Series HRS Code-30/2 Summative Assessment -II
Subject Mathematics class 10 CBSE Board 2014

SECTION-C

15. The angle of elevation of an areoplane from a point on the ground is 60°. After a flight of 30 sec the angle of elevation became 30°. If areoplane is flying at a constant high $3000 \sqrt{ } 3 \mathrm{~m}$. Find the speed of areoplane.

Solution:

Let P and Q be the two positions of the plane and A be the point of observation. Let $A B C$ be the horizontal line through A. It is given that angles of elevation of the plane in two positions P and Q from a point A are 60° and 30° respectively.
$\therefore \angle \mathrm{PAB}=60^{\circ}, \angle \mathrm{QAB}=30^{\circ}$. It is also given that $\mathrm{PB}=3000 \sqrt{ } 3 \mathrm{~m}$ meters

In $\triangle A B P$, we have
$\operatorname{Tan} 60^{\circ}=\mathrm{BP} / \mathrm{AB}$
$\sqrt{ } 3=3000 \sqrt{ } 3 / A B$
$A B=3000 \mathrm{~m}$

In $\triangle A C Q$, we have
$\tan 30^{\circ}=C Q / A C$
$1 / \sqrt{3}=3000 \sqrt{ } 3 / A C$
$A C=9000 \mathrm{~m}$
\therefore Distance $=B C=A C-A B=9000 \mathrm{~m}-3000 \mathrm{~m}=6000 \mathrm{~m}$
Thus, the plane travels6 in 30 seconds

Hence speed of plane $=6000 / 30=200 \mathrm{~m} / \mathrm{sec}=720 \mathrm{~km} / \mathrm{h}$

16. The largest possible sphere is curved out of a wooden solid cube of side 7 cm . find the volume of the wood left.

Solution:

Demeter of sphere curved out $=$ side of cube $=7 \mathrm{~cm} \Rightarrow r=3.5 \mathrm{~cm}$
Volume of cube $=a^{3}=7^{3}=343 \mathrm{~cm}^{3}$

Volume of sphere curved out $=4 / 3 \pi r^{3}=4 / 3 \times 22 / 7 \times 7 / 2 \times 7 / 2 \times 7 / 2=179.66 \mathrm{~cm}^{3}$
The volume of the wood left $=343-179.66=163.34 \mathrm{~cm}^{3}$
17. Water in a canal, 6 m wide and 1.5 m deep, is flowing at a speed of $4 \mathrm{~km} / \mathrm{h}$. How much area will it irrigate in 10 min . , if 8 cm standing water is needed for irrigation.

Solution: Speed $=4 \mathrm{~km} / \mathrm{h}=200 / 3 \mathrm{~m} / \mathrm{min}$
Volume of water irrigate in $10 \mathrm{~min}=10 \times 6 \times 1.5 \times 200 / 3=6000 \mathrm{~m}^{3}$

Volume of water irrigated $=$ base area (of irrigated land) \times height $=$ base area $\times 8 \mathrm{~cm}=$ base area $\times 0.08 \mathrm{~m}$
$6000=$ base area $\times 0.08$

Base area $=6000 / 0.08=75000 \mathrm{~m}^{2}=7.5$ hectare
18. in fig. 02. , $A B C D$ is a trapezium of area $24.5 \mathrm{~cm}^{2}$. In it $A D I I B C, \angle D A B=90, A D=10 \mathrm{~cm}$ and $B C=4 \mathrm{~cm}$. If $A B E$ is quadrant of circle, find the area of shaded region.

Area of trapezium $=24.5 \mathrm{~cm}^{2}$
$1 / 2[A D+B C] \times A B=24.5 \mathrm{~cm}^{2}$
$1 / 2[10+4] \times A B=24.5$
$\mathrm{AB}=3.5 \mathrm{~cm}$
$r=3.5 \mathrm{~cm}$
Area of quadrant $=1 / 4 \pi r^{2}=0.25 \times 22 / 7 \times 3.5 \times 3.5=9.625 \mathrm{~cm}^{2}$

The area of shaded region $=24.5-9.625=14.875 \mathrm{~cm}^{2}$
19. Find the ratio in which the line segment joining the point $A(3,-$
3) and
$B(-2,7)$ is divided by x-axis. Also find the co - ordinate of the point division.

