PAPER – II MATHEMATICS

VERSION: B1 - ANSWER KEY

PLEASE ENSURE THAT THIS BOOKLET CONTAINS 120 QUESTIONS SERIALLY NUMBERED FROM 1 TO 120.

1.	If the operation	⊕is defined by	$a \oplus b = a^2 + b^2$	for all real num	where a and b , then	1
	$(2 \oplus 3) \oplus 4 =$					
	(A) 120 ANSWER: B	(B) 185	(C) 175	(D) 129	(E) 312	
2.		of the enrolment i	n mathematics a	nd 12% of the enr	chemistry is 30. This olment in chemistry	
	(A) 520 ANSWER: A	(B) 490	(C) 560	(D) 480	(E) 540	
3.	Let $f(x) = x-2 $, where x is a real	number. Which	one of the followir	ng is true?	
	(A) f is periodic		(B) $f(x+y)$	f(x) = f(x) + f(y)		
	(C) f is an odd fu	nction	(D) f is not	a 1-1 function		
	(E) f is an even f	unction				
	ANSWER: D					
4.	If $A = \{1, 3, 5, 7\}$ a A into B is	and $B = \{1, 2, 3, 4,$	5, 6, 7, 8, then the	ne number of one-to	o-one functions fron	n
	(A) 1340	(B) 1860	(C) 1430	(D) 1880	(E) 1680	
	ANSWER: E					
_	T		2			
5.	The range of the	ne function $f(x)$	$= x^2 + 2x + 2 i$	S		
	(A) $(1, \infty)$	(B) $(2, \infty)$	(C) (0, ∘	o) (D) (1,	∞) (E) (-c	∞,∞)
	ANSWER: NA					
6.	If $f(x) = \sqrt{x}$ a	$\operatorname{nd} g(x) = 2x - 3$	s , then $(f \circ g)$	(x) is		
	(A) $\left(-\infty, -3\right)$		(B) $\left(-\infty, -\frac{3}{2}\right)$		(C) $\left[-\frac{3}{2},0\right]$	
	(D) $\left[0, \frac{3}{2}\right]$		(E) $\left[\frac{3}{2},\infty\right)$			

PAPER - II MATHEMATICS

VERSION: B1 - ANSWER KEY

7	If $z = \frac{\left(\sqrt{3} + i\right)^3 \left(3i + 4\right)^2}{2}$, then $ z $ is equal to
· ·	$(8+6i)^2$, then $ z $ is equal to

(B) 2

(A) 8 **ANSWER: B**

Let $w \neq \pm 1$ be a complex number. If |w| = 1 and $z = \frac{w-1}{w+1}$, then Re(z) is equal to

(B) $\frac{1}{|w+1|}$ (C) Re(w) (D) 0 (E) $w+\overline{w}$ (A) 1 **ANSWER: D**

(C) 5 (D) 4 (E) 10

9. If $z = e^{2\pi i/3}$, then $1 + z + 3z^2 + 2z^3 + 2z^4 + 3z^5$ is equal to

(A) $-3e^{\pi i/3}$ (B) $3e^{\pi i/3}$ (C) $3e^{2\pi i/3}$ (D) $-3e^{2\pi i/3}$

(E) 0

ANSWER: A

10. If $z_1 = 2\sqrt{2}(1+i)$ and $z_2 = 1+i\sqrt{3}$, then $z_1^2 z_2^3$ is equal to

(A) 128 i

(B) 64 i

(C) -64 i (D) -128 i

(E) 256

ANSWER: D

11. If the complex numbers z_1 , z_2 and z_3 denote the vertices of an isosceles triangle, right angled at z_1 , then $(z_1 - z_2)^2 + (z_1 - z_3)^2$ is equal to

