Series OSR

कोड नं. 56/1 Code No.

रोल नं.				
Roll No.				

परीक्षार्थी कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।

Candidates must write the Code on the title page of the answer-book.

- कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 15 हैं।
- प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें।
- कृपया जाँच कर लें कि इस प्रश्न-पत्र में 30 प्रश्न हैं।
- कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, प्रश्न का क्रमांक अवश्य लिखें ।
- इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है। प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा। 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे।
- Please check that this question paper contains 15 printed pages.
- Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains **30** questions.
- Please write down the Serial Number of the question before attempting it.
- 15 minutes time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

रसायन विज्ञान (सैद्धान्तिक) CHEMISTRY (Theory)

निर्धारित समय : 3 घण्टे अधिकतम अंक : 70

Time allowed: 3 hours Maximum Marks: 70

सामान्य निर्देश:

- (i) **सभी** प्रश्न अनिवार्य हैं।
- (ii) प्रश्न-संख्या 1 से 8 तक अति लघु-उत्तरीय प्रश्न हैं । प्रत्येक प्रश्न के लिए 1 अंक है ।
- (iii) प्रश्न-संख्या 9 से 18 तक लघ्-उत्तरीय प्रश्न हैं । प्रत्येक प्रश्न के लिए 2 अंक हैं ।
- (iv) प्रश्न-संख्या 19 से 27 तक भी लघ्-उत्तरीय प्रश्न हैं । प्रत्येक प्रश्न के लिए 3 अंक हैं ।
- (v) प्रश्न-संख्या **28** से **30** तक दीर्घ-उत्तरीय प्रश्न हैं। प्रत्येक प्रश्न के लिए **5** अंक हैं।
- (vi) आवश्यकतानुसार लॉग टेबलों का प्रयोग करें । कैल्कुलेटरों के उपयोग की अनुमित **नहीं** है ।

General Instructions:

- (i) **All** questions are compulsory.
- (ii) Questions number 1 to 8 are very short-answer questions and carry 1 mark each.
- (iii) Questions number **9** to **18** are short-answer questions and carry **2** marks each.
- (iv) Questions number 19 to 27 are also short-answer questions and carry 3 marks each.
- (v) Questions number **28** to **30** are long-answer questions and carry **5** marks each.
- (vi) Use Log Tables, if necessary. Use of calculators is **not** allowed.
- 1. रासायनिक शोषण (chemisorption) पर तापक्रम का क्या प्रभाव होता है ? 1
 What is the effect of temperature on chemisorption ?
- 2. सिल्वर के निष्कर्षण में ज़िन्क धातु का क्या कार्य होता है ? 1
 What is the role of zinc metal in the extraction of silver?
- 3. H_3PO_3 की क्षारकता (बेसिकता) कितनी होती है ? 1 What is the basicity of H_3PO_3 ?

56/1 2


4. निम्न जोड़े में किरेल अण को पहचानिए:

Identify the chiral molecule in the following pair:

5. निम्न में से कौन-सा प्राकृतिक बहुलक है ?

बूना-S, प्रोटीनें, PVC

Which of the following is a natural polymer?

Buna-S, Proteins, PVC

6. प्राथमिक ऐरोमैटिक ऐमीनों के डाइएज़ोनियम लवणों में परिवर्तन को किस नाम से जाना जाता है ?

The conversion of primary aromatic amines into diazonium salts is known as ______.

7. स्यूक्रोस के जल-अपघटन (hydrolysis) के उत्पाद क्या हैं ?

What are the products of hydrolysis of sucrose?

8. p-मेथिलबैन्ज़ैल्डिहाइड की संरचना लिखिए।

Write the structure of p-methylbenzaldehyde.

9. घनत्व $2.8~{
m g~cm^{-3}}$ का एक तत्त्व फलक केन्द्रित घनाकार (f.c.c.) प्रकार का मात्रक सेल बनाता है जिसके किनारे की लम्बाई $4\times 10^{-8}~{
m cm}$ है । इस तत्त्व का मोलर द्रव्यमान परिकलित कीजिए ।

(दिया गया है : $N_A = 6.022 \times 10^{23} \,\mathrm{Hic}^{-1}$)

An element with density $2.8~{\rm g~cm^{-3}}$ forms a f.c.c. unit cell with edge length 4×10^{-8} cm. Calculate the molar mass of the element.

(Given: $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$)

1

1

1

1

1

- **10.** (i) LiCl के गुलाबी रंग के लिए इसका किस प्रकार का अ-रससमीकरणिमतीय (non-stoichiometric) दोष उत्तरदायी होता है ?
 - (ii) NaCl किस प्रकार का रससमीकरणिमतीय दोष दिखाता है ?

2

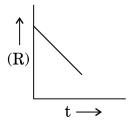
अथवा

निम्नलिखित पदों के जोड़ों के बीच आप विभेदन कैसे करेंगे :

2

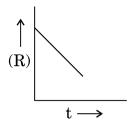
- (i) टेट्राहेड्ल तथा ऑक्टाहेड्ल रिक्तियाँ
- (ii) क्रिस्टल जालक तथा मात्रक सेल
- (i) What type of non-stoichiometric point defect is responsible for the pink colour of LiCl?
- (ii) What type of stoichiometric defect is shown by NaCl?

OR


How will you distinguish between the following pairs of terms:

- (i) Tetrahedral and octahedral voids
- (ii) Crystal lattice and unit cell
- 11. आयनों के स्वतन्त्र पलायन सम्बन्धी कोलराऊश (Kohlrausch) नियम लिखिए । तनुकरण पर विलयन की चालकता कम क्यों हो जाती है ?

2


State Kohlrausch law of independent migration of ions. Why does the conductivity of a solution decrease with dilution?

12. एक रासायनिक अभिक्रिया, $R \to P$ के लिए, समय (t) के प्रति सान्द्रता (R) में परिवर्तन को इस ग्राफ में दिखाया गया है।

- (i) इस अभिक्रिया की कोटि (order) सुझाइए ।
- (ii) वक्र की प्रवणता (ढलान) क्या होगी ?

