COMMON ENTRANCE TEST - 2004

Subject: CHEMISTRY

DATE: 19.05.2004

TIME: 2.30 P.M. TO 3.50 P.M.

MAXIMUM MARKS: 60

MAXIMUM TIME: 80 MINUTES

• *		-
	fill yo	

QUEST	ION BOOKLET
VERSION CODE	SERIAL NUMBER
A -1	NOMBER
$\mathbf{A} 1$	039857

IMPORTANT INSTRUCTIONS TO CANDIDATES

(Please read the following instructions carefully, before you start answering on the OMR answer sheet)

- The OMR answer sheet is issued at the start of the examination at 2.15 p.m., the candidate should first enter only Name and CET No. on the OMR answer sheet.
- 2. After the 2nd bell at 2.30 p.m. the Question Papers will be issued. Now, the candidate should enter the Version Code and Serial Number of question booklet on the OMR answer sheet. But, he shall not remove the staples on the right side of this booklet OR look inside the question booklet OR start answering on the OMR answer sheet until the 3rd bell rings.

As answer sheets are designed to suit the Optical Mark Reader (OMR) system, special care should be taken to fill those items accurately.

DO NOT DAMAGE OR MUTILATE THE TIMING, MARKS ON THE OMR ANSWER SHEETS.

- 3. Remove the staples at the right side to open the question paper booklet only after the 3rd bell at 2.40 p.m.
- 4. This question booklet contains 60 questions.
- 5. During the subsequent 70 minutes:
 - a) Read each question carefully.
 - b) Determine the correct answer from out of the four available choices given under each question.
 - c) Completely darken / shade the relevant circle with a blue or black ink ballpoint pen against the question number on the OMR answer sheet.

For example :

Q. No. 14: The product of 0.5×0.05 is : 1) 0.05 2) 0.005 3) 0.025 4) 0.25

As the correct answer is option no. 3, the candidate should darken the circle corresponding to option no. 3 completely with a blue or black ink ballpoint pen on the OMR answer sheet, as shown below :

- 6. For each correct answer, one mark will be awarded. For each wrong answer, quarter (1/4) mark will be deducted and if more than one circle is darkened for a given question, one mark will be deducted. Even a minute unintended dot will also be recognised and recorded by the scanner. Please avoid multiple markings of any kind.
- 7. Rough work should be done only on the blank space provided on each page of the question booklet. Rough work should not be done on the OMR answer sheet.
- 8. Please stop writing when the last bell rings at 3.50 p.m. Hand over the OMR answer paper set to the invigilator, who will separate the top sheet and will retain the same with him and return the bottom sheet replica to you to carry home.

NOTE: The candidate should safely preserve the replica of the OMR answer sheet for a minimum period of one year from the date of Common Entrance Test.

3

A -1

CHEMISTRY

1.	A nitrogen containing organic community
	A nitrogen containing organic compound gave an oily liquid on heating with bromine and
	potassium hydroxide solution. On shaking the product with acetic anhydride, an antipyretic
	at older solution. On shaking the product with acetic anhydride, an antipyretic
	drug was obtained. The reactions indicate that the starting compound is:
	view the starting compound is.

1) Acetamide

2) Nitrobenzene

3) Aniline

4) Benzamide

2. The silver salt of a fatty acid on refluxing with an alkyl halide gives an:

1) ether

2) amine

3) acid

4) ester

3. Pick out the one which does not belong to the family:

1) Ptyalin

2) Lipase

3) Pepsin

4) Cellulose

4. Which of the following is wrongly matched?

1) Decomposition of $H_2{\cal O}_2$ - First order reaction.

2) Combination of H_2 and Br_2 to give HBr - Zero order reaction.

3) Saponification of $CH_3COOC_2H_5$ - second order reaction.

4) Hydrolysis of CH_3COOCH_3 - pseudo unimolecular reaction.

5. The diameter of colloidal particles range from:

1) $10^3 m$ to $10^{-3}m$

2) $10^{-3}m$ to 10^{-6} m

3) $10^{-6}m$ to $10^{-9}m$

4) $10^{-9}m$ to $10^{-12}m$

6. The number of 2 p electrons having spin quantum number $S = -\frac{1}{2}$ are:

1) 2

2) 3

3) 6

4) 0

7. Pick out the alkane which differs from the other members of the group:

1) 2 - methyl butane

- 2) 2, 2 dimethyl butane
- 3) 2, 2 dimethyl propane
- 4) Pentane

8. 56 g of nitrogen and 8 g of hydrogen gas are heated in a closed vessel. At equilibrium 34 g of ammonia are present. The equilibrium number of moles of nitrogen, hydrogen and ammonia are respectively:

1) 1, 1, 2

2) 2, 1, 2

3) 1, 2, 2

4) 2, 2, 1

9. A process is taking place at constant temperature and pressure. Then:

1) $\Delta H = 0$

2) $\Delta S = 0$

3) $\Delta H = \Delta E$

4) $\Delta H = T \Delta S$

10. In a galvanic cell, the electrons flow from:

- 1) Anode to cathode through the external circuit.
- 2) Cathode to anode through the external circuit.
- 3) Anode to cathode through the solution.
- 4) Cathode to anode through the solution.

