1. What is the ratio of electron's charge to its mass?
a. $9.58 \times 10^{\wedge} 7$ coul/kg
b. infinite
C. 0
d. $1.759 \times 10^{\wedge} 11 \mathrm{coul} / \mathrm{kg}$
2. "What composes all matter whether a liquid, solid or gas?"
a. Atoms
b. Electrons
c. Protons
d. Neutrons
3. What is the smallest element of a matter?
a. neutron
b. electron
c. proton
d. atom
4. The lightest kind of atom of element
a. Titanium
b. Helium
c. Hydrogen
d. Oxygen
5. Which of the following is not a basic part of an atom?

a. Coulomb

b. Proton
c. Neutron
d. Electron
6. Electric charge of neutron is the same as
a. proton
b. atom
c. electron
d. current
7. The definite discrete amount of energy required to move an electron from a lower shell to a higher shell
a. quanta
b. negative energy
c. quantum
d. positive energy
8. What will happen to an atom if an electron is either taken out or taken into the same atom?
a. becomes negative ion
b. becomes an ion
c. becomes positive ion
d. nothing will happen
9. Ion is \qquad ?
a. nucleus without protons
b. an atom with unbalanced charges
c. proton
d. free electron
10. A process of constant loses of free electrons and then regaining them is called
\qquad _.
a. electron gaining
b. induction
c. polarization
d. ionization
11. \qquad is the
procedure by which an atom is given a net charge by adding or taking away electron
a. Doping
b. Polarization
c. Ionization
d. Irradiation
12. "In electricity, positive charge refers to \qquad "
a. Atoms
b. Electrons
c. Protons
d. Neutrons
13. "When an atom gains an additional \qquad it results to a negative ion"
a. atom
b. neutron
c. electron
d. proton
14. Protons are about heavier than
electrons
a. 1800 times
b. twice
c. less than thrice

d. less

15. Find the charge in coulombs of the dielectric that has a positive charge of 14.5×10 to the 18th power protons
a. 29×10 to the 16 th coulombs
b. 29×10 to the 18th coulombs
c. 14.5×10 to the 16 th coulombs
d. 14.5×10 to the 18 th coulombs
16. Amount of additional energy required for electronic emission of metals
a. electronvolt

b. work function

c. band gap
d. MeV
17. It is the energy of the highest energy electron of a metal at 0 degree Kelvin
a. 1 eV
b. work function
c. 1 joule
d. Fermi characteristic energy
18. Which of the following constants is needed to calculate the wavelength of and electron when is treated as a wave?
a. Boltzmann's constant
b. Planck's constant
c. acceleration due to gravity
d. Faraday's constant
19. What is the atomic number of copper?
a. 1
b. 14
C. 27
d. 29
20. Which of the following is the heaviest?
a. electron
b. deuterium
c. protium
d. tritium
21. How many neutrons does Uranium 238 have?
a. 146
b. 148
c. 147
d. 149
22. Which if the following is NOT an internal digital IC fault?
a. open signal lines
b. shorted signal lines
c. faulty power supply
d. poor solder connections
23. This type of fault has the same effect as an internal short between IC pins.
a. open signal lines
b. shorted signal lines
c. broken wire
d. poor solder connection
24. Which of the following does not describe a flip-flop circuit?
a. latch
b. memory
c. bistable multivibrator

d. ROM

25. What is the normal resting state of the SET and CLEAR inputs in a NAND gate latch?
a. SET $=$ CLEAR $=1$
b. $\operatorname{SET}=0$, CLEAR $=1$
c. $\operatorname{SET}=1, \mathrm{CLEAR}=0$
d. $\mathrm{SET}=\mathrm{CLEAR}=0$
26. Add the hex numbers 58 and 24.
a. 7C
b. 7D
c. C7
d. 2C
27. Add 3AF to 23C.
a. BE5
b. 5EB
c. A3B

d. 101A

28. How many inputs does a full adder have?
a. 2
b. 4
C. 8
d. 3
29. How many inputs does a half adder have?
a. 1
b. 2
C. 3
d. 4
30. A computer programming language in which groups of 1 s and 0 s are used to represent instructions. It is also the only language a computer actually understood.
a. application software
b. machine language
c. high-level language
d. programming language
31. A digital circuit that produces an output code depending on which of its inputs is activated.
a. decoder
b. encoder
c. multiplexer
d. demultiplexer
32. A result which is obtained when a one is added to the least significant bit position of a binary number in the 1's complement.

a. spike

b. 2's complement form
c. complement
d. signed binary numbers
33. A binary counter that counts from 0000 to 1001 before it recycles.
a. buffer
b. BCD counter
C. ring counter
d. ripple counter
34. A shift register in which the output of the last flip-flop
is connected to the input of the first flip-flop.
a. ring counter
b. ripple counter
c. parallel counter
d. BCD counter
35. A term synonymous with CLEAR in computer systems.
a. reset
b. set
c. toggle
d. load
36. That part of a computer instruction that defines what type of operation the computer is to execute on a specified data.
a. machine language
b. mnemonic
c. assembly language
d. Op code
37. An abbreviation that represents the op code of a computer instruction.
a. ASCII
b. Mnemonic
c. Octets
d. Instruction
38. A property whereby the output of a digital-to-analog converter either increases or stays the same as the input is increased
a. Volatility
b. Immunity
c. Monotonicity

d. Parity

39. Class of mass memory devices that uses a laser beam to write and read onto a specified coated disk.
a. mass storage
b. RAM
c. optical disk memory
d. non-volatile memory
40. A term used to describe the logic function created when open-collector outputs are tied together.
a. Wire-OR
b. Wired-AND
c. totem-pole
d. tristate
41. A technique often used to eliminate decoding spikes.
a. wired-AND

b. strobing

c. tristate
d. wired-NAND
42. A momentary, narrow, spurious and sharply defined change in volume.

a. glitch

b. strobe
c. toggle
d. clock
43. A single bit comparator is usually implemented using
a. exclusive OR
b. NOR gate
c. exclusive NOR
d. wire AND
44. An equivalent boolean equation for an exclusive NOR is
a. $x y+x^{\prime} y^{\prime}$
b. $x y+x y^{\prime}$
c. $x^{\prime} y+x y^{\prime}$
d. $x y^{\prime}+x^{\prime} y^{\prime}$
45. Data storage in a memory is termed as
a. writing
b. memorizing
c. loading
d. reading
46. Data retrieval from a memory is termed as
a. writing
b. memorizing
c. loading
d. reading
47. In BCD, the code 1111 is
a. letter F
b. A
C. 11

d. invalid

48. A decoder with 4 inputs can have a maximum of how many outputs?
a. 4
b. 8
c. 16
d. 32
49. Another name for a digital multiplexer is
a. data selector
b. compressor
c. encoder
d. decoder
50. An astable multivibrator has
a. one stable state
b. two stable states
c. no stable state
d. tristate
51. A bistate multivibrator has
a. one stable state
b. two stable states
c. no stable state
d. tristate
52. A monostable multivibrator has
a. one stable state
b. two stable states
c. no stable state
d. tristate
53. A type of multivibrator circuit which generates a square wave of its own is the

a. astable

b. monostable
c. bistable
d. flip-flop
54. A situation when a circuit's output level for a given set of input conditions can be assigned as either a 1 or a 0 .
a. don't care
b. totem pole
c. low level
d. high level
55. Circuits made up of combination of logic gates, with no feedback from outputs to inputs.
a. Latch
b. Sequential logic circuit
c. Combinational logic circuit
d. memory
56. A digital circuit that takes 4-bit BCD inputs and activates the required outputs to display the equivalent decimal digit on a 7-segment display.
a. BCD-to-decimal decoder
b. BCD-to-7 segment driver
c. decimal to BCD driver
d. 7-segment display
57. Asynchronous flip-flop line used to clear Q immediately to 0 .
a. DC set
b. DC clear
c. DC reset
d. DC toggle
58. A counter that counts from a maximum count downward to zero.
a. Synchronous counter
b. down counter
c. up counter
d. up/down counter
59. Small circles on the input or output lines of logic circuit symbols which represent inversion of a particular signal.
a. bootstrap
b. bubble
c. strobe
d. code
60. A multiplexer is described by its size through \qquad _, where $\mathrm{n}=$ number of bits.
a. $\mathbf{n} \times \mathbf{2 n}^{\wedge}$
b. $\mathbf{1 \times 2 \wedge} \mathbf{n}$
c. $2^{\wedge} n \times 1$
d. $\mathbf{2 n}^{\wedge} \mathbf{n} \times \mathrm{m}$
61. Which of the following is NOT an advantage of state tables in sequential logic circuit design?
a. they are the systematic approach to a design problem

b. the number of variables is

 limitedc. they minimize the gating required
d. they result in synchronous circuit
62. A situation in a system where it can never leave or progress to another state.

