SAMPLE QUESTION PAPER

STATISTICS

Class - XI

Government of Kerala Department of Education

Prepared by
State Council of Educational Research and Training (SCERT), Kerala
2014

Guidelines for the Preparation of Question Paper for Higher Secondary Education - 2014

Introduction

Term evaluation is an important aspect of Continuous and Comprehensive Evaluation (CCE). It covers the **assessment of learning** aspect of the CCE. The Kerala School Curriculum 2013 postulated that the examination system should be recast so as to ensure a method of assessment that is a valid, reliable and objective measure of student development and a powerful instrument for improving the learning process. The outcome focused written tests are being used as tools for terminal assessment. Practical assessment is also considered for some subjects. The syllabus, scheme of work, textual materials, teacher texts and learning experiences may be considered while developing tools for term evaluation.

In order to make the examination system effective and objective, quality of the question paper needs to be ensured. Questions of different types considering various learning outcomes, thinking skills and of varying difficulty levels are to be included in the question paper. This makes question paper setting a significant task that has to be undertaken with the support of proper guidelines.

The guidelines for the preparation of the question paper have been divided into four heads for its effective implementation and monitoring. The areas are i) preparatory stage, ii) nature of questions, iii) question paper setting and iv) structure of the question paper.

I. Preparatory stage

Before starting the process of question paper setting, the question paper setter should ensure that she/he has:

- Familiarised the current syllabus and textbook of the concerned subject.
- secured the list of Los (Learning Outcomes) relating to the subject.
- acquired the list of thinking skills applicable to the subject (See appendix).
- prepared a pool of questions from each unit of the subject.
- verified the scheme of work and weight of score for each unit/lesson.
- gone through guidelines for the preparation of question paper for higher secondary education 2014.

II Nature of questions

Questions selected from the pool to be included in the question paper should reflect the following features:

- stem of the question text should be relevant to the question posed.
- multiple choice questions should be provided with four competitive distracters.
- the possibilities of higher order thinking skills should be considered while setting MCQs
- time allotted for each question should be justified according to the thinking skills involved.
- the scope and length of the answer should be clearly indicated.

- questions should be prepared by considering the learning level of the learner.
- the question should focus on the learning outcomes.
- a wide range of thinking skills and learning outcomes from each unit/lesson should be considered.
- varied forms of questions should be covered.
- there should be a balance between the time allotted and the level of question.
- question should be very specific and free from ambiguity.
- question text should not be too lengthy and complicated.
- questions can be prepared based on a single or a cluster of learning outcomes which is scattered over one particular unit or units.
- cluster of learning outcomes from different units can be considered only for graded questions (questions with sub-divisions).
- the possibilities of graded questions reflecting different thinking skills can be explored.
- while preparing questions for language papers importance should be given to the language elements, language skills, discourses, textual content and elements of creativity.
- while preparing questions for subjects other than languages, importance should be given to content, concepts and skills.
- questions should cater the needs of differently abled learners and CWSEN (Children With Special Education Needs)
- the questions should contain varied forms such as objective type with specific focus to multiple choice test items and descriptive types (short answer and essay types).
- directions regarding the minimum word limit for essay type questions should be given.
- sufficient hints can be provided for essay type questions, if necessary.
- maximum usage of supporting items like pictures, graphs, tables and collage may be used while preparing questions.
- questions which hurt the feelings of caste, religion, gender, etc. must be completely avoided.

III. Question paper setting

During the process of question paper setting the question setter should:

- prepare a design of the question paper with due weight to content, learning outcomes, different forms of questions and thinking skills.
- prepare a blue print based on the design.
- prepare scoring key indicating value points and question based analysis along with the question paper.
- while preparing scoring key, thinking skills should also be integrated.
- 60% weight should be given to thinking skills for conceptual attainment and 40% to thinking skills for conceptual generation.

- 15 to 20% weight of total scores must be given to objective type questions and up to 20% weight of total score must be given to essay type questions.
- the highest score that can be given to a question in the question paper is limited to 10% of the total score.
- while fixing the time for answering a question, time for reading, comprehending and writing the answer must be considered.
- The total time limit of the question paper two hours for 60 scores and 2.30 hours for 80 scores question papers with an extra cool-off time of 15 minutes.

IV. Structure of the question paper

The question paper should reflect the following features in general:

- general instructions for the question paper should be given on the top.
- instructions for specific questions can be given before the question text.
- monotony of set patterns (objective or descriptive) should be avoided.
- questions should be prepared in bilingual form.
- there should not be any mismatch between the bilingual versions of the questions.
- choice can be given for questions up to 20% of the total score.
- while giving choice, alternative questions should be from the same unit with the same level of thinking skills.
- in the case of languages, language of the questions and answers should be in the particular language concerned. Necessary directions in this regard must be given in the question paper.

THINKING SKILLS

	TIM (III (G SINEES
Category/	Alternative terms
processes	
1. Remember	Retrieve relevant knowledge from long-term memory
1.1. Recognising	identifying- (e.g. Recognize the dates of important events in Indian history)
1.2. Recalling	retrieving - (e.g. Recall the major exports of India)
2. Understand	Construct meaning from instructional messages, including oral, written and graphic information
2.1. Interpreting	clarifying, paraphrasing, representing, translating (e.g. Write an equation [using B for the number of boys and G for the number of girls] that corresponds to the statement 'There are twice as many boys as girls in this class')
2.2. Exemplifying	illustrating, instantiating (e.g. Locate an inorganic compound and tell why it is inorganic)
2.3. Classifying	categorizing, subsuming (e.g. Classify the given transactions to be recorded in Purchase returns book and Sales returns book)
2.4. Summarising	abstracting, generalizing (e.g. Students are asked to read an untitled passage and then write an appropriate title.)

2.5. Inferring	concluding, extrapolating, interpolating, predicting (e.g. a student may be given three physics problems, two involving one principle and another involving a different principle and ask to state the underlying principle or concept the student is using to arrive at the correct answer.)				
2.6. Comparing	contrasting, mapping, matching (e.g. Compare historical events to contemporary situations)				
2.7. Explaining constructing models (e.g. the students who have studied C are asked to explain what happens to the rate of the current second battery is added to a circuit.)					
3. Apply	Carry out or use a procedure in a given situation				
3.1. Executing	Carrying out (e.g. Prepare Trading and Profit and loss Account from the Trial Balance given and find out the net profit.)				
3.2. Implementing	using (e.g. Select the appropriate given situation where Newton's Second Law can be used)				
4. Analyse	Break material into its constituent parts and determines how the parts relate to one another and to an overall structure or purpose				
4.1. Differentiating	discriminating, distinguishing, focusing, selecting (e.g. distinguish between relevant and irrelevant numbers in a mathematical word problem)				
4.2. Organising	finding coherence, integrating, outlining, parsing, structuring (e.g. the students are asked to write graphic hierarchies best corresponds to the organisation of a presented passage.)				
4.3. Attributing	deconstructing (e.g. determine the point of view of the author of an essay in terms of his or her ethical perspective)				
5. Evaluate	Make judgements based on criteria and standards				
5.1. Checking	coordinating, detecting, monitoring, testing (e.g. after reading a report of a chemistry experiment, determine whether or not the conclusion follows from the results of the experiment.)				
5.2. Critiquing	judging (e.g. Judge which of the two methods is the best way to solve a given problem)				
6. Create	Put elements together to form a coherent or functional whole; reorganize elements into a new pattern or structure				
6.1. Generating	hypothesizing (e.g. suggest as many ways as you can to assure that everyone has adequate medical insurance)				
6.2. Planning	designing (e.g. design social intervention programmes for overcoming excessive consumerism)				
6.3. Producing	constructing (e.g. the students are asked to write a short story based on some specifications)				

Considering the intellectual level of learners, while setting the question paper;

1. 60% weight may be given to thinking skills used for factual and conceptual attainment and

2. 40% **weight may be given to thinking skills for conceptual generation** (higher thinking skills has to be ensured in this category). Thinking skills for conceptual generation means thinking skills needed for elaborating the concepts.

Refer the range of thinking skills given above. We can include the thinking skills no.1.1 to 3.2 (11 processes) under first category and 4.1 to 6.3 (8 processes) under second category.

Guide lines for setting question paper - Statistics

- 1. Multi level questions should be promoted.
- 2. The weight of objective questions should be between 15%-20% of Total score and it should carry one score
- 3. The weight of essay question should be between 15%-20% of Total score and it should carry four or five scores
- 4. The short answer question should carry two to four scores.
- 5. The content/problems given as box item in the SCERT text book should not be used for term end evaluation.
- 6. Graph, diagrams and pictures should be included in the questions wherever necessary.
- 7. Specific hints should be included in the questions if needed.

F.Y.	
March 2014	

Reg. No:	
Name:	

Part - III STATISTICS

Maximum: 60 Scores

Time: 2 hrs

Cool off time: 15 Minutes

General Instructions to candidates:

- There is a 'Cool off time' of 15 minutes in addition to the writing time of 2 hrs.
- You are neither allowed to write your answers nor to discuss anything with others during the 'cool off time'.
- Use the 'cool off time' to get familiar with questions and to plan your answers.
- Read the questions carefully before answering
- All questions are compulsory and only internal choice is allowed.
- When you select a question, all the sub-questions must be answered from the same question itself.
- Calculations, figures and graphs should be shown in the answer sheet itself.
- Malayalam version of the questions is also provided.
- Give equations wherever necessary
- Electronics devices except nonprogrammable calculators are not allowed in the Examination Hall.
- Use of statistical and mathematical tables are permitted.