(A) 0 (B) $(z_2 + z_3)^2$ (C) 2 (D) 3 (E) $(z_2 - z_3)^2$

ANSWER: A

12. If the roots of $x^2 - ax + b = 0$ are two consecutive odd integers, then $a^2 - 4b$ is

(A) 3

(B) 4

(C) 5

(D) 6

(E) 7

ANSWER: B

13. If α and β are the roots of $x^2 - ax + b^2 = 0$, then $\alpha^2 + \beta^2$ is equal to

(A) $a^2 + 2b^2$ (B) $a^2 - 2b^2$ (C) $a^2 - 2b$ (D) $a^2 + 2b$ (E) $a^2 - b^2$

14. If α and β are the roots of the equation $x^2 + 3x - 4 = 0$, then $\frac{1}{\alpha} + \frac{1}{\beta}$ is equal to

(A) $\frac{-3}{4}$ (B) $\frac{3}{4}$ (C) $\frac{-4}{3}$ (D) $\frac{4}{3}$

ANSWER: B

PAPER - II MATHEMATICS

VERSION : B1 – ANSWER KEY

16. If the roots of the equation $x^2 + 2bx + c = 0$ are α and β , then $b^2 - c =$

(C) 3 (D) 4 (E) 5

15. The value of x such that $3^{2x} - 2(3^{x+2}) + 81 = 0$ is

(B) 2

(A) 1

ANSWER: E

ANSWER: B

	(A) $\frac{(\alpha-\beta)^2}{4}$! -	(B) $(\alpha + \beta)^2 - \alpha$	β (C) ($(\alpha + \beta)^2 + \alpha\beta$
	(D) $\frac{(\alpha-\beta)^2}{2}$	$-+\alpha\beta$	(E) $\frac{\left(\alpha+\beta\right)^2}{2}+\alpha$	<i>αβ</i>	
	ANSWER: A				2
	17. The equation	whose roots are	the squares of the r	oots of the equation	on $2x^2 + 3x + 1 = 0$ is
	(A) $4x^2 + 5x$	+1 = 0	(B) $4x^2 - x + 1 =$	0 (C)	$4x^2 - 5x - 1 = 0$
	(D) $4x^2 - 5x$	+1 = 0	(E) $4x^2 + 5x - 1 =$	= 0	
	ANSWER: D				
1		e series $\sum_{}^{17}$	$\frac{1}{2(n+3)}$ is equa	1 to	
1	o. The sum of th	$\sum_{n=8}^{\infty} (n+$	(n+3)		
	(A) $\frac{1}{17}$	(B) $\frac{1}{18}$	(C) $\frac{1}{19}$	(D) $\frac{1}{20}$	(E) $\frac{1}{21}$
	ANSWER: D				
19.	If two positive name A.M. and G.M. is		e ratio $3+2\sqrt{2}:3$	$-2\sqrt{2}$, then the r	ratio between their
	(A) 6:1 ANSWER: D	(B) 3:2	(C) 2:1	(D) 3:1	(E) 1:6
20.	Let x_1, x_2, \dots, x_n	be in an A.P. If	$x_1 + x_4 + x_9 + x_{11} + x_{20}$	$_{0} + x_{22} + x_{27} + x_{30} =$	272, then
	$x_1 + x_2 + x_3 + \dots +$	$-x_{30}$ is equal to			
	(A) 1020	(B) 1200	(C) 716	(D) 2720	(E) 2072
	ANSWER: A				
21.	. If the second and	fifth terms of a G	.P. are 24 and 3 resp	ectively, then the su	um of first six
	terms is				
		181		189	(E) 101
	(A) 181	(B) $\frac{181}{2}$	(C) 189	(D) $\frac{189}{2}$	(E) 191
	ANSWER: D				
22	. If the sum of firs	st 75 terms of an	A.P. is 2625, then the	ne 38 th term of the	A.P. is
	(A) 39	(B) 37	(C) 36	(D) 38	(E) 35

PAPER - II MATHEMATICS

VERSION: B1 - ANSWER KEY

23. If	f - 5, k, -1	are in A.P.,	then the	value of k	is equal to
--------	--------------	--------------	----------	------------	-------------

(A) -5

(B) -3

(C) -1

(D) 3

(E) 5

ANSWER: B

24. Let T_n denote the number of triangles which can be formed by using the vertices of a regular polygon of *n* sides. If $T_{n+1} - T_n = 36$, then *n* is equal to

(A) 2

(B) 5

(C) 6

(D) 8

(E) 9

ANSWER: E

25. The middle term in the expansion of $\left(\frac{10}{x} + \frac{x}{10}\right)^{10}$ is

(A) ${}^{10}C_5$

(B) ${}^{10}\text{C}_6$ (C) ${}^{10}\text{C}_5\frac{1}{x^{10}}$ (D) ${}^{10}\text{C}_5x^{10}$ (E) ${}^{10}\text{C}_{5}10^{10}$

ANSWER: A

26. The coefficient of x^{49} in the product (x-1)(x-2)(x-3) ... (x-50) is

(A) - 2250

(B) - 1275

(C) 1275

(D) 2250

ANSWER: B

The sum of the coefficients in the binomial expansion of $\left(\frac{1}{x} + 2x\right)^{6}$ is equal to

(A) 1024

(B) 729

(C) 243

(D) 512

(E) 64

ANSWER: B

28. The value of ${}^{2}P_{1} + {}^{3}P_{1} + ... + {}^{n}P_{1}$ is equal to

(A) $\frac{n^2 - n + 2}{2}$

(B) $\frac{n^2 + n + 2}{2}$

(C) $\frac{n^2 + n - 1}{2}$

(D) $\frac{n^2 - n - 1}{2}$

(E) $\frac{n^2 + n - 2}{2}$

ANSWER: E

29. How many four digit numbers abcd exist such that a is odd, b is divisible by 3, c is even and d is prime?

(A) 380

(B)360

(C)400

(D) 520

(E)480

ANSWER: C

30. If a_1, a_2, a_3, \ldots are in A.P., then the value of $\begin{vmatrix} a_1 & a_2 & 1 \\ a_2 & a_3 & 1 \\ a_3 & a_4 & 1 \end{vmatrix}$ is equal to

(A) $a_4 - a_1$ (B) $\frac{a_1 + a_4}{2}$ (C) 1 (D) $\frac{a_2 + a_3}{2}$

PAPER – II MATHEMATICS

VERSION: B1 - ANSWER KEY

31.	If	2 <i>a</i> 2 <i>b</i> 2 <i>c</i>	x_1 x_2 x_3	$\begin{vmatrix} y_1 \\ y_2 \\ y_3 \end{vmatrix} = \frac{abc}{2} \neq 0,$	then	the	area	of	the	triangle	whose	vertices	are
		120	λ_3	\mathcal{Y}_3									

$$\left(\frac{x_1}{a}, \frac{y_1}{a}\right), \left(\frac{x_2}{b}, \frac{y_2}{b}\right)$$
 and $\left(\frac{x_3}{c}, \frac{y_3}{c}\right)$ is

(A)
$$\frac{1}{4}abc$$
 (B) $\frac{1}{8}abc$ (C) $\frac{1}{4}$ (D) $\frac{1}{8}$ (E) $\frac{1}{12}$

(B)
$$\frac{1}{8}abc$$

(C)
$$\frac{1}{4}$$

(D)
$$\frac{1}{8}$$

(E)
$$\frac{1}{12}$$

32. The system of linear equations 3x + y - z = 2, x - z = 1 and 2x + 2y + az = 5 has unique solution when

(A)
$$a \neq 3$$

(B)
$$a \neq 4$$

(C)
$$a \neq 5$$

(D)
$$a \neq 2$$

(E)
$$a \neq 1$$

ANSWER: D

33. If A = $\begin{bmatrix} 2-k & 2 \\ 1 & 3-k \end{bmatrix}$ is a singular matrix, then the value of $5k - k^2$ is equal to

$$(C) -6$$

ANSWER: E

 $\log_a 1 \quad \log_a b \quad \log_a c$ 34. If a,b,c are non-zero and different from 1, then the value of $\log_a \left(\frac{1}{b}\right) \quad \log_a 1 \quad \log_a \left(\frac{1}{c}\right)$ is $\log_a\left(\frac{1}{c}\right) \log_a c \quad \log_c 1$