a. rest

b. hang-up state
c. no change in state
d. toggle
63. A diagram consisting of a set of circles, where each circle contains a number of state within it.
a. state table
b. transition diagram
c. Karnaugh map
d. bubble diagram
64. A counter that counts sequentially but does not step through all possible states, it returns to zero after a particular state.
a. ripple counter
b. decade counter

c. truncated counter

d. binary counter

65. A circuit that produces an output pulse for a fixed period of time in response to a trigger and then returns to its quiescent state.

a. monostable circuit

b. astable circuit
c. bistable circuit

d. discriminator

66. A small change made in resistance or capacitance to time a circuit precisely.
a. trigger

b. tweaking

c. bounce
d. squeaking
67. A square wave oscillator or clock generator.
a. astable circuit
b. monostable circuit
c. bistable circuit
d. debouncing circuit
68. A circuit designed to produce a clean output in response to a switch closure.
a. monostable circuit
b. filter circuit
c. attenuator
d. debouncing circuit
69. Duty cycle for repetitive waveform is defined as
a. the ratio of the ON time to the total time
b. the sum of the ON time and the OFF time
c. the ratio of the OFF time to the ON time
d. the ratio of the total time to the ON time
70. The state of a flip-flop when $\mathbf{Q}=0$ and $Q^{\prime}=1$.
a. reset
b. set
c. trigger state
d. tristate
71. The state of a flip-flop when $Q=1$ and $Q^{\prime}=0$.
a. reset
b. latch
c. set
d. glitch
72. A state causing the flipflop to change or reverse its state.
a. reset
b. set
c. toggle
d. non-toggle
73. How many flip-flops should be used to realize 32count capacity?
a. 2
c. 5
d. 6
74. The time difference which results when a clock may not arrive at all flip-flops precisely at the same time.
a. glitch
b. spike
c. hold

d. clock skew

75. A \qquad condition that exists if a circuit output depends on which of two nearly simultaneous inputs arrive at a point in the circuit first.
a. glitch
b. skew
c. clear
d. race
76. A one-input JK flip-flop is the \qquad flip-flop.
a. D
b. \mathbf{T}
c. S-R
d. C
77. A JK flip-flop can be made to function like a T flip-flop by simply
a. connecting the J and K inputs together as one-input
b. connecting $\mathbf{J}=\mathbf{0}$ and $\mathbf{K}=\mathbf{0}$
c. resetting all inputs of the JK
d. connecting earth ground the JK inputs
78. The one-input RS flip-flop is the \qquad flip-flop.
a. T
b. D
c. \mathbf{R}
d. Latch
79. Which of the following does not describe a flip-flop?
a. it is a one-bit memory device
b. its interval circuitry are usually symmetrical
c. it is a bistable device
d. it is equivalent to a oneshort circuit
80. In clock circuits, SWG means
a. square wave glitches
b. standard wire gauge
c. square wave generators
d. standard wave ground
81. An input signal that can activate or disable a gate.

a. strobe

b. glitch
c. tristate
d. wired-AND
82. A ring counter where the output is inverted and tied back to the input.
a. shift counter
b. decade counter
c. BCD counter
d. Johnson counter
83. A circuit that goes through $\mathbf{2 n}^{\wedge}(\mathbf{n - 1})$ states in a random fashion.
a. random generator
b. pseudo-random sequence generator
c. counting circuit
d. register
84. An input that disables multiplexers or demultiplexers when it is HIGH.

a. strobe

b. keyboard
c. decoder
d. binary input
85. Application of excessive current to a fuse in order to open it.
a. shorting
b. blowing
c. breaking
d. disconnecting
86. An outstanding advantage of LCDs from LEDs.
a. LCDs are organized as a 7segment display for numerical read out
b. LCDs can be multiplexed
c. LCDs essentially act as a capacitor and consume almost no power
d. LCDs generates light
87. A computer language that enables Programmable Array Logic (PAL) users to generate a file that can be used to blow a PAL.
a. JEDEC
b. PALASM
C. Turbo $\mathbf{C + +}$
d. Visual C
88. A type of computer bus which is bidirectional.
a. data bus
b. address
C. control bus
d. calling bus
89. A table used by a PLD language, such as PALASM, to calculate the expected outputs for a set of inputs.
a. excitation table
b. state table
c. simulation table
d. truth table
90. A programmable block of logic within a gate array, that contains a flip-flop for storage and also allows the user to specify logic
functions on its inputs.
a. programmed block
b. PLD
c. configurable logic block
d. block diagram
91. This type of bus carries the memory address from the computer to the memory.
a. data bus
b. address bus
c. control bus
d. parallel bus
92. This type of bus carries lines that control the operation of the memory from the microprocessor to the memory.
a. data bus
b. address bus

c. control bus

d. bus lines
93. A register which holds the address of the word currently being accessed.
a. hold register
b. memory address register
c. memory data register
d. access register
94. A register which holds the data being written into or read out of the addressed memory location.
a. hold register
b. memory data register
c. memory address register
d. glitch register
95. A preproduction model of a system built for testing and debugging.
a. wire list
b. maybe (colloquial)
c. prototype
d. sample
96. Correcting the faults in a circuit or system.
a. buzz-out
b. debugging
c. trap
d. fault corrector
97. There are \qquad flip-flops for a 3-bit binary counter.
a. 2
b. 3
C. 4
d. 5
98. A sequential logic circuit where the storage elements commonly used are timedelay devices (usually gates).

a. Synchronous SLC

b. Asynchronous SLC
c. Counter

d. Register

99. A block added to the combinational logic circuit to form a sequential logic circuit is the
a. ROM
b. counter
c. clock
d. memory
100. The state of the flip-flop before the occurrence of clock pulse is called as its
a. present state
b. next state
c. current input
d. present output
101. The state of the flip-flop after the occurrence of a clock pulse is called as its
a. current state
b. present state

c. next state

d. current input
102. It is said to be a universal gate because any digital system can be implemented with it.
a. NAND
b. AND
c. OR
d. exclusive OR
103. A flip-flop which follows its input in the next state.
a. T
b. D
c. JK
d. RS
104. An n-bit binary parallel adder requires \qquad in its least design.
a. n half adders
b. n half subtractor
c. \mathbf{n} full adders
d. \mathbf{n} half subtractors and \mathbf{n} full adder
105. A magnitude comparator has $\mathbf{2 n}^{\wedge}(2 n)$ entries in the truth table where n
a. number of inputs
b. number of comparator bits
c. number of outputs
d. number of inputs and outputs
106. An included input terminal in a magnitude comparator IC which is significant when both inputs compared are equal is called as its
a. setting
b. cascading inputs
c. input terminals
d. address
107. In designing a 16×1 multiplexer, how many selection lines are needed?
a. 2
b. 4
C. 15
d. 32
108. If $F=x y+x^{\prime} y^{\prime}$ boolean expression is to be
implemented using decoders and OR gates, the connection involves
a. 2 to 4 line decoder with 3 OR gates
b. 3 to 8 line decoder with 2 OR gates
c. 2 to 4 line decoder with 1 OR gates
d. 3 to 8 line decoder with 4 OR gates
109. How many AND gates and 4-bit binary adders are needed to implement a 2-bit to 3-bit binary multiplier?
a. 15 AND gates and three 4bit binary adders
b. 2 AND gates and one 4-bit binary adder
C. 9 AND gates only
d. 6 AND gates and one 4-bit binary adder
110. From a 3-bit binary counter design using T flipflops, determine the number of T flip-flops needed in its circuit implementation.
a. 1
b. 2

c. 3

d. 4
111. A system coordinating I/O between the transmitting and receiving devices.

a. charging

b. handshaking
c. interfacing
d. polling
112. An area of memory that holds the ASCII characters that are being displayed on a monitor.
a. space
b. start bit
c. terminal
d. screen image
113. An IC that transforms parallel data to serial in the asynchronous format and vice versa.

a. UART

b. USART
c. MODEM
d. RS232C
114. An instruction that alters the normal course of a program by causing it to jump to another instruction.
a. rotate instruction
b. skip instruction
c. jump
d. ACC
115. An instruction that causes data to be brought from memory into an accumulator register.
a. LOAD
b. LOOP
c. FETCH
d. JUMP
116. The portion of an instruction cycle where the instruction is sent from memory to the instruction register.
a. LOAD
b. ACCUMULATE
c. FETCH
d. EXECUTE
117. An instruction that causes data in the accumulator to be moved to the memory or a peripheral register.
a. FETCH

b. STORE

c. LOOP
d. LOAD
118. This occurs when the result of an arithmetic operation is a more negative number than the output register can accommodate.
a. error
b. overflow
c. underflow
d. don't care
119. This occurs when the result of an arithmetic operation is a larger number than the output register can accommodate.

a. overflow

b. inflow
c. underflow
d. look-ahead carry
120. A representation of numbers when negative numbers are obtained by complementing their positive equivalent and adding 1 .
a. 2 's complement
b. inversion
c. signed numbers
d. indeterminate
121. Which of the following is the language used in making an internet web page?