പൊതുനിർദ്ദേശങ്ങൾ

- നിർദ്ദിഷ്ട സമയത്തിന് പുറമെ 15 മിനിട്ട് 'കൂൾ ഓഫ് ടൈം' ഉണ്ടായിരിക്കും. ഈ സമയത്ത് ചോദ്യങ്ങൾക്ക് ഉത്തരം എഴുതാനോ, മറ്റുള്ളരുമായി ആശയം വിനിമയം നടത്താനോ പാടില്ല.
- ഉത്തരങ്ങൾ എഴുതുന്നതിന് മുമ്പ് ചോദ്യങ്ങൾ ശ്രദ്ധാപൂർവ്വം വായിക്കണം.
- എല്ലാ ചോദ്യങ്ങൾക്കും ഉത്തരം എഴുതണം.
- ഒരു ചോദ്യനമ്പർ ഉത്തരമെഴുതാൻ തെരെഞ്ഞെടുത്ത് കഴിഞ്ഞാൽ ഉപചോദ്യങ്ങളും അതേ ചോദ്യനമ്പ രിൽ നിന്ന് തന്നെ തെരെഞ്ഞെടുക്കേണ്ടതാണ്.
- കണക്ക് കൂട്ടലുകൾ, ചിത്രങ്ങൾ, ഗ്രാഫുകൾ, എന്നിവ ഉത്തരപേപ്പറിൽത്തന്നെ ഉണ്ടായിരിക്കണം.
- ചോദ്യങ്ങൾ മലയാളത്തിലും നൽകിയിട്ടുണ്ട്.
- ആവശ്യമുള്ള സ്ഥലത്ത് സമവാക്യങ്ങൾ കൊടുക്കണം
- പ്രോഗ്രാമുകൾ ചെയ്യാനാകാത്ത കാൽക്കുലേറ്ററുകൾ ഒഴുകെയുള്ള ഒരു ഇലക്ട്രോണിക് ഉപകരണവും പരീക്ഷാഹാളിൽ ഉപയോഗിക്കാൻ പാടില്ല.
- സ്റ്റാറ്റിസ്റ്റിക്കൽ, മാത്തമാറ്റിക്കൽ ടേബിളുകൾ ഉപയോഗിക്കാവുന്നതാണ്.
- a) A media person visited a flood affected area and collected data directly. Name the method of primary data collection used here. (1)
 - b) List any other 4 methods of primary data collection. (2)
- 2. Proper care should be taken while using secondary data in an investigation". Write any two arguments to establish this statement. (2)
- 1 a) ഒരു മാധ്യമ പ്രവർത്തകൻ ഒരു വെള്ള പ്പൊക്ക ബാധിത പ്രദേശത്ത് നേരിട്ട് പോയി വിവരശേഖരണം നടത്തി. പ്രൈമറി ഡാറ്റാ ശേഖരത്തിന്റെ ഏത് മാർഗ്ഗമാണ് ഇവിടെ ഉപയോഗിക്കുവാൻ കഴിയുന്നത് (1)
 - b) പ്രൈമറി ഡാറ്റാ ശേഖരത്തിന് ഉപയോഗി ക്കുന്ന മറ്റേതെങ്കിലും 4 മാർഗ്ഗങ്ങൾ എഴു തുക (2)
- "ഗവേഷണാവശൃങ്ങൾക്കായി സെക്കണ്ടറി ഡാറ്റ ഉപയോഗിക്കുമ്പോൾ വളരെയേറെ ശ്രദ്ധിക്കേണ്ടതുണ്ട്". ഈ പ്രസ്താവന ഉറപ്പി ക്കുന്നതിനായി രണ്ട് വാദങ്ങൾ എഴുതുക.

- 3. a) Choose the correct answer. The National Statistics Day is celebrated on:
 - i) July 29
- ii) June 30
- iii) June 29
- iv) August 30
- (1)

(2)

3.

b) Match the following

a)	ശരിയായ	ഉത്തരം	തെരഞ്ഞെ	ടുക്കുക.
	ദേശീയ റ്റ	<mark>സ്റ്റാറ്റി</mark> സ്റ്റിക്	്സ് ദിനമായ	യി ആചരി
	ക്കുന്നത്			

- i) ജൂലൈ 29 ii) ജൂൺ 30
- iii) ജൂൺ 29
- ആഗസ്റ്റ് 30
- (1)
- ബി. ചേരുംപടി ചേർക്കുക
- (2)

A	В
1) CSO 2) NSSO 3) ISI 4) Economics and Statistics Department, Kerala	 Nodal agency of the state. Compilation of national accounts. Conducting socio-economic survey. Publishing Journal SANKHYA

- 4. The number of successful Mars expeditions by various countries are given below.
- വിവിധ രാജ്യങ്ങൾ വിജയകരമായി ചെയ്ത ചൊവ്വാ ഗ്രഹപര്യവേഷണ ദൗത്യങ്ങളുടെ എണ്ണം ചുവടെ കൊടുക്കുന്നു.

Country	No of successful
	expeditions
USA	15
USSR	2
European Union	1
India	1

Name the type of classification used in this table. (1)

- ഏതു തരം വർഗ്ഗീകരണമാണ് ഇവിടെ ഉപയോഗി ച്ചിരിക്കുന്നത് (1)
- Draw the skeleton of a table to represent the following information.

Faculty: Arts, Commerce, Science

: Graduation, Post graduation

Sex : Male, Female

(4)

ന്നതിനാവശ്യമായ ഒരു പട്ടികയുടെ ചട്ടക്കൂട് വരയ്ക്കുക. വൈജ്ഞാനിക : കലാ-സാഹിതൃം, വാണിജൃം,

ചുവടെ ചേർക്കുന്ന വിവരങ്ങൾ രേഖപ്പെടുത്തു

മേഖല ശാസ്ത്രം.

: ബിരുദം, ബിരുദാനന്തരം ക്ലാസ്

ശരിയായ ഉത്തരം തെരഞ്ഞെടുക്കുക

: ആൺ, പെൺ ലിംഗഭേദം (4)

ചുവടെ കൊടുക്കുന്നവയിൽ പ്രോബബിലിറ്റി

6. Choose the correct answer.

> Which of the following is NOT an axiom of probability?

- $P(A) \le 1$ ii) P(S) = 1
- iii) $P(A_1 \text{ or } A_2) = P(A_1) + P(A_2)$, for two mutually exclusive events A₁ and A_{2} .

iv)
$$P(A) \ge 0$$

- യുടെ ഒരു ആക്സിയം അല്ലാത്തത് ഏത്? $P(A) \leq 1$ ii) P(S) = 1
- iii) രണ്ട് മ്യൂച്ചലി എക്സ്ക്ലൂസീവ് ഇവന്റു കൾക്ക് $P(A_1 \text{ or } A_2) = P(A_1) + P(A_2)$
- iv) $P(A) \ge 0$

(1)

(1)

7. The pupils in a class were asked, how many siblings (brothers and sisters, they had? Their answers are shown in the table.

No of siblings	0	1	2	3	4
No of pupils	4	12	8	3	3

If a child is chosen at random, find the probability that,

- a) He/she has 3 siblings.
- b) There are less than 3 siblings in his/her family.

(2)

Answer any one question from 8 and 9.

- 8 Find the probabilities of getting
 - a) The face 4 when a die is thrown
 - b) A total of 8 when two dice are thrown.

(3)

OR

- 9 In a group of 20 adults, 4 out of the 7 women and 2 out of the 13 men wear glasses. What is the probability that a person chosen at random from the group is a woman or some one who wears glasses? (3)
- 10. Choose the correct answer.

In a series of observations AM = 32 and Median = 30. Then mode is:

- a) 25
- b) 26
- c) 35
- d) 36

11. a) Choose the correct answer.

The arithmetic mean of 10,12,x and 15 is 13. What is the arithmetic mean of 12,14,x+2 and 17?

- i) 13
- ii) 14
- iii) 15
- iv) 16
- (1)

(1)

7. ഒരു ക്ലാസിലെ കുട്ടികളോട് അവരുടെ സഹോദരങ്ങളുടെ എണ്ണം പറയുവാൻ ആവ ശൃപ്പെടുന്നു. അവരുടെ മറുപടികൾ താഴെ പട്ടി കയിൽ ചേർത്തിരിക്കുന്നു.

(സഹോദരങ്ങളുടെ എണ്ണം	0	1	2	3	4
കുട്ടികളുടെ എണ്ണം	4	12	8	3	3

ക്ലാസിലെ ഒരു കുട്ടിയെ യാദ്യച്ഛികമായി തെര ഞ്ഞെടുത്താൽ, താഴെ പറയുന്ന പ്രോബലിറ്റി കൾ കാണുക.