For a chemical reaction $R \to P$, the variation in the concentration (R) vs. time (t) plot is given as

- (i) Predict the order of the reaction.
- (ii) What is the slope of the curve?
- 13. धातुओं के विद्युत्-अपघटनी परिष्करण का आधारमूल सिद्धान्त समझाइए । इसका एक उदाहरण दीजिए ।

Explain the principle of the method of electrolytic refining of metals. Give one example.

2

2

2

2

14. निम्न समीकरणों को पूरा कीजिए :

(i)
$$P_4 + H_2O \rightarrow$$

(ii)
$$XeF_4 + O_2F_2 \rightarrow$$

Complete the following equations:

(i)
$$P_4 + H_2O \rightarrow$$

(ii)
$$XeF_4 + O_2F_2 \rightarrow$$

15. निम्न की संरचनाएँ बनाइए :

- (i) XeF_2
- (ii) BrF₃

Draw the structures of the following:

- (i) XeF_2
- (ii) BrF₃

56/1

16. निम्न अभिक्रियाओं से सम्बन्धित समीकरण लिखिए :

- (i) राइमर टीमन अभिक्रिया
- (ii) विलियमसन संश्लेषण (synthesis)

Write the equations involved in the following reactions:

- (i) Reimer Tiemann reaction
- (ii) Williamson synthesis

5 P.T.O.

17. निम्न अभिक्रिया की क्रियाविधि लिखिए:

$$\label{eq:ch3ch2oH} \text{CH}_3\text{CH}_2\text{OH} \ \xrightarrow{\ \ HBr \ \ } \ \text{CH}_3\text{CH}_2\text{Br} + \text{H}_2\text{O}$$

Write the mechanism of the following reaction:

$$CH_3CH_2OH \xrightarrow{HBr} CH_3CH_2Br + H_2O$$

- 18. निम्न बहुलकों को प्राप्त करने के लिए प्रयुक्त एकलकों के नाम लिखिए :
 - (i) बेकेलाइट
 - (ii) निओप्रीन

Write the name of monomers used for getting the following polymers:

- (i) Bakelite
- (ii) Neoprene
- **19.** (a) अभिक्रिया

$$Mg\left(s\right)+Cu^{2+}\left($$
जलीय $ight) \ o \ Mg^{2+}\left($ जलीय $ight)+Cu\left(s\right)$

के लिए $\Delta_{
m r} {
m G}^{
m o}$ परिकलित कीजिए।

दिया गया है : E_{then}^{o} = + 2.71 V, $1 \, \mathrm{F}$ = $96500 \, \mathrm{C}$ मोल $^{-1}$

- (b) अपोलो (Apollo) अंतरिक्ष प्रोग्राम के लिए विद्युत् शक्ति उपलब्ध कराने के लिए प्रयुक्त सेल के प्रकार का नाम लिखिए।
- (a) Calculate $\Delta_r G^0$ for the reaction $Mg~(s) + Cu^{2+}~(aq) \rightarrow Mg^{2+}~(aq) + Cu~(s)$ Given : $E^0_{cell} = + 2.71~V,~1~F = 96500~C~mol^{-1}$
- (b) Name the type of cell which was used in Apollo space programme for providing electrical power.

2

3

2

56/1

20. स्थिर आयतन अवस्था में SO_2Cl_2 के प्रथम कोटि के तापीय विघटन के दौरान निम्नलिखित आंकड़े प्राप्त हुए :

$$SO_2Cl_2$$
 (गैस) \longrightarrow SO_2 (गैस) + Cl_2 (गैस)

प्रयोग	समय/ s^{-1}	सकल दाब/वायुमण्डल
1	0	0.4
2	100	0.7

वेग नियतांक परिकलित कीजिए।

(दिया गया है : $\log 4 = 0.6021$, $\log 2 = 0.3010$)

The following data were obtained during the first order thermal decomposition of SO_2Cl_2 at a constant volume :

$$SO_2Cl_2(g) \longrightarrow SO_2(g) + Cl_2(g)$$

Experiment	Time/s ⁻¹	Total pressure/atm
1	0	0.4
2	100	0.7

Calculate the rate constant.

(Given: $\log 4 = 0.6021$, $\log 2 = 0.3010$)

21. इमल्शन्स क्या होते हैं ? इनके विभिन्न प्रकार क्या हैं ? प्रत्येक प्रकार का एक उदाहरण दीजिए।

What are emulsions? What are their different types? Give one example of each type.

22. निम्नलिखित के कारण दीजिए:

- (i) $(CH_3)_3 P = O$ तो पाया जाता है परन्तु $(CH_3)_3 N = O$ नहीं मिलता ।
- (ii) इलेक्ट्रॉन प्राप्त करने की ऋणात्मक चिह्न वाली एन्थैल्पी का मान सल्फ़र की अपेक्षा ऑक्सीजन के लिए कम होता है।
- (iii) H_3PO_3 की अपेक्षा H_3PO_2 अधिक प्रबल अपचायक है ।

56/1

3

3

Give reasons for the following:

- (i) $(CH_3)_3 P = O$ exists but $(CH_3)_3 N = O$ does not.
- (ii) Oxygen has less electron gain enthalpy with negative sign than sulphur.
- (iii) H_3PO_2 is a stronger reducing agent than H_3PO_3 .
- 23. (i) संकर $[Cr(NH_3)_4 Cl_2]Cl$ का IUPAC नाम लिखिए ।
 - (ii) संकर $[Co(en)_3]^{3+}$ किस प्रकार की समावयवता दिखाता है ? $(en = $\hat{v} 1, 2 3)$
 - (iii) $[NiCl_4]^{2-}$ क्यों अनुचुम्बकीय होता है जबिक $[Ni(CO)_4]$ प्रतिचुम्बकीय होता है ? (परमाण् क्रमांक : Cr = 24, Co = 27, Ni = 28)
 - (i) Write the IUPAC name of the complex [Cr(NH₃)₄ Cl₂]Cl.
 - (ii) What type of isomerism is exhibited by the complex $[Co(en)_3]^{3+}$? (en = ethane-1,2-diamine)
 - (iii) Why is $[NiCl_4]^{2-}$ paramagnetic but $[Ni(CO)_4]$ is diamagnetic? (At. nos. : Cr = 24, Co = 27, Ni = 28)
- 24. (a) निम्न में से प्रत्येक अभिक्रिया के प्रमुख एकहैलोजनी उत्पादों की संरचनाएँ बनाइए :