a. highertext mark-up language

b. hypertext mark-up language
c. hightech mark-up
language
d. hypertext make-up language
122. A program which can be executed on several different
computers to compare their speed and performance.
a. compiler
b. assembler
c. diagnostic program
d. benchmark
123. A single word memory location used to temporarily hold data during program execution.
a. accumulator
b. register
c. buffer
d. stack
124. Refer to the debugging method in which the program is executed one instruction at a time and the register contents can be examined after each step?
a. text editing
b. syntax analyzing
c. trace
d. semantic tracing
125. In a computer system, it is a unit of hardware where the control keys are located.
a. CPU
b. keyboard
c. I/O section
d. console
126. If a certain circuit acts as an AND gate when used with positive logic ($H=1$, $L=0$), what function will it perform when used with negative logic ($H=0, L=1$).

a. OR

b. AND
c. NAND
d. NOR
127. TTL, DTL, and ECL, which are frequently used to refer to certain "families" of digital integrated circuits, are actually names of
a. alternatives to positive and negative logic
b. varieties of positive and negative logic
c. companies that originated the families
d. general varieties of electronic circuits used as logic gates, from which, in essence, the building blocks in each series are
constructed
128. In the data sheet of a digital building block, operating speed is typically expressed in terms of
a. capacitance C
b. transition frequency

c. propagation delay times for both possible output transitions
 d. miles per hour or centimeters per second

129. The fan out capability of a digital building block depends on the current capability of its output and the current requirement of each input driven by that output, and maybe defined as
a. the number of inputs that one output can transmit to
b. the number of other inputs that can transmit to one input
c. the maximum power dissipation that the unit can stand
d. the amount of cooling required
130. Noise margin, which is one indication of how likely is it that information communicated between digital building blocks will be incorrect due to noise, depends on
a. output current capabilities and input current requirements
b. output power and required input power for the two logic states
c. the "safety margin"
between the output voltage produced by the transmitting block and input voltage
required by the receiving
block for each of the two logic state
d. the "safety margin" between the noise level and the noise figure
131. Typical propagation delay range for modern digital integrated circuits is
a. 1 to $\mathbf{1 0 0}$ milliseconds
b. 1 to $\mathbf{1 0 0}$ microseconds
C. 1 to 100 nanoseconds
d. 1 to 100 picoseconds
132. The most commonly used IC package for digital integrated circuits is the
a. CMOS pack
b. DIP ceramic
c. DIP plastic
d. Flat pack
133. A multiwire connection between digital circuits is usually called a
a. ribbon
b. bus
c. wire wrap
d. multiplexed line
134. Which of the following is a form of De Morgan's theorem?
a. $A+B=(A B)^{\prime}$
b. $A B=(A+B)^{\prime}$
C. $(A+B)^{\prime}=A^{\prime} \cdot B^{\prime}$
d. $\mathbf{A}, \mathbf{B}=A^{\prime}, B^{\prime}$
135. "Limbo" state of a flipflop occurs when
a. both outputs are low
b. both outputs are high
c. both outputs are the same
d. the outputs are inverse
136. A logic circuit that is triggered by a clock signal is
a. sequential
b. synchronous
c. asynchronous
d. pulsed
137. Another name for a decade counter
a. frequency divider
b. ripple shift counter
c. BCD counter
d. binary counter
138. Which of the items below can perform parallel-to-serial data conversion?
a. shift register
b. binary counter
c. multiplexer
d. decoder
139. Which of the following does not form DAC's?
a. counter
b. resistor network
c. current switches
d. reference
140. What digits are used in the binary number system?
a. 0 and 1
b. high and low
c. true and false
d. all of the choices
141. How does a CMOS
integrated circuit respond to a floating input?
a. Unpredictable, may overheat and be destroyed
b. open
c. shorted
d. acts just like a logic 1
142. What will be the state of Q and Q^{\prime} after a flip-flop has been reset?
a. $Q=0, Q^{\prime}=1$
b. $\mathbf{Q}=1, Q^{\prime}=0$
c. $\mathbf{Q}=\mathbf{0}, \mathbf{Q}^{\prime}=\mathbf{0}$
d. $Q=1, Q^{\prime}=1$
143. All arithmetic operations take place in the \qquad of a computer.
a. CPU

b. ALU

c. microprocessor
d. ROM
144. How many outputs does a full adder have?
a. 1
b. 2
C. 4
d. 8
145. What are the three basic parts of a BCD adder circuit?

a. two 4-bit adders and connection logic

b. two connection logic and one 4-bit adder

c. two full adders and one AND gate

d. one connection logic and 4 full adders
146. What is the principal register of an arithmetic logic unit?
a. controller
b. buffer
c. actuator
d. accumulator
147. An IC that contains a large number of interconnected logic functions wherein the user can program the IC for a specific function by selectively breaking the appropriate interconnections.
a. RAM
b. ROM
c. PLD
d. PLC
148. Class of programmable logic devices wherein its AND array is programmable while its OR array is hard-wired.

a. PAL

b. PLA
c. PLD
d. PROM53
149. Class of programmable logic devices wherein both its AND and its OR arrays are programmable.

a. Field Programmable Logic Array

b. Programmable Logic Controller

c. Programmable Logic Circuit

d. Programmable Array Logic
150. A digital circuit that oscillates between two unstable output states.
a. monostable multivibrator
b. astable multivibrator
c. bistable multivibrator
d. flip-flop
151. An electrical connection common to all segments of an LCD.
a. dual slope
b. bootstrap
c. backplane
d. cascade
152. How many bits are in a byte?
a. 8
b. 4
c. 2
d. 16
153. What binary number follows 1110?
a. 1010
b. 0111
c. 1111
d. 1000
154. What capital letter corresponds to 1000101 in the ASCII code?
a. A
b. C
c. D
d. E
155. What is the binary ASCII code for a question mark?
a. 0111110
b. 0111111
c. 0111000
d. 0100011
156. In the 7400 family of TTC devices, Quad 2-input

NAND gates has a device number equal to
a. 7400
b. 7402
c. 7432
d. 7486
157. Quad 2-input XOR gates in the $\mathbf{7 4 0 0}$ family of TTL devices has a device number equivalent to
a. 7402
b. 7486
c. 7408
d. 7404
158. A JK flip-flop will operate in the toggle mode when
a. $\mathbf{J}=\mathbf{0}, \mathrm{K}=\mathbf{0}$
b. $J=1, K=0$
c. $J=1, K=1$
d. $\mathbf{J}=\mathbf{0}, \mathrm{K}=1$
159. A digital circuit test equipment which is a troubleshooting tool that generates a short-duration pulse when activated manually, usually by pressing a button is the \qquad -
a. logic probe
b. VOM
c. logic clip
d. logic pulser
160. An RS flip-flop will not change in state when
a. $R=0, S=0$
b. $R=1, S=0$
c. $R=0, S=1$
d. $R=1, S=1$
161. A T flip-flop can be derived by
a. connecting two inputs of the JK flip-flop together
b. by inverting the inputs of a JK flip-flop
c. connecting the RS flipflop's input to ground
d. securing an integrated circuit with three inputs
162. The number of digits used by a number system.
a. base
b. radix
c. $\mathbf{2}^{\wedge} \mathbf{n}$
d. n
163. What is the condition of the flip-flop when $Q=0$ and $\mathbf{Q}^{\prime}=\mathbf{1}$?
a. reset
b. set
c. undetermined
d. preset
164. How many logic gates are in an SSI chip?
a. less than 12 gates
b. between 12 to 99 gates
c. anywhere from 100 to 9999 gates
d. 10,000 or more
165. How many logic gates are in an MSI chip?
a. less than 12 gates
b. between 12 to 99 gates
c. anywhere from 100 to 9999 gates
d. 10,000 or more
166. How many logic gates are in an VLSI chip?
a. less than 12 gates
b. between 12 to 99 gates
c. anywhere from 100 to 9999 gates
d. $\mathbf{1 0 , 0 0 0}$ or more
167. Which of the items below is not part of the hardware organization in a computer?
a. architecture
b. implementation
c. hardware realization

d. assembler

168. It consists of the instructions and data that the computer hardware manipulates to perform useful work.
a. software
b. program
c. file
d. data
169. The data manipulated by a program is called \qquad depending on its nature and extent.
a. data base
b. file
c. input

d. all of the choices

170. The most primitive instructions that can be given to a computer are those interpreted directly by the hardware in \qquad form.
a. assembly language
b. machine language
c. high-level language
d. simulator
171. It represents machine instructions by mnemonic names and allows memory addresses and other constants to be represented by symbols rather than bit strings.
a. assembler
b. machine language
c. assembly language
d. interpreter
172. It is needed to translate a high-level program into a sequence of machine instructions that performs the desired task.