11.	On treating a mixture of two alkyl halide	s with sodium metal in dry ether, 2-methyl propan	ıe
	was obtained. The alkyl halides are :		

- 1) Chloromethane and Chloroethane
- 2) Chloromethane and 1- Chloropropane
- 3) 2 Chloropropane and Chloromethane
- 4) 2 Chloropropane and Chloroethane
- 12. Which of the following statements about benzyl chloride is incorrect?
 - 1) It is a lachrymatory liquid and answers Beilstein's test.
 - 2) It gives a white precipitate with alcoholic silver nitrate.
 - 3) It is less reactive than alkyl halides.
 - 4) It can be oxidised to benzaldehyde by boiling with copper nitrate solution.
- 13. The main product obtained when a solution of sodium carbonate reacts with mercuric chloride is:
 - 1) $HgCO_3$

2) $HgCO_3 \cdot Hg(OH)_2$

3) $Hg(OH)_{2}$

- 4) $HgCO_3 \cdot HgO$
- 14. In the electrothermal process, the compound displaced by silica from calcium phosphate is:
 - 1) Phosphorus

- 2) Phosphorus pentoxide
- 3) Calcium phosphide
- 4) Phosphine
- 15. The enthalpy of combustion of methane at 25°C is 890 kJ. The heat liberated when 3.2 g of methane is burnt in air is:
 - 1) 890 kJ

2) 178 kJ

3) 445 kJ

4) 278 kJ

16.	The pres	sure and tem n dioxide gas	perature of a would be :	4 <i>dm</i> ³ of	carbor	r dioxide g	as are double	a. Then	tne voi	ume
	1)	$4\ dm^3$			2)	$8 dm^3$		٠.		
	3)	$2 dm^3$. (4)	4)	$3 dm^3$	1.		•	
17.	4g of cop	per was disso gave 5g of its	lved in conc oxide. The e	entratec equivale	l nitric ent wei	acid. The ght of cop	copper nitrate per is :	e soluti	on on st	rong
	1)	12		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2)	20		v1 €.	. *	
	3)	23	1 10		(4)	32				:
18.		nanufacture o $3H_{2(p)} \iff 2$					ving condition	s is un	favoura	ble?
		Reducing th					g ammonia as	:	_	٠
	3)	•	the temperat		4)	Increasir	ng the pressur	:e		
19.	The che	mical equilib	rium of a rev	ersible	reactio	n is not ir	ofluenced by :			
,	1)		on of the rea			Tempera		•		
	3)	Pressure			4)	Catalyst		: "	i ·	
20.	Cumene		e most impo	ortant co	ommer	cial metho	d for the man	ufactu	re of ph	enol.
•	1)	Vinyl benze	ene		2)	Propyl b	enzene	٠.		٧.٠
	3)	1 - Methyl e	Abel bongon	•	4)	Ethyl be	nzono			

21.	A solution contains 1.2046 x 1	0 ²⁴ hydrochlor	ic acid mol	ecules i	n one dm	³ of the s	solution.	The
	strength of the solution is :					11	•	

1) 4 N

2) 8 N

3) 6 N

4) 2N

22. Nuclear theory of the atom was put forward by:

1) Neils Bohr

2) J. J. Thomson

3) Rutherford

4) Aston

In acetylene molecule, the two carbon atoms are linked by: 23.

- 1) three sigma bonds
- 2) three pi bonds
- 3) one sigma bond and two pi bonds 4) two sigma and one pi bond

24. The enthalpy of the reaction,

$$H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow H_2O_{(g)}$$
 is ΔH_1 and that of

$$H_{2(g)} + \frac{1}{2}O_{2(g)} \to H_2O_{(l)}$$
 is ΔH_2 . Then

1) $\Delta H_1 > \Delta H_2$

2) $\Delta H_1 = \Delta H_2$

3) $\Delta H_1 < \Delta H_2$

- 4) $\Delta H_1 + \Delta H_2 = 0$
- A radioactive isotope decays at such a rate that after 192 minutes only $\frac{1}{16}$ of the original amount remains. The half life of the radioactive isotope is:
 - 12 min