- a) അവന്/അവൾക്ക് 3 സഹോദരങ്ങൾ ഉണ്ടാ യിരിക്കുക.
- b) അവന്റെ/അവളുടെ സഹോദരങ്ങളുടെ എണ്ണം 3 -ൽ കുറവായിരിക്കുക. (2)

(8,9 ചോദ്യങ്ങളിൽ ഒരേണ്ണത്തിന് മാത്രം ഉത്തര മെഴുതുക)

- താഴെപറയുന്നവ ലഭിക്കുന്നതിനുള്ള സാധ്യ തകൾ കാണുക.
 - a) ഒരു ഡൈ എറിയുമ്പോൾ 4 എന്ന വശം
 ലഭിക്കുന്നതിന്
 - b) 2 ഡൈകൾ എറിയുമ്പോൾ തുക 8 ലഭിക്കു ന്നതിന്
 (3)

അല്ലെങ്കിൽ

- ഒരു ഗ്രൂപ്പിൽ 20 മുതിർന്ന ആൾക്കാർ ഉണ്ട്. അതിലുള്ള 7 സ്ത്രീകളിൽ 4 പേർ കണ്ണട ധരി ച്ചവരാണ്. 13 പുരുഷന്മാരിൽ 2 പേരും കണ്ണട ധരിച്ചിട്ടുണ്ട്. പ്രസ്തുത ഗ്രൂപ്പിൽ നിന്നും ഒരാളെ യാദ്യച്ഛികമായി തെരഞ്ഞെടുത്താൽ അത് ഒരു സ്ത്രീയോ കണ്ണട ധരിച്ചയാളോ ആകാനുള്ള പ്രോബബിലിറ്റി കാണുക. (3)
- 10. ശരിയായ ഉത്തരം തെരഞ്ഞെടുക്കുക.
 ഒരു കൂട്ടം വിലകളുടെ മാധ്യം = 32, മീഡിയൻ
 = 30 ആയാൽ മോഡിന്റെ വില:
 - a) 25
- b) 26
- c) 35
- d) 36
- (1)
- 11. എ) ശരിയായ ഉത്തരം തെരഞ്ഞെടുക്കുക
 10, 12, x, 15 എന്നിവയുടെ മാധ്യം 13 ആയാൽ
 12, 14, x+2, 17 എന്നിവയുടെ മാധ്യം എത്ര?
 - i) 13
- ii) 14
- iii) 15
- iv) 16
- (1)

- b) The price (per kilogram) and the consumption (in kilograms) of 4 commodities by a family for a month is given below. Find the weighted arithmetic mean of the prices of the commodities. (2)
- ബി) ഒരു കുടുംബം ഒരു മാസം ഉപയോഗിച്ച 4 ഉല്പന്നങ്ങളുടെ വിലയും (കിലോ 1 ന്) അവ യുടെ ഉപഭോഗവും (കിലോഗ്രാമിൽ) ചുവടെ ചേർക്കുന്നു. ഉല്പന്നങ്ങളുടെ വില കളുടെ വെയിറ്റഡ് മാധ്യം കണക്കാക്കുക

(2)

Commodity	A	В	C	D
Price (per Kg)	15	6	30	110
Consumption (in Kg)	4	10	5	1

12. The average weight of 40 girls and 20 boys in a class is 50 kg. What is the average weight of girls, if the average weight of boys is 54 kg.

(3)

13 The daily wages of 140 employees in a company are given in the following table.

- 12. ഒരു ക്ലാസിലെ 40 പെൺകുട്ടികളുടെയും 20 ആൺകുട്ടികളുടെയും കൂടി ശരാശരി ഭാരം 50 കിലോഗ്രാം ആണ്. ആൺകുട്ടികളുടെ ശരാശരി ഭാരം 54 കിലോഗ്രാം ആയാൽ പെൺകുട്ടിക ളുടെ ശരാശരി ഭാരം കാണുക. (3)
- 13. ഒരു കമ്പനിയിലെ 140 തൊഴിലാളികളുടെ ദിവ സവേതനം പട്ടികയായി താഴെ സൂചിപ്പിച്ചിരി ക്കുന്നു.

Wages (in Rs)	350 - 400	400 - 450	450 - 500	500 - 550	550 - 600	600 - 650
No of employees	8	28	32	38	19	15

Find the median wage.

- (5)
- 14. Choose the correct answer.

The standard deviation of a set of observations is:

- a) always positive
- b) never negative
- c) never zero

(1)

- d) lies between 0 and 1
- 15 a) Which among the following only depends on extreme values?
 - i) SD
- ii) MD
- iii) QD
- iv) Range

- മീഡിയൻ വേതനം കാണുക
 - ശരിയായ ഉത്തരം തെരഞ്ഞെടുക്കുക. ഒരു കൂട്ടം വിലകളുടെ സ്റ്റാൻഡേർഡ് ഡീവി യേഷന്റെ വില:
 - a) എല്ലായ്പ്പോഴും പോസിറ്റീവാണ്.
 - b) ഒരിയ്ക്കലും നെഗറ്റീവ് അല്ല.
 - c) ഒരിയ്ക്കലും പൂജ്യം അല്ല.
 - d) 0 നും 1 നും ഇടയിലാണ് വരുന്നത്.
- 15. a) താഴെ പറയുന്നവയിൽ രണ്ട് അറ്റത്തുമുള്ള വിലകളെ മാത്രം ആശ്രയിക്കുന്നതേത്?
 - i) SD

ii) MD

iii) QD

iv റെയിഞ്ച്

(1)

(1)

(5)

(1)

- b) Find the quartile deviation of the following data. (3)
- b) താഴെ തന്നിരിക്കുന്ന ഡേറ്റയുടെ കാർട്ടൈൽ ഡീവിയേഷൻ കാണുക. (3)

Values	10	11	12	13	14	15	16	17
Frequency	8	10	20	25	21	16	4	3

Answer any one question from 16 and 17.

16 The weekly sales of two vendors are given below. Examine the efficiency of the venders. (Hint: find CV)

(5)

(16, 17 ചോദ്യങ്ങളിൽ ഒരെണ്ണത്തിന് മാത്രം ഉത്തര മെഴുതുക)

16. രണ്ട് വില്പനക്കാരുടെ ഒരാഴ്ചയിലെ വില്പന നിലവാരം ചുവടെ കൊടുക്കുന്നു. അവരുടെ കാര്യക്ഷമത പരിശോധിക്കുക.

(സൂചന: സി.വി. കാണുക) (5)

Vender A : (in thousands of Rs)	15	22	13	18	20
Vender B : (in thousands of Rs)	10	30	24	22	15

OR

17. Following data, shows the ages and systolic blood pressure of 8 persons. Calculate the covariance.

അല്ലെങ്കിൽ

17. 8 പേരുടെ വയസ്സും സിസ്റ്റോലിക് രക്തസ മ്മർദ്ദവും സൂചിപ്പിക്കുന്ന ഒരു ഡാറ്റ താഴെ കൊടുക്കുന്നു. കോവേരിയൻസ് കാണുക.

Person	1	2	3	4	5	6	7	8
Age (in years):	20	28	30	35	38	40	42	45
Systolic blood Pressure (in mm/Hg)	115	120	122	125	130	132	120	125

(5)

(5)

- 18 a) Each member of the population has equal probability of being selected, this sampling is called --- - (1)
 - b) Suggest any three situations when sampling is more suitable than census. (3)
- 18. a) പോപ്പുലേഷനിലെ ഓരോ അംഗത്തിനും സാമ്പിളിൽ ഉൾപ്പെടുന്നതിന് തുല്യസാധ്യ തയാണുള്ളത്. ഇത്തരം സാമ്പിളിംഗി നെ............... എന്ന് വിളിക്കുന്നു. (1)
 - b) സെൻസസ് രീതിയെക്കാൾ സാംബ്ലിംഗ് രീതി അനുയോജ്യമായ മൂന്ന് സാഹചര്യ ങ്ങൾ നിർദ്ദേശിക്കുക.
 (3)

Answer any one question from 19 and 20.

19. In a bolt factory, machines A, B and C produces 25%, 35% and 40% of the total output respectively. Of their outputs, 5%, 4% and 2% respectively are defective bolts. If a bolt is chosen at random, what is the probability that it is defective?

(4)

OR

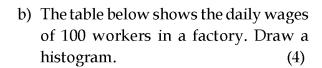
- 20. The probability that a patient is allergic to Penicillin is 0.20. Suppose this drug is administered to three patients. Find the probability that
 - (i) all three of them are allergic to it
 - (ii) at least one of them is not allergic to it (4)
- 21. Choose the correct answer.
 - a) For a symmetric distribution:
 - i) Q_3 Median = Median Q_1
 - ii) Q_3 Median = Q_1 Median
 - iii) Q_3 + Median = Median + Q_1
 - iv) Median Q_3 = Median Q_1 (1)
 - b) The first four central moments of a distribution are 0, 9.2, -3.6, and 122.
 - i) Calculate the coefficient of skewness β_1 .
 - ii) Calculate the coefficient of kurtosis $\beta_2. \\$

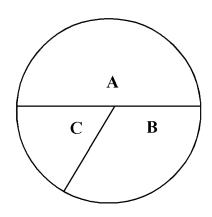
(4)

22 a) The following table and diagram represent the sales of different models of cars in a showroom of a car manufacturing company for the last month. Complete the table with the help of the diagram. (2)

19, 20 ചോദ്യങ്ങളിൽ ഒരെണ്ണത്തിന് മാത്രം ഉത്ത രമെഴുതുക.