Solution:
Point p lies on x axis so it's ordinate is 0
Using section formula
Let the ratio be k : 1

Let the coordinate of the point be $\mathrm{P}(\mathrm{x}, 0)$

As given $\mathrm{A}(3,-3)$ and $\mathrm{B}(-2,7)$
$P_{y}=\left(m y_{2}+n y_{1}\right) /(m+n)$
$0=k \times 7+1 x-3 / k+1$
$0(k+1)=7 k-3$
$0=7 \mathrm{k}-3$
$3=7 \mathrm{k}$
$k=3 / 7$
$\mathrm{K}: 1=3: 7$
$P_{x}=\left(m x_{2}+n x_{1}\right) /(m+n)=[(3 / 7 x-2)+(1 x 3)] /(3 / 7+1)=1.5$
20.In fig. 03., two concentric circles with centre O, have radii 21 cm and 42 cm . if $\angle A O B=60^{\circ}$, find the area of shaded

21. Solve for x

$(16 / x)-1=15 /(x+1)$
Solution: $(16 / x)-1=15 /(x+1)$
$\Rightarrow(16-x) / x=15 /(x+1)$
$\Rightarrow 15 x=16 x+16-x^{2}-x$
$\Rightarrow 16=x^{2} \Rightarrow x=4$
22. The sum of $2^{\text {nd }}$ and the $7^{\text {th }}$ terms of an AP is 30 . If $15^{\text {th }}$ term is 1 less than twice the $8^{\text {th }}$ term. Find the AP

Solution: The sum of $2^{\text {nd }}$ and the $7^{\text {th }}$ terms of an AP is 30
$\Rightarrow a+d+a+6 d=30$
$\Rightarrow 2 \mathrm{a}+7 \mathrm{~d}=30$
$15^{\text {th }}$ term is 1 less than twice the $8^{\text {th }}$ term
$\Rightarrow a+14 d=2(a+7 d)-1$
$\Rightarrow a+14 d=2 a+14 d-1$
$\Rightarrow \mathrm{a}=1$

Now, $2 \times 1+7 d=30 \Rightarrow d=4$
AP : 1,5,9
23. Draw a line segment $A B$ of length 8 cm . Taking a centre A draw a circle of radius 4 cm and taking B as a centre draw another circle of radius 3 cm . Construct tangent to each circle from the centre of the other circle.

24. Prove that the diagonal of rectangle $A B C D$, with the vertices $A(2,-1), B(5,-1), C(5,6)$ and $D(2,6)$ are equal and bisect each other.

$A C^{2}=(5-2)^{2}+(6+1)^{2} \Rightarrow 9+49=58$ sq. unit
$\mathrm{BD}^{2}=(5-2)^{2}+(-1-6)^{2} \Rightarrow 9+49=58$ sq. unit

SECTION-D

25. Prove that tangent at any point of circle is perpendicular to the radius through point of contact.

Solution:

Given : A circle C $(0, r)$ and a tangent / at point A.
To prove: $\mathrm{OA} \perp /$
Construction : Take a point B, other than A, on the tangent l. Join OB. Suppose OB meets the circle in C.
Proof: We know that, among all line segment joining the point O to a point on I, the perpendicular is shortest to I.
$O A=O C$ (Radius of the same circle)
Now, $O B=O C+B C$.
$\therefore \mathrm{OB}>\mathrm{OC}$
$\Rightarrow \mathrm{OB}>\mathrm{OA}$
$\Rightarrow \mathrm{OA}<\mathrm{OB}$
B is an arbitrary point on the tangent l. Thus, OA is shorter than any other line segment joining O to any point on l.