a. assembler

b. interpreter

c. compiler

d. debugger
173. Text editors and formatters belong to the area of computing known as
\qquad -.
a. software
b. word processing
c. Compilers
d. assemblers
174. The processor or central processing unit is
a. the heart of the computer
b. employed RISC
c. communicates with the user
d. supports floating point numbers
175. Processors with more
than two registers for arithmetic and logical operations are classified as
a. specific register processors
b. general register processors
c. accumulator based
d. serial register processor
176. Which of the following is a non-volatile device?
a. ROM
b. RAM
c. PLA
d. PLD
177. With a \qquad a
processor can store data at any address and read back the stored information at any time
a. RAM
b. ROM
c. PLA
d. PROM
178. The system program used to translate directly an assembly language to machine language is called
a. assembler
b. compiler
c. text editor
d. debugger
179. A command to an ADC to start conversion.
a. SOC
b. EOC
c. PAC
d. EAR
180. Speeds of modems are generally classified by the number of \qquad they can
transmit.
a. cycles per second

b. bits per second

c. frequency per second
d. all of the choice
181. High speed modems transmit between
a. 300 and 2400 bps
b. 2400 and 9600 bps
c. between 2400 and 9600 bps
d. between 300 an d2400 bps
182. Low speed modems method of modulation is usually
a. phase-shift modulation
b. dibit modulation

c. frequency shift keying

d. amplitude modulation
183. Low speed modems generally handle data rates between
a. 3000 and 9000 bps
b. 300 and 2400 bps
c. 2400 and 9600 bps
d. 100 and 2400 bps
184. The most important memory element which is made of an assembly of logic gates is called
a. latch
b. bistable multivibrator

c. flip-flop

d. all of the choices
185. What is the normal resting state of the SET and CLEAR inputs in a flip-flop?
a. low, high
b. high, low
c. high, high
d. low, low
186. What will be the states of Q and Q ' after a flip-flop has been cleared?
a. $\mathbf{Q}=\mathbf{1}, \mathbf{Q}^{\prime}=\mathbf{0}$
b. $Q=0, Q^{\prime}=1$
c. $\mathbf{Q}=0, Q^{\prime}=0$
d. $\mathbf{Q}=\mathbf{1}, Q^{\prime}=1$
187. When power is first applied to any flip-flop circuit, it is impossible to predict the initial state of \mathbf{Q} and Q^{\prime}. What could be done to ensure that NAND latch always started off in the $\mathbf{Q}=$ 1 state?
a. apply momentary HIGH to PRESRT input
b. apply momentary LOW to SET input
c. apply momentary LOW to CLEAR input
d. apply momentary HIGH to CLEAR input
188. When a flip-flop is set, what are the states of Q and Q'?
a. $Q=1, Q^{\prime}=0$
b. $\mathbf{Q}=0, Q^{\prime}=1$
c. $\mathbf{Q}=0, Q^{\prime}=0$
d. $Q=1, Q^{\prime}=1$
189. Two types of inputs that clocked flip-flop has.
a. synchronous control inputs and clock input
b. asynchronous control inputs and clock input
c. pulsed control inputs and clock input
d. all of the choices
190. The flip-flop can change only when the appropriate clock transition occurs. It is a condition called

a. edge triggered

b. latching
c. clocking
d. pulsing
191. It is the required interval immediately following the active edge of the clock signal during which the control inputs must be held stable.
a. hold time
b. pulsing time
c. set up time
d. all the time
192. It is the required interval immediately following the active edge held of clocks during which the control inputs must be held.
a. set-up time
b. hold time
C. pulsing time
d. propagation time
193. What JK input condition will always set Q upon the occurrence of the active clock transition?
a. $\mathbf{J}=0, K=0$
b. $\mathrm{J}=1, \mathrm{~K}=0$
c. $\mathrm{J}=0, \mathrm{~K}=1$
d. $\mathbf{J}=\mathbf{1}, \mathrm{K}=\mathbf{1}$
194. How does the operation of an asynchronous input differ from that of a synchronous input?
a. it works independently of the clock input
b. it is very dependent on the clock transition
c. it is mutually the same in function
d. not determined by ordinary operation
a. serial transfer
b. parallel transfer
c. hybrid transfer

d. FIFO

198. What is the major advantage of serial transfer over parallel transfer?
a. large interconnections between gates
b. one at a time transmission
c. fewer interconnections between registers
d. speed
199. A 20KHz signal is applied to a JK flip-flop when J = 1, $K=1$. What is the frequency of the flip-flop waveform?
a. $\mathbf{2 0} \mathbf{~ k H z}$
b. 10 kHz
c. $\mathbf{4 0} \mathbf{~ k H z}$
d. 5 kHz
200. How many flip-flops are required for counter that will count 0 to 255?
a. 2
b. 4
C. 16

d. 8

201. It converts a nonelectrical physical quantity to an electrical quantity.
a. converter
b. inverter

c. transducer

d. compiler

202. What does a computer do with the data it receives from an ADC?
a. stores the data
b. performs calculation
c. processes the data
d. all of the choices
203. An actuator in the DAC performs
a. conversion of digital data to its analog representation
b. controls a physical variable according to an electrical input signal
c. converts a non-electrical physical quantity to an electrical quantity
d. performs calculation
204. The maximum deviation of DAC output from its ideal value, expressed as percentage of full scale.

a. full scale error

b. deviation ratio
c. percentage error
d. none of the choices
205. The time it takes for the DAC output to settle to within the $1 / 2$ step size of its full scale value when the digital input changes from zero to full scale.

a. setting time

b. set-up time
c. hold time
d. full scale time
206. Why are voltage DAC's generally slower than current DAC's?
a. because of the response time of the op-amp current-to-voltage converter
b. because of its internal construction
c. because voltage DAC's have many heat losses
d. none of the choices
207. What is the function of the comparator in the ADC?
a. tells control logic when the DAC output exceeds the analog input
b. compares two parameters only
c. addition and multiplication
d. arithmetic operation
208. Meaning of checksum in ROM's
a. it is a code placed in the last one or two ROM locations that represents the sum of the expected ROM data from all other locations
b. used as a means to test for leakage in one or more ROM locations
c. prevents decoding glitches
d. regulates ROM
209. What is meant by interfacing in a computer system?
a. synchronization of data information in a computer
b. synchronization of digital information transmission between the computer and external I/O devices
c. connection of computers
d. finding the fault in a network
210. Which of the following below is not one of the three major sections of an MPU?
a. timing and control
b. ALU
c. register
d. inversion
211. What is an operand address?
a. the binary code that represents the operation to be performed by the CPU
b. the address of the data to be operated as the CPU executes the instruction called for by the opcode
c. a short abbreviation for the operation
d. all of the choices
212. What device puts data on the data bus during a write operation?
a. ALU
b. CPU
c. keyboard
d. accumulator
213. Instruction mnemonic means
a. a short abbreviation for the operation
b. a binary code that represents the operation to be performed by the CPU
c. technical term sometimes added to an IC's description
d. representation of a quantity that varies in discrete steps
214. Arrival of a clock signal at the clock inputs of different flip-flops at different times as a result of propagation delays.
a. clock transition

b. buffer address

c. clock skew

d. none of the choices
215. A logic circuit that depending on the status of its selected inputs will channel its data input to one of several data outputs.
a. MUX
b. DMUX
c. RAM
d. ROM
216. Add 74(8) with 1.1(2)
a. 700(10)
b. 70.5(8)
C. 10101.01(2)
d. 75.4(8)
217. An analog memory circuit used to eliminate aperture error is called a
a. MUX
b. DMUX
C. Track/store amplifier
d. flip-flop
218. Which of the following is not a dynamic test instrument?
a. logic probe
b. oscilloscope
c. Iogic analyzer
d. logic monitor
219. A translated program in machine language is called
a. a source program
b. an object program
c. machine program
d. user program
220. Performing binary subtraction to $61 / 4$ minus 4 $1 / 2$ results to
a. 1001.01
b. 1.11
C. 10.11
d. 1.00
221. A circuit made up of combinations of logic gates, with no feedback from outputs to input.
a. sequential logic circuit
b. combinational logic circuit
c. clocked circuits
d. asynchronous logic circuit
222. Which of the following involves digital quantities?

a. Ten position switch

b. Current meter
c. Temperature
d. Radio volume control
223. Which of the following choices is NOT a characteristic of analog quantity
a. varied amplitude
b. one quantity is represented by another which is proportional to the first
c. is considered discrete
d. they can vary over a continuous range of values
224. The decimal system is composed of \qquad numerals or symbols.
a. 2
b. 10
c. 8
d. 16
225. Change in state is
a. same state
b. reset
c. set
d. toggle
226. What is the decimal equivalent of (1101011)2?
a. 107
b. 108
C. 96
d. 100
227. What is the next binary number following (10111)2 in the counting sequence?
a. 11100
b. 110011
C. 10110
d. 11000
228. What is the largest decimal value that can be represented using 12 bits?
a. 144
b. 2048
C. 4095
d. 4096
229. What is the largest number that can be represented using 8 bits?
a. 11111111
b. 10111011
C. 10111111
d. 11011111
230. A digital circuit is also referred to as a/an circuit.
a. arithmetic
b. logic
c. electrical
d. sequential
231. CMOS means
a. Complementary MainOxide Semiconductor
b. Complementary Metal-