9. ഒരു ബോൾട്ട് നിർമ്മാണ ഫാക്ടറിയിലെ 3 യന്ത്രങ്ങളായ A, B, C എന്നിവ യഥാക്രമം ആകെ ഉല്പാദനത്തിന്റെ 25%, 35%, 40% വീതം ബോൾട്ടുകൾ ഉല്പാദിപ്പിക്കുന്നു. അവ ഉല്പാ ദിപ്പിക്കുന്ന ബോൾട്ടുകളിൽ യഥാക്രമം 5% 4%, 2% ഉല്പന്നങ്ങൾ കേടുപാടുകൾ ഉള്ളതാണ്. ഈ ഫാക്ടറി ഉല്പാദിപ്പിച്ച ബോൾട്ടുകളിൽ ഒരെണ്ണം യാദൃശ്ചികമായി തെരഞ്ഞെടുത്താൽ അത് കേടുപാടുള്ളതാകാനുള്ള സാധ്യത എത്ര യാണ്? (4)


അല്ലെങ്കിൽ


- 20. ഒരു രോഗിയ്ക്ക് പെനിസിലിൻ അലർജിയുണ്ടാ ക്കാനുള്ള സാധ്യത 0.20 ആകുന്നു. ഈ മരുന്ന് 3 രോഗികൾക്ക് നൽകുന്നു.
 - (i) മൂന്നുപേർക്കും അലർജിയുണ്ടാകാനുള്ള സാധ്യത എന്ത്?
 - (ii) ഒരാൾക്കെങ്കിലും അലർജിയുണ്ടാകാതിരി ക്കാനുള്ള സാധ്യത എന്ത്?(4)
- 21. (ശരിയായ ഉത്തരം തെരഞ്ഞെടുക്കുക)
- a) ഒരു സിമെട്രിക് ഡിസ്ട്രിബ്യൂഷന് വേണ്ടത്:
 - (i) Q_3 മീഡിയൻ = മീഡിയൻ Q_1
 - (ii) Q_3 മീഡിയൻ = Q_1 മീഡിയൻ
 - (iii) Q_3 + മീഡിയൻ = മീഡിയൻ + Q_1
 - (iv) മീഡിയൻ- Q_3 = മീഡിയൻ Q_1

(1)

- b) ഒരു ഡിസ്ട്രിബ്യൂഷന്റെ ആദ്യത്തെ നാല് സെൻട്രൽ മൊമെന്റുകൾ 0, 9.2, - 3.6, 122 എന്നി വയാണ്.
 - (i) സ്ക്ക്യൂനെസ്സിന്റെ കോയിഫിഷ്യന്റ് β_1 കാണുക.
 - etaii) കർട്ടോസിസിന്റെ കോയിഫിഷ്യന്റ് eta_2 കാണുക. (4)
- 22. a) ഒരു കാർ നിർമ്മാണ കമ്പനിയുടെ ഷോറൂ മിൽ കഴിഞ്ഞ മാസം വില്പന നടത്തിയ കാറു കളുടെ വിവരങ്ങളാണ് ചുവടെ ചേർക്കുന്ന പട്ടികയിലും ഡയഗ്രത്തിലും ഉള്ളത്. പട്ടിക യിലെ വിട്ടുപോയ ഭാഗങ്ങൾ ഡയഗ്രത്തിന്റെ സഹായത്താൽ പുർത്തിയാക്കുക. (2)

Model	Sales	Angle
А		
В		140
С	10	
Total	90	360

b) ഒരു ഫാക്ടറിയിലെ 100 തൊഴിലാളികളുടെ ദിവസ വേതനം താഴെ പട്ടികയായി ചേർത്തിരിക്കുന്നു. ഒരു ഹിസ്റ്റോഗ്രാം വര യ്ക്കുക.

(4)

Daily wages (in Rs)	100 - 150	150 - 200	200 - 250	250 - 300	300 - 350	350 - 400	400 - 450	450 - 500
No of workers	6	10	12	15	20	15	12	10

Scoring Key

Class: IX Subject: Statistics

Qn No	Answer key/Value points	Score	Total
1 a	Direct observation	1	1
b	Any four of the following methods		
	Direct personal investigation		
	Indirect oral investigation		
	Telephone interview		
	Mailed questionnaire		
	Schedules		
	Focus group discussion	½ X 4	2
	Each carry ½ marks		
2	The person who collected the data and the purpose for which they	1	2
	are collected.		
	Care should be taken on the time at which the data was collected.	1	
	(Any other relevant points can be given 1 score each.)		
3 a	iii) June 29	1	1
	,		
b	АВ		
	CSO Compilation of national accounts		
	NSSO Conducting socio-economic survey.		
	ISI Publishing SANKHYA		
	Economics and Nodal agency of the state	½ X 4	2
	Statistics department,		
	Kerala		
4	Geographical classification	1	1
5	Title of the table, captions, stubs	1	4
	Body of the table	3	
6	i) P(A) ≤ 1	1	
7 a	P(he/she has 3 brothers and sisters) = 3/30	1	2
b	P(there are less than 3 siblings in his/her family) = 24/30	1	
8	a) 1/6	1	
	b) The outcomes favourable to a sum of 8 are (2, 6), (3, 5), (4,4),		
	(5,3), (6,2)	1	3
	P(Sum 8) = 5/36	1	
	OR		
	W. The share is a second		
9	W – The chosen person is woman		
	G – The chosen person wears glasses	1 1/	2
	P(W) = 7/20, $P(G) = 6/20$ and $P(W)$ and $P(W) = 4/20$	1 ½	3
	P(W or G) = P(W) + P(G) - P(W and G) = 7/20 + 6/20 - 4/20 = 9/20	1 1/2	
10	b) 26	1	1
10	0,20	1	*
Qn No	Answer key/Value points	Score	Total

11 a	iii) 15				1	1
b		$\sum wx$			1	2
~	Weighted AN	$V_1 = \frac{15X4 + 6X10 + 30}{4 + 10 + 5}$			_	
		1/2				
		1/2				
		/2				
12	$\overline{x_1} = 54, \overline{x_2} =$	$= ?, \bar{x} = 50, n_1 =$	$= 20, n_2 = 40$	0	1/2	3
	m M l m					
	$\bar{x} = \frac{n_1 \overline{x_1} + n_2}{n_1 + n_2}$	<u>x₂</u>			1	
					1/2	
	$50 = \frac{20X54 + 40}{60}$	$0X \overline{x_2}$			/2	
	60				1/2	
	3000 = 1080	$+40X\overline{x_2}$			/2	
		Z	$\overline{x_2} = 48$		1/2	
13		(N-m)c			1	5
	Median = l +	$\frac{\left(\frac{2}{2}m\right)^{c}}{f}$				
	Class	Fre	quency	Cumulative frequency		
	350 – 400	8		8		
	400 – 450	28		36		
	450 – 500	32		58		
	500 – 550	38		96		
	550 – 600	19		115	2	
	600 – 650	15		130		
	Total	130	1			
		dian class = 500	- 550		1	
	7 = 500, f = 38	3, c = 50, m = 58			1	
		- (65–58)50			1/2	
	Median = 50	$0 + \frac{(65-58)50}{38}$			/2	
					1/2	
	= 509	9.21				
14	b) never neg	ative			1	1
15 a	iv) Range				1	1
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					_
b	Value	Frequency	Cumulat	tive frequency		
	10	8	8			
	11	10	18			
	12	20	38			
	13	25	63			
	14	21	84		1	
	15	16	100			
	16	4	104			
	17	3	107			

Qn No	Answer key/V	alue noints		Score	Total
QITINO	(N+1)/4 = 27			1/2	3
	3(N+1)/4 = 27			1/2	, J
	2(14.17)/4-01		1/2		
		$QD = \frac{Q}{Q}$	/2		
		= 1	_	1/2	
16	<u>Vender A</u>				5
		\sum_{x}	= 88		
		$\sum_{x^2 = 1}^{\infty} x^2 = \sum_{x = 1}^{\infty} x^2 = \sum_$		1/2	
		$\sum x^2 =$	= 1602	1/	
		$\frac{1}{\bar{x}} - \sum x$. – 176	1/2	
		$x - \frac{n}{n}$			
		$\bar{x} = \frac{\sum x}{n}$ $SD = \sqrt{\frac{\sum x}{n}}$	χ^2	1/2	
		$SD = \int \frac{\Delta}{a}$	$\frac{1}{n} - (\bar{x})^2$	/2	
		, V			
		$=\sqrt{\frac{1602}{5}}$	$-(176)^2$		
		√ 5	1/2		
		= 3.26			
		$CV = \frac{SD}{\bar{x}}X1$	00 = 18.52	1/2	
	<u>Vender B</u>	\bar{x}			
	<u>vender b</u>	∇	101		
		$\sum x =$	= 101	1/2	
		$\sum_{x^2} x = \sum_{x^2} x^2 = \sum_$	= 2285	,-	
		$\sum \chi$			
		$\bar{x} = \frac{\sum x}{n}$	r = 20.2	1/2	
	$SD = \sqrt{\frac{\sum x^2}{n}}$	$(\bar{x})^2 = 6.007$			
	$\int JD - \sqrt{\frac{n}{n}}$			1/2	
		$CV = \frac{SD}{\bar{x}}X1$	0.00 = 34.64	1/2	
		X		/2	
	Vender A is ef	ficient than vender B		1/2	
	<u>OR</u>				
17	Age(x)	Blood Pressure (y)	XY		
	20	115	2300		
	28	120	3360		
	30	122	3660 4375		
	35 38	125 130	2		
	40	132	-		
	42	120	5280 5040		
	45	125	5625		
	278	989	34580		
		1			
Qn No	Answer key/V	alue points		Score	Total

