done by Q and R after 7 days from the start of the projects?
(a) $10: 11$
(b) $11: 10$
(c) $20: 21$
(d) $21: 20$

Ans. (c)
Q can do work in $25 \times 12=300 \mathrm{hrs}$
R can do work in $50 \times 12=600 \mathrm{hrs}$
So we can say Q is twice efficient as R
Now Q worked only for 5 days at a rate of $12 \mathrm{hrs} / \mathrm{day}$. So for 60 units of his
work (Total work for Q i.e. 300 hrs) he will do only $\frac{1}{5}$ of work $\left(\frac{60}{300}=\frac{1}{5}\right)$
While R worked for all 7 days at a rate of $18 \mathrm{hrs} /$ day
So he will do $18 \times 7=126$ of his work (Total work for 600 hrs)
He will do $\left(\frac{126}{600}=0.21\right)$ of his work
So required ratio $\left(\frac{1}{5}: \frac{126}{600}\right)=120: 126$
$20: 21$

Section - II (Electronics Engineering)

One Mark Questions

Q. $1 \quad$ Let $M^{4}=I$, (where I denotes the identity matrix) and $M \neq I, M^{2} \neq I$ and $M^{3} \neq I$. Then, for any natural number k, M^{-1} equals:
(a) $M^{4 k+1}$
(b) $M^{4 k+2}$
(c) $M^{4 k+3}$
(d) $M^{4 k}$

Ans. (c)

$$
\begin{array}{rlrlrl}
& & \text { Given that } M^{4} & =I \quad \text { or } \quad M^{4 k}=\mathrm{I} \quad \text { or } \quad M^{4(k+1)}=I \\
& \therefore & M^{-1} \times I & =M^{4(k+1)} \times M^{-1} & \\
\therefore & & M^{-1} & =M^{4 k+3} &
\end{array}
$$

Q. 2 The second moment of a Poisson-distributed random variable is 2 . The mean of the random variable is \qquad —.

Ans. (1)
In Poisson distribution,

$$
\text { Mean }=\text { First moment }=\lambda
$$

$$
\text { second moment }=\lambda^{2}+\lambda
$$

Given that second moment is 2

$$
\therefore \quad \begin{aligned}
\lambda^{2}+\lambda & =2 \\
\lambda^{2}+\lambda-2 & =0 \\
(\lambda+2)(\lambda-1) & =0 \\
\lambda & =1
\end{aligned}
$$

Q. 3 Given the following statements about a function $f: R \rightarrow R$, select the right option:
P: If $f(x)$ is continuous at $x=x_{0}$, then it is differential at $x=x_{0}$.
Q: If $f(x)$ is continuous at $x=x_{0}$, then it may not be differentiable at $x=x_{0}$.
R: If $f(x)$ is differentiable at $x=x_{0}$, then it is also continuous at $x=x_{0}$.
(a) P is true, Q is false, R is false
(b) P is false, Q is true, R is true
(c) P is false, Q is true, R is false
(d) P is true, Q is false, R is true

Ans. (b)
P : If $f(x)$ is continuous at $x=x_{0}$, then it is also differentiable at $x=x_{0}$
Q : If $f(x)$ is continuous at $x=x_{0}$, then it may or may not be derivable at $x=x_{0}$
R : If $f(x)$ is differentiable at $x=x_{0}$, then it is also continuous at $x=x_{0}$
P is false
Q is true
R is true Option (b) is correct

GATE-2016 Exam Solutions
Q. 4 Which one of the following is a property of the solutions to the Laplace equation: $\nabla^{2} f=0$?
(a) The solutions have neither maxima nor minima anywhere except at the boundaries.
(b) The solutions are not separable in the coordinates.
(c) The solutions are not continuous.
(d) The solutions are not dependent on the boundary conditions.

Ans. (a)
\qquad
Q. 5 Consider the plot $f(x)$ versus x as shown below.

Suppose $F(x)=\int_{-5}^{x} f(y) d y$. Which one of the following is a graph of $F(x)$?
(a)

(b)

(c)

(d)

Ans. (c)

$$
\begin{aligned}
& F^{\prime}(x)=f(x) \text { which is density function } \\
& F^{\prime}(x)=f(x)<0 \text { when } x<0
\end{aligned}
$$

$\therefore \quad F(x)$ is decreasing for $x<0$

$$
F^{\prime}(x)=f(x)>0 \text { when } x>0
$$

$\therefore F(x)$ is increasing for $x>0$
Q. 6 Which one of the following is an eigen function of the class of all continuous- time, linear, time-invariant systems ($u(t)$ denotes the unit-step function)?
(a) $e^{j \omega_{0} t} u(t)$
(b) $\cos \left(\omega_{0} t\right)$
(c) $e^{j \omega_{0} t}$
(d) $\sin \left(\omega_{0} t\right)$

Ans. (c)
If the input to the system is eigen signal output also the same eigen signal.
Q. 7 A continuous time function $x(t)$ is periodic with period T. The function is sampled uniformly with a sampling period T_{s}. In which one of the following cases is the sampled signal periodic?
(a) $T=\sqrt{2} T_{s}$
(b) $T=1.2 T_{s}$
(c) Always
(d) Never

Ans. (b)
A signal is said to be periodic if $\frac{T}{T_{s}}$ is a rational number.
Here, $T=1.2 T_{s}$
$\Rightarrow \quad \frac{T}{T_{s}}=\frac{6}{5} \quad$ Which is a rational number
End of Solution
Q. 8 Consider the sequence $x[n]=a^{n} u[n]+b^{n} u[n]$, where $u[n]$ denotes the unit-step sequence and $0<|a|<|b|<1$. The region of convergence (ROC) of the z-transform of $x[n]$ is
(a) $|z|>|a|$
(b) $|z|>|b|$
(c) $|z|<|a|$
(d) $|a|<|z|<|b|$

Ans. (b)

Given,
Also given,

$$
\begin{aligned}
x[n] & =a^{n} u[n]+b^{n} u[n] \\
0 & <|a|<|b|<1 \\
\operatorname{ROC} & =(|z|>|a|) \text { and }(|z|>|b|) \\
\operatorname{ROC} & =|z|>|b|
\end{aligned}
$$

Q. 9 Consider a two-port network with the transmission matrix : $T=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$.

If the network is reciprocal, then
(a) $T^{-1}=T$
(b) $T^{2}=T$
(c) Determinant $(T)=0$
(d) Determinant $(T)=1$

Ans. (d)
For reciprocal network $A D-B C=1$

$$
|T|=1
$$

Q. 10 A continuous-time sinusoid of frequency 33 Hz is multiplied with a periodic Dirac impulse train of frequency 46 Hz . The resulting signal is passed through an ideal analog low-pass filter with a cutoff frequency of 23 Hz . The fundamental frequency (in Hz) of the output is \qquad —.

MRDE ERS논
India's Best Institute for IES, GATE \& PSUs

\author{

- Best Faculty • Best Study Material • Best Results
}

Features of Classroom Gourses

- Experienced Faculty
- GATE/ESE Test Series
- Updated Books and Reading References
- Regular classroom tests followed by discussions
- Doubt clearing sessions
- Interview Guidance Program
- Coverage of syllabus before GATE/ESE exams.
- Orientation sessions for GATE/ESE

ADMISSIONS OPEN for Session 2016-17 at all centre of MADE EASY

44-A/1, Kalu Sarai, Near Hauz Khas Metro Station, New Delhi-16; E-mail : infodelhi@madeeasy.in Ph.: 011-45124612, 09958995830

Abstract

Noida D-28 Sector-63 Noida, Uttar Pradesh; E-mail: infonoida@madeeasy.in Ph.: 0120-6524612, 08860378009

Iucknow
B1/67, Sector P, Aliganj, Lucknow; E-mail : infolucknow@madeeasy.in Ph.: 09919111168,08400029422

Jaipur AB-559, Kings Road, Nirman Nagar, Jaipur, Rajasthan; E-mail : infojaipur@madeeasy.in Ph.: 0141-4024612, 09166811228

Bhopal
Plot No. 46, Zone-2 M.P. Nagar, Bhopal (Madhya Pradesh)- 462021; E-mail : infobhopal@madeeasy.in Ph.: 0755-4004612, 08120035652

Indore

Gemini Mall, PU3, Opp. Orbit Mall, A.B. Road, Vijay Nagar, Indore; E-mail : infoindore@madeeasy.in Ph.: 0731-4029612, 07566669612

Pune

II Floor, Business Bay, Plot No. 84, Near R.T.O. Shivaji Nagar, Pune; E-mail : infopune@madeeasy.in Ph.: 020-26058612, 09168884343

Hyderahad
5-1-744, Bank Street, Koti, Hyderabad-95; E-mail : infohyderabad@madeeasy.in Ph.: 040-24652324, 09160002324

Bhubancswar Plot No-1441, CRPF Square, Opposite to IOCL Petrol Pump; E-mail : infobhubaneswar@madeeasy.in Ph.: 0674-6999888, 9040999888

Kolkata

755, Anandapur Next to Fortis Hospital Off-EM Bypass Kolkata; E-mail : infokolkata@madeeasy.in Ph.: 033-68888880, 08282888880

Patia

Ans. (13)
If $x(\mathrm{t})$ is a message signal and $y(t)$ is a sampled signal, then $y(t)$ is related to $x(t)$ as

$$
\begin{aligned}
y(t) & =x(t) \sum_{n=-\infty}^{\infty} \delta\left(t-n T_{s}\right) \\
Y(f) & =f_{s} \sum_{n=-\infty}^{\infty} X\left(f-n f_{s}\right)
\end{aligned}
$$

Spectrum of $X(f)$ and $Y(f)$ are as shown

Cut off frequency of LPF $=23 \mathrm{~Hz}$
Hence, frequency at the output is 13 Hz
Q. 11 A small percentage of impurity is added to an intrinsic semiconductor at 300 K . Which one of the following statements is true for the energy band diagram shown in the following figure?