(i)
$$\sim$$
 CH₂OH $\xrightarrow{\text{PCl}_5}$

(ii)
$$\leftarrow$$
 $CH_2 - CH = CH_2 + HBr \longrightarrow$

- (b) निम्न युग्मों में से कौन-सा हैलोजनी यौगिक ${
 m S_N}2$ अभिक्रिया में अधिक तीव्रता से अभिक्रिया करेगा :
 - (i) CH_3Br अथवा CH_3I
 - (ii) $(CH_3)_3$ C-Cl अथवा CH_3-Cl

3

3

56/1

(a) Draw the structures of major monohalo products in each of the following reactions:

(i)
$$CH_2OH \xrightarrow{PCl_5}$$

(ii)
$$CH_2 - CH = CH_2 + HBr \longrightarrow$$

- (b) Which halogen compound in each of the following pairs will react faster in $S_N 2$ reaction :
 - (i) CH₃Br or CH₃I
 - (ii) $(CH_3)_3 C Cl$ or $CH_3 Cl$

25. निम्नलिखित के कारण लिखिए:

(i) तृतीयक ऐमीनों (R_3N) की तुलना में प्राथिमक ऐमीनों $(R-NH_2)$ के क्वथनांक उच्चतर होते हैं ।

3

3

- (ii) ऐनिलीन फ्रीडेल क्राफ़्ट्स अभिक्रिया नहीं देती ।
- (iii) जलीय विलयन में (CH3)3N की तुलना में (CH3)2NH अधिक क्षारीय होती है।

अथवा

निम्न अभिक्रियाओं में A, B और C की संरचनाएँ दीजिए:

(i)
$$C_6H_5NO_2 \xrightarrow{Sn + HCl} A \xrightarrow{NaNO_2 + HCl} B \xrightarrow{H_2O} C$$

(ii)
$$CH_3CN \xrightarrow{H_2O/H^+} A \xrightarrow{NH_3} B \xrightarrow{Br_2 + KOH} C$$

Account for the following:

- (i) Primary amines (R-NH₂) have higher boiling point than tertiary amines (R_3N).
- (ii) Aniline does not undergo Friedel Crafts reaction.
- (iii) (CH₃)₂NH is more basic than (CH₃)₃N in an aqueous solution.

OR

Give the structures of A, B and C in the following reactions:

(i)
$$C_6H_5NO_2 \xrightarrow{Sn + HCl} A \xrightarrow{NaNO_2 + HCl} B \xrightarrow{H_2O} C$$

(ii)
$$CH_3CN \xrightarrow{H_2O/H^+} A \xrightarrow{NH_3} B \xrightarrow{Br_2 + KOH} C$$

- 26. प्रोटीनों से सम्बन्धित निम्न पदों की परिभाषाएँ दीजिए :
 - (i) पेप्टाइड आबन्ध
 - (ii) प्राथमिक संरचना
 - (iii) विकृतीकरण

Define the following terms as related to proteins:

- (i) Peptide linkage
- (ii) Primary structure
- (iii) Denaturation
- 27. विश्व स्वास्थ्य दिवस के अवसर पर, डॉ. सतपाल ने पास के गाँव में रहने वाले धनहीन किसानों के लिए एक 'स्वास्थ्य कैम्प' लगाया । जाँच के बाद, उसे यह देख कर धक्का लगा कि बार-बार कीटनाशकों के सम्पर्क में आने के कारण किसानों में से अधिकों को कैन्सर का रोग हो गया था । उनमें से बहुतों को मधुमेह भी था । उन्होंने उनमें धनमुक्त औषधियाँ बाँटीं । डॉ. सतपाल ने इस बात की सूचना तत्काल नेशनल ह्यूमन राइट्स किमशन (NHRC) को दी । NHRC के सुझावों पर सरकार ने निर्णय लिया की डॉक्टरी सहायता और वित्तीय सहायता लोगों को दी जाए और भारत के सभी गाँवों में घातक रोगों के प्रभाव को रोकने के लिए अत्यधिक सुविधा वाले अस्पताल खोले जाएँ ।
 - (i) (a) डॉ. सतपाल और (b) NHRC द्वारा दर्शाई गई मान्य बातें लिखिए ।
 - (ii) अन्तिम कैन्सर में पीड़ा से बचाने के लिए मुख्यतया कौन-सी पीड़ानाशक औषधियाँ प्रयुक्त की जाती हैं ?
 - (iii) मधुमेह के रोगियों के लिए सुझाए गए कृत्रिम मधुकारों में से किसी एक का उदाहरण दीजिए।

3

On the occasion of World Health Day, Dr. Satpal organized a 'health camp' for the poor farmers living in a nearby village. After check-up, he was shocked to see that most of the farmers suffered from cancer due to regular exposure to pesticides and many were diabetic. They distributed free medicines to them. Dr. Satpal immediately reported the matter to the National Human Rights Commission (NHRC). On the suggestions of NHRC, the government decided to provide medical care, financial assistance, setting up of super-speciality hospitals for treatment and prevention of the deadly disease in the affected villages all over India.