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$Covariance = \frac{\sum xy}{n} - \bar{x}\bar{y}$	1	5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\bar{x} = \frac{\sum x}{n} = 34.75$	1/2	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		κ	1/2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$Covariance = \frac{34580}{8} - 34.75 \times 123.625$	1/2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		= 26.53	1/2	
$P(A) = \frac{25}{100}, \ P(B) = \frac{35}{100}, \ P(C) = \frac{40}{100}$ $P(D/A) = \frac{5}{100}, \ P(D/B) = \frac{4}{100}, \ P(D/C) = \frac{2}{100}$ $P(D) = P(A)P(D/A) + P(B)P(D/B) + P(C)P(D/C)$ $= \frac{5}{100} \times \frac{25}{100} + \frac{4}{100} \times \frac{35}{100} + \frac{2}{100} \times \frac{40}{100}$ $= \frac{5}{100} \times \frac{25}{100} + \frac{4}{100} \times \frac{35}{100} + \frac{2}{100} \times \frac{40}{100}$ $= \frac{1}{100} \times \frac{35}{100} \times \frac{2}{100} \times \frac{40}{100}$ $= \frac{1}{100} \times \frac{4}{100} \times \frac{35}{100} \times \frac{4}{100} \times \frac{4}{100}$ $= \frac{1}{100} \times \frac{4}{100} \times \frac{4}{100} \times \frac{4}{100} \times \frac{4}{100}$ $= \frac{1}{100} \times \frac{4}{100} \times \frac{4}{100} \times \frac{4}{100} \times \frac{4}{100}$ $= \frac{1}{100} \times \frac{4}{100} \times \frac{4}{100} \times \frac{4}{100} \times \frac{4}{100} \times \frac{4}{100}$ $= \frac{1}{100} \times \frac{4}{100} \times \frac{4}{100} \times \frac{4}{100} \times \frac{4}{100} \times \frac{4}{100} \times \frac{4}{100}$ $= \frac{1}{100} \times \frac{4}{100} \times \frac{4}{100} \times \frac{4}{100} \times \frac{4}{100} \times \frac{4}{100} \times \frac{4}{100} \times \frac{4}{100}$ $= \frac{1}{100} \times \frac{4}{100} \times \frac{4}{1$	18 a		1	1
$P(D/A) = \frac{5}{100}, P(D/B) = \frac{4}{100}, P(D/C) = \frac{2}{100}$ $P(D) = P(A)P(D/A) + P(B)P(D/B) + P(C)P(D/C)$ $= \frac{5}{100} \times \frac{25}{100} + \frac{4}{100} \times \frac{35}{100} + \frac{2}{100} \times \frac{40}{100}$ $= \frac{5}{100} \times \frac{25}{100} + \frac{4}{100} \times \frac{35}{100} + \frac{2}{100} \times \frac{40}{100}$ $= \frac{5}{100} \times \frac{25}{100} + \frac{4}{100} \times \frac{35}{100} \times \frac{40}{100}$ $= \frac{5}{100} \times \frac{25}{100} \times \frac{40}{100} \times \frac{40}{100} \times \frac{40}{100}$ $= \frac{5}{100} \times \frac{25}{100} \times \frac{40}{100} \times \frac{40}{100} \times \frac{40}{100}$ $= \frac{5}{100} \times \frac{25}{100} \times \frac{40}{100} \times \frac{40}{100} \times \frac{40}{100} \times \frac{40}{100} \times \frac{40}{100}$ $= \frac{1}{100} \times \frac{40}{100} \times 4$			1x3	3
$P(D) = P(A)P(D/A) + P(B)P(D/B) + P(C)P(D/C) \\ = \frac{5}{100} \times \frac{25}{100} + \frac{4}{100} \times \frac{35}{100} + \frac{2}{100} \times \frac{40}{100} \\ = \frac{5}{100} \times \frac{25}{100} + \frac{4}{100} \times \frac{35}{100} + \frac{2}{100} \times \frac{40}{100} \\ = 0.0345$ $20 A, B, C \text{ denotes patients} \\ P(A) = 0.20, P(B) = 0.20, P(C) = 0.20 \\ i) P(All 3 \text{ of them are allergic}) = P(ABC) \\ = P(A) \times P(B) \times P(C) \\ = 0.008 \\ ii) P(At \text{ least one of them is not allergic}) = 1 - P(All \text{ are allergic}) \\ = 1 - 0.008 = 0.992 \\ \%$ $21 \text{ a} i) Q_3 - \text{ Median} = \text{ Median} - Q_1 \\ i) \beta_1 = \frac{\mu_2^2}{\mu_2^3} \\ = 1.0166 \\ ii) \beta_2 = \frac{\mu^4}{\mu_2^2} \\ = 1.44 \\ On \text{ No} \text{Answer key/Value points} \\ 22 \text{ a} \frac{\text{Model}}{A} \frac{\text{Sales}}{45} \frac{\text{Angle}}{A} \\ A \frac{45}{5} \frac{180}{100} \\ B 35 140 \\ C 10 40 \\ \hline \text{Total} 90 360 \\ \% \text{ mark for each value} \\ \text{b} \text{Appropriate scaling in X and Y axes} \\ 1 4 1 4 1 4 4 4 4 4 $	19	100 100	1 ½	4
$ = \frac{5}{100} \times \frac{25}{100} + \frac{4}{100} \times \frac{35}{100} + \frac{2}{100} \times \frac{40}{100} $ $ = 0.0345 $ A, B, C denotes patients $ P(A) = 0.20, P(B) = 0.20, P(C) = 0.20$ $ i) P(All 3 of them are allergic) = P(ABC) $ $ = P(A) \times P(B) \times P(C) $ $ = 0.008 $ $ ii) P(At least one of them is not allergic) = 1 - P(All are allergic) $ $ = 1 - 0.008 = 0.992 $ $ iii) P(At least one of them is not allergic) = 1 - P(All are allergic) $ $ = 1 - 0.008 = 0.992 $ $ iii) P(At least one of them is not allergic) = 1 - P(All are allergic) $ $ = 1 - 0.008 = 0.992 $ $ iii) P(At least one of them is not allergic) = 1 - P(All are allergic) $ $ = 1 - 0.008 = 0.992 $ $ iii) P(At least one of them is not allergic) = 1 - P(All are allergic) $ $ = 1 - 0.008 = 0.992 $ $ iii) P(At least one of them is not allergic) = 1 - P(All are allergic) $ $ = 1 - 0.008 = 0.992 $ $ iii) P(At least one of them is not allergic) = 1 - P(All are allergic) $ $ = 1 - 0.008 = 0.992 $ $ iii) P(At least one of them is not allergic) = 1 - P(All are allergic$		100		
		$P(D) = P(A)P(D/A) + P(B)P(D/B) + P(C)P(D/C)$ $= \frac{5}{100} \times \frac{25}{100} + \frac{4}{100} \times \frac{35}{100} + \frac{2}{100} \times \frac{40}{100}$	1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		100 100 100 100 100		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
i) P(All 3 of them are allergic) = P(ABC)	20		1	4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20		1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21 a	i) Q_3 – Median = Median – Q_1	1	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	р	i) $\beta_1 = \frac{\mu_3^2}{\mu_2^3}$		4
= 1.44 1 Qn No Answer key/Value points Score Total 22 a Model Sales Angle		= 1.0166	1	4
= 1.44 1 Qn No Answer key/Value points Score Total 22 a Model Sales Angle		ii) $\beta_2 = \frac{\mu_4}{\mu_2^2}$	1	
Model Sales Angle		• 2	1	
A 45 180 B 35 140 C 10 40 Total 90 360 ½ mark for each value 1 4	Qn No	Answer key/Value points	Score	Total
B 35 140 C 10 40 Total 90 360 ½ mark for each value b Appropriate scaling in X and Y axes 1 4	22 a	Model Sales Angle	½ x 4	2
C 10 40 Total 90 360 ½ mark for each value b Appropriate scaling in X and Y axes 1 4				
Total 90 360 ½ mark for each value b Appropriate scaling in X and Y axes 1 4				
b Appropriate scaling in X and Y axes 1 4				
b Appropriate scaling in X and Y axes 1				
Appropriate searing in A and T axes		½ mark for each value		
Appropriate searing in A and T axes	b	Appropriate scaling in X and Y axes	1	4
		Histogram	3	

F.Y.	
March	2014

Reg. No:	
Name :	

Part - III STATISTICS

Maximum: 60 Scores

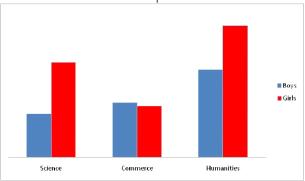
Time: 2 hrs

Cool off time: 15 Minutes

General Instructions to candidates:

- There is a 'Cool off time' of 15 minutes in addition to the writing time of 2 hrs.
- You are neither allowed to write your answers nor to discuss anything with others during the 'cool off time'.
- Use the 'cool off time' to get familiar with questions and to plan your answers.
- · Read the questions carefully before answering
- All questions are compulsory and only internal choice is allowed.
- When you select a question, all the sub-questions must be answered from the same question itself.
- Calculations, figures and graphs should be shown in the answer sheet itself.
- Malayalam version of the questions is also provided.
- Give equations wherever necessary
- Electronics devices except non programmable calculators are not allowed in the Examination Hall.
- Use of statistical and mathematical tables are permitted.

പൊതുനിർദ്ദേശങ്ങൾ


- നിർദ്ദിഷ്ട സമയത്തിന് പുറമെ 15 മിനിട്ട് 'കൂൾ ഓഫ് ടൈം' ഉണ്ടായിരിക്കും. ഈ സമയത്ത് ചോദ്യങ്ങൾക്ക് ഉത്തരം എഴുതാനോ, മറ്റുള്ളരുമായി ആശയം വിനിമയം നടത്താനോ പാടില്ല.
- ഉത്തരങ്ങൾ എഴുതുന്നതിന് മുമ്പ് ചോദ്യങ്ങൾ ശ്രദ്ധാപൂർവ്വം വായിക്കണം.
- എല്ലാ ചോദ്യങ്ങൾക്കും ഉത്തരം എഴുതണം.
- ഒരു ചോദ്യനമ്പർ ഉത്തരമെഴുതാൻ തെരെഞ്ഞെടുത്ത് കഴിഞ്ഞാൽ ഉപചോദ്യങ്ങളും അതേ ചോദ്യനമ്പ രിൽ നിന്ന് തന്നെ തെരെഞ്ഞെടുക്കേണ്ടതാണ്.
- കണക്ക് കൂട്ടലുകൾ, ചിത്രങ്ങൾ, ഗ്രാഫുകൾ, എന്നിവ ഉത്തരപേപ്പറിൽത്തന്നെ ഉണ്ടായിരിക്കണം.