Conduction band	
New Energy Level	
Valence band	

(a) Intrinsic semiconductor doped with pentavalent atoms to form n-type semiconductor
(b) Intrinsic semiconductor doped with trivalent atoms to form n-type semiconductor
(c) Intrinsic semiconductor doped with pentavalent atoms to form p-type semiconductor
(d) Intrinsic semiconductor doped with trivalent atoms to form p-type semiconductor

Ans. (a)
Pentavalent impurity when introduced in Intrinsic SC, a new discrete energy level called Donor energy level is created just below the conduction band.

GATE-2016 Exam Solutions
Page
Q. 12 Consider the following statements for a metal oxide semiconductor field effect transistor (MOSFET):
P: As channel length reduces, OFF-state current increases.
Q: As channel length reduces, output resistance increases.
R: As channel length reduces, threshold voltage remains constant.
S: As channel length reduces, ON current increases.
Which of the above statements are INCORRECT?
(a) P and Q
(b) P and S
(c) Q and R
(d) R and S

Ans. (c)
Q. 13 Consider the constant current source shown in the figure below. Let β represent the current gain of the transistor.

The load current I_{0} through R_{L} is
(a) $I_{0}=\left(\frac{\beta+1}{\beta}\right) \frac{V_{\text {ref }}}{R}$
(b) $I_{0}=\left(\frac{\beta}{\beta+1}\right) \frac{V_{\text {ref }}}{R}$
(c) $I_{0}=\left(\frac{\beta+1}{\beta}\right) \frac{V_{\mathrm{ref}}}{2 R}$
(d) $I_{0}=\left(\frac{\beta}{\beta+1}\right) \frac{V_{\text {ref }}}{2 R}$

Ans. (b)

$V_{A}=V_{C C}-V_{\text {ref }}$
$V_{B}=V_{A}$ (since virtual short)
$I_{C}=\frac{V_{C C}-V_{B}}{R}=\frac{V_{C C}-\left(V_{C C}-V_{\text {Ref }}\right)}{R}=\frac{V_{\text {Ref }}}{R}$
$I_{0}=I_{E}=\frac{I_{C}}{\alpha}=\left(\frac{\beta}{1+\beta}\right) \frac{V_{\mathrm{Ref}}}{R}$
Q. 14 The following signal V_{i} of peak voltage 8 V applied to the non-inverting terminal of an ideal opamp. The transistor has $V_{B E}=0.7 \mathrm{~V}, \beta=100 ; V_{\mathrm{LED}}=1.5 \mathrm{~V}, V_{C C}=10 \mathrm{~V}$ and $-V_{C C}=-10 \mathrm{~V}$

The number of times the LED glows is \qquad
Ans. (3)

$$
V_{B}=\frac{10 \mathrm{~V} \times 2 \mathrm{~K}}{8 \mathrm{~K}+2 \mathrm{~K}}=2 \mathrm{~V}
$$

When V_{1} exceeds 2 V output of opamp V_{01} goes to $V_{C C}$ and drives BJT into saturation shorted LED will glow,
In the given problem V_{i} exceeds $2 V$ three times and hence output V_{01} of opamp goes to $V_{C C}$ thrice so that LED glow three times.
Q. 15 Consider the oscillator circuit shown in the figure. The function of the network (shown in dotted lines) consisting of the $100 \mathrm{k} \Omega$ resistor in series with the two diodes connected back-to-back is to:

(a) introduce amplitude stabilization by preventing the op amp from saturating and thus producing sinusoidal oscillations of fixed amplitude
(b) introduce amplitude stabilization by forcing the opamp to swing between positive and negative saturation and thus producing square wave oscillations of fixed amplitude
(c) introduce frequency stabilization by forcing the circuit to oscillate at a single frequency
(d) enable the loop gain to take on a value that produces square wave oscillations

Ans. (a)
The given circuit is Wein-bridge oscillator which produced sinusoidal oscillations and the amplitude of output wave is decided by feedback through inverting input terminal of opamp.

End of Solution
Q. 16 The block diagram of a frequency synthesizer consisting of a Phase Locked Loop (PLL) and a divide-by-N counter (comprising $\div 2, \div 4, \div 8, \div 16$ outputs) is sketched below. The synthesizer is excited with a 5 kHz signal (Input 1). The free-running frequency of the PLL is set to 20 kHz . Assume that the commutator switch makes contacts repeatedly in the order 1-2-3-4.

The corresponding frequency synthesized are:
(a) $10 \mathrm{kHz}, 20 \mathrm{kHz}, 40 \mathrm{kHz}, 80 \mathrm{kHz}$
(b) $20 \mathrm{kHz}, 40 \mathrm{kHz}, 80 \mathrm{kHz}, 160 \mathrm{kHz}$
(c) $80 \mathrm{kHz}, 40 \mathrm{kHz}, 20 \mathrm{kHz}, 10 \mathrm{kHz}$
(d) $160 \mathrm{kHz}, 80 \mathrm{kHz}, 40 \mathrm{kHz}, 20 \mathrm{kHz}$

Ans. (a)

$f_{\text {in }}$	VCO output $\left(N f_{\text {in }}\right)$	Divide by N counter
5 kHz	10 kHz	2
5 kHz	20 kHz	4
5 kHz	40 kHz	8
5 kHz	80 kHz	16

Q. 17 The output of the combinational circuit given below is

(a) $A+B+C$
(b) $A(B+C)$
(c) $B(C+A)$
(d) $C(A+B)$

Ans. (c)

$$
\begin{aligned}
y & =A B C \oplus A B \oplus B C \\
& =[\overline{A B C} \cdot A B+A B C \cdot \overline{A B}] \oplus B C \\
& =[(\bar{A}+\bar{B}+\bar{C}) \cdot A B+A B C \cdot(\bar{A}+\bar{B})] \oplus B C \\
& =(A B \bar{C}) \oplus(B C) \\
& =\overline{A B \bar{C} \cdot B C+A B \bar{C} \cdot \overline{B C}} \\
& =(\bar{A}+\bar{B}+C) \cdot B C+A B \bar{C} \cdot(\bar{B}+\bar{C}) \\
& =\bar{A} B C+B C+A B \bar{C} \\
& =B C(\bar{A}+1)+A B \bar{C}=B C+A B \bar{C} \\
& =B(C+A \bar{C})=B(C+A)
\end{aligned}
$$

Q. 18 What is the voltage $V_{\text {out }}$ in the following circuit?

(a) 0 V
(b) $\left(\mid V_{T}\right.$ of PMOS) $\mid+V_{T}$ of NMOS) $/ 2$
(c) Switching threshold of inverter
(d) $V_{D D}$

Ans. (c)
Q. 19 Match the inferences X, Y and Z about a system, to the corresponding properties of the elements of first column in Routh's Table of the system characteristic equation.

List - I

X. The system is stable..
Y. The system is unstable..
Z. The test breaks down..
(a) $\mathrm{X}-\mathrm{P} ; \mathrm{Y}-\mathrm{Q} ; \mathrm{Z}-\mathrm{R}$
(b) $\mathrm{X}-\mathrm{Q} ; \mathrm{Y}-\mathrm{P} ; \mathrm{Z}-\mathrm{R}$
(c) $\mathrm{X}-\mathrm{R} ; \mathrm{Y}-\mathrm{Q} ; \mathrm{Z}-\mathrm{P}$
(d) $\mathrm{X}-\mathrm{P} ; \mathrm{Y}-\mathrm{R} ; \mathrm{Z}-\mathrm{Q}$

Ans. (d)
When all elements are positive, the system is stable. When any element is zero, the test breaks down. When there is change in sign of coefficients, the system is unstable.
Q. 20 A closed-loop control system is stable if the Nyquist plot of the corresponding open-loop transfer function
(a) encircles the s-plane point $(-1+j 0)$ in the counterclockwise direction as many times as the number of right-half s-plane poles.
(b) encircles the s-plane point $(0-j 1)$ in the clockwise direction as many times as the number of right-half s-plane poles.
(c) encircles the s-plane point $(-1+j 0)$ in the counterclockwise direction as many times as the number of left-half s-plane poles.
(d) encircles the s-plane point $(-1+j 0)$ in the counterclockwise direction as many times as the number of right-half s-plane zeros.

