MATHEMATICS		02.30 P.M. TO		0 P.M. TO 03.50 P.M.	
MA	XIMUM MARK	S TOTAL	DURATION	MAXIN	MUM TIME FOR ANSWERING
	60	80 M	IINUTES	he humber	70 MINUTES
	MENTION Y CET NUM			TION BOON N CODE	OKLET DETAILS SERIAL NUMBER
	RANG		A -	1	203889
00's :			1	1000	ALT PAY DAY 1

- 3. The Serial Number of this question booklet should be entered on the OMR answer sheet.
- 4. The Version Code of this question booklet should be entered on the OMR answer sheet and the respective circles should also be shaded completely.
- 5. Compulsorily sign at the bottom portion of the OMR answer sheet in the space provided.

DON'TS:

- 1. THE TIMING MARKS PRINTED ON THE OMR ANSWER SHEET SHOULD NOT BE DAMAGED / MUTILATED/SPOILED.
- 2. Until the 3rd Bell is rung at 02.40 p.m.:
 - Do not remove the seal / staple present on the right hand side of this question booklet.
 - Do not look inside this question booklet.
 - Do not start answering on the OMR answer sheet.

INSTRUCTIONS TO CANDIDATES

- 1. . This question booklet contains 60 questions and each question will have four different options / choices.
- After the 3rd Bell is rung at 02.40 p.m., remove the seal / staple present on the right hand side of this question booklet and start answering on the OMR answer sheet.
- 3. During the subsequent 70 minutes:
 - Read each question carefully.
 - Choose the correct answer from out of the four available options / choices given under each question.
 - Completely darken/shade the relevant circle with a BLUE OR BLACK INK BALL POINT PEN against the question number on the OMR answer sheet.

CORRECT METHOD OF SHADING THE CIRCLE ON THE OMR SHEET IS SHOWN BELOW :

$12 \bullet 4$

- Please note that even a minute unintended ink dot on the OMR sheet will also be recognised and recorded by the scanner. Therefore, avoid multiple markings of any kind on the OMR answer sheet.
- Use the space provided on each page of the question booklet for Rough work AND do not use the OMR answer sheet for the same.
- 6. After the last bell is rung at 03.50 p.m., stop writing on the OMR answer sheet and affix your LEFT HAND THUMB IMPRESSION on the OMR answer sheet as per the instructions.
- 7. Hand over the OMR ANSWER SHEET to the room invigilator as it is.
- After separating and retaining the top sheet (KEA Copy), the invigilator will return the bottom sheet replica (Candidate's copy) to you to carry home for self-evaluation.
- 9. Preserve the replica of the OMR answer sheet for a minimum period of One year.

M

SEA

	(1) 81		(2) (4)	0 1 (8)
	(3) 9			ייים אין
6.	If A and B are square $(ABA^{-1})^2 =$	matrices of the same	order s	such that $(A + B) (A - B) = A^2 - B^2$, then
	(1) A ²		(2)	B ² an grained in and the age signal W
	(3) I		(4)	A^2B^2
7.	If $\vec{a} \cdot \vec{b} = - \vec{a} \vec{b} $, th	en the angle between	\overrightarrow{a} and	1 b is
	(1) 60°		(2)	45°
	(3) 180°		(4)	90° No equivalent of telephone of 190°
	$\rightarrow \rightarrow \rightarrow$	then $\vec{a} \times \vec{b} + \vec{b} \times \vec{c}$ -	$+\vec{c}\times\vec{a}$	$\overrightarrow{a} =$
8.	If $a + 2b + 3c = 0$,			
8,	If $\vec{a} + 2\vec{b} + 3\vec{c} = 0$, (1) $6(\vec{b} \times \vec{c})$		(2)	$2(\vec{b}\times\vec{c})$