Oxide Semiconductor
c. Complements MainOxidation Semiconductor
d. Correlation in Metal Oxidized Semiconductor
232. What is the smallest type of semiconductor in terms of their physical size?
a. minicomputer
b. mainframe
c. maxicomputer
d. microcomputer
233. Equivalent of decimal value of 178 in straight binary code is \qquad and in $B C D$ is \qquad .
a. 11000,11111111
b. $\mathbf{1 0 1 1 1 1 0 1 , 1 0 0 0 0 0}$
C. 10110010,101111000
d. 111111,1100000
234. If each digit of a decimal number is represented by its binary equivalent, the result is a code called
a. Morse code
b. binary system
c. binary-coded decimal
d. straight binary coding
235. Convert (614)8 to decimal.
a. 400
b. 384
C. 392
d. 396
236. BCD code has always __ bits per number.
a. 2
b. 4
C. 8
d. 16
237. Convert (B2F)16 to octal.
a. 5547
b. 5457
c. 7547
d. 11010
238. Convert 100010010111
(BCD) to its decimal equivalent.
a. 798
b. 457
C. 897
d. 101
239. Which of the following items below is NOT one of the three basic operations in Boolean algebra?
a. Iogical addition
b. Iogical complementation
c. Iogical subtraction
d. Iogical multiplication
240. How many bits are required to represent an eight digit decimal number in BCD?
a. 256
b. 4
C. 255
d. 32
241. The \qquad belongs to a class of codecs called the minimum-change codes, in which only one bit in the code group changes when going from one step to the next.
a. Morse code
b. BCD code
c. Excess-3 code
d. Gray code
242. The most widely used 7bit alphanumeric code is the

a. ASCII

b. EBCDIC
c. straight binary code

d. Gray code

243. What is the hex equivalent of an ASCII code which means "HELP"?

a. 4845 4C 50

b. 4C 505152
c. 58575848
d. 48455050
244. A \qquad takes the complete decimal number and represents it in binary.
a. BCD
b. gray code
c. excess-3 code
d. straight binary code
245. The number of input combinations will equal for an \mathbf{N}-input truth
table.
a. $2^{\wedge}(\mathrm{N}-1)$
b. \mathbf{N}
c. $2^{\wedge} \mathbf{N}$
d. $\mathbf{N}-1$
246. The \qquad operation result will be 1 if any one or more variables is a 1 .
a. NOT
b. AND
c. OR
d. NOR
247. A circuit that operates in such a way that its output is high when all its inputs are high.
a. or
b. nand
C. nor
d. and
248. What is the only input combination that will produce a high at the output of a five-input AND gate?
a. at least one low input
b. at least one high input
c. all inputs should be low
d. all inputs should be high
249. The output of an inverter is connected to the input of a second inverter. Determine the output level of the second inverter.
a. output level is the
complement of the input
level
b. output level is the same as the input level
c. high output is observed
d. undetermined state
250. Given: $x=A^{\prime} B C(A+D)$ '.

Determine the output of the circuit x if $A=0, B=1, \quad C=$ 1 , and $D=0$.
a. 0
b. 1
C. 2
d. 10
251. With OR operation, 1 + 1 =
a. 1
b. 0
C. 10
d. 2
252. Use the expression for x $=D+[(A+B) C]^{\prime}$. E to determine the output of the circuit for conditions $A=B=$ $E=1, C=D=0$.
a. 0
b. 1
C. 2
d. 10
253. The boolean expression for a six-input OR gate.
a. $A+B+C$
b. A.B.C.D.E.F
c. $A+B+C+D+E+F$

d. $\mathbf{U}+\mathbf{V}+\mathbf{W}+\mathbf{X}+\mathbf{Y}+\mathbf{Z}$

254. What type of gate is equivalent to a NAND gate followed by an inverter?
a. OR
b. AND
c. XOR
d. NOR
255. Simplify the expression $y=A B^{\prime} D+A B^{\prime} D^{\prime}$.
a. $A B$
b. \mathbf{D}^{\prime}
c. BCD

d. $A B^{\prime}$

256. How many different ways can we implement the inversion operation in a logic circuit?
a. 1
b. 2
c. 3

d. 4

257. In boolean algebra, $B . B^{\prime}$ $=$
a. B
b. B'
C. 0
d. 1
258. In boolean algebra, $\mathbf{G}+$ GF =
a. GF
b. G
C. F
d. 1
259. In boolean algebra, $X+$ $1=$
a. $X+1$
b. X
C. 0
d. 1
260. A circuit with no memory characteristic, and so its output depends only on the current value of its inputs.
a. SLC

b. Boolean circuits

c. CLC
d. Multiplexers
261. Determine the sum-ofproducts expression for a circuit with four inputs and an output that is HIGH only when input A is low at the same time that exactly two inputs are low.
a. $A^{\prime} B^{\prime} C^{\prime} D+A^{\prime} B^{\prime} C D^{\prime}+A^{\prime} B^{\prime} D^{\prime}$
b. $A^{\prime} B^{\prime} C^{\prime}+C^{\prime} \mathbf{D}^{\prime}$
c. A'B'C' + A'C'D' + A'B'D'
d. 10
262. A graphical device used to convert a truth table to its corresponding logic circuit in a simple, orderly process.
a. Karnaugh map
b. state table
c. truth table
d. state diagram
263. What is the output of an EX-NOR gate when a logic signal and its exact inverse are connected to its input?
a. $\mathbf{X '}^{\prime}$
b. \mathbf{X}
c. 1
d. 0
264. One of the standard levels of complexity of integrated circuits which contains 100,000 and more number of gates.
a. SSI
b. MSI
c. VLSI
d. ULSI
265. What is the most common type of digital IC package?

a. DIP

b. Metal type
c. CMOS
d. TTL
266. An acceptable voltage range of a logic $\mathbf{0}$ for TTL.
a. 2 to 5 V
b. 0 to 0.8 V
c. 0 to 1.5 V
d. 3.5 to 5 V
267. An acceptable voltage range of a logic 1 for TTL.

a. 2 to 5 V

b. 0 to 0.8 V
c. 0 to 1.5 V
d. 3.5 to 5 V
268. An acceptable voltage range of a logic 0 for CMOS operating at Vdd $=5 \mathrm{~V}$.
a. 2 to 5 V
b. 0 to 0.8 V
c. 0 to 1.5 V
d. 3.5 to 5 V
269. An acceptable voltage range of a logic 1 for CMOS operating at $\mathrm{Vdd}=5 \mathrm{~V}$.
a. 2 to 5 V
b. 0 to 0.8 V
c. 0 to 1.5 V
d. 3.5 to 5 V
270. What happens when the input to a digital IC is left unconnected for TTL IC's?

a. it acts like a logic 1

b. it becomes overheated
c. it acts just like a logic 0
d. it eventually destroys itself
271. An unconnected input is termed as \qquad -'
a. open
b. close
c. disconnected
d. floating
272. Effects of capacitance
a. It opposes any change in the amount of voltage
b. Voltage is lagged behind the current by a quarter cycle
c. Electric energy is stored in the capacitor in the form of electrostatic field

d. All of the above

273. Points to be considered in choosing a capacitor.
a. working voltage
b. type of dielectric
c. capacitance
d. all of the above
274. Permeability is otherwise known as

a. magnetic conductivity

b. magnetic susceptibility
c. electric conductivity
d. electric susceptibility
275. The impedance in the study of electronics is represented by resistance and
a. inductance
b. capacitance
c. inductance and
capacitance
d. reactance
276. Loop currents should be assumed to flow in which direction?
a. straight
b. clockwise
c. counter-clockwise
d. either b or c arbitrarily selected
277. What determines the direction of induced emf in a conductor or coil?
a. cork screw rule
b. Fleming's left hand rule
c. ampere's circuital law
d. Fleming's right hand rule
278. The reason why electrical appliances are connected in parallel.
a. It is a simple circuit

b. this makes the operation of appliances independent of each other
 c. this results in reduced power consumption