Ans. (a)
$N=P-Z$
$N=$ Number of encirclements of $(-1+j 0)$. It ispositive if nyquist plot encircles the point $-1+j 0$ in counterclockwise direction.
Z = Number of closed loop poles lying in the right half of s-plane
$P=$ Number of open loop poles lying in right half of s-plane
For stability $Z=0 \Rightarrow N=P$
Q. 21 Consider the binary data transmission at a rate of 56 kbps using baseband binary pulse amplitude modulation (PAM) that is designed to have a raised-cosine spectrum. The transmission bandwidth (in kHz) required of a roll-off factor of 0.25 is \qquad
Ans.
(35)

Bit rate,

$$
\begin{aligned}
R_{b} & =56 \mathrm{kbps} \\
\alpha & =0.25
\end{aligned}
$$

Roll-off factor,

$$
\begin{aligned}
\text { Transmission BW } & =\frac{R_{b}}{2}(1+\alpha) \\
& =\frac{56}{2}(1.25)=28 \times 1.25=35 \mathrm{kHz}
\end{aligned}
$$

Q. 22 A superheterodyne receiver operates in the frequency range of $58 \mathrm{MHz}-68 \mathrm{MHz}$. The intermediate frequency f_{IF} and local oscillator frequency f_{LO} are chosen such that $f_{\mathrm{IF}} \leq f_{\mathrm{LO}}$. It is required that the image frequencies fall outside the $58 \mathrm{MHz}-68 \mathrm{MHz}$ band. The minimum required $f_{\text {IF }}$ (in MHz) is \qquad -.

Ans. (5)

$$
f_{s}=58 \mathrm{MHz}-68 \mathrm{MHz}
$$

$f_{s i}$ should fall outside the range $58 \mathrm{MHz}-68 \mathrm{MHz}$
Hence

$$
f_{s \text { min }}=58 \mathrm{MHz}
$$

$$
f_{\mathrm{si}}=f_{s}+2 I F>68 \mathrm{MHz}
$$

$$
58 \mathrm{MHz}+2 I F>68 \mathrm{MHz}
$$

$$
I F>5 \mathrm{MHz}
$$

$$
\Rightarrow \quad(I F)_{\min }=5 \mathrm{MHz}
$$

Q. 23 The amplitude of a sinusoidal carrier is modulated by a single sinusoid to obtain the amplitude modulated signal $s(t)=5 \cos 1600 \pi t+20 \cos 1800 \pi t+5 \cos 2000 \pi t$. The value of the modulation index is \qquad _.

Ans. (0.5)

$$
\begin{aligned}
& s(t)=5 \cos 1600 \pi t+20 \cos 1800 \pi t+5 \cos 2000 \pi t \\
& s(t)=20 \cos 1800 \pi t+5 \cos 1600 \pi t+5 \cos 2000 \pi t \\
& s(t)=A_{c} \cos 2 \pi f_{c} t+\frac{A_{c} \mu}{2} \cos 2 \pi\left(f_{c}-f_{m}\right) t+\frac{A_{c} \mu}{2} \cos 2 \pi\left(f_{c}+f_{m}\right) t
\end{aligned}
$$

comparing, we get

$$
\begin{aligned}
A_{c} & =20 \mathrm{~V} ; \frac{A_{c} \mu}{2}=5 \mathrm{~V} \\
\mu & =\frac{10}{20}=0.5
\end{aligned}
$$

Q. 24 Concentric spherical shells of radii $2 \mathrm{~m}, 4 \mathrm{~m}$, and 8 m carry uniform surface charge densities of $20 \mathrm{nC} / \mathrm{m}^{2},-4 \mathrm{nC} / \mathrm{m}^{2}$ and ρ_{s}, respectively. The value of $\rho_{s}\left(\mathrm{nC} / \mathrm{m}^{2}\right)$ required to ensure that the electric flux density $\vec{D}=\overrightarrow{0}$ at radius 10 m is \qquad —.

Ans. (-0.25)

$$
\begin{aligned}
& \qquad D \cdot d s=Q \quad \text { (charge enclosed) } \\
& Q_{1}+Q_{2}+Q_{3}=0 \\
& D=0 \\
& \text { For } \\
& \rho_{s 1} \cdot 4 \pi 2^{2}+\rho_{s 2} \cdot 4 \pi \cdot 4^{2}+\rho_{s 3} \cdot 4 \pi \cdot 8^{2}=Q=0 \\
& 20 \cdot 4-4.4^{2}+\rho_{s 3} \cdot 8^{2}=0 \\
& 80-64+\rho_{s 3} \cdot 8^{2}=0 \\
& \rho_{s 3}=\frac{-16}{64}=-0.25 \mathrm{nC} / \mathrm{m}^{2}
\end{aligned}
$$

India's Best Institute for IES, GATE \& PSUs

Online Test Series of ESE:-2016

Objective \& Conventional Tests

- 24 Subjectwise Tests • 19 Objective Tests
- 10 Full Syllabus Tests • 15 Conventional Tests

STREAMS OFFERED
CE ME EE ERT

Technical Queries : 011-45124612,09818098817

Classroom Test Series ofor :S52016

Including CBT [Classroom Tests + Centre Based Tests)

Objective \& Conventional Tests

- 6 Subjectwise Objective
- 6 Subjectwise Conventional
- 2 Full Syllabus Objective
- 2 Full Syllabus Conventional
- 1 Full Syllabus General Ability
- 2 Subjectwise General Ability

Exactly same pattern as UPSC Engineering Services Exam $\left.\begin{array}{l}\text { STREAMS } \\ \text { OFFERED }\end{array}\right\}$ CE EE ERT

To enroll online, visit www.madeeasy.in

Tests starting ofrom
$5^{\text {II }}$ Mar, 2016

Technical Queries : 011-45124612,09818098817

Admissions Open

For detailed schedule \& fee structure, visit: www.madeeasy.in
Corporate Office : 44-A/1, Kalu Sarai, New Delhi-110016; Ph: 011-45124612, 09958995830

MADE EASY Centres	$\underset{\substack{\text { Defhi } \\ 01-45124612 \\ 0995895830}}{ }$	Hyderahad $040-24652324$ 09160002324	Noida$0120-6524612$ 08860378009	Jainul $0141-402412$ 0916881228	Bhopal $0755-4004612$ 08120035652	Luctnow 09991111168 08400029422	Indore $\mathbf{0 7 3 1 4 0 2 9 6 1 2}$ 756669612	Bhubaneswar 0674-6999888 09040999888	Pune $020-26558672$ 0968884343	$\underset{\substack{\text { Kolfrata } \\ \text { 03-388888880 } \\ \text { 828288880 }}}{ }$	$\begin{aligned} & \text { Patina } \\ & \text { P955991166 } \end{aligned}$

Q. 25 The propagation constant of a lossy transmission line is $(2+j 5) \mathrm{m}^{-1}$ and its characteristic impedance is $(50+j 0) \Omega$ at $\omega=10^{6} \mathrm{rad} \mathrm{s}{ }^{-1}$. The value of the line constants L, C, R, G are respectively,
(a) $L=200 \mu \mathrm{H} / \mathrm{m}, C=0.1 \mu \mathrm{~F} / \mathrm{m}$, $R=50 \Omega / \mathrm{m}, G=0.02 \mathrm{~S} / \mathrm{m}$
(b) $L=250 \mu \mathrm{H} / \mathrm{m}, C=0.1 \mu \mathrm{~F} / \mathrm{m}$, $R=100 \Omega / \mathrm{m}, G=0.04 \mathrm{~S} / \mathrm{m}$
(c) $L=200 \mu \mathrm{H} / \mathrm{m}, C=0.2 \mu \mathrm{~F} / \mathrm{m}$, $R=100 \Omega / \mathrm{m}, G=0.02 \mathrm{~S} / \mathrm{m}$
(d) $L=250 \mu \mathrm{H} / \mathrm{m}, C=0.2 \mu \mathrm{~F} / \mathrm{m}$, $R=50 \Omega / \mathrm{m}, G=0.04 \mathrm{~S} / \mathrm{m}$

Ans. (b)

$$
\begin{aligned}
\gamma & =\sqrt{(R+j \omega L)(G+j \omega C)} \\
Z_{0} & =\sqrt{\frac{R+j \omega L}{G+j \omega C}} \\
\gamma \cdot Z_{0} & =R+j \omega L=(2+j 5)(50+j 0)=100+j 250 \\
R & =100 \Omega / \mathrm{m} \\
L & =\frac{250}{\omega}=\frac{250}{10^{6}}=250 \mu \mathrm{H} / \mathrm{m} \\
\frac{\gamma}{Z_{0}} & =\frac{2+j 5}{50}=G+j \omega C=0.04+j 0.1 \\
G & =0.04 \mathrm{~S} / \mathrm{m} \\
C & =\frac{0.1}{\omega}=\frac{0.1}{10^{6}}=0.1 \mu \mathrm{~F} / \mathrm{m}
\end{aligned}
$$