- (i) Write the values shown by
 - (a) Dr. Satpal
 - (b) NHRC.
- (ii) What type of analgesics are chiefly used for the relief of pains of terminal cancer?
- (iii) Give an example of artificial sweetener that could have been recommended to diabetic patients.
- 28. (a) निम्न पदों की परिभाषा दीजिए:
 - (i) मोलरता
 - (ii) मोलल उन्नयन स्थिरांक (Kb)
 - (b) एक जलीय विलयन में प्रति लिटर विलयन में 15~g यूरिया (मोलर द्रव्यमान = 60~g मोल $^{-1}$) घुलित है । इस विलयन का परासरण दाब जल में ग्लूकोज़ (मोलर द्रव्यमान = 180~g मोल $^{-1}$) के एक विलयन के समान (समपरासरी) है । एक लिटर विलयन में उपस्थित ग्लूकोज़ का द्रव्यमान परिकलित कीजिए ।

2, 3

अथवा

- (a) एथेनॉल और ऐसीटोन का मिश्रण किस प्रकार का विचलन दिखाता है ? कारण दीजिए।
- (b) जल में ग्लूकोज़ (मोलर द्रव्यमान = $180~{\rm g}$ मोल $^{-1}$) के एक विलयन पर लेबल लगा है, 10% (द्रव्यमान अनुसार) । इस विलयन की मोललता और मोलरता क्या होंगे ? (विलयन का घनत्व = $1\cdot 2~{\rm g~mL}^{-1}$)
- (a) Define the following terms:
 - (i) Molarity
 - (ii) Molal elevation constant (K_b)
- (b) A solution containing 15 g urea (molar mass = 60 g mol⁻¹) per litre of solution in water has the same osmotic pressure (isotonic) as a solution of glucose (molar mass = 180 g mol⁻¹) in water. Calculate the mass of glucose present in one litre of its solution.

OR

- (a) What type of deviation is shown by a mixture of ethanol and acetone? Give reason.
- (b) A solution of glucose (molar mass = 180 g mol⁻¹) in water is labelled as 10% (by mass). What would be the molality and molarity of the solution?

(Density of solution = 1.2 g mL^{-1})

- 29. (a) निम्न समीकरणों को पूरा कीजिए:
 - (i) $\operatorname{Cr_2O_7^{2-}} + 2\operatorname{OH}^- \longrightarrow$
 - (ii) $MnO_4^- + 4H^+ + 3e^- \longrightarrow$

- (b) निम्न के कारण लिखिए:
 - (i) Zn को संक्रमण तत्त्व नहीं माना जाता।
 - (ii) संक्रमण धातु बहुत से संकर बनाते हैं।
 - (iii) ${\rm Mn^{3+}/Mn^{2+}}$ युग्म, ${\rm Cr^{3+}/Cr^{2+}}$ युग्म से कहीं अधिक ${\rm E^o}$ मान रखता है। 2,3

अथवा

- (i) संरचना परिवर्तनशीलता और रासायनिक अभिक्रियाशीलता के संदर्भ में लैन्थेनॉइडों और ऐक्टिनॉयडों के बीच भेद लिखिए।
- (ii) लैन्थेनॉइड शृंखला के उस सदस्य का नाम लिखिए, जो +4 ऑक्सीकरण अवस्था दिखाने के लिए प्रसिद्ध है।
- (iii) निम्न समीकरण को पूरा कीजिए : ${\rm MnO_4}^- + 8{\rm H}^+ + 5{\rm e}^- \longrightarrow$
- (iv) Mn^{3+} और Cr^{3+} में से कौन अधिक अनुचुम्बकीय है और क्यों ? (परमाण् क्रमांक : Mn=25, Cr=24)
- (a) Complete the following equations:
 - (i) $\operatorname{Cr_2O_7^{2-}} + 2\operatorname{OH}^- \longrightarrow$
 - (ii) $MnO_4^- + 4H^+ + 3e^- \longrightarrow$
- (b) Account for the following:
 - (i) Zn is not considered as a transition element.
 - (ii) Transition metals form a large number of complexes.
 - (iii) The E^{0} value for the Mn^{3+}/Mn^{2+} couple is much more positive than that for Cr^{3+}/Cr^{2+} couple.

OR

- (i) With reference to structural variability and chemical reactivity, write the differences between lanthanoids and actinoids.
- (ii) Name a member of the lanthanoid series which is well known to exhibit +4 oxidation state.
- (iii) Complete the following equation:

$$MnO_4^- + 8H^+ + 5e^- \longrightarrow$$

- (iv) Out of Mn^{3+} and Cr^{3+} , which is more paramagnetic and why? (Atomic nos. : Mn = 25, Cr = 24)
- **30.** (a) निम्न अभिकारकों से CH_3CHO की अभिक्रिया करने पर बने उत्पादों को लिखिए :
 - (i) HCN
 - (ii) $H_2N OH$
 - (iii) तन NaOH की उपस्थिति में CH3CHO
 - (b) निम्न यौगिक युग्मों में अन्तर दिखाने के लिए सरल रासायनिक परीक्षण लिखिए:
 - (i) बैन्जोइक अम्ल और फीनॉल
 - (ii) प्रोपेनल और प्रोपेनोन

3, 2

अथवा

- (a) निम्न के कारण लिखिए:
 - (i) CH_3COOH की तुलना में $Cl-CH_2COOH$ अधिक प्रबल अम्ल है ।
 - (ii) कार्बोक्सिलिक अम्ल कार्बोनिल समूह की अभिक्रियाएँ नहीं देते ।
- (b) निम्न नाम धारित अभिक्रियाओं के लिए रासायनिक समीकरण लिखिए:
 - (i) रोज़ेनमुन्ड अपचयन
 - (ii) कैनिजारो अभिक्रिया
- (c) ${
 m CH_3CH_2-CO-CH_2-CH_3}$ और ${
 m CH_3CH_2-CH_2-CO-CH_3}$ में से कौन आयोडोफ़ॉर्म परीक्षण देता है ? $2,\,2,\,1$

56/1

- (a) Write the products formed when CH₃CHO reacts with the following reagents:
 - (i) HCN
 - (ii) $H_2N OH$
 - (iii) CH₃CHO in the presence of dilute NaOH
- (b) Give simple chemical tests to distinguish between the following pairs of compounds:
 - (i) Benzoic acid and Phenol
 - (ii) Propanal and Propanone

OR

- (a) Account for the following:
 - (i) Cl CH₂COOH is a stronger acid than CH₃COOH.
 - (ii) Carboxylic acids do not give reactions of carbonyl group.
- (b) Write the chemical equations to illustrate the following name reactions:
 - (i) Rosenmund reduction
 - (ii) Cannizzaro's reaction
- (c) Out of $CH_3CH_2 CO CH_2 CH_3$ and $CH_3CH_2 CH_2 CO CH_3$, which gives iodoform test?