Here, OA $\perp /$
26. 150 spherical marbles, each of diameter 1.4 cm , are dropped in a cylindrical vessel of diameter 7 cm containing some water, which are completely immersed in water. Find the rise in level of water in the vessel.

Solution:

Volume of 150 spherical marbles, each of diameters $1.4 \mathrm{~cm}=$ volume of cylindrical vessel of diameter 7 cm
$150 \times 4 / 3 \times \pi \times 1.4 / 2 \times 1.4 / 2 \times 1.4 / 2=\pi \times 7 / 2 \times 7 / 2 \times h$
$\mathrm{h}=5.6 \mathrm{~cm}$
27. A container open at the top, is in the form of a frustum of a cone of height 24 cm with radii of its base 8 cm and 20 cm respectively. Find the cost of milk which can completely fill the container at the rate of Rs. 21 per liter.

Solution: Volume of container $=1 / 3 \pi h\left(R^{2}+r^{2}+R r\right)=1 / 3 \times 22 / 7 \times 24[20 \times 20+8 \times 8+20 \times 8]$

$$
=15689.14 \mathrm{~cm}^{3}=15.69 \text { litre }
$$

The cost of milk which can completely fill the container at the rate of Rs .21 per liter $=\operatorname{Rs}(21 \times 15.69)=329.49$
28. The angle of elevation of the top of tower at a distance of 120 m from a point A on the ground is 45°. if the angle of elevation of the top of a flagstaff fixed at the top of tower, at A is 60°., then find the height of the flagstaff.

Solution: let $A B$ is the tower of height h meter and $A C$ is flagstaff of height x meter.
$\angle \mathrm{APB}=45^{\circ}$ and $\angle \mathrm{BPC}=60^{\circ}$

$\left.\left.\operatorname{Tan} 60^{\circ}=(x+h) / 120\right) \Rightarrow \sqrt{3}=(x+h) / 120\right) \Rightarrow(x+h)=120 \sqrt{ } 3 \Rightarrow x=120 \sqrt{ } 3-h$
$\operatorname{Tan} 45^{\circ}=h / 120 \Rightarrow 1=h / 120 \Rightarrow h=120$
the height of the flagstaff $=120 \sqrt{ } 3-120=120(\sqrt{ } 3-1) \mathrm{m}=87.6 \mathrm{~m}$
29.A motor boat whose speed in steel water is $18 \mathrm{~km} / \mathrm{h}$, takes 1 hour more to go 24 km upstream than to return downstream to the same spot. Find the speed of stream.

Solution: Let speed of stream $=x \mathrm{~km} / \mathrm{h}$
Speed f boat in steel water $=18 \mathrm{~km} / \mathrm{h}$
Speed f boat in upstream $=(18-x) \mathrm{km} / \mathrm{h}$

\triangle CBSE Coaching for Ohathematies and Sclence

Speed f boat in downstream $=(18+x) \mathrm{km} / \mathrm{h}$
Distance $=24 \mathrm{~km}$

As per question,
$24 \mathrm{~km} /(18-\mathrm{x})=24 \mathrm{~km} /(18+\mathrm{x})+1$
$\Rightarrow x^{2}+48 x-324=0$
$x=6$ or -54

Hence, the speed of stream $=6 \mathrm{~km} / \mathrm{h}$
30. In a school , student decided tonplant tree in and around the school to reduce air pollution. It was decided that the number of tree, that each section of each class will plant, will be double the class in which they are studying. If there are 1 t0 12 classes in the school and each class has two sections. find how many tree were planted by the students. Which value is seen in this question?