Two Marks Questions

Q. 26 The integral $\frac{1}{2 \pi} \iint_{D}(x+y+10) d x, d y$, where D denotes the disc: $x^{2}+y^{2} \leq 4$, evaluates to \qquad
Ans.
(20)

$$
\text { Put } \begin{aligned}
x & =r \cos \theta \\
y & =r \sin \theta \\
d x d y & =r d r d \theta \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \int_{0}^{2}(r(\cos \theta+\sin \theta)+10) r d r d \theta \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \int_{0}^{2}\left(r^{2}(\cos \theta+\sin \theta)+10 r\right) d r d \theta
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2 \pi}\left(\left.\int_{0}^{2 \pi}(\cos \theta+\sin \theta)\left(\frac{r^{3}}{3}\right)\right|_{0} ^{2} d \theta+\left.10 \int_{0}^{2 \pi}\left(\frac{r^{2}}{2}\right)\right|_{0} ^{2} d \theta\right) \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{8}{3}(\cos \theta+\sin \theta) d \theta+\frac{1}{2 \pi} \int_{0}^{2 \pi} 5 \cdot(4) d \theta \\
& =\frac{1}{2 \pi}\left[\frac{8}{3}(\sin \theta-\cos \theta)\right]_{0}^{2 \pi}+\frac{1}{2 \pi} \cdot 20(2 \pi) \\
& =\frac{1}{2 \pi}\left(\frac{8}{3}(0-1)-(0-1)+20\right)=0+20=20
\end{aligned}
$$

End of Solution
Q. 27 A sequence $x[n]$ is specified as
$\left[\begin{array}{c}x[n] \\ x[n-1]\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]^{n}\left[\begin{array}{l}1 \\ 0\end{array}\right]$, for $n \geq 2$.
The initial conditions are $x[0]=1, x[1]=1$, and $x[n]=0$ for $n<0$. The value of $x[12]$ is \qquad
Ans. (233)

For

$$
A=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]
$$

equation

$$
\begin{aligned}
{\left[\begin{array}{cc}
1-\lambda & 1 \\
1 & -\lambda
\end{array}\right] } & =0 \\
\lambda+\lambda^{2}-1 & =0 \\
\lambda^{2}-\lambda-1 & =0
\end{aligned}
$$

By Cayley Hamilton Theorem

$$
\begin{aligned}
A^{2}-A-I & =0 \\
A^{2} & =A+I \\
A^{4} & =A^{2}+2 A+I \\
& =A+I+2 A+I=3 A+2 I \\
A^{8} & =9 A^{2}+12 A+4 I \\
& =9(A+I)+12 A+4 I \\
& =21 A+13 I \\
A^{12} & =A^{4} \cdot A^{8}=144 \mathrm{~A}+89 I \\
& =\left[\begin{array}{cc}
233 & 144 \\
144 & 89
\end{array}\right] \\
{\left[\begin{array}{r}
x[12] \\
x[11]
\end{array}\right] } & =\left[\begin{array}{cc}
233 & 144 \\
144 & 89
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
x[12] & =233
\end{aligned}
$$

Q. 28 In the following integral, the contour C encloses the points $2 \pi j$ and $-2 \pi j$
$-\frac{1}{2 \pi} \oint_{C} \frac{\sin z}{(z-2 \pi j)^{3}} d z$
The value of the integral is \qquad
Ans. (-133.87)

$$
\begin{aligned}
I & =-\frac{1}{2 \pi} \int_{c} \frac{\sin z}{(z-2 \pi j)^{3}} d z \\
& =-\frac{1}{2 \pi} \times \frac{2 \pi j f^{\prime \prime}(2 \pi j)}{2!} \\
f(z) & =\sin z \\
f^{\prime}(z) & =\cos z \\
f^{\prime \prime}(z) & =-\sin z \\
I & =-\frac{1}{2 \pi} \times 2 \pi j \frac{-\sin (2 \pi j)}{2} \\
& =-\frac{1}{2} \sinh 2 \pi=-133.87
\end{aligned}
$$

Q. 29 The region specified by $\left\{(\rho, \phi, z): 3 \leq \rho \leq 5, \frac{\pi}{8} \leq \varphi \leq \frac{\pi}{4}, 3 \leq z \leq 4.5\right\}$ in cylindrical coordinates has volume of \qquad -.

Ans. (4.712)

$$
\begin{aligned}
V & =\int_{\rho=3}^{5} \int_{\phi=\frac{\pi}{8}}^{\pi / 4} \int_{z=3}^{4.5} \rho d \rho d \phi d z=\left.\int_{3}^{4.5} \int_{\pi / 8}^{\pi / 4}\left(\frac{\rho^{2}}{2}\right)\right|_{3} ^{5} d \phi d z \\
& =\int_{3}^{4.5 \pi / 4} \int_{\pi / 8}^{\pi / 8} 8 \cdot d \phi d z=\left.\left.8 \phi\right|_{\pi / 8} ^{\pi / 4} \cdot z\right|_{3} ^{4.5} \\
& =8\left(\frac{\pi}{4}-\frac{\pi}{8}\right)(4.5-3)=8 \cdot \frac{\pi}{8} \cdot(1.5) \\
& =4.712
\end{aligned}
$$

GATE-2016 Exam Solutions
Q. 30 The Laplace transform of the causal periodic square wave of period T shown in the figure below is

(a) $\quad F(s)=\frac{1}{1+e^{-s T / 2}}$
(b) $\quad F(s)=\frac{1}{s\left(1+e^{-s T / 2}\right)}$
(c) $\quad F(s)=\frac{1}{s\left(1-e^{-s T / 2}\right)}$
(d) $F(s)=\frac{1}{1-e^{-s T}}$

Ans. (b)

$$
\begin{aligned}
L(f(t)) & =\frac{1}{1-e^{-s T}} \int_{0}^{T / 2} e^{-s t} d t=\left.\frac{1}{1-e^{-s T}}\left(\frac{e^{-s t}}{-s}\right)\right|_{0} ^{T / 2} \\
& =\frac{1}{s\left(1-e^{-s T}\right)} \cdot\left(1-e^{-s T / 2}\right)=\frac{1}{s} \cdot \frac{1-e^{-s T / 2}}{\left(1-e^{-s T / 2}\right)\left(1+e^{-s T / 2}\right)} \\
& =\frac{1}{s} \cdot \frac{1}{1+e^{-s T / 2}}
\end{aligned}
$$

Q. 31 A network consisting of a finite number of linear resistor (R), inducer (L), and capacitor (C) elements, connected all in series or all in parallel, is excited with a source of the form
$\sum_{k=1}^{3} a_{k} \cos \left(k \omega_{0} t\right)$, where $a_{k} \neq 0, \omega_{0} \neq 0$.
The source has nonzero impedance. Which one of the following is a possible form of the output measured across a resistor in the network?
(a) $\sum_{k=1}^{3} b_{k} \cos \left(k \omega_{0} t+\phi_{k}\right)$, where $b_{k} \neq a_{k}, \forall k$
(b) $\sum_{k=1}^{3} b_{k} \cos \left(k \omega_{0} t+\phi_{k}\right)$, where $b_{k} \neq 0, \forall k$
(c) $\sum_{k=1}^{3} a_{k} \cos \left(k \omega_{0} t+\phi_{k}\right)$
(d) $\sum_{k=1}^{2} a_{k} \cos \left(k \omega_{0} t+\phi_{k}\right)$

Ans. (a)

When a sinusoidal input is given to LTI system, the output is also a sinusoid with change in magnitude and the phase shift offered by LTI system.
Q. 32 A first-order low-pass filter of time constant T is excited with different input signals (with zero initial conditions up to $t=0$). Match the excitation signals X, Y, Z with the corresponding time responses for $t \geq 0$:

List-I

X. Impulse

List-II

P. $1-e^{-t / T}$
Y. Unit step
Q. $t-T\left(1-e^{-t / T}\right)$
Z. Ramp
R. $e^{-t / T}$
(a) $\mathrm{X}-\mathrm{R} ; \mathrm{Y}-\mathrm{Q} ; \mathrm{Z}-\mathrm{P}$
(b) $\mathrm{X}-\mathrm{Q} ; \mathrm{Y}-\mathrm{P} ; \mathrm{Z}-\mathrm{R}$
(c) $\mathrm{X}-\mathrm{R} ; \mathrm{Y}-\mathrm{P} ; \mathrm{Z}-\mathrm{Q}$
(d) $\mathrm{X}-\mathrm{P} ; \mathrm{Y}-\mathrm{R} ; \mathrm{Z}-\mathrm{Q}$

Ans. (c)
For 1st order system

$$
\begin{aligned}
& G(s)=\frac{1}{s T} ; H(s)=1 \\
& R(s)=1 \\
& \text { Impulse response } \\
& Y(s)=\left(\frac{G(s)}{1+G(s) H(s)} R(s)\right)=\left(\frac{1}{1+s T}\right)=\frac{1}{T} e^{-t / T} \text { for } t \geq 0 \\
& \text { Unit step response } \quad R(s)=\frac{1}{s} \\
& Y(s)=\frac{1}{s(1+s T)}=\frac{(1+s T)-(s T)}{s(1+s T)}=\frac{1}{s}-\frac{T}{(1+s T)} \\
&=\frac{1}{s}-\frac{T}{T\left(s+\frac{1}{T}\right)}
\end{aligned}
$$

$$
y(t)=1-e^{-t / T} \quad \text { for } t \geq 0
$$

$$
\text { Ramp response } \quad R(s)=\frac{1}{s^{2}}
$$

$$
Y(s)=\frac{1}{s^{2}(1+s T)}=\frac{1}{s^{2}}-\frac{T}{s}+\frac{T}{s+\frac{1}{T}}
$$

$$
y(t)=t-T\left(1-e^{-t / T}\right) \quad \text { for } t \geq 0
$$

Q. 33 An AC voltage source $V=10 \sin (t)$ volts is applied to the following network. Assume that $R_{1}=3 \mathrm{k} \Omega, R_{2}=6 \mathrm{k} \Omega$ and $R_{3}=9 \mathrm{k} \Omega$, and that the diode is ideal.