24 min

3) 32 min

4) 48 min

26.	The reag	ent which does not	give acid chloride or	n treating with	a carboxylic acid is :
		$SOCl_2$		PCl_3	
	3)	PCl_{5}	4)	Cl_2	
27.	Among t	he halogens, the on	e which is oxidised	oy nitric acid is	:
	1)	Chlorine	2)	Bromine	
	3)	Fluorine	4)	Iodine	
28.	The met	al which does not fo	orm ammonium nitr	ate by reaction	with dilute nitric acid is :
		Pb	2)	Mg	
	3)	Al	4)	Fe	· · · · · · · · · · · · · · · · · · ·
29.	The elen	nents with atomic n	umbers 9, 17, 35, 53	3, 85 are all :	· · · · · · · · · · · · · · · · · · ·
	1)	Heavy metals	2)	Light metals	
	3)	Noble gases	4)	Halogens	
30.		lectrolytic method o narge in order to :	f obtaining alumini	um from purifie	d bauxite, cryolite is added
	1)	dissolve bauxite a	nd render it conduc	tor of electricity	
٠	2)	lower the melting	point of bauxite.		
	. 3)	minimise the heat	loss due to radiation	on.	
	4)	protect aluminiun	n produced from oxy	gen.	
	···		(Space for Rough	Work)	:

31. Which of the following is not an amphoteric substance?

	1)	H_2O	2)	NH_3		
	3)	HNO_3	4)	HCO_3^-		
32.	When 50	$0~{ m cm^3~of}~0.2~N~H_2SO_4$ is	s mixed with 50 c	${ m m}^3$ of $1NK$	<i>OH</i> , the heat l	iberated is:
	1)	573 kJ	2)	573 J	•	
•	3)	11.46 kJ	4)	$57.3 \mathrm{\; kJ}$		
33.	An artif	icial radioactive isotop	e gave $\frac{14}{7}N$ after	· two succes	ssive eta -partic	le emissions. The
	number	of neutrons in the pare	ent nucleus must	be:		
	1)	5	2)	7		
	3)	9	4)	14		
34.	Stainles	s steel does not rust be	ecause :		•	
	1)	Nickel present in it, o	loes not rust	· · ·		
	2)	Iron forms a hard che	emical compound	with chron	nium present i	n it.
	3)	Chromium and nicke	l combine with ir	on.	,	
	4)	Chromium forms an	oxide layer and p	rotects iron	from rusting.	
35.	Which o	f the following combina	átions can be use	d to synthe	sise ethanol?	
	1)	$CH_3 Mg I$ and $CH_3 G$	$COOC_2H_5$			•
	2)	$CH_3 Mg I$ and $HCOO$	OC_2H_5			•
	3)	$CH_3 Mg I$ and $CH_3 C$	$COCH_3$		•	·
	4)	$CH_3 Mg I$ and $C_2 H_5$	OH			

		10		A -1
36.	The reaction, $2SO_{2(g)} + O_{2(g)} \Longrightarrow 2SO_{3(g)}$ separately. The ratio of the reaction vel		•	vessel and $2 dm^3$ vessel
	1) 4:1 3) 1:8	•	8:1 1:4	
37.	In a mixture of acetic acid and sodium a acid is increased ten times. Then the pl			rations of the salt to the
	1) decreases ten fold	2)	increases ten fold	
	3) increases by one	4)	decreases by one	
38.	When a mixture of methane and oxyger main product formed is:	n is passe	ed through heated	molybdenum oxide, the
	1) Methanol	2)	Methanal	
	3) Methanoic acid	4)	Ethanal	
39.	Benzene can be obtained by heating eith	ner benzoi	c acid with ' X ' or p	whenol with Y . X and Y
	are respectively:	1 0)	0-1-1:1	
	1) Zinc dust and sodium hydroxi			and the second s
	3) Zinc dust and soda lime	4)	Soda lime and zir	nc dust
40.	An organic compound is boiled with al	coholic po	otash. The produc	et is cooled and acidified
	with HCl. A white solid separates out.	The start	ing compound ma	y be :
,	1) ethyl acetate	2)	methyl acetate	
	3) ethyl benzoate	4)	ethyl formate	•

- 41. In qualitative analysis, in order to detect second group basic radical, H_2S gas is passed in the presence of dilute HCl to:
 - 1) decrease the dissociation of H_2S
- 2) increase the dissociation of salt solution
- 3) increase the dissociation of $H_{g}S$
- 4) decrease the dissociation of salt solution
- **42.** Aluminium displaces hydrogen from dilute HCl whereas silver does not. The E.M.F. of a cell prepared by combining Al/Al^{+3} and Ag/Ag^+ is 2.46 V. The reduction potential of silver electrode is + 0.80 V. The reduction potential of aluminium electrode is:
 - 1) 3.26 V

-1.66 V

3) + 1.66 V

- 4) -3.26 V
- **43.** The first fraction obtained during the fractionation of petroleum is:
 - 1) Gasoline

- 2) Diesel oil
- 3) Hydrocarbon gases
- 4) Kerosene oil
- **44.** Which of the following compounds gives trichloromethane on distilling with bleaching powder?
 - 1) Ethanol