(B)
$$1 + \log_a(a + b + c)$$

(C)
$$\log_a(ab+bc+ca)$$

(E)
$$\log_a(a+b+c)$$

ANSWER: A

35. The number of solutions for the system of equations 2x + y = 4, 3x + 2y = 2, and x + y = -2 is

(A) 1

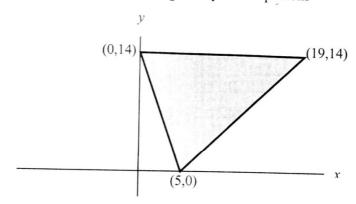
(B) 2

(C) 3

- (D) infinitely many
- (E) 0

ANSWER: A

The number of solutions of the inequation |x-2|+|x+2| < 4 is


- (A) 1
- (B) 2
- (C) 4
- (D) 0
- (E) infinite

ANSWER: D

PAPER - II MATHEMATICS

VERSION: B1 - ANSWER KEY

The shaded region shown in the figure is given by the inequations

- (A) $14x + 5y \ge 70$, $y \le 14$ and $x y \ge 5$
- (B) $14x + 5y \le 70$, $y \le 14$ and $x y \ge 5$
- (C) $14x + 5y \ge 70$, $y \ge 14$ and $x y \ge 5$
- (D) $14x + 5y \ge 70$, $y \ge 14$ and $x y \le 5$
- (E) $14x + 5y \ge 70$, $y \le 14$ and $x y \le 5$

ANSWER: E

38. Let p, q and r be any three logical statements. Which one of the following is true?

(A)
$$\sim \lceil p \land (\sim q) \rceil \equiv (\sim p) \land q$$

(B)
$$\sim (p \vee q) \wedge (\sim r) \equiv (\sim p) \vee (\sim q) \vee (\sim r)$$

(C)
$$\sim [p \vee (\sim q)] \equiv (\sim p) \wedge q$$

(D)
$$\sim \lceil p \land (\sim q) \rceil \equiv (\sim p) \land \sim q$$

(E)
$$\sim [p \land (\sim q)] \equiv p \land q$$

ANSWER: C

39. The truth values of p, q and r for which $(p \land q) \lor (\sim r)$ has truth value F are respectively

- (A) F, T, F (B) F, F, F (C) T, T, T (D) T, F, F (E) F, F, T

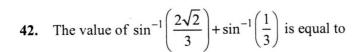
ANSWER: E

40. $\sim [(\sim p) \land q]$ is logically equivalent to

- (A) $\sim (p \vee q)$
- (B) $\sim [p \land (\sim q)]$
- (C) p∧(~q)

- (D) $p \lor (\sim q)$
- (E) $(\sim p) \lor (\sim q)$

ANSWER: D


41. Let $\theta \in \left[0, \frac{\pi}{2}\right]$. Which one of the following is true?

- (A) $\sin^2 \theta > \cos^2 \theta$
- (B) $\sin^2 \theta < \cos^2 \theta$
- (C) $\sin \theta > \cos \theta$

- (D) $\cos \theta > \sin \theta$
- (E) $\sin \theta + \cos \theta \le \sqrt{2}$

PAPER - II MATHEMATICS

VERSION: B1 - ANSWER KEY

- (A) $\frac{\pi}{6}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{2}$ (D) $\frac{2\pi}{3}$

ANSWER: C

43. If
$$ab < 1$$
 and $\cos^{-1}\left(\frac{1-a^2}{1+a^2}\right) + \cos^{-1}\left(\frac{1-b^2}{1+b^2}\right) = 2\tan^{-1}x$, then x is equal to

- (A) $\frac{a}{1+ab}$ (B) $\frac{a}{1-ab}$ (C) $\frac{a-b}{1+ab}$ (D) $\frac{a+b}{1+ab}$ (E) $\frac{a+b}{1-ab}$

44. The value of $tan(1^\circ) + tan(89^\circ)$ is equal to

- (A) $\frac{1}{\sin 1^{\circ}}$ (B) $\frac{2}{\sin 2^{\circ}}$ (C) $\frac{2}{\sin 1^{\circ}}$ (D) $\frac{1}{\sin 2^{\circ}}$ (E) $\frac{\sin 2^{\circ}}{2}$

ANSWER: B

45. Let $s_n = \cos\left(\frac{n\pi}{10}\right)$, n = 1, 2, 3, ... Then the value of $\frac{s_1 s_2 ... s_{10}}{s_1 + s_2 + ... + s_{10}}$ is equal to

- (A) $\frac{1}{\sqrt{2}}$ (B) $\frac{\sqrt{3}}{2}$ (C) $2\sqrt{2}$ (D) 0
- (E) $\frac{1}{2}$

ANSWER: D

46.
$$\cos^{-1}\left(\cos\left(\frac{7\pi}{5}\right)\right) =$$

- (A) $\frac{3\pi}{5}$ (B) $\frac{2\pi}{5}$ (C) $\frac{-7\pi}{5}$ (D) $\frac{7\pi}{5}$