RMS current $I_{\text {rms }}$ (in mA) through the diode is \qquad .

Ans. (1)

The equivalent resistance across terminal ah (outer loop) is

$$
\begin{aligned}
& V=\frac{I}{3} \times 3 \mathrm{k} \Omega+\frac{I}{6} \times 6 \mathrm{k} \Omega+\frac{I}{3} \times 9 \mathrm{k} \Omega \\
& V=5 I
\end{aligned}
$$

or

$$
\frac{V}{I}=5 \mathrm{k} \Omega
$$

For half wave rectifier

$$
\begin{array}{ll}
& I_{\mathrm{rms}}=\frac{I_{m}}{(2)}=\frac{10 \sin t}{5 \mathrm{k} \Omega}=2 \operatorname{sint} \mathrm{~mA} \\
\therefore & I_{\mathrm{rms}}=\frac{I_{m}}{2}=1 \mathrm{~mA}
\end{array}
$$

Q. 34 In the circuit shown in the figure, the maximum power (in watt) delivered to the resistor R is \qquad

Ans. (0.8)

For maximum power transfer,

$$
\begin{aligned}
R & =R_{T H} \\
V_{0} & =5 \times \frac{2 \mathrm{k} \Omega}{5 \mathrm{k} \Omega}=2 \mathrm{~V}
\end{aligned}
$$

From output loop, $\quad V_{\mathrm{TH}}=100 \times 2 \times \frac{40 \mathrm{k} \Omega}{50 \mathrm{k} \Omega}$
and $\quad R_{\mathrm{TH}}=10 \mathrm{k} \Omega| | 40 \mathrm{k} \Omega=\frac{10 \times 40}{50}=8 \mathrm{k} \Omega$
$\therefore \quad$ Maximum power $=\frac{V_{T H}^{2}}{4 R_{T H}}=\frac{16 \times 16}{4 \times 8}=0.8 \mathrm{~W}$
Q. 35 Consider the signal
$x[n]=6 \delta[n+2]+3 \delta[n+1]+8 \delta[n]+7 \delta[n-1]+4 \delta[n-2]$.
If $X\left(e^{j \omega}\right)$ is the discrete-time Fourier transform of $x[n]$,
then $\frac{1}{\pi} \int_{-\pi}^{\pi} X\left(e^{j \omega}\right) \sin ^{2}(2 \omega) d \omega$ is equal to \qquad
Ans. (8)
From the definition of DTFT

$$
\begin{aligned}
& X\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n} \\
& x[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left(e^{j \omega}\right) e^{j \omega n} d \omega \\
& x[0]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left(e^{j \omega}\right) d \omega \\
& \frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left(e^{j \omega}\right) Y\left(e^{j \omega}\right) d \omega=\sum_{n=-\infty}^{\infty} x[0] y[0] \\
& Y\left(e^{j \omega}\right)=\sin ^{2}(2 \omega) \\
&=\frac{1-\cos 4 \omega}{2}=\frac{1}{2}-\frac{1}{4} e^{4 j \omega}-\frac{1}{4} e^{-4 j \omega} \\
& y[n]=\frac{1}{2} \delta[n]-\frac{1}{4} \delta[n+4]-\frac{1}{4} \delta[n-4] \\
& y[n]=\left\{-\frac{1}{4}, 0,0,0, \frac{1}{2}, 0,0,0,-\frac{1}{4}\right\} \\
& \hat{\uparrow} \\
& \Rightarrow \quad y[0]=\frac{1}{2} \\
& x[n]=\{6,3,8,7,4\} ; \quad x[0]=8
\end{aligned}
$$

$$
\uparrow
$$

$$
\frac{1}{\pi} \int_{-\pi}^{\pi} X\left(e^{j \omega}\right) Y\left(e^{j \omega}\right) d \omega=2 \sum_{n=-\infty}^{\infty} x[0] y[0]=2 \times 8 \times \frac{1}{2}=8
$$

Q. 36 Consider a silicon $p-n$ junction with a uniform acceptor doping concentration of $10^{17} \mathrm{~cm}^{-3}$ on the p-side and a uniform donor doping concentration of $10^{16} \mathrm{~cm}^{-3}$ on the n-side. No external voltage is applied to the diode.
Given: $k T / q=26 \mathrm{mV}, n_{i}=1.5 \times 10^{10} \mathrm{~cm}^{-3}, \varepsilon_{s i}=12 \varepsilon_{0}, \varepsilon_{0}=8.85 \times 10^{-14} \mathrm{~F} / \mathrm{m}$, and
$q=1.6 \times 10^{-19} \mathrm{C}$.
The charge per unit junction area $\left(\mathrm{nC} \mathrm{cm}^{-2}\right)$ in the depletion region on the p-side is \qquad

Ans. (4.83)

$$
\begin{aligned}
V_{0} & =V_{T} \ln \frac{N_{A} N_{D}}{n_{\mathrm{i}}^{2}} \\
& =26 \times 10^{-3} \ln \frac{10^{16} \times 10^{17}}{\left(1.5 \times 10^{10}\right)^{2}} \\
V_{0} & =0.757 \mathrm{~V} \\
W & =\sqrt{\frac{2 \varepsilon}{q}\left(\frac{1}{N_{A}}+\frac{1}{N_{D}}\right) V_{0}} \\
& =\sqrt{\frac{2 \times 8.854 \times 10^{-16} \times 12}{1.6 \times 10^{-19}}\left[\frac{1}{10^{16}}+\frac{1}{10^{17}}\right] 0.757} \\
W & =3.3255 \mu \mathrm{~cm} \\
W_{P} & =\frac{W N_{D}}{N_{A}+N_{D}}=\frac{3.3255 \times 10^{-6} \times 10^{16}}{10^{16}+10^{17}} \\
& =0.3023 \mu \mathrm{~cm}
\end{aligned}
$$

Charge per unit junction area in the depletion layer on p side is

$$
\begin{aligned}
& =q N_{A} W_{P} \\
& =1.6 \times 10^{-19} \times 10^{17} \times 0.3023 \times 10^{-6} \\
& =4.8368 \mathrm{nc} / \mathrm{cm}^{2}
\end{aligned}
$$

Q. 37 Consider an n-channel metal oxide semiconductor field effect transistor (MOSFET) with a gate-to-source voltage of 1.8 V . Assume that $\frac{W}{L}=4$,
$\mu_{N} C_{o x}=70 \times 10^{-6} A V^{-2}$, the threshold voltage is 0.3 V , and the channel length modulation parameter is $0.09 \mathrm{~V}^{-1}$. In the saturation region, the drain conductance (in micro seimens) is \qquad
Ans.
(28.35)

In the saturation region

$$
\begin{aligned}
g_{d} & =\lambda I_{D S} \\
& =\lambda\left[\frac{1}{2} \mu_{n} C_{o x} \frac{w}{L}\left(V_{G S}-V_{T}\right)^{2}\right] \\
& =0.09\left[\frac{1}{2} \times 70 \times 10^{-6} \times 4(1.8-0.3)^{2}\right] \\
g_{d} & =28.35 \mu \mathrm{~s}
\end{aligned}
$$

Q. 38 The figure below shows the doping distribution in a p-type semiconductor in log scale.

The magnitude of the electric field (in $\mathrm{kV} / \mathrm{cm}$) in the semiconductor due to non uniform doping is \qquad
Ans. (0.0133)

Applying the current density equation

$$
J=J_{\text {Drift }}+J_{\text {Diffusion }}
$$

\therefore There is no net flow of current thus

$$
J=0
$$

hence, for holes we can write

$$
\begin{aligned}
& 0=-q D_{P} \frac{d P}{d x}+q \mu_{P} P E \\
& q D_{P} \frac{d P}{d x}=q \mu_{P} P E \\
& \mu_{P} V_{T}=\mu_{\mathrm{P}} P E \\
& E=\frac{V_{T}}{P} \frac{d P}{d x} \\
& E=\frac{V_{T}}{N_{A}} \frac{d N_{A}}{d x} \\
& \Rightarrow \quad P \cong N_{A} \\
& E=V_{T} \frac{d}{d x} \ln \left[N_{A}(x)\right]
\end{aligned}
$$