d. all of the above
279. Which of the following does not affect resistance?
a. resistivity
b. cross-sectional area
c. mass
d. length
280. Which of the following is not considered a physical factor in affecting resistance?
a. length
b. material type
c. temperature
d. cross-sectional area
281. A 0.09 microfarad capacitor is charged to 220 volts. How long in milliseconds will it discharge to a level of 110 V if the discharged resistor has a resistance of 20 kohms?
a. 1.5
b. 2.5
C. 1.25
d. 0.5
282. A trigger circuit consisting of a capacitor of 0.01 uF is connected in series with a resistor. If the circuit requires 100 Vdc to operate, determine the value of the resistor when time constant is 0.009 s .
a. 900 ohms
b. $\mathbf{9 0 0}$ kohms
c. $\mathbf{9 0 0}$ Mohms
d. 900 Gohms
283. The graph between an alternating quantity and time is called
a. sinewave
b. curve
c. waveform
d. a plot
284. Which of the following is the most popular waveform?
b. square wave
c. triangular
d. sawtooth
285. Which of the following does not refer to electrical energy?
a. volt-ampere
b. joule
c. watt-second
d. volt-coulomb
286. What is the resonant frequency of a circuit when L of $\mathbf{2 5}$ microhenrys and C of 10 picofarads are in parallel?
a. $\mathbf{1 0 . 1} \mathbf{~ k H z}$
b. 10.1 MHz
c. 101 MHz
d. 101 kHz
287. An ideal current source has an internal conductance of \qquad siemen/s.
a. infinite
b. one
c. zero
d. one million
288. A capacitance of 6 uuF means
a. 6 pF
b. 6 nF
C. 6 fF
d. 6 aF
289. The voltage cannot be exactly in phase with the current in a circuit that contains
a. only capacitance
b. only resistance
c. inductance and capacitance
d. inductance, capacitance, and resistance
290. The charge in the capacitor is stored at the
a. terminals

b. plates

c. dielectric
d. air
291. The resonance curve is a plot of frequency versus _ for a series RLC
circuit.
a. current
b. voltage
c. gain
d. impedance
292. For a series circuit, the higher the quality factor
a. the greater the bandwidth
b. the narrower the passband
c. the broader the resonance curve
d. the wider the passband
293. "Any resistance R in a branch of network in which a current I is flowing can be replaced by a voltage equal to IR." This states
a. compensation theorem
b. reciprocity theorem
c. Millman's theorem
d. superposition theorem
294. The internal resistance of an ideal current source is
a. infinite
b. zero
c. equal to the load resistance
d. to be determined
295. If three 100-pf capacitors are connected in series, then the total capacitance is
a. $\mathbf{3 0 0} \mathbf{~ p F}$
b. 100 pF
c. 50 pF
d. 33.3 pF
296. An inductance of 1 mH is
a. 0.001 H
b. 0.01 H
c. 0.0001 H
d. 0.10 H
297. A capacitor is basically constructed of
a. two conductors separated by a dielectric
b. two dielectric separated by
a conductor
c. conductors and dielectric
d. conductors and
semiconductors
298. In an inductive coil, the rate of rise of current is maximum

a. near the final maximum

 value of currentb. at mid-value of current
c. at half-power points
d. after one time constant
299. Two complex numbers or phasors are said to be conjugate if they
a. differ only in the algebraic sign of their quadrature components
b. differ only in the algebraic sign of their real components
c. are equal in their real and quadrature components including algebraic signs
d. are equal in their real components but differ in their quadrature components including algebraic signs
300. In an ac circuit with a resistive branch and an inductive branch in parallel, the
a. voltage across the inductance leads the voltage across the resistance by 90 deg
b. resistive branch current is 90 deg out-of-phase with the inductive branch current
c. resistive and inductive branch currents have the same phase
d. resistive and inductive branch currents are 180 deg out-of-phase
301. In an ac circuit with XI and R in series, the
a. voltage across R and XI are in phase
b. voltage across R lags the voltage across XI by 90 deg
c. voltage across R and XI are 180 deg out of phase
d. voltage across R leads the voltage across XI by 90 deg
a. internal heating
b. internal bleeding
c. shorter useful file
d. short-circuiting
303. Voltage resonance means
a. series resonance
b. parallel resonance
c. current magnification
d. gain magnification
304. The unit of elastance is
a. farad
b. daraf
c. siemens
d. henry
305. The farad is not equivalent to which of the following combination of units.
a. $\mathrm{CV}^{\wedge} 2$
b. C^2 / J
C. C / V
d. J / V^2
306. Which component opposes voltage change?
a. resistor
b. inductor
c. capacitor
d. transistor
307. What is the peak factor for alternating current or voltage varying sinusoidally

a. 1.4142

b. 0.707
c. 0.636
d. 1.11
308. Which of the following is not a factor affecting
dielectric strength?

a. mass

b. moisture content
c. temperature
d. thickness
309. The superposition theorem is used when the circuit contains a/an
a. reactive elements
b. active elements

c. number of voltage sources

d. single voltage source
310. What refers to such work at very low temperatures, near absolute zero?

a. cryogenics

b. superconductivity
c. subsonic
d. thermionic
311. A factor that states how much the resistance changes for a change in temperature.
a. resistivity
b. specific resistance
c. coefficient of temperature change
d. temperature coefficient of resistance
312. An alloy composed of 80\% copper
a. Manganin
b. Constantan
c. Nichrome
d. German silver wire
313. At parallel resonance, the currents flowing through L and C are
a. infinite
b. zero
c. unequal
d. equal
314. In a rectangular wave, the peak factor is
a. 1.16
b. 1.73
c. 1.11
d. 1.0
315. In an RL series circuit
a. current lags voltage by less than 90 degrees
b. current leads voltage by 180 degrees
c. current lags voltage by 90 degrees
d. current lags voltage by 180 degrees
316. In a pure capacitance,
a. current leads voltage by 90 degrees
b. current lags voltage by 90 degrees
c. current lags voltage by 90 degrees
d. current lags voltage by 180 degrees
317. The ohmic value of a resistor with negative temperature coefficient
a. increases with increasing temperature
b. increases with decreasing temperature
c. stays unchanged with temperature change
d. stays unaffected even with increasing temperature
318. Which of the statements below is true?
a. current source is an active element
b. resistor is a linear element
c. voltage source is a passive element
d. diode is a non-linear element
319. Which of the following elements is active?
a. resistor
b. inductor
c. capacitor
d. ideal voltage source
320. What is the complex impedance of a circuit with an absolute resistance of 300 ohm(s)?
a. $0+\mathrm{j} 300$ ohm(s)
b. $\mathbf{3 0 0}+\mathbf{j} 90$ ohm(s)
c. $0-\mathrm{j} 300$ ohm(s)
d. $300+\mathbf{j 0}$ ohm(s)
321. A law which states that when a constant electromotive force is applied to a circuit consisting of a
resistor and a capacitor connected in series, the time taken for the potential on the plates of the capacitor to rise to any given fraction of its final value depends only on the product of capacitance and reactance.
a. Child's law
b. CR law
c. Coulomb's law
d. Debye T^3 law
322. Conventional flow assumes charges flow from
a. positive to negative
b. positive to positive
c. negative to positive
d. negative to negative
323. Electron flow assumes charges flow from
a. negative to positive
b. negative to negative
c. positive to negative
d. positive to positive
324. Series resonance occurs when
a. $\mathrm{XI}=\mathrm{Xc}$
b. $\mathrm{XI}=\mathrm{R}$
c. $Z=R$
d. Both A and C
325. The symbol Q refers to
a. resonance quotient
b. quality factor
c. power quotient
d. qualification test
326. The ratio of W/VA in an ac circuit means

a. power factor

b. reactive factor
c. quality factor
d. load factor
327. What is the reciprocal of quality factor?
a. power factor
b. reactive factor
c. dissipation factor
d. 1/Q factor
328. In liquids and gases, ionization current results from a flow of
a. positive or negative ions

b. free electrons

c. ions that are lighter in weight than electrons

d. protons

329. VI = Vc in a series RLC circuit when

a. the value of the impedance is minimum

b. the power factor is zero
c. the current leads the total voltage by 90 degrees
d. the total voltage is zero
330. At what frequency will an inductor of 5 mH have the same reactance as a
capacitor of 0.1 uF ?
a. 7.12 kHz
b. 7.12 Hz
c. 7.12 MHz
d. 7.12 GHz
331. Property of an electric circuit that dissipates electric energy.
a. reactance
b. impedance
c. resistance
d. conductance
332. What is the other name of relative permittivity?
a. dielectric strength
b. potential gradient
c. breakdown voltage
d. specific inductive capacity
333. In a series RLC circuit
a. the current lags VI by 90 degrees
b. the current leads VI by 90 degrees
c. XI leads Xc by 90 degrees
d. $Z=\mathbf{j X I}$ at resonance
334. Resistor with color bands in the body.
a. wire-wound resistor

b. carbon-composition resistor

c. potentiometer
d. rheostat
335. In a resonant circuit, if Q is $>=10$, resonant frequency \qquad bandwidth.

a. bisects

b. exceeds
c. is less than
d. is equal to
336. Which of the following conditions is not true for a series RLC circuit at resonance?