ANSWER: A

47. The value of $sec^2(tan^{-1}3) + csec^2(cot^{-1}2)$ is equal to

- (A) 5
- (B) 13
- (C) 15
- (D) 23
- (E) 25

ANSWER: C

48. If $\sin \theta + \csc \theta = 2$, then the value of $\sin^6 \theta + \csc^6 \theta$ is equal to

- (A) 0
- (B) 1
- (C) 2
- (D) 2^3
- (E) 2^6

PAPER - II MATHEMATICS

VERSION: B1 - ANSWER KEY

(C) $\sin 2x$ (D) $2\cos x$ (E) $\cos x$

 $\sin 7x + 6\sin 5x + 12\sin 3x$

49. If $0 < x < \pi$, then $\frac{\sin 8x + 7\sin 6x + 18\sin 4x + 12\sin 2x}{\sin x + 12\sin 2x} = 0$

(A) $2\sin x$ (B) $\sin x$

50.				vertices of a recta, then the value of	angle. If the other two
	(A) 4 ANSWER: C	(B) 3		(D) -3	(E) 1
51.				6), $(8,-2)$ and $(2,-1)$	
	(A) (2, -1) ANSWER : C	(B) $(1,-2)$	(C) (5,2)	(D) (2,5)	(E) $(4, 5)$
52.	The ratio by white $(-4, 7)$ and $(6, -4, 7)$		-5y - 7 = 0 divide	des the straight line	joining the points
	(A) 1:4	(B) 1:2	(C) 1:1	(D) 2:3	(E) 1:3
53.	ANSWER: C The number of y $x^2 - y^2 = 512$ is	points (a,b) , w	where a and b are	positive integers,	lying on the hyperbola
	(A) 3	(B) 4	(C) 5	(D) 6	(E) 7
54.	ANSWER: B If p is the length of coordinate axes are	The perpendicular $\frac{1}{3}$ and $\frac{1}{4}$ then	lar from the original the value of p is	in to the line whose	e intercepts with the
	(A) $\frac{3}{4}$ (B) $\frac{3}{4}$	1/2	(C) 5	(D) 12	$\checkmark_{\text{(E)}} \frac{1}{5}$
	The slope of the structure vertex of the parabo			the circle $x^2 + y^2 - 3$	8x + 2y = 0 and the
($(A) \frac{-5}{2} $ $ANSWER : B$	B) $\frac{-7}{2}$	(C) $\frac{-3}{2}$	(D) $\frac{5}{2}$	(E) $\frac{7}{2}$
		erpendicular to	the line $2x+y$	y=3 is passing	through $(1,1)$. Its
		3) 2	(C) 3	$\sqrt{(D)} \frac{1}{2}$	(E) $\frac{1}{3}$

PAPER - II MATHEMATICS

VERSION: B1 - ANSWER KEY

57.	If p and q	are r	espectively the perpendiculars from the origin upon the	straigh	it lines who	ose
	equations	are	$x \sec \theta + y \csc \theta = a$ and $x \cos \theta - y \sin \theta = a \cos 2\theta$,	then	$4p^2 + q^2$	is
	equal to					

(A) $5a^{2}$

(B) $4a^2$

(C) $3a^2$ (D) $2a^2$ (E) a^2

ANSWER: E

58. The shortest distance between the circles $(x-1)^2 + (y+2)^2 = 1$ and $(x+2)^2 + (y-2)^2 = 4$ is

(A) 1

(B) 2

(C) 3

(D) 4

(E) 5

ANSWER: B

59. The centre of the circle whose radius is 5 and which touches the circle $x^2 + y^2 - 2x - 4y - 20 = 0$ at (5, 5) is

(A) (10, 5)

(B) (5,8)

(C) (5, 10)

(D) (8,9)

(E) (9,8)

ANSWER: E

60. A circle passes through the points (0,0) and (0,1) and also touches the circle $x^2 + y^2 = 16$. The radius of the circle is

(A) 1

(P) 2

(C) 3

(D) 4

(E) 5

ANSWER: B

A circle of radius $\sqrt{8}$ is passing through origin and the point (4, 0). If the centre lies on the line y = x, then the equation of the circle is

(A) $(x-2)^2 + (y-2)^2 = 8$ (B) $(x+2)^2 + (y+2)^2 = 8$ (C) $(x-3)^2 + (y-3)^2 = 8$ (E) $(x-4)^2 + (y-4)^2 = 8$

ANSWER: A

62. The parametric form of the ellipse $4(x+1)^2 + (y-1)^2 = 4$ is

(A) $x = \cos \theta - 1$, $y = 2\sin \theta - 1$

(B) $x = 2\cos\theta - 1$, $y = \sin\theta + 1$ (D) $x = \cos\theta + 1$, $y = 2\sin\theta + 1$

(C) $x = \cos \theta - 1$, $y = 2\sin \theta + 1$

(D) $x = \cos \theta + 1$, $y = 2\sin \theta + 1$

(E) $x = \cos \theta + 1$, $y = 2\sin \theta - 1$

ANSWER: C

63. A point P on an ellipse is at a distance 6 units from a focus. If the eccentricity of the ellipse is $\frac{3}{5}$, then the distance of P from the corresponding directrix is

(B) $\frac{5}{8}$

(C) 10

(D) 12

(E) 15

PAPER - II MATHEMATICS

VERSION: B1 – ANSWER KEY

If the length of the latus rectum and the length of transverse axis of a hyperbola are $4\sqrt{3}$ and $2\sqrt{3}$ respectively, then the equation of the hyperbola is

(A)
$$\frac{x^2}{3} - \frac{y^2}{4} = 1$$

(A)
$$\frac{x^2}{3} - \frac{y^2}{4} = 1$$
 (B) $\frac{x^2}{3} - \frac{y^2}{9} = 1$ (C) $\frac{x^2}{6} - \frac{y^2}{9} = 1$

(C)
$$\frac{x^2}{6} - \frac{y^2}{9} = 1$$

(D)
$$\frac{x^2}{6} - \frac{y^2}{3} = 1$$
 (E) $\frac{x^2}{3} - \frac{y^2}{6} = 1$

(E)
$$\frac{x^2}{3} - \frac{y^2}{6} = 1$$

ANSWER:E

65. If the eccentricity of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is $\frac{5}{4}$ and 2x + 3y - 6 = 0 is a focal chord of the hyperbola, then the length of transverse axis is equal to

(A)
$$\frac{12}{5}$$

(B)6

(C)
$$\frac{24}{7}$$

(C) $\frac{24}{7}$ (D) $\frac{24}{5}$

(E) $\frac{12}{7}$

The length of the transverse axis of a hyperbola is $2\cos\alpha$. The foci of the hyperbola are the same as that of the ellipse $9x^2 + 16y^2 = 144$. The equation of the hyperbola is

(A)
$$\frac{x^2}{\cos^2 \alpha} - \frac{y^2}{7 - \cos^2 \alpha} = \frac{1}{2}$$

(A)
$$\frac{x^2}{\cos^2 \alpha} - \frac{y^2}{7 - \cos^2 \alpha} = 1$$
 (B) $\frac{x^2}{\cos^2 \alpha} - \frac{y^2}{7 + \cos^2 \alpha} = 1$