\Rightarrow now since in the question it is mentioned that the units are in log scale, we can write.

$$
\Rightarrow \quad \begin{aligned}
\log _{10} x_{1} & =1 \mu \mathrm{~m} \\
x_{1} & =10^{1} \mu \mathrm{~m}=0.001 \mathrm{~cm} \\
\log _{10} x_{2} & =2 \mu \mathrm{~m}
\end{aligned}
$$

$$
\Rightarrow \quad \begin{aligned}
x_{2} & ={ }^{2} \mu \mathrm{~m}=0.01 \mathrm{~cm} \\
\ln \left(10^{14}\right) & =32.23 \\
\ln \left(10^{16}\right) & =36.84 \\
E & =0.026\left[\frac{36.84-32.23}{0.01-0.001}\right] \\
E & =0.0133 \mathrm{kV} / \mathrm{cm}
\end{aligned}
$$

Q. 39 Consider a silicon sample at $T=300 \mathrm{~K}$, with a uniform donor density $N_{d}=5 \times 10^{16} \mathrm{~cm}^{-3}$, illuminated uniformly such that the optical generation rate is $G_{\text {opt }}=1.5 \times 10^{20} \mathrm{~cm}^{-3} \mathrm{~s}^{-1}$ throughout the sample. The incident radiation is turned off at $t=0$. Assume low-level injection to be valid and ignore surface effects. The carrier lifetimes are $\tau_{p 0}=0.1 \mu \mathrm{~s}$ and $\tau_{n 0}=0.5 \mu \mathrm{~s}$.

The hole concentration at $t=0$ and the hole concentration at $t=0.3 \mu \mathrm{~s}$, respectively, are
(a) $1.5 \times 10^{13} \mathrm{~cm}^{-3}$ and $7.47 \times 10^{11} \mathrm{~cm}^{-3}$
(b) $1.5 \times 10^{13} \mathrm{~cm}^{-3}$ and $8.23 \times 10^{11} \mathrm{~cm}^{-3}$
(c) $7.5 \times 10^{13} \mathrm{~cm}^{-3}$ and $3.73 \times 10^{11} \mathrm{~cm}^{-3}$
(d) $7.5 \times 10^{13} \mathrm{~cm}^{-3}$ and $4.12 \times 10^{11} \mathrm{~cm}^{-3}$

Ans. (a)
Given

$$
G_{\mathrm{opt}}=1.5 \times 10^{20} / \mathrm{cm}^{3} / \mathrm{sec}
$$

$$
\begin{aligned}
G_{\text {opt }} & =R=\frac{N_{A}}{\tau_{P}} \Rightarrow 1.5 \times 10^{20}=\frac{N_{A}}{0.1 \times 10^{-6}} \\
N_{A} & =1.5 \times 10^{13} / \mathrm{cm}^{3} \\
P(t) & =P_{n 0} e^{-t / \tau_{p}} \\
& =1.5 \times 10^{13} e^{\frac{-0.3}{0.1}} \\
& =7.46 \times 10^{11 /} / \mathrm{cm}^{3}
\end{aligned}
$$

Q. 40 An ideal opamp has voltage sources, $V_{1}, V_{3}, V_{5}, \ldots V_{N-1}$ connected to the noninverting input and $V_{2}, V_{4}, V_{6}, \ldots, V_{N}$ connected to the inverting input as shown in the figure below $\left(+V_{C C}=15\right.$ volt, $-V_{C C}=-15$ volt $)$. The voltages V_{1}, V_{2}, V_{3}, $V_{4}, V_{5}, V_{6}, \ldots$ are $1,-1 / 2,1 / 3,-1 / 4,1 / 5,-1 / 6, \ldots$ volt, respectively. As N approaches infinity, the output voltage (in volt) is \qquad

Ans.
(15)

Node A:
$\frac{V_{A}-V_{1}}{1 \mathrm{~K}}+\frac{V_{A}-V_{3}}{1 \mathrm{~K}}+\ldots . \frac{V_{A}-V_{N-1}}{1 \mathrm{~K}}+\frac{V_{A}}{1 \mathrm{~K}}=0$

$$
\begin{aligned}
V_{A}\left(\frac{N}{2}+1\right) & =V_{1}+V_{3}+\ldots+V_{N-1} \\
V_{B} & =V_{A} \quad
\end{aligned} \quad \because \text { Virtual short }
$$

Node B:
$\frac{V_{A}-V_{2}}{10 \mathrm{~K}}+\frac{V_{A}-V_{4}}{10 \mathrm{~K}}+\ldots+\frac{V_{A}-V_{N}}{10 \mathrm{~K}}+\frac{V_{A}-V_{0}}{10 \mathrm{~K}}=0$

$$
\begin{aligned}
V_{0} & =V_{A}\left(\frac{N}{2}+1\right)-\left(V_{2}+V_{4}+V_{6}+\ldots+V_{N}\right) \\
& =\left(\frac{N}{2}+1\right) \cdot \frac{\left(V_{1}+V_{3}+\ldots+V_{N-1}\right)}{\left(\frac{N}{2}+1\right)}-\left(V_{2}+V_{4}+\ldots+V_{N}\right) \\
& =V_{1}-V_{2}+V_{3}-V_{4}+\ldots \\
& =1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4} \ldots=\Sigma \frac{1}{N}=\infty
\end{aligned}
$$

\Rightarrow Output of opamp goes to saturation

$$
V_{0}=V_{\mathrm{sat}}=V_{C C}
$$

Q. 41 A p-i-n photodiode of responsivity $0.8 \mathrm{~A} / \mathrm{W}$ is connected to the inverting input of an ideal opamp as shown in the figure, $+V_{C C}=15 \mathrm{~V},-V_{C C}=-15 \mathrm{~V}$, Load resistor $R_{L}=10 \mathrm{k} \Omega$. If $10 \mu \mathrm{~W}$ of power is incident on the photodiode, then the value of the photocurrent (in $\mu \mathrm{A}$) through the load is \qquad

Ans.
(800)

The photo current through load $R_{L}=10 \mathrm{k} \Omega$ is given by

$$
I_{L}=\frac{V_{0}}{R_{L}}=\frac{8}{10 \times 10^{3}}=800 \mu \mathrm{~A} \quad \text { (in upward direction) }
$$

Q. 42 Identify the circuit below,

(a) Binary to Gray code converter
(b) Binary to XS3 converter
(c) Gray to Binary converter
(d) XS3 to Binary converter

Ans.
(*)
The truth table of the circuit is shown below,

X_{2}	X_{1}	X_{0}	Y_{2}	y_{1}	y_{0}
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	1	1
0	1	1	0	1	0
1	0	0	1	1	0
1	0	1	1	1	1
1	1	0	1	0	0
1	1	1	1	0	1

As per the truth table, none of the options given in the question are correct. However, by making some (minor) changes in the circuit, the answer could be obtained as option (a)
Q. 43 The functionality implemented by the circuit below is

- is a tristate buffer
(a) 2-to-1 multiplexer
(b) 4-to-1 multiplexer
(c) 7-to-1 multiplexer
(d) 6-to-1 multiplexer

Ans. (b)
When the outputs ($O_{0}, O_{1}, O_{2}, O_{3}$) of the decoder are at logic 1, the corresponding tristate buffer is activated. In that case, whatever data is applied at the input of a buffer, becomes its output.
Hence, when

$$
\begin{array}{rlrl}
\Rightarrow & C_{1} C_{0} & =00, & \text { Then } O_{0}=1, \\
\therefore & Y & =P & \\
\Rightarrow & C_{1} C_{0} & =01, & \\
\therefore & Y \text { Then } O_{1}=1, \\
\Rightarrow & C_{1} C_{0} & =10, & \\
\therefore & Y & \text { Then } O_{2}=1, \\
\Rightarrow & C_{1} C_{0} & =11, & \\
\therefore & Y & \text { Then } O_{3}=1, \\
\therefore & Y &
\end{array}
$$

\therefore the circuit effectively behaves as a 4 to 1 multiplexer.
Q. 44 In an 8085 system, a PUSH operation requires more clock cycles than a POP operation. Which one of the following options is the correct reason for this?
(a) For POP, the data transceivers remain in the same direction as for instruction fetch (memory to processor), whereas for PUSH their direction has to be reversed.
(b) Memory write operations are slower than memory read operations in an 8085 based system.
(c) The stack pointer needs to be pre-decremented before writing registers in a PUSH, whereas a POP operation uses the address already in the stack pointer.
(d) Order of registers has to be interchanged for a PUSH operation, whereas POP uses their natural order.