Solution

Class 1 plant trees $=2 \times$ class 1×2 section $=2 \times 1 \times 2=4 \times$ classs $=4 \times 1=4$ trees
Class 2 plant trees $=4 \times$ classs $=4 \times 2=8$ trees
$a=4$
$d=8$
$\mathrm{n}=12$
$S_{12}=12 / 2[2 \times 4+11 \times 4]=312$ trees
Environmental friendly, social etc.
31. Solve for x
$(x-3) /(x-4)+(x-5) /(x-6)=10 / 3$
Solution: $(x-3) /(x-4)+(x-5) /(x-6)=10 / 3$
$[(x-3)(x-6)+(x-4)(x-5)] /[(x-4) x(x-6)]=10 / 3$
$2\left[x^{2}-9 x+19\right] /\left[x^{2}-10 x+24\right]=10 / 3$
$2 x^{2}-23 x+63=0$
$x=7$ and $9 / 2$
32. All the red face card are removed from a pack of 52 playing card. A card is drawn randomly from the remaining cards , after reshuffling them. Find the probability that the drawn card is
(i) Of red colour
(ii)a queen
(ii) an ace
(iv)a face card

Solution: (i) face card are removed from a pack of 52 playing card $=6$
Total favorable outcomes $=52-6=46$

Number of all possible outcomes $=26-6=20$
$P[E]=20 / 46=0.43$
(ii Number of all possible outcomes a queen $=2$
$P[E]=2 / 46=1 / 23$
(iii) Number of all possible outcomes an ace $=2$
$P[E]=2 / 46=1 / 23$
(iv) Number of all possible outcomes $=6$
$P[E]=6 / 46=3 / 23$
33. $A(4,-6), B(3,-2)$ and $C(5,2)$ are the vertices of a triangle $A B C$ and $A D$ is its median. Prove that the median $A D$ devides Triangle $A B$ into two triangle of equal area.

Solution:

Let co - ordinate of $D(x, y)$ and D is midpoint of $B C$
$x=(3+5) / 2=4 \quad ; y=(2-2) / 2=0$

Now Area of $\Delta \mathrm{ABD}=1 / 2[3(-6-0)+4(0+2) 4(2+6)=0.5 \times[-18+8+16]=3$ sq unit
and Area of $\Delta \mathrm{ACD}=1 / 2[5(-6-0)+4(0-2)+4(2+6)]=3$ sq unit

Hence, the median AD divides triangle ABC into two triangle of equal area.
34. Prove that opposite side of quadrilateral circumscribing a circle subtend supplementary angle at the centre of circle.

Solution:

Let $A B C D$ be a quadrilateral circumscribing a circle centered at O such that it touches the circle at point P, Q, R, S. Let us join the vertices of the quadrilateral $A B C D$ to the center of the circle.
Consider $\triangle \mathrm{OAP}$ and $\triangle \mathrm{OAS}$,
$A P=A S$ (Tangents from the same point)
OP = OS (Radii of the same circle)
$\mathrm{OA}=\mathrm{OA}$ (Common side)
$\triangle \mathrm{OAP} \cong \triangle \mathrm{OAS}$ (SSS congruence criterion)
Therefore, $A \leftrightarrow A, P \leftrightarrow S, O \leftrightarrow O$
And thus, $\angle P O A=\angle A O S$
$\angle 1=\angle 8$

Similarly,
$\angle 2=\angle 3$
$\angle 4=\angle 5$
$\angle 6=\angle 7$
$\angle 1+\angle 2+\angle 3+\angle 4+\angle 5+\angle 6+\angle 7+\angle 8=360^{\circ}$
$(\angle 1+\angle 8)+(\angle 2+\angle 3)+(\angle 4+\angle 5)+(\angle 6+\angle 7)=360^{\circ}$
$2 \angle 1+2 \angle 2+2 \angle 5+2 \angle 6=360^{\circ}$
$2(\angle 1+\angle 2)+2(\angle 5+\angle 6)=360^{\circ}$
$(\angle 1+\angle 2)+(\angle 5+\angle 6)=180^{\circ}$
$\angle A O B+\angle C O D=180^{\circ}$
Similarly, we can prove that $\angle B O C+\angle D O A=180^{\circ}$
Hence, opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