56/1 15

Marking Scheme Chemistry - 2014 Outside Delhi- SET (56/1)

1	It first increases then decreases or graphical representation.	1
2	Zn acts as reducing agent.	1
3	2	1
4	çı	1
	2–Chlorobutane or or first molecule of the pair.	
5	Proteins	1
		1
6.	Diazotization	1
7.	Glucose & Fructose	1
8.	ÇHO	1
	CH_3	
9.	Given; $d = 2.8 g/cm^3$; $Z = 4$; $a = 4 \times 10^{-8} cm$ $N_A = 6.022 \times 10^{23}$ per mol	
	$d = \frac{Z \times M}{a^3 \times N_A} \qquad \text{or} \qquad M = \frac{x \cdot a^3 \times N_A}{Z}$	1/2
	a ³ x N _A Z	
	$\implies M = \frac{2.8 \text{ g cm}^{-3} \left(4 \times 10^{-8} \text{cm}\right)^3 \times 6.022 \times 10^{23}}{4}$	1/2
	\rightarrow M $-$ 4	/2
	$M = 2.8 \times 16 \times 10^{-1} \times 6.022 = 26.97 \text{ g/mol}$	1
10	(i) Metal excess defect / Metal excess defect due to anionic vacancies filled by free electrons	1
	/ Due to F – centers.	
	(ii) Schottky defect.	1
	Or	

10	(i) Tetrahedral void is surrounded by 4 constituent particles (atoms / molecules / ions).	
10	Octahedral void is surrounded by 6 constituent particles (atoms / molecules / ions).	1
	OR	
	radius ratio (r + /r -) for Tetrahedral void is 0.225 & radius ratio for octahedral voids is 0.414	
	(ii) A regular three dimensional arrangement of points in space is called a crystal lattice .	
		1
	Unit cell is the smallest portion of a crystal lattice which, when repeated in three directions,	1
	generates an entire lattice. / unit cell is the miniature of crystal lattice / microscopic edition of the	
1.1	crystal lattice.	1
11	Kohlrausch law of independent migration of ions. The law states that limiting molar	1
	conductivity of an electrolyte can be stated as the sum of the individual contributions of the anion	
	and cation of the electrolyte.	
	On dilution, the conductivity (κ) of the electrolyte decreases as the number of ions per unit	1
	volume of solution decreases.	
12	(i) Zero order reaction	1
	(ii) slope = -k	1
13	In this method, the impure metal is made to act as anode. A strip of the same metal in pure form is	1
	used as cathode. They are put in a suitable electrolytic bath containing soluble salt of the same	
	metal. Pure metal is deposited at the cathode and impurities remain in the solution.	
	For example: electro refining of Cu, Ag, Au (any one)	1
14	(i) $P_4 + H_2O$	1
	(ii) $XeF_4 + O_2F_2 \longrightarrow XeF_6 + O_2$.	1
15	F Br F	1+1
16	Reimer-Tiemann reaction	
	$ \begin{array}{c} OH \\ CHCl_3 + aq NaOH \end{array} $ $ \begin{array}{c} OH \\ CHO \end{array} $ $ \begin{array}{c} H^+ \end{array} $ $ \begin{array}{c} OH \\ CHO \end{array} $	1
	Williamson synthesis	
	$R-X + R'-O$ Na \longrightarrow $R-O-R' + Na X$	1
17	$HBr \rightarrow H^+ + Br^-$	
		1