Ans. (c)
For PUSH R_{P} instruction in 8085 machine cycles are Fetch(F), Write (W) and Write (W) i.e. $6+3+3=12 \mathrm{~T}$-states/clock cycles. Stack pointer holds the address of previously stored temporary data, so to store new data SP is decremented by ' 1 ' after decoding on code, hence fetch has 6T-states unlike 4 T - states for most of the instruction.
But for POP $R_{P} \rightarrow$ Fetch(F), Read (R) and Read (R)
i.e. $4+3+3 \rightarrow 10 \mathrm{~T}$ - States
Q. 45 The open-loop transfer function of a unity-feedback control system is

$$
G(s)=\frac{K}{s^{2}+5 s+5}
$$

The value of K at the breakaway point of the feedback control system's root-locus plot is \qquad -.

Ans. (1.25)
Characteristic equation is $1+G(s) H(s)=0$

$$
\begin{aligned}
1+\frac{K}{s^{2}+5 s+5} & =0 \\
K & =-s^{2}-5 \mathrm{~s}-5
\end{aligned}
$$

For break away point $\frac{d K}{d s}=0$

$$
\frac{d K}{d s}=-2 \mathrm{~s}-5=0 \Rightarrow s=-2.5
$$

Acc. to magnitude condition,

$$
\begin{aligned}
|G(s) H(s)|_{s=-2.5} & =1 \\
|G(s) H(s)|_{s=-2.5} & =\frac{K}{\left|(-2.5)^{2}+5 \times-2.5+5\right|}=1 \\
K & =|(6.25+5-12.5)| \\
K & =1.25
\end{aligned}
$$

Q. 46 The open-loop transfer function of unity-feedback control system is given by

$$
G(s)=\frac{K}{s(s+2)}
$$

For the peak overshoot of the closed-loop system to a unit step input to be 10%, the value of K is \qquad
Ans. (2.8)

$$
G(s)=\frac{K}{s(s+2)} ; H(s)=1
$$

Characteristic equation $=1+G(s) H(s)=0$

$$
\begin{aligned}
1+\frac{K}{s(s+2)} & =0 \\
s^{2}+2 s+K & =0 \\
\omega_{n} & =\sqrt{K} \\
2 \xi \omega_{n} & =2 \\
\xi & =\frac{1}{\sqrt{K}}
\end{aligned}
$$

$$
\begin{aligned}
M_{p} & =e^{-\pi \xi / \sqrt{1-\xi^{2}}}=0.1 \\
-\frac{\pi \xi}{\sqrt{1-\xi^{2}}} & =\ln (0.1) \quad \Rightarrow \quad \frac{\pi \xi}{\sqrt{1-\xi^{2}}}=2.3 \\
\pi^{2} \xi^{2} & =(2.3)^{2}\left(1-\xi^{2}\right) \\
15.16 \xi^{2} & =(2.3)^{2} \\
\Rightarrow \quad \xi & =0.59 \\
\Rightarrow \quad & \\
\Rightarrow \quad \text { Also } K & =\frac{1}{\xi^{2}} \\
\Rightarrow \quad K & =2.8
\end{aligned}
$$

Q. 47 The transfer function of a linear time invariant system is given by $H(s)=2 s^{4}-5 s^{3}+5 s-2$
The number of zeroes in the right half of the s-plane is \qquad
Ans. (3)

$$
2 s^{4}-5 s^{3}+5 s-2=0
$$

By Routh Array,

s^{4}	2	0	-2
s^{3}	-5	5	
s^{2}	2	-2	
s^{1}	$0(2)$		
s°	-2		

Number of sign changes $=$ number of roots (zeros) in right half of s-plane $=3$
Q. 48 Consider a discrete memoryless source with alphabet $S=\left\{s_{0}, s_{1}, s_{2}, s_{3}, s_{4}, \ldots.\right\}$ and respective probabilities of occurrence $P=\left\{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}, \ldots.\right\}$. The entropy of the source (in bits) is \qquad
Ans. (2)
Entropy of source is given as

$$
\begin{align*}
H & =\sum_{i=0}^{N} P_{i} \log _{2} \frac{1}{P_{i}} \\
& =\frac{1}{2} \log _{2} 2+\frac{1}{4} \log _{2} 4+\frac{1}{8} \log _{2} 8+\frac{1}{16} \log _{2} 16+\ldots \ldots \\
H & =\frac{1}{2}+2 \times\left(\frac{1}{2}\right)^{2}+3 \times\left(\frac{1}{2}\right)^{3}+4 \times\left(\frac{1}{2}\right)^{4}+\ldots \tag{i}
\end{align*}
$$

$$
\begin{align*}
& =\sum_{k=0}^{\infty} k\left(\frac{1}{2}\right)^{k} \\
\frac{H}{2} & =\left(\frac{1}{2}\right)^{2}+2 \times\left(\frac{1}{2}\right)^{3}+3 \times\left(\frac{1}{2}\right)^{4}+\ldots \tag{ii}
\end{align*}
$$

Subtracting (ii) from (i)

$$
\begin{aligned}
\frac{H}{2} & =\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{3}+\ldots \\
\frac{H}{2} & =\frac{\left(\frac{1}{2}\right)}{1-\left(\frac{1}{2}\right)}=1 \\
\Rightarrow \quad H & =2 \text { bits/symbol }
\end{aligned}
$$

Q. 49 A digital communication system uses a repetition code for channel encoding/ decoding. During transmission, each bit is repeated three times (0 is transmitted as 000 , and 1 is transmitted as 111). It is assumed that the source puts out symbols independently and with equal probability. The decoder operates as follows: In a block of three received bits, if the number of zeros exceeds the number of ones, the decoder decides in favor of a 0 , and if the number of ones exceeds the number of zeros, the decoder decides in favor of a 1 . Assuming a binary symmetric channel with crossover probability $p=0.1$. The average probability of error is \qquad -.

Ans. (0.028)
Crossover probability, $P=0.1$
Average probability of error $=3 p^{2}-3 p^{3}$

$$
=3(0.1)^{2}-2(0.1)^{3}=0.028
$$

Q. 50 An analog pulse $s(t)$ is transmitted over an additive white Gaussian noise (A WGN) channel. The received signal is $r(t)=s(t)+n(t)$ where $n(t)$ is additive white Gaussian noise with power spectral density $\frac{N_{0}}{2}$. The received signal is
$h(t)$. Let E_{s} and E_{h} denote the energies of the pulse $s(t)$ and the filter $h(t)$, respectively. When the signal to noise ratio (SNR) is maximized at the output of the filter ($\mathrm{SNR}_{\max }$), which of the following holds?
(a) $E_{s}=E_{h} ; \mathrm{SNR}_{\max }=\frac{2 E_{s}}{N_{0}}$
(b) $E_{s}=E_{h} ; \mathrm{SNR}_{\max }=\frac{E_{s}}{2 N_{0}}$
(c) $E_{s}>E_{h} ; \mathrm{SNR}_{\text {max }}>\frac{2 E_{s}}{N_{0}}$
(d) $E_{s}<E_{h} ; \mathrm{SNR}_{\max }=\frac{2 E_{h}}{N_{0}}$

Ans. (a)
When the signal to Noise ratio is maximum

$$
h(t)=s(T-t)
$$

but shifting doesn't change the energy
$\Rightarrow \quad E_{h}=E_{s}$
and

$$
(\mathrm{SNR})_{\max }=\frac{2 E_{s}}{N_{0}}
$$

Q. 51 The current density in a medium is given by

$$
\vec{J}=\frac{400 \sin \theta}{2 \pi\left(r^{2}+4\right)} \hat{a}_{r} A m^{-2}
$$

The total current and the average current density flowing through the portion of a spherical surface $r=0.8 \mathrm{~m}, \frac{\pi}{12} \leq \theta \leq \frac{\pi}{4}, 0 \leq \phi \leq 2 \pi$ are given, respectively, by
(a) $15.09 \mathrm{~A}, 12.86 \mathrm{Am}^{-2}$
(b) $18.73 \mathrm{~A}, 13.65 \mathrm{Am}^{-2}$
(c) $12.86 \mathrm{~A}, 9.23 \mathrm{Am}^{-2}$
(d) $10.28 \mathrm{~A}, 7.56 \mathrm{Am}^{-2}$