1

- ചോദ്യങ്ങൾ മലയാളത്തിലും നൽകിയിട്ടുണ്ട്.
- ആവശ്യമുള്ള സ്ഥലത്ത് സമവാകൃങ്ങൾ കൊടുക്കണം
- പ്രോഗ്രാമുകൾ ചെയ്യാനാകാത്ത കാൽക്കുലേറ്ററുകൾ ഒഴുകെയുള്ള ഒരു ഇലക്ട്രോണിക് ഉപകരണവും പരീക്ഷാഹാളിൽ ഉപയോഗിക്കാൻ പാടില്ല.
- സ്റ്റാറ്റിസ്റ്റിക്കൽ, മാത്തമാറ്റിക്കൽ ടേബിളുകൾ ഉപയോഗിക്കാവുന്നതാണ്.
- - i) Agricultural statistics
 - ii) Bio -statistics
 - iii) Actuarial science
 - iv) Econometrics
 - (b) Write short note on Ministry Of Statistics and Programme Implementation (MOSPI) 2

- (a) മാത്തമാറ്റിക്സ്, സ്റ്റാറ്റിസ്റ്റിക്സ് രീതികൾ ഉപയോഗിച്ച് ഇൻഷ്യറൻസ്, സാമ്പത്തിക മേഖലകളിലെ ആപച്ഛങ്ക (risk) നിർണ്ണയി ക്കുന്ന പഠനശാഖയാണ്.
 - Agricultural statistics
 - ii) Bio -statistics
 - iii) Actuarial science
 - iv) Econometrics
- (b) മിനിസ്റ്ററി ഓഫ് സ്റ്റാറ്റിസ്റ്റിക്സ് ആൻഡ് പ്രോഗ്രാം ഇംപ്ലിമെന്റേഷനെ (MOSPI) കുറിച്ച് ഒരു ലഘുക്കുറിപ്പ് എഴുതുക. 2

- 2 (a) Following bar diagram represents the number of boys and girls in different streams.
- 2 (a) ഒരു സ്കൂളിലെ വിവിധ വിഭാഗങ്ങളിലുള്ള ആൺകുട്ടികളുടെയും പെൺകുട്ടികളു ടെയും എണ്ണത്തെ സൂചിപ്പിക്കുന്ന ബാർ ഡയഗ്രമാണ് ചുവടെ തന്നിട്ടുള്ളത്.

- (i) In which stream the number of boys and girls are almost equal?
- (ii) In which stream the total number of students is maximum?
- (iii) In which stream the numbers of girls is almost double that of boys.
- (iv) In which stream the number of boysis greater than that of girls?2
- b) The weight of 200 students are distributed as shown below

- (i) ഏത് വിഭാഗത്തിലാണ് ആൺകുട്ടികളുടെയും പെൺകുട്ടികളുടെയും എണ്ണം ഏറെക്കുറെ തുല്യമായത്.
- (ii) ഏത് വിഭാഗത്തിലാണ് ആകെ വിദ്യാർത്ഥി കൾ കൂടുതൽ ഉള്ളത്?
- (iii) ഏത് വിഭാഗത്തിലാണ് പെൺകുട്ടികൾ ആൺകുട്ടികളേക്കാൾ ഏറെക്കുറെ ഇരട്ടിയാ യിട്ടുള്ളത്?
- (iv) ഏത് വിഭാഗത്തിലാണ് ആൺകുട്ടികൾ പെൺകുട്ടികളെക്കാൾ കൂടുതൽ ഉള്ളത്? 2
- b) 200 വിദ്യാർത്ഥികളുടെ ഭാരത്തിന്റെ ആവൃത്തി പ്പട്ടിക തന്നിരിക്കുന്നു.

Weight in Kg.	30-40	40-50	50-60	60-70	70-80
frequency	23	45	60	50	22

- (i) Draw an ogive
- (ii) Compute the number of students having weight less than 45 kg by using the ogive 1
- 3 a) The arithmetic mean and geometric mean of two numbers are 13 and 12 respectively. Then the approximate value of Harmonic Mean is
 - (i) 12.5 (ii) 13.5 (iii) 14 (iv) 11 1
 - b) A traveller covered a distance in two phases having equal distances with speeds 50 km/h and 20 km/h respectively. Which measure is suitable in this situation to find the

- (i) ഒരു ogive വരക്കുക
- (ii) ogive ൽ നിന്നും 45 കിലോയിൽ കുറവ് ഭാരമുള്ള വിദ്യാർത്ഥികളുടെ എണ്ണം കണ്ടു പിടിക്കുക

- 3 a) രണ്ട് സംഖ്യകളുടെ അരിത് മെറ്റിക് മീനും ജ്യോമെട്രിക് മീനും യഥാക്രമം 13 ഉം 12 ഉം ആയാൽ ഹാർമോണിക് മീൻ എത്ര?
 (i) 12.5 (ii) 13.5 (iii) 14 (iv) 11 1
 - b) ഒരു യാത്രക്കാരൻ നിശ്ചിത ദൂരം തുല്യ മായ രണ്ട് ഘട്ടങ്ങളിലായി സഞ്ചരിക്കു ന്നു. ഓരോ ഘട്ടത്തിലേയും വേഗത യഥാ ക്രമം 50 കിലോമീറ്റർ/മണിക്കൂർ 20 കിലോ മീറ്റർ/മണിക്കൂർ ആണ്. ഇവിടെ ശരാശരി വേഗത കാണാൻ അനുയോജ്യമായത്

- average speed? Compute average speed?
- Find Q_1 , Q_2 and Q_3 from the C) following frequency distribution.

ഏത് ? ശരാശരി വേഗത കണ്ടു പിടിക്കു

c) ചുവടെ തന്നിരിക്കുന്ന ആവൃത്തിപ്പട്ടിക യിൽ നിന്നും $\mathbf{Q}_{\scriptscriptstyle 2},\mathbf{Q}_{\scriptscriptstyle 2},\mathbf{Q}_{\scriptscriptstyle 3}$ എന്നിവ കണ്ടു പിടിക്കുക.

3

No. of match sticks	47	48	49	50	51	52
No of match boxes	4	22	40	37	32	15

- 4 The median of 6, 9, x, x+1, 12 and 16 is 10.5. then x=(the values are given in ascending order)
 - b) The life lengths of rubber belts used in the grinders of a company is given below. Find the average life length by using mode?
- 4 a) 6, 9, x, x + 1, 12, 16 എന്നീ വിലകളുടെ മീഡി യൻ 10.5 ആണ്. എങ്കിൽ x = (വിലകൾ ആരോഹണക്രമത്തിൽ തന്നിരിക്കുന്നു.) 1
 - b) ഒരു കമ്പനിയുടെ ഗ്രൈൻഡറുകളിൽ ഉപയോ ഗിച്ചിരിക്കുന്ന റബർ ബെൽറ്റുകളുടെ ആയുർദൈർഘ്യം ചുവടെ നൽകിയിരിക്കു ന്നു. മഹിതം (mode) ഉപയോഗിച്ച് ശരാശരി കാണുക.

Life (in hours)	800-	850-	900-	950 -	1000-	1050-	1100-
	850	900	950	1000	1050	1100	1150
No. of belts	6	36	45	80	86	37	10

- 5 a) The temperature at Ootty on six different days in a year are observed as given below 12, 25, 22, -2, 9, 28 Range of these values is:
 - b) 28 c) 30 d) 32 (a) 26 1
 - Two sets of observations have the b) same coefficient of variation. The mean and standard deviation of first set is 40 and 8 respectively. Find the mean of the second set if its standard deviation is 9.
- The lower and upper quartiles of a distribution are 31 and 47. Then the quartile deviation is:
 - a) 78 b) 40
- c) 16
- d) 8

1

Answer any one question from 7 and 8.

7) Compute the mean deviation from median to the following data.

5 a) ഒരു വർഷത്തിലെ ആറ് വൃതൃസ്ത ദിവസ ങ്ങളിൽ ഊട്ടിയിൽ രേഖപ്പെടുത്തിയ ഊഷ്മാവ് തന്നിരിക്കുന്നു.

> 12, 25, 22, -2, 9, 28 ഊഷ്മാവിന്റെ രംഗം (Range) =

- (a) 26 b) 28 c) 30 d) 32 1
- b) രണ്ട് വൃതൃസ്ത കൂട്ടം വിലകളുടെ കോയ ഫിഷ്യന്റ് ഓഫ് വേരിയേഷൻ തുല്യമാണ്. ഒന്നാമത്തെ കൂട്ടത്തിന്റെ മാധ്യവും (Mean) സ്റ്റാൻഡേർഡ് ഡീവിയേഷനും യഥാക്രമം 40 ഉം 8 ഉം ആണ്. രണ്ടാമത്തെ കൂട്ടത്തിന്റെ സ്റ്റാൻഡേർഡ് ഡീവിയേഷൻ 9 ആണെങ്കിൽ മാധ്യം എത്ര?
- 6) ഒരു ഡാറ്റയുടെ നീച, ഉച്ച ക്വാർട്ടൈലുകൾ 31 ഉം 47 ഉം ആണ്. എന്നാൽ Quartile Deviation എത്ര?
 - b) 40 a) 78
- c) 16
- d) 8

(7, 8 ചോദ്യങ്ങളിൽ ഒരെണ്ണത്തിന് മാത്രം ഉത്തര മെഴുതുക)

താഴെ കൊടുത്തിരിക്കുന്ന ഡാറ്റയുടെ മീഡിയനിൽ നിന്നുള്ള മീൻ ഡീവിയേഷൻ കണ്ടു പിടിക്കുക.

Class	20-40	40-60	60-80	80-100	100-120
Frequency	3	5	32	15	10

8) Obtain the covariance of the following bivariate data.