	Space 1	For Rough Work	
	$(3) \mathbf{p} \lor (\mathbf{q} \lor \mathbf{r}) \qquad \bigcirc \qquad (1)$	$(4) p \lor (q \land r)$	
	(1) ~ $p \lor (q \land r)$	(2) $\sim p \wedge (q \wedge r)$	
3.	The negation of $p \land (1 \rightarrow \sim r)$ is		
	(3) 3	(4) 4	
	(1) 2	(2) 1	
12.	The number of subgroups of the grou	$p(Z_5, \oplus_5)$ is	
			A to di
	(4) Cancellation laws hold in	a group.	
	(3) Fourth roots of unity form	n an additive abelian group	
	(2) Inverse of an element in a	group is unique.	
	(1) Identity element in a grou	p is unique.	
11.	Which one of the following is not tru	ne?	
	$\begin{array}{c} (1) & 0 \\ (3) & 3 \end{array}$	(4) 5	
10.	In the group $G = \{0, 1, 2, 3, 4, 5\}$ un	der addition modulo 6 (2)	₽ 2-1 @ 1)-1
	(3) 120	(4) 160	
	(1) 40 (3) 120	(2) 80	
	units, then the volume of the para coterminous edges in cubic units is	allelopiped having b + c	\vec{c} , \vec{c} + \vec{a} and \vec{a} + \vec{b}
9.	If the volume of the parallelopiped	with a, b and c as co	terminous edges is 40 cut
0			

14. If $n = 2020$, then			
$\frac{1}{\log_2 n} + \frac{1}{\log_3 n} + \frac{1}{\log_4 n} + \dots + \frac{1}{\log_{2020} n}$	<u>n</u> =		
(1) 0	(2)	2020	
(3) 1 " rot transport by "-Riv	(4)	2020	
15. If 'n' is a positive integer, then $n^3 + 2n$ is di	ivisible	by	
$\frac{1}{3} = \frac{1}{3} \sqrt{\frac{1}{3}} \sqrt{\frac{1}{3}} = \frac{1}{3} \sqrt{\frac{1}{3}} \sqrt{\frac{1}{3}} \sqrt{\frac{1}{3}} = \frac{1}{3} \sqrt{\frac{1}{3}} \sqrt{\frac{1}{3}}$			
$\begin{array}{ccc} (3) & 6 \\ 1 & 1 \\ \end{array} \xrightarrow{\pi} = \pi \operatorname{base} \pi > \pi > 0 \\ \end{array}$	(4)	15 	
16. On the set of integers Z, define $f: Z \to Z$ a (1) bijective		$= \begin{cases} \frac{n}{2}, & n \text{ is even} \\ 0, & n \text{ is odd} \end{cases}$ then 'f' is injective but not surjective	
(3) neither injective nor surjective	(4)	surjective but not injective	
17. If α and β are the roots of $x^2 + x + 1 = 0$, the	len α^{16} .	+ β^{16} = β^{16} (1)	
(1) 0 and realized draw (1)	(2)	1 missi sup tauli - (E)	
(3) -1	(4)		
18. The total number of terms in the expansion	of (<i>x</i> +	$(x - y)^{100} + (x - y)^{100}$ after simplification	is
(1) 50 (1) - 1 to (1) + (- (1)	(2)	51 Ē\/i ± 1- (1)	
(3) 202 $\sqrt{1-1}$ (3) (3)	(4)		

hosted at www.educationobserver.com/forum **19.** $\cot^{-1}(2 \cdot 1^2) + \cot^{-1}(2 \cdot 2^2) + \cot^{-1}(2 \cdot 3^2) + \dots$ up to $\infty =$ (1) $\frac{\pi}{5}$ (2) $\frac{\pi}{4}$ (4) $\frac{\pi}{2}$ (3) $\frac{\pi}{3}$ If 'x' takes negative permissible value, then $\sin^{-1} x$ is equal to 20. (2) $-\cos^{-1}\sqrt{1-x^2}$ (1) $\cos^{-1}\sqrt{1-x^2}$ (4) $\pi - \cos^{-1}\sqrt{1-x^2}$ (3) $\cos^{-1}\sqrt{x^2-1}$ 21. If $1 + \sin x + \sin^2 x + \dots$ up to $\infty = 4 + 2\sqrt{3}$, $0 < x < \pi$ and $x \neq \frac{\pi}{2}$, then x =(2) $\frac{\pi}{3}, \frac{5\pi}{6}$ (1) $\frac{\pi}{6}, \frac{\pi}{3}$ (3) $\frac{2\pi}{3}, \frac{\pi}{6}$ (4) $\frac{\pi}{3}, \frac{2\pi}{3}$ The complex number $\frac{1+2i}{1-i}$ lies in 22. (2) second quadrant (1) first quadrant (3)third quadrant (4) fourth quadrant If P is the point in the Argand diagram corresponding to the complex number $\sqrt{3}$ + i and if 23. OPQ is an isosceles right angled triangle, right angled at 'O', then Q represents the complex number (2) $-1 + i\sqrt{3}$ or $1 - i\sqrt{3}$ (1) $-1 \pm i\sqrt{3}$ (4) $\sqrt{3} - i \text{ or } 1 - i\sqrt{3}$ (3) $1 \pm i\sqrt{3}$