$CH_{3} - CH_{2} - O - H + H^{*} \rightarrow CH_{3} - CH_{2} - O - H$ H $CH_{3} - CH_{2} - O - H \rightarrow CH_{3} - CH_{2} + H_{2}O$ $CH_{5} - CH_{2} - O - H \rightarrow CH_{3} - CH_{2} + H_{2}O$ R Or I $I8 (i) Phenol & Formaldehyde$ $(ii) 2 - Chloro-1, 3 - butadiene (or Chloroprene)$ $I1$ $I9 (a) Given & E^{o}Cell = +2.71V & F = 96500C mol^{-1} & n = 2 (from the given reaction)$ $\Delta rG^{O} = -n x F x & E^{o}Cell$ $\Delta rG^{O} = -2 x 96500 C mol^{-1} x 2.71V$ $= -523030 J / mol \text{ or } -523.030 kJ / mol$ $(b) Hydrogen - oxygen fuel Cell / Fuel cell.$ $20 & SO_{2} Cl_{2} \rightarrow SO_{2} + Cl_{2}$ $\Delta t t = 0s 0.4 \text{ atm} \qquad 0 \text{ atm} \qquad 0 \text{ atm}$ $\Delta t t = 100s (0.4 - x) \text{ atm} \qquad x \text{ atm} \qquad x \text{ atm}$ $Pt = 0.4 - x + x + x$ $Pt = 0.4 + x$ $0.7 = 0.4 + x$ $x = 0.3$ $k = \frac{2303}{t} \log \frac{p_{1}}{2p_{1} - p_{1}}$ $k = \frac{2303}{t} \log \frac{0.4}{0.80.47}$ 1			
$CH_{5} \stackrel{+}{C}H_{2} \stackrel{-}{Br} \stackrel{-}{C}CH_{2} - Br$ Or 1 $Br + CH_{3} - OH_{3}^{*} \longrightarrow Br - CH_{2} + H_{3}O$ R $(where R = -CH_{3})$ $18 (i) Phenol & Formaldehyde$ $(ii) 2-Chloro-1,3-butadiene (or Chloroprene)$ $19 (a) Given E^{O}Cell = +2.71V & F = 96500C mol^{-1} n = 2 (from the given reaction)$ $\Delta rG^{O} = -n x F x E^{O}Cell$ $\Delta rG^{O} = -2 x 96500 C mol^{-1} x 2.71V$ $= -523030 J / mol \text{ or } -523.030 \text{ kJ / mol}$ $(b) Hydrogen - oxygen fuel Cell / Fuel cell.$ $20 SO_{2}Cl_{2} \longrightarrow SO_{2} + Cl_{2}$ $At t = 0s 0.4 \text{ atm} \qquad 0 \text{ atm} \qquad 0 \text{ atm}$ $At t = 100s (0.4 - x) \text{ atm} \qquad x \text{ atm} \qquad x \text{ atm}$ $Pt = 0.4 - x + x + x$ $Pt = 0.4 + x$ $0.7 = 0.4 + x$ $x = 0.3$ $k = \frac{2.303}{t} \log \frac{P_{1}}{2P_{1} - P_{2}}$ $k = \frac{2.303}{t} \log \frac{Q_{1}}{0.8-0.7}$ 1			1/2
$CH_{5} \stackrel{+}{C}H_{2} \stackrel{+}{Br} \stackrel{-}{C}CH_{3} \stackrel{-}{C}H_{2} - Br$ Or 1 $Br + CH_{3} \stackrel{-}{OH_{2}} \longrightarrow Br - CH_{2} + H_{3}O$ $R (where R = -CH_{3})$ $18 (i) \text{ Phenol & Formaldehyde} \qquad 1$ $(ii) 2 - \text{Chloro-1,3-butadiene (or Chloroprene)} \qquad 1$ $19 (a) \text{ Given } E^{0}\text{Cell} = +2.71V \& F = 96500C \text{ mol}^{-1} n = 2 \text{ (from the given reaction)}$ $\Delta rG^{0} = -n \text{ x F x } E^{0}\text{Cell} \qquad \frac{1}{2} \times 2.71V$ $= -523030 \text{ J/ mol or } -523.030 \text{ kJ/ mol} \qquad 1$ $(b) \text{ Hydrogen } - \text{oxygen fuel Cell / Fuel cell.} \qquad 1$ $20 SO_{2}\text{ Cl}_{2} \qquad \rightarrow SO_{2} \qquad + \text{ Cl}_{2}$ $\Delta t = 0s 0.4 \text{ atm} \qquad 0 \text{ atm} \qquad 0 \text{ atm}$ $\Delta t = 100s (0.4 - x) \text{ atm} \qquad x \text{ atm} \qquad x \text{ atm}$ $Pt = 0.4 - x + x + x$ $Pt = 0.4 + x$ $0.7 = 0.4 + x$ $x = 0.3$ $k = \frac{2.303}{t} \log \frac{p_{L}}{2p_{L} - p_{L}}$ $k = \frac{2.303}{0.8} \log \frac{0.4}{0.80.7} \qquad 1$		$CH_3 - CH_2 - O - H \longrightarrow CH_3 - CH_2 + H_2O$	16
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		CH_3 - CH_2 \xrightarrow{Br} CH_3 - CH_2 - Br	72
18		Or	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$ \begin{array}{ccc} & & & & & & & & & & & \\ Br & + & CH_2 & \longrightarrow & Br - CH_2 + & H_2O \\ & & & & & & & & \\ R & & & & & & \\ & & & & & & \\ R & & & & & & \\ \end{array} (where R = -CH_3) $	
19 (a) Given E°Cell = +2.71V & F = 96500C mol ⁻¹ n = 2 (from the given reaction) $\Delta rG^{O} = -n x F x E^{O}Cell$ $\Delta rG^{O} = -2 x 96500 C mol-1 x 2.71V$ $= -523030 J / mol or -523.030 kJ / mol$ (b) Hydrogen – oxygen fuel Cell / Fuel cell. 10 SO ₂ Cl ₂ \rightarrow SO ₂ + Cl ₂ At t = 0s 0.4 atm 0 atm 0 atm At t = 100s (0.4 – x) atm x atm x atm Pt = 0.4 – x + x + x Pt = 0.4 + x 0.7 = 0.4 + x x = 0.3 $k = \frac{2.303}{t} \log \frac{p_i}{2p_i - p_t}$ $k = \frac{2.303}{t} \log \frac{0.4}{0.8-0.7}$ 1	18	(i) Phenol & Formaldehyde	1
$\Delta rG^{O} = -n \ x \ F \ x \ E^{O} Cell$ $\Delta rG^{O} = -2 \ x \ 96500 \ C \ mol^{-1} \ x \ 2.71 V$ $= -523030 \ J \ / \ mol \ or \ -523.030 \ k J \ / \ mol$ (b) Hydrogen - oxygen fuel Cell / Fuel cell. 20 SO ₂ Cl ₂ \rightarrow SO ₂ + Cl ₂ At t = 0s 0.4 atm 0 atm 0 atm At t = 100s (0.4 - x) atm x atm x atm $Pt = 0.4 - x + x + x$ $Pt = 0.4 + x$ $0.7 = 0.4 + x$ $x = 0.3$ $k = \frac{2.303}{t} \ log \ \frac{p_i}{2p_i - p_t}$ $k = \frac{2.303}{t} \ log \ \frac{0.4}{0.8 \cdot 0.7}$		(ii) 2–Chloro–1,3–butadiene (or Chloroprene)	1
$\Delta r G^{O} = -2 \times 96500 \text{ C mol}^{-1} \times 2.71 \\ = -523030 \text{ J / mol or } -523.030 \text{ kJ / mol} \\ \text{ (b) Hydrogen } - \text{ oxygen fuel Cell / Fuel cell.} \\ \hline 20 \qquad SO_2 \text{ Cl}_2 \qquad \rightarrow SO_2 \qquad + \qquad \text{Cl}_2 \\ \text{At } t = 0s \qquad 0.4 \text{ atm} \qquad 0 \text{ atm} \qquad 0 \text{ atm} \\ \text{At } t = 100s (0.4 - x) \text{ atm} \qquad x \text{ atm} \qquad x \text{ atm} \\ \text{Pt} = 0.4 - x \qquad + x \qquad + x \\ \text{Pt} = 0.4 + x \\ 0.7 = 0.4 + x \\ x = 0.3 \\ \text{k} = \frac{2.303}{t} \text{ log } \frac{p_i}{2p_i - p_t} \\ \text{l} \\ \text{k} = \frac{2.303}{t} \text{ log } \frac{0.4}{0.8 - 0.7} \\ \hline \end{tabular}$	19	(a) Given E^{o} Cell = +2.71V & $F = 96500C \text{ mol}^{-1}$ $n = 2$ (from the given reaction)	
		$\Delta rG^{O} = -n x F x E^{o}Cell$	1/2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\Delta rG^{O} = -2 \times 96500 \text{ C mol}^{-1} \times 2.71 \text{ V}$	1/2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		= -523030 J/mol or $-523.030 kJ/mol$	1
$At \ t = 0s \qquad 0.4 \ atm \qquad 0 \ atm \qquad x \ atm \qquad x \ atm$ $At \ t = 100s (0.4 - x) \ atm \qquad x \ atm \qquad x \ atm$ $Pt = 0.4 - x + x + x$ $Pt = 0.4 + x$ $0.7 = 0.4 + x$ $x = 0.3$ $k = \frac{2.303}{t} \log \frac{p_t}{2p_t - p_t}$ $k = \frac{2.303}{t} \log \frac{0.4}{0.8 - 0.7}$		(b) Hydrogen – oxygen fuel Cell / Fuel cell.	1
At $t = 100s$ $(0.4 - x)$ atm x atm x atm y atm	20	$SO_2 Cl_2 \rightarrow SO_2 + Cl_2$	
$Pt = 0.4 - x + x + x$ $Pt = 0.4 + x$ $0.7 = 0.4 + x$ $x = 0.3$ $k = \frac{2.303}{t} \log \frac{p_i}{2p_i - p_t}$ $k = \frac{2.303}{t} \log \frac{0.4}{0.8 - 0.7}$		At $t = 0s$ 0.4 atm 0 atm	
$Pt = 0.4 + x$ $0.7 = 0.4 + x$ $x = 0.3$ $k = \frac{2.303}{t} \log \frac{p_i}{2p_i - p_t}$ $k = \frac{2.303}{t} \log \frac{0.4}{0.8 - 0.7}$		At $t = 100s$ $(0.4 - x)$ atm x atm	
$0.7 = 0.4 + x$ $x = 0.3$ $k = \frac{2.303}{t} \log \frac{p_i}{2p_i - p_t}$ $k = \frac{2.303}{t} \log \frac{0.4}{0.8 - 0.7}$		Pt = 0.4 - x + x + x	
$x = 0.3$ $k = \frac{2.303}{t} \log \frac{p_i}{2p_i - p_t}$ $k = \frac{2.303}{t} \log \frac{0.4}{0.8 - 0.7}$		Pt = 0.4 + x	
$k = \frac{2.303}{t} \log \frac{p_i}{2p_i - p_t}$ $k = \frac{2.303}{t} \log \frac{0.4}{0.8 - 0.7}$		0.7 = 0.4 + x	
$k = \frac{2.303}{t} \log \frac{0.4}{0.8 - 0.7}$			
			1
2.303 1 0.4		3.0 0.7	1
0.1		$k = \frac{2.303}{100s} \log \frac{0.4}{0.1}$	1
$k = \frac{2.303}{100s} \times 0.6021 = 1.39 \times 10^{-2} \text{ s}^{-1}$		$k = \frac{2.303}{100s} \times 0.6021 = 1.39 \times 10^{-2} \text{ s}^{-1}$	1
21 These are liquid-liquid colloidal systems or the dispersion of one liquid in another liquid. 1	21	These are liquid-liquid colloidal systems or the dispersion of one liquid in another liquid.	1
Types: (i) Oil dispersed in water (O/W type) Example; milk and vanishing cream		Types: (i) Oil dispersed in water (O/W type) Example; milk and vanishing cream	1/2 +1/2
		(ii) Water dispersed in oil (W/O type) Example; butter and cream.	1/2 +1/2