X	10	11	13	9	12	7
Y	12	11	10	14	13	8

- 9 a) For a frequency distribution μ_3 <0 then the distribution is
 - (i) Symmetric
 - (ii) Negatively skewed
 - (iii) Positively skewed
 - (iv) Cannot determined
 - b) A set of values are given 3, 4, 7, 9, 9, 10, 11, 12, 16
 - (i) Find μ_2 and μ_3
 - (ii) Obtain the coefficient of skewness.

4

1

10 a) A die is tossed. Getting the number 2 is defined as event A. Getting a multiple of 4 is defined as event B. consider the following statements

Statement I:

A and B are equally likely *Statement II:*

A and B are mutually exclusive. Based on this, choose the correct answer from the following.

- (i) I and II are correct.
- (ii) I is correct, II is wrong.
- (iii) I is wrong II is correct.
- (iv) I and II are wrong.
- b) For two events A and B it is known that P (A) =P (B), P (A and B) =0.1 and P (A or B) =0.7, find P (A). 2
- 11) A box contains 3 red and 4 blue pens. Another box contains 5 red and 2 blue pens. If one pen is drawn from each boxes. Find the probability that

OR
8) ചുവടെ കൊടുത്തിരിക്കുന്ന ബൈ വേരിയേറ്റ്
ഡാറ്റയുടെ കോവേരിയൻസ് (covariance)
കാണുക.

X	10	11	13	9	12	7
Y	12	11	10	14	13	8

- a) ഒരു ഡിസ്റ്റ്രിബ്യൂഷന്റെ μ₃ <0 ആയാൽ ഡിസ്ട്രിബ്യൂഷൻ ആണ്.
 - (i) സിമട്രിക്
 - (ii) നെഗറ്റീവ് സ്ക്യൂനസ്
 - (iii) പോസിറ്റീവ് സ്ക്യൂനസ്
 - (iv) നിർണയിക്കാൻ സാധിക്കാത്തത് 1
 - b) ഒരു കൂട്ടം വിലകൾ തന്നിരിക്കുന്നു.3, 4, 7, 9, 9, 10, 11, 12, 16
 - (i) μ_2 ഉം μ_3 ഉം കാണുക.
 - (ii) കോയഫിഷാന്റ് ഓഫ് സ്ക്യൂനസ് കാണുക 4
- 10 a) ഒരു ഡൈ എറിയുന്നു. 2 എന്ന സംഖ്യ ലഭിക്കുന്നത് ഇവന്റ് A ആണ്. 4 ന്റെ ഗുണിതം ലഭിക്കുന്നത് ഇവന്റ് B ആണ്. താഴെ തന്നിരിക്കുന്ന പ്രസ്താവനകൾ പരിഗണിക്കുക.

പ്രസ്താവന I: A യും B യും Equally likely ആണ്.

പ്രസ്താവന II: A യും B യും Mutually Exclusive ആണ്.

ഇതിനനുസരിച്ച് ചുവടെ തന്നിരിക്കുന്നവയിൽ നിന്നും ശരിയായത് തെരഞ്ഞെടുക്കുക.

- (i) I ഉം II ഉം ശരിയാണ്.
- (ii) I ശരി, II തെറ്റ്
- (iii) I തെറ്റ് II ശരി.
- (iv) I ഉം II ഉം തെറ്റ് 1
- b) A യും Bയും രണ്ട് ഇവന്റുകളാണ്. P(A) = P(B) യും P(A and B) = 0.1 യും P(A or B) = 0.7 ഉം ആയാൽ P(A) കാണുക.
- 11) ഒരു പെട്ടിയിൽ 3 ചുവപ്പും 4 നീലയും പേന കൾ ഉണ്ട്. മറ്റൊരു പെട്ടിയിൽ 5 ചുവപ്പും 2 നീലയും പേനകളും ഉണ്ട്. ഓരോ പെട്ടിയിൽ നിന്നും ഒരു പേന വീതം തെരഞ്ഞെടുത്താൽ

- a) Both are red
- b) One is red and one is blue

OR

- 12) If A speaks truth in 80% and B speaks truth in 90% of the cases. In what percentage of cases are they likely to contradict each other in stating the same fact?

 3
- The number of Coconut Trees in a farm is an example of
 - (i) Nominal data (ii) Ordinal data
 - (iii) Discrete data (iv)Continuous data
- 14) Draft a questionnaire to study the needs of physical training and health education at higher secondary level

4

ക.

3

- 15) a) The percentage frequency table regarding the marks of 60 students in a class is given. The percentage frequency of the class 40-50 is 15. Then the actual frequency is:
 - (i) 6 (ii) 9 (iii) 12 (iv) 15 1
 - b) The heights (in inches) and weights (in Kgs) of 20 students are given. Prepare a bivariate frequency table (Hint: Values given are height and weight respectively. You may use class intervals 55-60, 60-70, for height and 40-50, 50-60, for weight.)

 (60, 68), (59, 50), (68, 79), (63, 68), (57, 68), (70, 65), (72, 75), (62, 79), (57, 48), (60, 65), (62, 70), (71, 68), (67, 72), (64, 49), (67, 68), (69, 72), (62, 64), (63, 69), (66, 73), (59, 45)

- a) രണ്ട് ചുവന്ന പേന കിട്ടാനുള്ള സാധ്യത എന്ത്?
- b) ഒരു പേന ചുവപ്പും മറ്റേത് നീലയും ലഭിക്കാ നുള്ള സാധ്യത എന്ത്? 3

OR

- 12) A, B എന്നീ വൃക്തികൾ യഥാക്രമം 80% വും 90% വും ഘട്ടങ്ങളിൽ സത്യം പറയുന്നു. എങ്കിൽ ഒരേ വസ്തുതയെ കുറിച്ച് രണ്ട് പേരും വിരുദ്ധ അഭിപ്രായങ്ങൾ പ്രകടിപ്പിക്കാനുള്ള സാധ്യതയുടെ ശതമാനം എന്ത്?
- 13) ഒരു തോട്ടത്തിലെ തെങ്ങുകളുടെ എണ്ണം ചുവടെ കൊടുത്തിരിക്കുന്നവയിൽ ഏത് ഗണ ത്തിൽ പെടും.
 - (i) Nominal data (ii) Ordinal data
 - (iii) Discrete data (iv) Continuous data

14) ഹയർ സെക്കന്ററി തലത്തിൽ കായിക പരിശീ ലനവും ആരോഗ്യ വിദ്യാഭ്യാസവും നടപ്പിലാ ക്കുന്നതിന്റെ ആവശ്യകതയെ കുറിച്ച് പഠിക്കു ന്നതിന് വേണ്ടി ഒരു ചോദ്യാവലി തയാറാക്കു

4

- 15) a) ഒരു ക്ലാസിലെ 60 കുട്ടികളുടെ മാർക്കു കൾ ശതമാന ആവൃത്തിപ്പട്ടികയിൽ നൽകിയിരിക്കുന്നു. 40-50 എന്ന ക്ലാസിന്റെ ശതമാന ആവൃത്തി (Percentage frequency) 15 ആണ്. എങ്കിൽ അതിന്റെ യഥാർത്ഥ ആവൃത്തി എത്ര?
 - (i) 6 (ii) 9 (iii) 12 (iv) 15 1
 - b) 20 വിദ്യാർത്ഥികളുടെ ഉയരവും (ഇഞ്ചിൽ) ഭാരവും (കിലോഗ്രാമിൽ) തന്നിരിക്കുന്നു. ഒരു ബൈവേരിയേറ്റ് ആവൃത്തിപ്പട്ടിക നിർമ്മിക്കുക.

 $(m)_3$ ചന: തന്നിട്ടുള്ളത് യഥാക്രമം ഉയ രവും ഭാരവുമാണ്. ഉയരത്തിന് 55- 60, 60-65 എന്നിങ്ങനെയും ഭാരത്തിന് 40-50, 50-60 എന്നിങ്ങനെയും ക്ലാസ് പരിധികൾ ഉപയോഗിക്കാവുന്നതാണ്) (60,68),(59,50),(68,79),(63,68),(57,68),(70,65),(72,75),(62,79),(57,48),(60,65),(62,70),(71,68),(67,72),(64,49),(67,68),(69,72),(62,64),(63,69),(66,73),(59,45)

- 16) a) Which among the following is an example of non probability sampling?
 - (i) Cluster sampling
 - (ii) Multistage sampling
 - (iii) Stratified sampling
 - (iv) Quota sampling
 - b) "Sampling is more reliable than Census." Justify. (3)

Answer any one question from 17 and 18.

- 17) In a class test 30% failed in English, 20% failed in Statistics and 10% failed in both the subejcts. A student is selected at random, what is the probability that he/she
 - i) failed in at least one of the subjects
 - ii) failed in English if he/she already failed in Statistics.

(4)

(1)

OR

18) In a school there are 40 girls and 20 boys in the Science Class and 30 girls and 30 boys in the Humanities class. A student is selected at random. If it is a girl, what is the probability that it is a Humanities student.