The smallest positive integral value of 'n' such that $\begin{bmatrix} \frac{1+\sin\frac{\pi}{8}+i\cos\frac{\pi}{8}}{1+\sin\frac{\pi}{8}-i\cos\frac{\pi}{8}} \end{bmatrix}^{\text{II}}$ is purely 24. imaginary is, n = (2) 4 (1) 8 (4) 2 (3) 3 Which one of the following is possible ? 25. (1) $\cos \theta = \frac{7}{3}$ (2) $\sin \theta = \frac{a^2 + b^2}{a^2 - b^2}, (a \neq b)$ (3) $\sec \theta = \frac{4}{5}$ (4) $\tan \theta = 45$ 26. If one side of a triangle is double the other and the angles opposite to these sides differ by 60°, then the triangle is (2) obtuse angled (1) right angled (4) isosceles acute angled (3)27. $3(\sin x - \cos x)^4 + 6(\sin x + \cos x)^2 + 4(\sin^6 x + \cos^6 x) =$ (2) 12 (1) 11 (4) 14 (3) 13

28. A cow is tied to a post by a rope. The cow moves along the circular path always keeping the rope tight. If it describes 44 metres, when it has traced out 72° at the centre, the length of the rope is

- (1) 35 metres (2) 22 metres
- (3) 56 metres (4) 45 metres

29. If $\begin{vmatrix} 1 + \sin^2\theta & \cos^2\theta & 4\sin 2\theta \\ \sin^2\theta & 1 + \cos^2\theta & 4\sin 2\theta \\ \sin^2\theta & \cos^2\theta & 4\sin 2\theta - 1 \end{vmatrix} = 0 \text{ and } 0 < \theta < \frac{\pi}{2}, \text{ then } \cos 4\theta = -$ (1) $\frac{1}{2}$ (2) $\frac{\sqrt{3}}{2}$ (3) 0(4) $\frac{-1}{2}$

30. The locus of the mid points of the chords of the circle $x^2 + y^2 = 4$ which subtend a right angle at the origin is

(1)	x + y = 2 bolgets searched (2)	(2) $x^2 + y^2 = 1$
(3)	$x^2 + y^2 = 2 \tag{(b)}$	(4) $x + y = 1$

31. The length of the chord joining the points $(4\cos\theta, 4\sin\theta)$ and $(4\cos(\theta + 60^\circ), 4\sin(\theta + 60^\circ))$ of the circle $x^2 + y^2 = 16$ is

(1)	2	(2)	4
(3)	8	(4)	16

32. The number of common tangents to the circles $x^2 + y^2 - y = 0$ and $x^2 + y^2 + y = 0$ is

(1) 1 (2) 2 (3) 3 (4) 0

33. The co-ordinates of the centre of the smallest circle passing through the origin and having y = x + 1 as a diameter are

- (1) $\left(\frac{-1}{2}, \frac{1}{2}\right)$ (3) $\left(\frac{1}{2}, \frac{1}{3}\right)$ (2) $\left(\frac{1}{2}, \frac{-1}{2}\right)$ (4) (-1, 0)
- 34. The length of the diameter of the circle which cuts three circles
 - $x^{2} + y^{2} x y 14 = 0;$ $x^{2} + y^{2} + 3x - 5y - 10 = 0;$ $x^{2} + y^{2} - 2x + 3y - 27 = 0$

orthogonally, is

(1)	2	(2)	8
(3)	6	(4)	4

35. For the parabola $y^2 = 4x$, the point P whose focal distance is 17, is

(1)	(16, 8) or (16, -8)	(2)	(8, 8) or (8, -8)	
(3)	(4, 8) or $(4, -8)$	(4)	(2, 8) or (2, -8)	