a. $Z=j X I$

b. $\mathrm{XI}=\mathrm{Xc}$
c. the power factor is one
d. the magnitude of Z is sqrt [R^2 + (XI-Xc)^2]
337. The current is \qquad times the maximum current at half-power points of a resonance curve.
a. 0.707
b. 1.414
c. 0.5
d. 0.632
338. A gang capacitor is a variable capacitor in which capacitance is varied by changing the
a. dielectric
b. number of plates

c. plate area

d. distance between plates
339. In an ac circuit with inductive reactance, the
a. phase angle of the circuit is always 45 degrees
b. voltage across the inductance must be 90 degrees out of phase with the applied voltage
c. current through the inductance lags its induced voltage by 90 degrees
d. current through the inductance and voltage across it are 180 degrees out-of-phase
340. If three $9 \mathbf{m H}$ inductors are connected in parallel without mutual inductance, then the total inductance is

a. $3-\mathrm{mH}$

b. $\mathbf{9 - m H}$
c. 27-mH
d. $18-\mathrm{mH}$
341. What is the specific resistance of a pure germanium?
a. $55 \mathrm{ohm}-\mathrm{cm}$
b. 55 ohm-m
c. 55 ohm-mm
d. 55 kohm-m
342. Two capacitors of capacitance 9 uF and 19 uF in series will have a total capacitance of
a. 27 uF
b. 162 uF
C. 6 uF
d. $\mathbf{1 8 0} \mathbf{u F}$
343. In a series RLC circuit
a. increasing the frequency decreases the resistance
b. increasing the frequency increases the resistance
C. both XI and Xc changes as
frequency changes frequency changes
d. impedance will always decrease
344. A series RLC circuit has a \qquad power factor at its half-power points.
a. unity
b. leading
c. lagging
d. either B or C
345. Kirchoff's laws (KCL and KVL) are applicable to
a. dc circuits alone
b. ac circuits alone
c. dc as well as ac circuits
d. passive networks alone
346. A tank circuit is a
a. parallel LC circuit
b. series LC circuit
c. a resonant circuit
d. a non-resonant circuit
347. A capacitive load always has a \qquad power factor.
a. leading
b. lagging
c. factor
d. unity
348. What is the temperature coefficient of resistance of Eureka?
a. infinity
b. negative
c. almost zero
d. positive
349. As applied to a series RLC circuit, bandwidth means
a. the frequency range for maximum power transfer
b. the difference between the highest and lowest frequencies of the oscillator
c. the separation of the halfpower points
d. the frequency at which XI=Xc
350. What is considered the effect of dielectric material?
a. increasing capacitance
b. decreasing capacitance
c. reducing the work voltage
d. increasing the distance between the plates
351. The open-circuit voltage at the terminal of load RI is 60 V . Under the condition of maximum power transfer, the load voltage will be
a. 60 V
b. 15 V
C. 20 V
d. 30 V
352. If a capacitor is rated for 200 Vdc, what is the effective ac working voltage?
a. 50 V
b. 100 V
c. $\mathbf{2 0 0} \mathrm{V}$
d. 400 V
353. If resonant frequency is 10 kHz and quality factor is 50, then
a. bandwidth is 200 Hz
b. XI is $\mathbf{5 0 0 0 0}$ ohms
c. \mathbf{R} is $\mathbf{5 0}$ ohms
d. Xc is $\mathbf{5 0 0 0 0}$ ohms
354. Which statement is true?
a. A series resonant circuit is of high impedance
b. A parallel resonant circuit is of low impedance
c. A series resonant circuit is inductive if it operates at a frequency higher than the resonant frequency
d. A parallel resonant circuit is inductive if it operates at a frequency higher than the resonant frequency
355. What is considered as the most important value of a sine wave?

a. effective value

b. peak value
c. average value
d. instantaneous value
356. An ac series circuit is composed of a resistance of 20 ohms, inductive reactance of 40 ohms, and a capacitive reactance of 15 ohms. If a current of 1 ampere is flowing, what is the applied voltage?
a. 320 V
b. 32 V
c. 220 V
d. 22 V
357. An intermittent and non-symmetrical alternating current like that obtained from the secondary winding of an induction coil.

a. Faradic current

b. Transient ac current
c. Inductive current
358. The value of temperature coefficient, alpha, is dependent upon

a. the nature of material and temperature

b. the length of material
c. the cross-sectional area of the material
d. the volume of the material
359. At what frequency will the current in a series RLC circuit reach its maximum value for an applied voltage of 15 V with $\mathrm{R}=500$ ohms, L $=100 \mathrm{uH}$ and $\mathrm{C}=0.001 \mathrm{uF}$?
a. 503 kHz
b. 403 kHz
c. 603 kHz
d. 303 kHz
360. If two equal resistances connected in series across a certain supply are now connected in parallel across the same supply, the power produced will be \qquad the series connection.
a. 1/2
b. 1/4
c. 2 x
d. 4 x
361. The voltage lags the current by pi/2 cycle in a
a. purely resistive circuit
b. purely inductive circuit
c. purely capacitive circuit
d. circuit containing
resistance, capacitance, and inductance
362. What is the half-power bandwidth of a parallel resonant circuit which has a resonant frequency of 3.6 MHz and Q of 218?
a. 1.65 kHz
b. $\mathbf{1 6 . 5} \mathbf{M H z}$
c. 16.5 KHz
d. 165 KHz
d. Capacitive current
363. Which of the following materials serves as protection against overload?

a. fuse

b. switch
c. resistor
d. relay
364. Transient period is considered over after

a. 5 time constants

b. 1 time constant
c. 100 time constants
d. 6 time constants
365. What rating of a resistor determines its ability to absorb heat?

a. wattage

b. ohmic
c. current
d. voltage
366. An open inductor has
a. zero resistance and infinite inductance
b. infinite resistance and zero inductance
c. infinite resistance and infinite inductance
d. zero resistance and zero inductance
367. What is the reading of an ohmmeter for a shorted capacitor?

a. zero

b. infinity
c. k ohms
d. M ohms
368. \qquad capacitance
exists not through design but simply because two conducting surfaces are relatively close to each other.
a. surge
b. stray
c. natural
d. normal
369. The average value of a sawtooth or triangular wave is \qquad times its peak
value.
a. 0.577
b. 0.500
c. 0.318
d. 0.637
370. A series RLC circuit consists of a $\mathbf{1 0}$-ohm resistor in series with $L=10 \mathrm{uH}$, and $\mathrm{C}=\mathbf{1 0 0} \mathbf{u F}$. Determine a new value of L for which the resonant frequency is $\mathbf{1 / 2}$ the original value.

a. 40 uH

b. 40 mH
c. 40 pH
d. $40 \mathbf{n H}$
371. What is the peak factor of a triangular wave?
a. 1.16
b. 1.73
c. 1.41
d. 1.11
372. Parallel resonant circuit is sometimes called as
a. acceptor circuit

b. rejector circuit

c. inductive circuit
d. capacitive circuit
373. When two pure sine waves of the same frequency and the same amplitude which are exactly 180 degrees out of phase are added together, the result is
a. a wave with twice the amplitude
b. a wave with half the amplitude

c. zero signal

d. a wave with twice the frequency
374. If two complex conjugates are added, \qquad component results.

a. in-phase

b. quadrature
c. complex
d. out of phase
375. If an emf in circuit A produces a current in circuit B, then the same emf in circuit B produces the same current in circuit A. This theorem is known as
a. Maximum power transfer theorem
b. Millman's theorem
c. Reciprocity theorem
d. Norton's theorem
376. According to Gauss'
theorem, flux can be equated to
a. charge
b. field intensity
c. current
d. voltage
377. An open resistor when checked with an ohmmeter reads
a. zero
b. infinite
c. high but within the tolerance
d. low but not zero
378. Norton's theorem is
\qquad Thevenin's theorem.
a. the same as
b. the converse of
c. older than
d. more accurate than
379. What value of R is needed with a $0.05 \mu \mathrm{~F}$ C for an RC time constant of 0.02 s ?
a. $400 \mathrm{ohm}(\mathrm{s})$
b. $\mathbf{4 0 0}$ Mohm(s)
c. $\mathbf{4 0 0}$ Gohm(s)
d. 400 kohm(s)
380. Which of the following is the statement of Ohm's law?
a. Electric current is directly proportional to both voltage and resistance
b. Electric current varies directly as the voltage and inversely as the resistance
c. Electric power is directly proportional to the resistance and inversely as the current squared
d. Electrical power is directly proportional to both voltage squared and the resistance
381. The admittance of a parallel RLC circuit is found to be the \qquad sum of
conductance and
susceptances.
a. algebraic
b. arithmetic
c. vector

d. phasor

382. A wire of one kilometer length has a resistance of 20 ohm(s). If the length is halved, then the new resistance is \qquad the original resistance.

a. half

b. twice
c. 1/4
d. three times
383. A series-parallel combination of identical resistors will

a. increase the power rating compared with one resistor alone

b. increase the voltage rating compared with one resistor alone
c. reduce the voltage rating compared with resistor alone
d. result in an expensive circuit
384. The \qquad of an alternating current is defined as the fractional part of a period or cycle through which the quantity has advanced from selected origin.