Ans. (d)

$$
\begin{aligned}
I & =\int J \cdot d s \\
& =\int_{\theta=\frac{\pi}{12}}^{\pi / 4} \int_{\phi=0}^{2 \pi} \frac{400 \sin \theta}{2 \pi\left(r^{2}+4\right)} \cdot r^{2} \sin \theta d \theta d \phi \\
& =\left.\frac{400}{2 \pi\left(r^{2}+4\right)} \cdot r^{2} \cdot \phi\right|_{0} ^{2 \pi} \int_{\pi / 12}^{\pi / 4} \sin ^{2} \theta d \theta \\
& =\frac{400 r^{2}}{\left(r^{2}+4\right)} \int_{\pi / 12}^{\pi / 4}\left(\frac{1-\cos 2 \theta}{2}\right) d \theta \\
& =\frac{400 \cdot r^{2}}{\left(r^{2}+4\right)}\left(\frac{\pi}{4}-\frac{\pi}{12}\right) \\
2 & \left.-\left(\frac{\sin 2 \theta}{4}\right)_{\pi / 12}^{\pi / 4}\right) \\
& =\left.\frac{400 \cdot r^{2}}{\left(r^{2}+4\right)}\left(\frac{\pi}{12}-\left(\frac{1-1 / 2}{4}\right)\right)\right|_{r=0.8} \\
& =\frac{400 \times 0.8 \times 0.8}{4.64} \times 0.13=7.56 \mathrm{Amp} \\
\text { Total area } & =\int d s=\iint r^{2} \sin \theta d \theta d \phi
\end{aligned}
$$

$$
\begin{aligned}
& =r^{2} \int_{\theta=\frac{\pi}{12}}^{\pi / 4} \sin \theta d \theta .2 \pi=\left.r^{2} \cdot 2 \pi \cdot 0.259\right|_{r=0.8} \\
& =0.8^{2} \times 0.5 \times 2 \pi \times \frac{1}{4}=1.041 \mathrm{~m}^{2}
\end{aligned}
$$

$$
\text { Average current }=\frac{7.56}{1.041}=7.56 \mathrm{~A} / \mathrm{m}^{2}
$$

Note: Option (d) is the closest option
Q. 52 An antenna pointing in a certain direction has a noise temperature of 50 K . The ambient temperature is 290 K . The antenna is connected to a pre-amplifier that has a noise figure of 2 dB and an available gain of 40 dB over an effective bandwidth of 12 MHz . The effective input noise temperature T_{e} for the amplifier and the noise power $P_{a 0}$ at the output of the preamplifier, respectively, are
(a) $T_{e}=169.36 \mathrm{~K}$ and $P_{a 0}=3.73 \times 10^{-10} \mathrm{~W}$
(b) $T_{e}=170.8 \mathrm{~K}$ and $P_{a 0}=4.56 \times 10^{-10} \mathrm{~W}$
(c) $T_{e}=182.5 \mathrm{~K}$ and $P_{a 0}=3.85 \times 10^{-10} \mathrm{~W}$
(d) $T_{e}=160.62 \mathrm{~K}$ and $P_{a 0}=4.6 \times 10^{-10} \mathrm{~W}$

Ans. (a)
(i)

$$
\begin{aligned}
T_{e} & =(F-1) T_{0}=\left(10^{2 / 10}-1\right) 290 \\
& =169.6 \mathrm{~K} \\
N_{i} & =k\left(T_{a n t}+T_{e}\right) B \\
& =1.38 \times 10^{-23} \times(50+169.6) \times 12 \times 10^{6} \\
& =3.63 \times 10^{-14} \mathrm{~W} \\
N_{o} & =N_{i} \times \text { Gain } \\
& =3.63 \times 10^{-14} \times 10^{4} \\
& =3.63 \times 10^{-10} \mathrm{~W}
\end{aligned}
$$

(ii)
Q. 53 Two lossless X-band horn antennas are separated by a distance of 200λ. The amplitude reflection coefficients at the terminals of the transmitting and receiving antennas are 0.15 and 0.18 , respectively. The maximum directivities of the transmitting and receiving antennas (over the isotropic antenna) are 18 dB and 22 dB , respectively. Assuming that the input power in the lossless transmission line connected to the antenna is 2 W , and that the antennas are perfectly aligned and polarization matched, the power (in mW) delivered to the load at the receiver is \qquad

Ans. (3)

$$
\begin{aligned}
& \\
& G_{t}=10^{1.8}, G_{r}=10^{2.2} \\
& P_{r}=\frac{\left(1-\left|\Gamma_{t}\right|^{2}\right)\left(1-\left|\Gamma_{r}\right|^{2}\right) G_{t} G_{r}}{\left(\frac{4 \pi d}{\lambda}\right)^{2}} \cdot P_{t} \\
& =\frac{\left(1-|0.15|^{2}\right)\left(1-|0.18|^{2}\right) 10^{1.8} \cdot 10^{2.2}}{\left(\frac{4 \pi 200 \lambda}{\lambda}\right)^{2}} \times 2 \\
& =\quad{ }^{-3} \mathrm{~W}=2.995 \mathrm{~mW} \approx 3 \mathrm{~mW}
\end{aligned}
$$

Q. 54 The electric field of a uniform plane wave travelling along the negative z direction is given by the following equation:
$\vec{E}_{w}^{i}=\left(\hat{a}_{x}+j \hat{a}_{y}\right) E_{0} e^{j k z}$
This wave is incident upon a receiving antenna placed at the origin and whose radiated electric field towards the incident wave is given by the following equation:
$\vec{E}_{a}=\left(\hat{a}_{x}+2 \hat{a}_{y}\right) E_{I} \frac{1}{r} e^{-j k r}$
The polarization of the incident wave, the polarization of the antenna and losses due to the polarization mismatch are, respectively,
(a) Linear, Circular (clockwise), -5 dB
(b) Circular (clockwise), Linear, -5 dB
(c) Circular (clockwise), Linear, -3 dB
(d) Circular (anticlockwise), Linear, -3dB

Ans. (c)
$\vec{E}_{w}^{i}=\left(\hat{a}_{x}+j \hat{a}_{y}\right) E_{0} e^{j k z}$
\Rightarrow Wave contains two orthogonal components and Y component leads X component leads by 90° and also wave is travelling in negative Z-direction.
\Rightarrow Circular (clockwise) polarization
$\vec{E}_{a}=\left(\hat{a}_{x}+2 \hat{a}_{y}\right) E_{I} \frac{1}{r} e^{-j k r}$
\Rightarrow Wave contains two orthogonal components with unequal amplitudes and both are in-phase.
\Rightarrow Linear polarization.

$$
\begin{aligned}
\mathrm{PLF} & =\left|\hat{\rho}_{i n c} \cdot \hat{\rho}_{a n t}\right|^{2} \\
\text { where } \hat{\rho}_{i n c} & =\frac{\hat{a}_{x}+j \hat{a}_{y}}{\sqrt{2}} \\
\hat{\rho}_{a n t} & =\frac{\hat{a}_{x}+2 \hat{a}_{y}}{\sqrt{5}} \\
\mathrm{PLF} & =\left|\frac{1+j 2}{\sqrt{10}}\right|^{2}=\frac{5}{10}=\frac{1}{2} \\
\Rightarrow \quad \operatorname{PLF}(\mathrm{~dB}) & =10 \log \frac{1}{2}=-3 \mathrm{~dB}
\end{aligned}
$$

Q. 55 The far-zone power density radiated by a helical antenna is approximated as: $\vec{W}_{\text {rad }}=\vec{W}_{\text {average }} \approx \widehat{a_{r}} C_{0} \frac{1}{r^{2}} \cos ^{4} \theta$
The radiated power density is symmetrical with respect to ϕ and exists only in the upper hemisphere $0 \leq \theta \leq \frac{\pi}{2} ; 0 \leq \phi \leq 2 \pi ; C_{0}$ is a constant. The power radiated by the antenna (in watts) and the maximum directivity of antenna, respectively, are
(a) $1.5 C_{0}, 10 \mathrm{~dB}$
(b) $1.256 C_{0}, 10 \mathrm{~dB}$
(c) $1.256 C_{0}, 12 \mathrm{~dB}$
(d) $1.5 C_{0}, 12 \mathrm{~dB}$

Ans. (b)

$$
\begin{array}{rl}
\text { Power radiated } & =\int W_{r a d} \cdot d s \\
& =\int_{\theta=0}^{\pi / 2} \int_{\phi=0}^{2 \pi} C_{0} \frac{1}{r^{2}} \cos ^{4} \theta \cdot r^{2} \sin \theta d \theta d \phi \\
& =2 \pi \cdot \frac{C_{0}}{r^{2}} \cdot r^{2} \int_{\theta=0}^{\pi / 2} \cos ^{4} \theta \cdot d(-\cos \theta) \\
& =\left.2 \pi \cdot C_{0}\left(-\frac{\cos ^{5} \theta}{5}\right)\right|_{0} ^{\pi / 2}=\frac{2 \pi}{5} C_{0}=1.256 C_{0} \\
\text { Directivity } & =\frac{4 \pi \cdot U}{\int W_{r a d} \cdot d \Omega} \\
& =\frac{4 \pi \cdot C_{0} \cdot \cos ^{4} \theta}{\pi / 2} 2 \pi \\
\int_{\theta=0}^{2 \pi} C_{0} \cdot \cos ^{4} \theta \cdot \sin \theta d \theta d \phi \\
\Rightarrow \quad \text { Max value } & =10 \cos ^{4} \theta \\
1 / 5 & 10 \cos ^{4} \theta \\
\Rightarrow \max \text { value (indB) } & =10 \log _{10}=10 \mathrm{~dB}
\end{array}
$$

"MADE EASY is the only institute which has consistently produced toppers in ESE \& GATE" www.madeeasy.in

mRDE ERSU