36. The angle between the tangents drawn to the parabola $y^2 = 12x$ from the point (-3, 2) is

(1)	45°			(2)	90°	
(3)	60°			(4)	30°	

37. The number of values of 'c' such that the line y = 4x + c touches the curve $\frac{x^2}{4} + y^2 = 1$ is

(1) 0 (2) 1 (3) 2 (4) infinite

38. If the circle $x^2 + y^2 = a^2$ intersects the hyperbola $xy = c^2$ in four points $P(x_1, y_1)$, $Q(x_2, y_2)$, $R(x_3, y_3)$ and $S(x_4, y_4)$, then

(1)
$$x_1 + x_2 + x_3 + x_4 = 0$$

(2) $y_1 + y_2 + y_3 + y_4 = 2$
(3) $x_1 x_2 x_3 x_4 = 2c^4$
(4) $y_1 y_2 y_3 y_4 = 2c^4$

39. The foot of the perpendicular from the point (2, 4) upon x + y = 4 is

(1)	(3, -1)	(2)	(2, 2)
(3)	(4, 0)	(4)	(1, 3)

40. The vertices of a triangle are (6, 0), (0, 6) and (6, 6). The distance between its circumcentre and centroid is

(1)	$2\sqrt{2}$	(2) 2	
(3)	$\sqrt{2}$	(4) 1	

Space For Rough Work

A-1

M

(3) $n \sin^{n-1} x \cos(n-1) x$ (4) $n \sin^{n-1} x \cos nx$

47. If $f(x) = \frac{g(x) + g(-x)}{2} + \frac{2}{[h(x) + h(-x)]^{-1}}$ where g and h are differentiable functions, then f'(0)(2) = (1) + (1) = (1) = (1)(1) 0 $(3) = \frac{1}{2}$

The tangent to a given curve y = f(x) is perpendicular to the x-axis if 48.

(1) $\frac{dy}{dx} = 0$ (2) $\frac{dy}{dx} = 1$ (3) $\frac{\mathrm{d}x}{\mathrm{d}y} = 0$ (4) $\frac{\mathrm{d}x}{\mathrm{d}y} = 1$

Space For Rough Work

A-1

49. The minimum value of $27^{\cos 2x} 81^{\sin 2x}$ is (2) -5 (1)27 (4) $\frac{1}{243}$ (3) A stone is thrown vertically upwards from the top of a tower 64 metres high according to 50. the law $s = 48t - 16t^2$. The greatest height attained by the stone above the ground is (2) 36 metre (1) 64 metre (4) 100 metre 32 metre (3)51. The length of the subtangent at 't' on the curve x = a (t + sin t), y = a (1 - cos t) is (1) $2a\sin^3\left(\frac{t}{2}\right)\sec\left(\frac{t}{2}\right)$ (2) a sin t (3) $2a\sin\left(\frac{t}{2}\right)\tan\left(\frac{t}{2}\right)$ (4) $2a\sin\frac{t}{2}$ 52. $\int e^{\tan^{-1}x} \left(1 + \frac{x}{1 + x^2}\right) dx$ is equal to (1) $\frac{1}{2}x e^{\tan^{-1}x} + c$ (1) (2) $x e^{\tan^{-1}x} + c$ (3) $e^{\tan^{-1}x} + c$ (4) $\frac{1}{2}e^{\tan^{-1}x} + c$ Space For Rough Work

57. The differential equation of the family of circles passing through the orign and having their centres on the x-axis is

(1) $x^{2} = y^{2} + 3xy \frac{dy}{dx}$ (2) $y^{2} = x^{2} + 2xy \frac{dy}{dx}$ (3) $y^{2} = x^{2} - 2xy \frac{dy}{dx}$ (4) $x^{2} = y^{2} + xy \frac{dy}{dx}$

58. A population grows at the rate of 10% of the population per year. How long does it take for the population to double ?

(1)	2 log 10 years	(2)	20 log 2 years	
(3)	10 log 2 years	(4)	5 log 2 years	

59. On the set of all natural numbers N, which one of the following * is a binary operation ?

(1)
$$a * b = 3a - 4b$$

(2) $a * b = \sqrt{ab}$
(3) $a * b = \frac{a - b}{a + b}$
(4) $a * b = a + 3b$

60. If
$$\int_{0}^{1} f(x) dx = 5$$
, then the value of $\dots + 100 \int_{0}^{1} x^{9} f(x^{10}) dx$ is equal to
(1) 55 (2) 125
(3) 625 (4) 275