(C)
$$\frac{x^2}{1+\cos^2\alpha} - \frac{y^2}{7-\cos^2\alpha} = 1$$
 (D) $\frac{x^2}{1+\cos^2\alpha} - \frac{y^2}{7+\cos^2\alpha} = 1$

(E)
$$\frac{x^2}{\cos^2 \alpha} - \frac{y^2}{5 - \cos^2 \alpha} = 1$$

67. If $\vec{a} = \hat{i} + 2\hat{j} + 2\hat{k}$, $|\vec{b}| = 5$ and the angle between \vec{a} and \vec{b} is $\frac{\pi}{6}$, then the area of the triangle formed by these two vectors as two sides is

(A)
$$\frac{15}{4}$$

(B)
$$\frac{15}{2}$$

(A)
$$\frac{15}{4}$$
 (B) $\frac{15}{2}$ (C) 15 (D) $\frac{15\sqrt{3}}{2}$ (E) $15\sqrt{3}$

68. If $\vec{a} \cdot \vec{b} = 0$ and $\vec{a} + \vec{b}$ makes an angle of 60° with \vec{a} , then

$$(A) |\vec{a}| = 2|\vec{b}|$$

(B)
$$2|\vec{a}| = |\vec{b}|$$

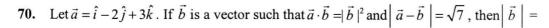
(C)
$$|\vec{a}| = \sqrt{3} |\vec{b}|$$

(D)
$$\left| \vec{a} \right| = \left| \vec{b} \right|$$

(E)
$$\sqrt{3} |\vec{a}| = |\vec{b}|$$

69. If $\hat{i} + \hat{j}$, $\hat{j} + \hat{k}$, $\hat{i} + \hat{k}$ are the position vectors of the vertices of a triangle ABC taken in order, then ∠A is equal to

(A)
$$\frac{\pi}{2}$$


(B)
$$\frac{\pi}{5}$$
 (C) $\frac{\pi}{6}$ (D) $\frac{\pi}{4}$ (E) $\frac{\pi}{3}$

(C)
$$\frac{\pi}{6}$$

(D)
$$\frac{\pi}{4}$$

PAPER - II MATHEMATICS

VERSION: B1 - ANSWER KEY

 $(A)\sqrt{7}$

(B) $\sqrt{3}$

(C)7

(D)3

(E) $7\sqrt{3}$

ANSWER: A

71. If \vec{a}, \vec{b} and \vec{c} are three non-zero vectors such that each one of them being perpendicular to the sum of the other two vectors, then the value of $|\vec{a} + \vec{b} + \vec{c}|^2$ is

(A) $|\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2$ (B) $|\vec{a}| + |\vec{b}| + |\vec{c}|$ (C) $2(|\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2)$

(D) $\frac{1}{2} (|\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2)$ (E) 0

ANSWER: A

72. Let \vec{u}, \vec{v} and \vec{w} be vectors such that $\vec{u} + \vec{v} + \vec{w} = \vec{0}$. If $|\vec{u}| = 3$, $|\vec{v}| = 4$ and $|\vec{w}| = 5$ then $\vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{w} + \vec{w} \cdot \vec{u} =$

(A) 0

(B) -25 (C) 25

(D) 50

(E) 47

ANSWER: B

73. If $\lambda (3\hat{i} + 2\hat{j} - 6\hat{k})$ is a unit vector, then the values of λ are

(A) $\pm \frac{1}{7}$

(B) ± 7

(C) $\pm \sqrt{43}$

(D) $\pm \frac{1}{\sqrt{43}}$

(E) $\pm \frac{1}{\sqrt{2}}$

74. If the direction cosines of a vector of magnitude 3 are $\frac{2}{3}, \frac{-a}{3}, \frac{2}{3}, a > 0$, then the vector is

(A) $2\hat{i} + \hat{j} + 2\hat{k}$

(B) $2\hat{i} - \hat{j} + 2\hat{k}$

(C) $\hat{i} - 2\hat{j} + 2\hat{k}$

(D) $\hat{i} + 2\hat{j} + 2\hat{k}$

(E) $\hat{i} + 2\hat{i} - 2\hat{k}$

75. Equation of the plane through the mid-point of the line segment joining the points P(4,5,-10) and Q(-1,2,1) and perpendicular to PQ is

(A) $\vec{r} \cdot \left(\frac{3}{2}\hat{i} + \frac{7}{2}\hat{j} - \frac{9}{2}\hat{k}\right) = 45$ (B) $\vec{r} \cdot \left(-\hat{i} + 2\hat{j} + \hat{k}\right) = \frac{135}{2}$ (C) $\vec{r} \cdot \left(5\hat{i} + 3\hat{j} - 11\hat{k}\right) + \frac{135}{2} = 0$

(D) $\vec{r} \cdot (4\hat{i} + 5\hat{j} - 10\hat{k}) = 85$ (E) $\vec{r} \cdot (5\hat{i} + 3\hat{j} - 11\hat{k}) = \frac{135}{2}$

PAPER - II MATHEMATICS

VERSION: B1 - ANSWER KEY

- 76. The angle between the straight lines $x-1=\frac{2y+3}{3}=\frac{z+5}{2}$ and x=3r+2; y=-2r-1; z = 2, where r is a parameter, is
 - (A) $\frac{\pi}{4}$

- (B) $\cos^{-1}\left(\frac{-3}{\sqrt{182}}\right)$ (C) $\sin^{-1}\left(\frac{-3}{\sqrt{182}}\right)$

(D) $\frac{\pi}{2}$

(E) 0

ANSWER: D

- 77. Equation of the line through the point (2,3,1) and parallel to the line of intersection of the planes x-2y-z+5=0 and x+y+3z=6 is
 - (A) $\frac{x-2}{-5} = \frac{y-3}{-4} = \frac{z-1}{3}$ (B) $\frac{x-2}{5} = \frac{y-3}{-4} = \frac{z-1}{3}$ (C) $\frac{x-2}{5} = \frac{y-3}{4} = \frac{z-1}{3}$
- (D) $\frac{x-2}{4} = \frac{y-3}{3} = \frac{z-1}{2}$ (E) $\frac{x-2}{-4} = \frac{y-3}{-3} = \frac{z-1}{2}$