	(Any one example of each type)	
22	(i) As N can't form 5 covalent bonds / its maximum covalency is four.	1
	(ii) This is due to very small size of Oxygen atom / repulsion between electrons is large in	1
	relatively small 2p sub-shell.	
	(iii) In H ₃ PO ₂ there are 2 P-H bonds, whereas in H ₃ PO ₃ there is 1 P-H bond	1
23	(i) Tetraamminedichloridochromium (III) chloride.	1
	(ii) Optical isomerism	1
	(iii) In [NiCl ₄] ²⁻ ; Cl ⁻ acts as weak ligand therefore does not cause forced pairing, thus electrons	
	will remain unpaired hence paramagnetic.	1/2 + 1/2
	In [Ni(CO) ₄]; CO acts as strong ligand therefore causes forced pairing, thus electrons will	
	become paired hence diamagnetic.	
24	(a)	
	(i) CH ₂ Cl	1
	(ii) CH ₂ CH-CH ₃ Br	1
	(b) (i) CH ₃ –I	1/2 +1/2
	(ii) CH ₃ -Cl	72 172
25	(i) As primary amines form inter molecular H – bonds, but tertiary amines don't form H – bonds.	1
23	(ii) Aniline forms salt with Lewis acid AlCl ₃ .	1
	(iii) This is because of the combined effect of hydration and inductive effect (+I effect).	1
	Or	1
25	mi 1 me am	1/2+1/2+1/2
23	$(i) C_6H_5NO_2 \xrightarrow{\text{-}Sn+HCI} \cdot \xrightarrow{\text{-}NH_2} \xrightarrow{\text{-}NNC} \xrightarrow{\text{-}1:273K} H_5N_2^{\text{-}}Cl^{\text{-}} \cdot \xrightarrow{\text{-}H2O} H_5OH$	72+72+72
	A B C	
	(ii) CH ₃ CN $\xrightarrow{\mathbb{N} \text{H}_2\text{O}/\text{H}^+}$ CH ₃ COOH $\xrightarrow{\mathbb{N} \text{NH}_3}$ CH ₃ CONH ₂ $\xrightarrow{\mathbb{N} \text{Br}_2 + \text{KOH}}$ CH ₃ NH ₂	1/2+1/2+1/2
	A B C	
26	(i) Peptide linkage is an amide formed between –COOH group and –NH ₂ group (-CO-NH-)	1
20	(ii) Specific sequence of amino acids in a polypeptide chain is said to be the primary structure	1
	of the protein.	•
	2 P. 2	
1		1