2) Methanol

3) Methanal

4) Phenol

- 45. Benzoin is:
 - 1) α hydroxy aldehyde
 - 2) α hydroxy ketone
 - 3) compound containing an aldehyde and a ketonic group
 - 4) α , β unsaturated acid

46.		y constant of a re is raised to 310			was found to be :	$3.2 \times 10^{-3} S$	-1. Wh	en the
	-	$.6 \times 10^{-3}$			1.28×10^{-2}	1 **		•
	3) 6	$.4 \times 10^{-3}$		4)	3.2×10^{-4}			•
47.	Select the	pK_a value of the s	trongest acid fi	om t	he following :		:	
	1) 2	.0		2)	4.5	*		
	3) 1	.0		4)	3.0			
48.	Pick out th	e unsaturated fa	tty acid from th	e fol	lowing :			
	1) C	leic acid		· 2)	Palmitic acid	••		
	3) S	tearic acid		4)	Lauric acid	•		
49.	Nylon is no	ot a :					·.	- 4
	1) (Copolymer	•.	2)	Homopolymer			
	3) C	Condensation poly	mer	4)	Polyamide	•		
50.	The coal ta	r fraction which	contains pheno	l is :	· ·			• • •

(Space for Rough Work)

2) Light oil

4) Green oil

1) Heavy oil

3) Middle oil

51. ,	The compounds A and B are mixed in equimol	ar proportion to form the products,
	$A + B \Longrightarrow C + D$. At equilibrium, one third of A	and B are consumed. The equilibrium
	constant for the reaction is:	
	1) 2.5	25
	3) 0.5 4) 4.0	
52.	In froth floatation process for the purification of ore	es, the particles of ore float because :
	1) They are insoluble	
	2) They bear electrostatic charge	
	3) Their surface is not easily wetted by water	r
	4) They are light	
53.	Which of the following statements about amorphous	s solids is incorrect ?
	1) There is no orderly arrangement of particl	
	2) They are rigid and incompressible.	
	3) They melt over a range of temperature.	
	4) They are anisotropic.	
54.	Hydrogen diffuses six times faster than gas A . The	molar mass of gas A is :
	1) 24 2) 36	
	3) 72 4) 6	
55.	Dulong and Petit's law is valid only for :	

(Space for Rough Work)

2) solid elements

4) non-metals

1) gaseous elements

3) metals

14

56. Identify the gas which is readily adsorbed by activated characteristics.	charcoal:	activated	by	adsorbed	readily	which is	the gas	Identify	56.
---	-----------	-----------	----	----------	---------	----------	---------	----------	------------

1) H_2

 O_2

3) N_2

4) SO_2

57. If the distance between Na^+ and Cl^- ions in sodium chloride crystal is X pm, the length of the edge of the unit cell is :

1) $\frac{X}{2}$ pm

2) 2X pm

3) 4 X pm

4) $\frac{X}{4}$ pm

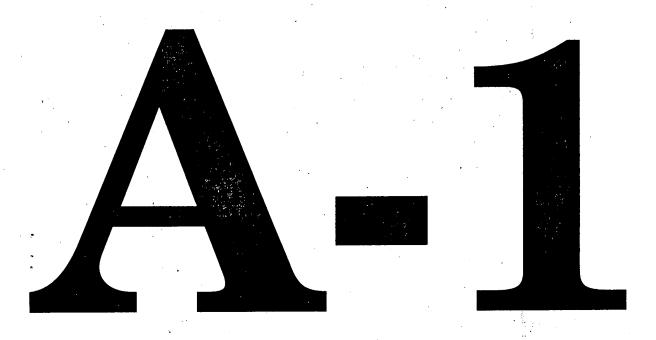
58. Which of the following statements is incorrect?

- 1) In $K_4[Fe(CN)_6]$ the ligand has satisfied both primary and secondary valencies of ferrous ion.
- 2) In $[Cu(NH_3)_4]SO_4$, the ligand has satisfied only the secondary valency of copper.
- 3) In $K_3[Fe(CN)_6]$, the ligand has satisfied only the secondary valency of ferric ion.
- 4) In $K_3[Fe(CN)_6]$, the ligand has satisfied both primary and secondary valencies of ferric ion.
- 59. 2 Acetoxy benzoic acid is used as an:
 - 1) antiseptic

2) antipyretic

3) antimalarial

4) antidepressant


60. A nucleoside on hydrolysis gives:

- 1) an aldopentose and a heterocyclic base.
- 2) an aldopentose and orthophosphoric acid.
- 3) a heterocyclic base and orthophosphoric acid.
- 4) an aldopentose, a heterocyclic base and orthophosphoric acid

15

A -1

hosted at www.educationobserver.com/forum