- 78. A unit vector parallel to the straight line $\frac{x-2}{3} = \frac{3+y}{1} = \frac{z-2}{4}$ is
- (A) $\frac{1}{\sqrt{26}}(3\hat{i}-\hat{j}+4\hat{k})$ (B) $\frac{1}{\sqrt{26}}(\hat{i}+3\hat{j}-\hat{k})$ (C) $\frac{1}{\sqrt{26}}(3\hat{i}-\hat{j}-4\hat{k})$
- (D) $\frac{1}{\sqrt{26}}(3\hat{i}+\hat{j}+4\hat{k})$ (E) $\frac{1}{\sqrt{26}}(\hat{i}-3\hat{j}+4\hat{k})$

ANSWER: C

- The angle between a normal to the plane 2x-y+2z-1=0 and the z-axis is
 - (A) $\cos^{-1}\left(\frac{1}{2}\right)$
- (B) $\sin^{-1}\left(\frac{2}{3}\right)$
- (C) $\cos^{-1}\left(\frac{2}{3}\right)$

- (D) $\sin^{-1}\left(\frac{1}{3}\right)$
- (E) $\sin^{-1}\left(\frac{3}{5}\right)$

ANSWER: C

- 80. Foot of the perpendicular drawn from the origin to the plane 2x-3y+4z=29 is
 - (A) (5, -1, 4)
- (B) (7, -1, 3)
- (C) (5, -2, 3)

- (D) (2, -3, 4)
- (E) (1, -3, 4)

ANSWER: D

PAPER - II MATHEMATICS

VERSION: B1 - ANSWER KEY

(D) 12

(E) 5

(E) 1

81. The distance between the x-axis and the point (3, 12, 5) is

(B) 4

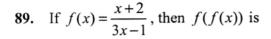
(B) 13 (C) 14

82. If $\sum_{i=1}^{9} (x_i - 5) = 9$ and $\sum_{i=1}^{9} (x_i - 5)^2 = 45$, then the standard deviation of the 9 items

(C) 3 (D) 2

(A) 3

ANSWER: B


 x_1, x_2, \dots, x_9 is

(A) 9

	ANSWER : D				. ,
83.	If two dice are the which come up on	rown simultaneo	usly, then the prob	ability that the sur	n of the numbers
	(A) $\frac{5}{36}$	(B) $\frac{1}{6}$	(C) $\frac{5}{18}$	(D) $\frac{7}{18}$	(E) $\frac{13}{18}$
84.	ANSWER : E Let A and B be two If $0 < P(A) < 1$ ar	o events such that and $0 < P(B) < 1$,	$P(A \cup B) = P(A) + A$ then $P(A \cup B)' = A$	P(B) - P(A)P(B)	
	(A) $1-P(A)$ (D) $[1-P(A)]P(B)$ ANSWER:D		1 – <i>P</i> (<i>A</i> ') 1	(C) 1-P(A)P(B)
85.	The standard devia			(D) 14	(E) 16
	(A) 7 ANSWER: D	(B) 9 $x^5 - 3^5$.	(C) 12	(D) 14	(L) 10
86.	The value of $\lim_{x\to 3}$	$\frac{1}{x^8-3^8}$ is equal	ll to		
	Ü	(B) $\frac{5}{64}$	(C) $\frac{5}{216}$	(D) $\frac{1}{27}$	(E) $\frac{1}{63}$
87.	ANSWER :C Let $f(x) = (x^5 - 1)$ f(x) = g(x)h(x)			and let $h(x)$ be such	ch that
	(A) 0 ANSWER:E	(B) 1	(C) 3	(D) 4	(E) 5
88.	$\lim_{x\to 0} \frac{\log\left(1+3x^2\right)}{x\left(e^{5x}-1\right)}$	=	, *		
	(A) $\frac{3}{5}$	(B) $\frac{5}{3}$	(C) $\frac{-3}{5}$	(D) $\frac{-5}{3}$	(E) 1

PAPER - II MATHEMATICS

VERSION: B1 - ANSWER KEY

(A) *x*

(B) -x (C) $\frac{1}{x}$ (D) $-\frac{1}{x}$

(E) 0

ANSWER: A

90. Let $f(x) = \begin{cases} ax+3, & x \le 2 \\ a^2x-1, & x > 2 \end{cases}$. Then the values of a for which f is continuous for all x are

(A) 1 and -2

(B) 1 and 2

(C) -1 and 2

(D) -1 and -2

(E) 0 and 3

ANSWER: C

91. Let R be the set of all real numbers. Let $f: R \to R$ be a function such that $|f(x) - f(y)|^2 \le |x - y|^3$, $\forall x, y \in R$. Then f'(x) =

(A) f(x)

(B) 1

(C) 0

(D) x^2

(E) x

ANSWER: C

92. Let $f(x) = \int_{0}^{x} \sin^2\left(\frac{t}{2}\right) dt$. Then the value of $\lim_{x\to 0} \frac{f(\pi+x)-f(\pi)}{x}$ is equal to

(A) $\frac{1}{4}$ (B) $\frac{1}{2}$ (C) $\frac{3}{4}$

(D) 1

(E) 0

ANSWER: D

93. If $y = f(x^2 + 2)$ and f'(3) = 5, then $\frac{dy}{dx}$ at x = 1 is

(A)5

(B) 25

(C) 15

(D) 20

(E) 10

ANSWER: E

94. Let $f(x) = x^2 + bx + 7$. If $f'(5) = 2f'(\frac{7}{2})$, then the value of b is

(A) 4

(B) 3

(C) -4

(D) -3

(E) 2

ANSWER: C

95. If $x = \sin t$ and $y = \tan t$, then $\frac{dy}{dx} =$

(A) $\cos^3 t$ (B) $\frac{1}{\cos^3 t}$ (C) $\frac{1}{\cos^2 t}$ (D) $\sin^2 t$ (E) $\frac{1}{\sin^2 t}$

ANSWER: B

PAPER - II MATHEMATICS

VERSION: B1 - ANSWER KEY

			$(dy)^2$	
96.	If $x = a \cos^3 \theta$	and $y = a \sin^3 \theta$, then 1 +	$\left(\frac{\partial}{\partial x}\right)$	is