	(iii) When a protein in its native form, is subjected to change in temperature or change in pH,	1
	protein loses its biological activity. This is called denaturation of protein	
27	(i) (a) dedicated towards work/ kind/ compassionate (any two).	1
	(b) Dutiful / caring / humane in the large interest of public health in rural area.	1/2
	(any other suitable value)	
	(ii) Narcotic analgesics	1/2
	(iii) Aspartame / Saccharin / Alitame / Sucrolose.(any one)	1
28	(a)	
	(i) Molarity is defined as number of moles of solute dissolved in one litre of solution.	1
	(ii) It is equal to elevation in boiling point of 1 molal solution.	1
	(b) For isotonic solutions: urea = glucose	1/2
	$\frac{W_{\text{urea}}}{M_{\text{urea}} \times V_s} = \frac{W_{\text{Glucose}}}{M_{\text{Glucose}} \times V_s} \text{(As volume of solution is same)}$	1/2
	$\frac{M_{urea}}{M_{urea}} = \frac{W_{Glucose}}{M_{Glucose}} \text{or} \frac{15g}{60g \text{mol}^{-1}} = \frac{W_{Glucose}}{180g \text{mol}^{-1}}$	1
	$W_{Glucose} = \frac{15g \times 180g mol^{-1}}{60g mol^{-1}} = 45g$	1
	OR	
28	(a) It shows positive deviation.	1
	It is due to weaker interaction between acetone and ethanol than ethanol-ethanol interactions.	1
	(b) Given: $W_B = 10g W_S = 100g$, $W_A = 90g M_B = 180g/mol$ & $d = 1.2g/m L$	
	$M = \frac{Wt \% x \text{ density } x 10}{\text{Mol.wt.}}$	1/2
	$M = \frac{10 \times 1.2 \times 10}{180} = 0.66 \text{ M} \text{or} 0.66 \text{ mol/L}$	1
	$m = \frac{W_B \times 1000}{M_B \times W_A (in g)}$	1/2
	$m = \frac{10 \times 1000}{180 \times 90}$ = 0.61m or 0.61mol/kg (or any other suitable method)	1

29	(a) (i) $\operatorname{Cr}_2\operatorname{O}_7^{2-} + 2\operatorname{OH}^- = \overline{} = \phantom{$		1
	(ii) $MnO_4^- + 4H^+ + 3e^- \xrightarrow{-} M nO_2 + 2H_2O$		
	(b) (i) Zn / Zn ²⁺ has fully filled d orbitals.		
	(ii) This is due to smaller ionic sizes / higher	ionic charge and availability of d orbitals.	1
	(iii) because Mn $^{+2}$ is more stable(3d ⁵) than Mn ³⁺ (3d ⁴). Cr ⁺³ is more stable due to t_2g^3 / d ³		
	configuration.		
)r	
29	(i)		
	Lanthanoids	Actinoids	
	Atomic / ionic radii does not show much	Atomic / ionic radii show much variation /	
	variation / +3 is the most common oxidation	Besides +3 oxidation state they exibit	1
	state, in few cases +2 & +4	+4,+5,+6,+7 also.	
	They are quite reactive	Highly reactive in finely divided state	1
	(Any two Points)		
	(ii) Cerium (Ce ⁴⁺)		1
	(iii) $MnO_4^- + 8H^+ + 5e^- \longrightarrow Mn^{2+} + 4H_2O$		1
	(iv) Mn ³⁺ is more paramgnetic		
	Because Mn ³⁺ has 4 unpaired electrons (3d ⁴) therefore more paramagnetic whereas Cr ³⁺ has 3		
	unpaired electrons (3d ³).		
30	(a) (i)		
	CH ₃ CN		1
	>c_		
	H OH		
			1
	(ii) CH₃CH=N−OH		
	(iii)		
	dil. NaOH		
	$2 \text{ CH}_{3}\text{-CHO} \xrightarrow{\text{dil. NaOH}} \text{CH}_{3}\text{-CH-CH}_{2}\text{-CHO} \cdot \\ \text{OH}$		
	ОН		
	(b) (i) Add neutral FeCl ₃ in both the solutions, phenol forms violet colour but benzoic acid does		
	not.		1
	(ii) Tollen's reagent test: Add ammoniaca	al solution of silver nitrate (Tollen's reagent) in	
	both the solutions propanal gives silver mirror wl	hereas propanone does not.	
	(or any other correct test)		
	, · · /		

	OR	
30	(a) (i) As Cl acts as electron withdrawing group (– I effect) ,CH ₃ shows +I effect.	1
	(ii) The carbonyl carbon atom in carboxylic acid is resonance stabilised.	1
	(b) (i) Rosenmund reduction:	
	$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ &$	1
	(ii) Cannizzaro's Reaction:	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1
	Or With bezaldehyde	
	(c) CH ₃ -CH ₂ -CO-CH ₃ .	1