(4)

- 16) a) ചുവടെ കൊടുത്തിരിക്കുന്നതിൽ Non Probability samplling നുള്ള ഉദാഹരണം ഏത്?
 - (i) Cluster sampling
 - (ii) Multistage sampling
 - (iii) Stratified sampling
 - (iv) Quota sampling (1)
 - b) "സാമ്പിളിങ്ങ് സെൻസസിനെക്കാളും വിശ്വ സനീയമാണ്". ഈ പ്രസ്താവനയെ സാധൂകരിക്കുക. (3)

(17, 18 ചോദ്യങ്ങളിൽ ഒരെണ്ണത്തിന് മാത്രം ഉത്തര മെഴുതുക)

- 17) ഒരു ക്ലാസ് പരീക്ഷയിൽ 30% കുട്ടികൾ ഇംഗ്ലീ ഷിനും, 20% പേർ സ്റ്റാറ്റിസ്റ്റിക്സിനും 10% പേർ 2 വിഷയങ്ങൾക്കും പരാജയപ്പെടുന്നു. ഒരു കുട്ടിയെ യാദൃശ്ചികമായി തെരഞ്ഞെടുത്താൽ അവൻ/അവൾ
 - i) ഒരു വിഷയത്തിനെങ്കിലും പരാജയപ്പെടാ നുള്ള സാധ്യതയെന്ത്?
 - ii) സ്റ്റാറ്റിസ്റ്റിക്സിന് പരാജയപ്പെട്ടയാളാണെ ങ്കിൽ ഇംഗ്ലീഷിന് പരാജയപ്പെടാനുള്ള സാധ്യത എന്ത്?

(4)

OR

18) ഒരു സ്കൂളിലെ സയൻസ് ക്ലാസിൽ 40 പെൺകുട്ടികളും 20 ആൺകുട്ടികളും, ഹ്യൂമാ നിറ്റീസ് ക്ലാസിൽ 30 പെൺകുട്ടികളും 30 ആൺകുട്ടികളും ഉണ്ട്. ഒരു കുട്ടിയെ യാദ്യച്ഛി കമായി തെരഞ്ഞെടുത്തു. അത് പെൺകുട്ടിയാ ണെങ്കിൽ ഹ്യൂമാനിറ്റീസ് ക്ലാസിലെ കുട്ടിയാ കാനുള്ള സാധ്യത എത്ര?

(4)

ANSWER KEY (SET 2)

Qn. No.		Ans	wer key/vie	w points		Score	Total
1 a	(iii)Actuar	ial Science				1	
b	Ministry h	as two wing	s				
	- statistic	S				1/2	
	- Progran	nme implem	entation			1/2	
	- CSO					1/2	
	- NSSO					1/2	
		DD,CPD, DPI					3
	Or any oth	ner four poir	nts(1/2 score	for each poir	nt)		
2 a	(i) Con	nmerce				1/2	
		Humanities				1/2	
		Science				1/2	
		Commerce				1/2	
b		nulative freq	luency			1	
	Ogi					2	
	(ii) 4	15 or 46				1	6
3 a		(iv)				1	
b			Harmonic m	ean		1	
			$HM = \frac{2}{1 + 1} =$	$\frac{50X20X2}{50+20} = 28.5$	57		
				30 1 20		1	
С			Q1 = 49			1	
			Q2 = 50 Q3= 51			1	_
						1	6
4a	$\frac{x+(x+1)}{2} = 10$).5	x=10			1	
b	$F_0 = 80 f_1 = $	86 f ₂ = 37				1	
	Mode = $1+\frac{1}{2}$					1	
	$= 1000 + \frac{1}{2X8}$	56−80 X 5()			1	
	= 1000 +5.4					1	
	= 1005.4545	5				1	6
5 a	H - L = 28 -	-2 = 30				1	
b	CV (A) = CV	(B)				1	
	$\frac{\sigma_1}{\bar{x}_1} \times 100 =$	$\frac{\sigma_2}{2} \times 100$				1	
	$\frac{8}{40} \times 100 =$	$=\frac{9}{-} \times 100$				1	4
	$\bar{x}_2 = \frac{9 \times 40}{8} =$	45					
6	8					1	1
7	class	f	<cf< td=""><td>Mid x</td><td>lx- Mel</td><td></td><td></td></cf<>	Mid x	lx- Mel		
•	20.40	3	3	30	45.3125		
,	20-40					_	
,	40-60	5	8	50	25.3125		

	80-100	15	55	90	14	.6875	2	
	100-120	10	65	110		.6875		
	$Me = 1 + \frac{\frac{N}{2} - m}{f}$			l .			1	
	_	$\frac{(1)^{2}}{2} X 20 = 75$	5.3125				1/2	
	Σflx-Mel = 99	1						
	$MD = \frac{\Sigma fIx - Me}{N}$						1/2	5
	N N	65	= 15.379	10				
			— 15.575 OR	70				
8	Х				VV.	,		
8	10		у 12		xy 12		-	
	11		11		12		\dashv	
	13		10		13		\dashv	
	9		14		12		-	
	12		13		15		-	
							\dashv	
	7		8		56		- 2	
	62		68		70	<i>3</i>		
	Σ.	χν Σχ Σν					1	
	$Cov(x,y) = \frac{\Sigma}{2}$	$\frac{n}{n} - \frac{2n}{n} \frac{2y}{n}$					1	
	$=\frac{709}{6}-\frac{62}{6}\frac{68}{6}$							
	=118.1667 -	117.1111					1/2	
	= 1.0556						1/2	5
9 a	Negatively sk	kewed					1	
	X		$(-\overline{x})$	(x- <u>x</u>	$\overline{)}^2$	$(x-\overline{x})^3$		
	3	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-6	36		-216		
	4		-5	25		-125		
	7		-2	4		8		
	9		0	0		0		
	10		1	1		1		
	11		2	4		8		
	12		3	9		27		
	16		7	49		343		
	72		0	128	8	30		
		1	1		1		1	
	$\bar{x} = \frac{72}{8} = 9$							
		$(x-\overline{x})$						
	(i) $\mu_{2} = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \mu_{2}}{\sum_{i=1}^{n} \mu_{2}}$	$\frac{(\lambda-\lambda)}{n}$						
	$=\frac{128}{8}=16$						4	
	8						1	
	$\mu_3 = \frac{\sum (x - \overline{x})}{n}$	$\frac{3}{9} = \frac{30}{9} = 3.75$					1	
		v						
	(ii) $\beta 1 = \frac{\mu 3^2}{\mu 2^3} =$	$=\frac{3.75^2}{16^3}==\frac{14.06}{409}$	$\frac{625}{96}$ = .0034	33			1	5

10 a	(i) Lar	nd II are co	rrect							
b			P(B) - P(A	∩ B)						
		(A) + P(A) -		· · - ,						
	2P(A) =									
	P (A) =									
11	Box I – 3 re	d, 4 blue								
	Box II – 5 re	ed, 2 blue								
	a) P(b	a) P(both red) =P(red) x P(red)								
	$=\frac{3}{7}$	$x \frac{5}{7} = \frac{15}{40}$					1			
	b) P(one red an	d one blue)= P(red an	d blue or B	lue and				
	rec			,			1			
	= P	(red) x P(b	lue) +P(blu	e) x P(red)						
	$=\frac{3}{7}$	$x_{7}^{2} + \frac{4}{7} \times \frac{5}{7}$					1	3		
	,	$\frac{5}{9} + \frac{20}{49} = \frac{26}{49}$					1	3		
	- 4	9 49 49								
				OR .						
12	P(A) = 0.8 F	P(B)=0 9 P								
	P(contradio						1			
	=P(A)x P(B			r and b,			1			
	$= 0.8 \times 0.1$		(-)				1/2			
	=0.08+0.18	=0.08+0.18=0.26								
13	(iii) discrete						1	1		
14	Preparation	-								
	(simplicity,	integrity, l	ogical orde	er etc)			4	4		
15 a	(ii) 9			I	I		1 .			
b	height						1			
	weight	40-50	50-60	60-70	70-80	Total	-			
	55-60	2	1	1		4				
	60-65	1		5	2	8				
	65-70			1	4	5				
	70-75			2	1	3				
	Total	3	1	9	7	20	4	5		
	With tally r						_			
16 a	(iv) quota s						1			
b	1 score for			C) 0.1			3	4		
17	i) $P(E) = 0.3$		2 P(Eand 6) - P (Ean				½ 1			
		: P(E) + P (3 : 0.3 + 0.2 -		u <i>3 j</i>			1/2			
			01 - 0.4				1			
	ii) P(E/S) = ^E						_			
	$=\frac{0}{c}$	$\frac{0.1}{0.2} = \frac{1}{2}$					1	4		
		· 								
<u> </u>										

OR		
P(science) = ½ P(humanities)= ½	1	
$P(girl/science) = \frac{40}{60} = \frac{2}{3}$	1/2	
$P(girl/humanities) = \frac{30}{60} = \frac{1}{2}$	1/2	
P(humanities / girl)= $\frac{P(H).P(G/H)}{P(H).P(G/H)+P(S).P(G/S)}$	1	
$=\frac{\frac{1}{2}\frac{1}{2}}{\frac{1}{2}\cdot\frac{1}{2}+\frac{1}{2}\cdot\frac{2}{3}}$		
$=\frac{\frac{1}{4}}{\frac{1}{4}+\frac{1}{3}}=\frac{\frac{1}{4}}{\frac{7}{12}}=\frac{3}{7}$		
	1	4
	P(science) = ½ P(humanities)= ½ $P(girl/science) = \frac{40}{60} = \frac{2}{3}$ $P(girl/humanities) = \frac{30}{60} = \frac{1}{2}$ $P(humanities / girl) = \frac{P(H).P(G/H)}{P(H).P(G/H)+P(S).P(G/S)}$	P(science) = ½ P(humanities) = ½ P(girl/science) = $\frac{40}{60} = \frac{2}{3}$ P(girl/humanities) = $\frac{30}{60} = \frac{1}{2}$ P(humanities / girl) = $\frac{P(H).P(G/H)}{P(H).P(G/H) + P(S).P(G/S)}$ 1 = $\frac{\frac{1}{2} \cdot \frac{1}{2}}{\frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{2}{3}}$ = $\frac{\frac{1}{4}}{\frac{1}{4} + \frac{1}{3}} = \frac{\frac{1}{4}}{\frac{7}{12}} = \frac{3}{7}$