- (A) $\tan \theta$
- (B) $\tan^2 \theta$
- (C) 1
- (D) $\sec^2 \theta$
- (E) $\sec \theta$

ANSWER: D

97. If
$$y = \sin^{-1}\left(2x\sqrt{1-x^2}\right)$$
, $-\frac{1}{\sqrt{2}} \le x \le \frac{1}{\sqrt{2}}$, then $\frac{dy}{dx}$ is equal to

- (A) $\frac{x}{\sqrt{1-x^2}}$
- (B) $\frac{1}{\sqrt{1-x^2}}$
- (C) $\frac{2}{\sqrt{1-r^2}}$

- (D) $\frac{2x}{\sqrt{1-x^2}}$
- (E) $\frac{-2x}{\sqrt{1-x^2}}$

ANSWER: C

98. A straight line parallel to the line 2x - y + 5 = 0 is also a tangent to the curve $y^2 = 4x + 5$.

Then the point of contact is

(A) (2, 1)

(B) (-1,1)

(C) (1,3)

(D) (3,4)

(E) (-1, 2)

99. The function $f(x) = 2x^3 - 15x^2 + 36x + 6$ is strictly decreasing in the interval

(A) (2,3)

(B) $(-\infty, 2)$

(C)(3,4)

- (D) $(-\infty,3) \cup (4,\infty)$
- (E) $(-\infty, 2) \cup (3, \infty)$

ANSWER: A

100. The slope of the tangent to the curve $y^2 e^{xy} = 9e^{-3}x^2$ at (-1, 3) is

- (A) $\frac{-15}{2}$ (B) $\frac{-9}{2}$ (C) 15 (D) $\frac{15}{2}$ (E) $\frac{9}{2}$

ANSWER: C

101. The radius of a cylinder is increasing at the rate of 5 cm/min so that its volume is constant. When its radius is 5 cm and height is 3 cm the rate of decreasing of its height is

- (A) 6 cm/min
- (B) 3 cm/min
 - (C) 4 cm/min
- (D) 5 cm/min
- (E) 2 cm/min

ANSWER: A

102. The function $f(x) = \begin{cases} 2x^2 - 1 & \text{if } 1 \le x \le 4 \\ 151 - 30x & \text{if } 4 < x \le 5 \end{cases}$ is not suitable to apply Rolle's

theorem since

- (A) f(x) is not continuous on [1,5] (B) $f(1) \neq f(5)$
- (C) f(x) is continuous only at x = 4 (D) f(x) is not differentiable in (4, 5)

PAPER - II MATHEMATICS

VERSION: B1 - ANSWER KEY

103. The slope of the normal to the curve $y = x^2 - \frac{1}{x^2}$ at (-1, 0) is

(A)
$$\frac{1}{4}$$

(A)
$$\frac{1}{4}$$
 (B) $-\frac{1}{4}$ (C) 4

(D) -4

-(E) 0

104. The minimum value of $\sin x + \cos x$ is

(A)
$$\sqrt{2}$$

(B)
$$-\sqrt{2}$$

(C)
$$\frac{1}{\sqrt{2}}$$

(A)
$$\sqrt{2}$$
 (B) $-\sqrt{2}$ (C) $\frac{1}{\sqrt{2}}$ (D) $-\frac{1}{\sqrt{2}}$

(E) 1

105. $\int \frac{1}{x^2(x^4+1)^{\frac{3}{4}}} dx$ is equal to

(A)
$$-\frac{(1+x^4)^{\frac{3}{4}}}{x} + C$$
 (B) $-\frac{(1+x^4)^{\frac{1}{4}}}{2x} + C$ (C) $-\frac{(1+x^4)^{\frac{1}{4}}}{x} + C$

(B)
$$-\frac{(1+x^4)^{\frac{1}{4}}}{2x} + C$$

(C)
$$-\frac{(1+x^4)^{\frac{1}{4}}}{x} + C$$

(D)
$$-\frac{(1+x^4)^{\frac{1}{4}}}{x^2} + C$$
 (E) $-\frac{(1+x^4)^{\frac{1}{2}}}{x} + C$

(E)
$$-\frac{(1+x^4)^{\frac{1}{2}}}{x} + C$$

ANSWER: C

106. $\int \frac{(1+x)e^x}{\sin^2(xe^x)} dx$ is equal to

(A)
$$-\cot(e^x) + C$$
 (B) $\tan(xe^x) + C$

(B)
$$\tan(xe^x) + C$$

(C)
$$tan(e^x) + C$$

(D)
$$\cot(xe^x) + C$$
 \checkmark (E) $-\cot(xe^x) + C$

$$\checkmark$$
(E) $-\cot(xe^x) + C$

ANSWER: E

107. $\int \frac{xe^x}{(1+x)^2} dx$ is equal to

(A)
$$\frac{-e^x}{x+1} + C$$

(B)
$$\frac{e^x}{x+1} + C$$

(C)
$$\frac{xe^x}{x+1} + C$$

(D)
$$\frac{-xe^x}{x+1} + C$$

(A)
$$\frac{-e^x}{x+1} + C$$
 (B) $\frac{e^x}{x+1} + C$ (C) $\frac{xe^x}{x+1} + C$ (D) $\frac{-xe^x}{x+1} + C$ (E) $\frac{e^x}{(x+1)^2} + C$

108. $\int e^x (\sin x + 2\cos x) \sin x \, dx$ is equal to

(A)
$$e^x \cos x + C$$

(B)
$$e^x \sin x + C$$

(B)
$$e^x \sin x + C$$
 (C) $e^x \sin^2 x + C$

(D)
$$e^x \sin 2x + C$$

(E)
$$e^x(\cos x + \sin x) + C$$

PAPER - II MATHEMATICS

VERSION: B1 - ANSWER KEY

109. $\int \sqrt{1+\cos x} \ dx$ is equal to

(A)
$$2\sin\left(\frac{x}{2}\right) + C$$

$$(C)\frac{1}{2}\sin\left(\frac{x}{2}\right)+C$$

$$(D)\frac{\sqrt{2}}{2}\sin\left(\frac{x}{2}\right) + C$$

(D)
$$\frac{\sqrt{2}}{2}\sin\left(\frac{x}{2}\right) + C$$
 (E) $2\sqrt{2}\sin\left(\frac{x}{2}\right) + C$

ANSWER: E

110. $\int \frac{\sqrt{x^2-1}}{x} dx$ is equal to

(A)
$$\sqrt{x^2 - 1} - \sec^{-1} x + C$$
 (B) $\sqrt{x^2 - 1} + \tan^{-1} x + C$

(B)
$$\sqrt{x^2-1} + \tan^{-1} x + C$$

(C)
$$\sqrt{x^2-1} + \sec^{-1} x + C$$

(D)
$$\sqrt{x^2 - 1} - \tan x + C$$
 (E) $\sqrt{x^2 - 1} + \sec x + C$

(E)
$$\sqrt{x^2 - 1} + \sec x + C$$

111. $\int \frac{\sqrt{5+x^2}}{x^4} dx$ is equal to

(A)
$$\frac{1}{15} \left(1 + \frac{5}{x^2} \right)^{3/2} + C$$
 (B) $\frac{-1}{15} \left(1 + \frac{1}{x^2} \right)^{3/2} + C$ (C) $\frac{-1}{15} \left(1 + \frac{5}{x^2} \right)^{3/2} + C$

(B)
$$\frac{-1}{15} \left(1 + \frac{1}{x^2} \right)^{3/2} + C$$

(C)
$$\frac{-1}{15} \left(1 + \frac{5}{x^2} \right)^{3/2} + C$$

(D)
$$\frac{1}{15} \left(1 + \frac{1}{x^2} \right)^{3/2} + C$$
 (E) $\frac{-1}{10} \left(1 + \frac{1}{x^2} \right)^{3/2} + C$

(E)
$$\frac{-1}{10} \left(1 + \frac{1}{x^2} \right)^{3/2} + C$$

112. The value of $\int_{a}^{1} \frac{dx}{e^{x} + e}$ is equal to

(A)
$$\frac{1}{e} \log \left(\frac{1+e}{2} \right)$$

(B)
$$\log\left(\frac{1+e}{2}\right)$$

(C)
$$\frac{1}{e}\log(1+e)$$

(D)
$$\log\left(\frac{2}{1+e}\right)$$

(E)
$$\frac{1}{e}\log\left(\frac{2}{1+e}\right)$$

ANSWER: A

113. Area bounded by the curves $y = e^x$, $y = e^{-x}$ and the straight line x = 1 is (in sq. units)

- (A) $e + \frac{1}{e}$ (B) $e + \frac{1}{e} + 2$ (C) $e + \frac{1}{e} 2$ (D) $e \frac{1}{e} + 2$ (E) $e \frac{1}{e}$

PAPER - II MATHEMATICS

VERSION: B1 - ANSWER KEY

114.	The value of the integral	$\int_{1}^{2} \frac{1 + \log x}{3x} dx$	is equal to
		1 22	

(A)
$$\frac{1}{4}$$
 (B) $\frac{1}{2}$ (C) $\frac{3}{4}$ (D) e (E) $\frac{1}{e}$

(B)
$$\frac{1}{2}$$

(C)
$$\frac{3}{4}$$

(E)
$$\frac{1}{e}$$

ANSWER: B

115. The value of the integral $\int_{2}^{1} \frac{x^3}{1+x^8} dx$ is equal to

(A)
$$\frac{\pi}{8}$$

(B)
$$\frac{\pi}{4}$$

(A)
$$\frac{\pi}{8}$$
 (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{16}$ (D) $\frac{\pi}{6}$

(D)
$$\frac{\pi}{6}$$

(E)
$$\frac{\pi}{12}$$

ANSWER: C

116. The value of the integral $\int_{0}^{4} \left(\frac{\log t}{t}\right) dt$ is equal to

(A)
$$\frac{1}{2}(\log 2)^2$$
 (B) $\frac{5}{2}(\log 2)^2$ (C) $\frac{3}{2}(\log 2)^2$ (D) $(\log 2)^2$ (E) $\frac{3}{2}(\log 2)$

(B)
$$.\frac{5}{2}(\log 2)^2$$

(C)
$$\frac{3}{2}(\log 2)^2$$

(E)
$$\frac{3}{2}(\log 2)$$

ANSWER: C

117. The solution of the differential equation $(kx - y^2)dy = (x^2 - ky)dx$ is

(A)
$$x^3 - y^3 = 3kxy + C$$

(B)
$$x^3 + y^3 = 3kxy + C$$

(A)
$$x^3 - y^3 = 3kxy + C$$
 (B) $x^3 + y^3 = 3kxy + C$ (C) $x^2 - y^2 = 2kxy + C$

(D)
$$x^2 + y^2 = 2kxy + C$$
 (E) $x^3 - y^2 = 3kxy + C$

(E)
$$x^3 - y^2 = 3kxy + C$$

ANSWER: B

118. The solution of the differential equation $\frac{dy}{dx} = e^x + 1$ is

$$(A) \quad y = e^x + C$$

(B)
$$y = x + e^x + C$$

(C)
$$y = xe^x + C$$

(D)
$$y = x(e^x + 1) + C$$

(E)
$$y = e^x + Cx$$

ANSWER: B

119. The order and degree of the differential equation $\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^{\frac{3}{2}} = y$ are respectively

- (A) 1, 1
- (B) 1, 2
- (C) 1, 3 (D) 2, 1
- (E) 2, 2

ANSWER: E

120. An integrating factor of the differential equation $\sin x \frac{dy}{dx} + 2y \cos x = 1$ is

(A)
$$\sin^2 x$$

ANSWER: A

(B)
$$\frac{2}{\sin x}$$

(C)
$$\log |\sin x|$$

(A)
$$\sin^2 x$$
 (B) $\frac{2}{\sin x}$ (C) $\log |\sin x|$ (D) $\frac{1}{\sin^2 x}$ (E) $2\sin x$

(E)
$$2\sin x$$