a. phase

b. frequency
c. amplitude
d. waveform
385. An inductive circuit of resistance 16.5 ohm(s) and inductance of 0.14 H takes a current of 25 A . If the frequency is 50 Hz , find the supply voltage.
a. 1501 V
b. 1174 V
c. 1877 V
d. 991 V
386. Which of the following has a positive temperature coefficient?
b. manganin
c. silicon
d. carbon
387. The ratio of the flux density to the electric field intensity in the dielectric is called
a. permittivity
b. field intensity
c. permeability
d. elasticity
388. It is impossible to change the voltage across a capacitor instantly, as this would produce \qquad -
current.
a. infinite
b. zero
c. low
d. high
389. Which of the following is not a factor affecting capacitance of a basic capacitor?
a. area of plates
b. number of plates
c. distance between plates
d. dielectric material used
390. When voltage is applied across a ceramic dielectric the electrostatic field produced is $\mathbf{5 0}$ times greater than air dielectric. The dielectric constant of ceramic therefore is
a. 50
b. 100
c. 16.67
d. 5
391. The reason why alternating current can induce voltage is
a. it has a high peak value
b. it has a stronger magnetic field than direct current
c. it has a constant magnetic field

d. it has a varying magnetic field

392. When two unequal values of resistors are connected in parallel across a dc source, greater current flows through the
a. higher resistance
b. lower resistance
c. higher wattage resistance
d. lower wattage resistance
393. A real current source has
a. infinite internal resistance
b. zero internal resistance
c. large internal resistance
d. small internal resistance
394. What is the crosssectional area of a conductor whose diameter is $\mathbf{0 . 0 0 1}$ inch?
a. one micron
b. one angstrom
c. one steradian
d. one circular mil
395. Which of the following describes the action of a capacitor?
a. stores electrical energy
b. opposes changes in current flow
c. creates a dc resistance
d. converts ac to dc
396. High resistance value is a consequence of the \qquad of the film.
a. thickness
b. length
c. thinness
d. area
397. For parallel capacitors, total charge is
a. the sum of individual charges
b. equal to the charge of either capacitors
c. equal to the product of the charges
d. the quotient of the charges
398. Which waveform in which the rms value and the mean value are equal?

a. square wave

b. triangular wave
c. sine wave
d. sawtooth
399. In a series circuit with unequal resistances

a. the highest R has the highest V

b. the lowest \mathbf{R} has the highest V
c. the lowest R has the highest I
d. the highest R has the highest I
400. In a parallel bank with unequal branch resistances
a. the highest R has the highest I

b. the lowest \mathbf{R} has the highest V

c. the lowest R has the highest I
d. the highest R has the highest V
401. A rheostat is a form of
a. variable resistor
b. variable capacitor
c. potentiometer
d. thermocouple
402. Metal tin becomes superconductor at approximately
a. 6 K
b. 3.7 K
c. 5 K
d. 4.7 K
403. In a complex resistancereactance plane, XI is represented
a. by an axis opposite the R axis
b. by an axis perpendicular to the Xc axis
c. by an axis opposite the Xc axis
d. by an axis parallel to the R axis
404. When the net reactance in a series coil-capacitor circuit is zero at frequency f, the nature of its reactance of frequency $2 f$ is

a. inductive

b. capacitive
c. resistive
d. infinite
405. Which of the following is a way of decreasing mutual inductance?
a. moving the coils closer
b. moving the coils apart
c. decreasing the number of turns of either coil
d. increasing the number of turns of either coil
407. The charging of a capacitor through a resistance obeys
a. exponential law
b. Iogarithmic law
c. linear law
d. square law
408. The Q-factor of a parallel resonant circuit is also known as
a. voltage magnification factor

b. current magnification factor

c. gain magnification factor
d. resonance magnification factor
409. What is the specific resistance of a pure silicon?
a. 55 ohm(s).mm
b. 55 ohm(s).m
c. 55 ohm(s).cm
d. 55 kohm(s).m
410. A capacitance of $0.05 \mu \mathrm{~F}$ equals
a. $0.05 \times 10^{\wedge} 6 \mathrm{~F}$
b. $0.05 \times 10^{\wedge}-6 \mathrm{~F}$
c. $0.05 \times 10^{\wedge}-12 F$
d. $0.05 \times 10^{\wedge} 12 \mathrm{~F}$
411. A $5 \mu \mathrm{~F}$ capacitor charge to 5 V has a stored charge equal to
a. $1 \mu \mathrm{C}$
b. $5 \mu \mathrm{C}$
C. $25 \mu \mathrm{C}$
d. $200 \mu \mathrm{C}$
412. The factor 0.707 for converting peak to rms applies only to
a. square waves
b. triangle waves
c. sawtooth waves

d. sine waves

413. When two in-phase sine waves that have identical frequency and amplitude are added together, then the result is a sine wave with
\qquad the amplitude of

either.

a. half
b. twice
c. four times
d. 1/4
414. Liquids that are good conductors because of ionization are called
a. electrolytic
b. bases
c. acids

d. electrolytes

415. Tungsten filament of bulbs has a hot resistance higher than its cold resistance due to its temperature coefficient which is
a. positive
b. negative
c. zero
d. infinite
416. A term used to express the amount of electrical energy stored in electrostatic field.

a. joules

b. coulombs
c. watts
d. electron-volt
417. With double the number of turns by the same length and area, the inductance is
a. the same
b. doubled
c. quartered

d. quadrupled

418. The temperature coefficient of resistance of electrolytes is
a. negative
b. positive
c. zero
d. infinite
419. \qquad refers to the lowest voltage across any insulator that can cause current flow.
a. conduction voltage
b. critical voltage
c. breakdown voltage
d. voltage capacity
420. Capacitance increases with
a. larger plate area and less distance between plates
b. larger plate area and greater distance between plates
c. smaller plate area and less
distance between plates
d. higher values of applied voltage
421. What is the resonant frequency of a circuit when L of 3 microhenrys and C of 40 picofarads are in series?
a. $\mathbf{1 4 . 5} \mathbf{k H z}$
b. 145 MHz
c. 14.5 MHz
d. 145 kHz
422. For a triangular and sawtooth waveform the rms voltage or current equals
a. 0.707 times peak value
b. 0.577 times peak value
c. 0.577 times average value
d. 0.707 times rms value
423. If two resistances of 9 ohm(s) and 6 ohm(s) are connected in parallel, the total resistance is
a. 54 ohm(s)
b. $0.3 \mathrm{ohm}(\mathrm{s})$
c. 15 ohm(s)

d. $3.6 \mathrm{ohm}(\mathrm{s})$

424. Refers specifically to steady state values of quantities in ac circuits which are complex numbers.
a. domain
b. scalar quantity
c. vector quantity
d. phasor quantity
425. A capacitor is used to

a. block dc current

b. pass dc current
c. open voltage source
d. short the voltage source
426. The usual load of a dc circuit is a/an

a. resistor

b. capacitor
c. inductor
d. both inductor and capacitor
427. The second strip of an electronic resistor color code represents
a. the multiplier
b. the second digit of the value
c. the temperature
d. the tolerance
428. Which of the following is a preferred resistor value?
a. 520
b. 47
c. 43000
d. 54321
429. A three-by-three, seriesparallel matrix of resistors, all having the same ohmic value, would have a net resistance of
a. one-third the value of a single resistor
b. three times the value of a single resistor
c. the same value as a single
d. nine times the value of a single resistor
430. In an ac wave, 30 degrees of phase is \qquad of a cycle.
a. 1/2
b. 1/12
C. 1/3
d. 1/30
431. What is the value of a carbon composition resistor with the following color code: brown, white, orange, red
a. 190 ohm(s); 10%
b. 19 kohm(s); 2\%
c. 19 kohm(s); 20\%
d. 1.9 kohm(s); 2\%
432. The electric field strength between capacitor plates has a unit of
a. volts per meter
b. volts per mil
c. amperes per meter
d. amperes per mil
433. For multi-plate capacitor, capacitance is proportional to
a. number of plates less than one ($\mathrm{n}-1$)
b. number of plates plus one ($\mathrm{n}+1$)
c. number of plates less two ($\mathrm{n}-2$)
d. number of plates (n)
434. A capacitor consists of two
a. conductors only
b. dielectric only
c. conductors separated by a dielectric
d. dielectric separated by a conductor
435. How many coulombs are delivered by a storage battery in 24 hours if it is supplying current at the rate of 3 A?
a. $2.592 \times 10^{\wedge} 5 \mathrm{C}$
b. $2.592 \times 10^{\wedge} 3 \mathrm{C}$
c. $2.592 \times 10^{\wedge} 8 \mathrm{C}$
d. $2.592 \times 10^{\wedge} 12 \mathrm{C}$
436. When frequency of an ac wave decreases, the value of XI in a coil
a. approaches zero
b. gets larger positively
c. gets larger negatively
d. stays constant
437. The temperatureresistance coefficient of pure gold is
a. 0.0034
b. 0.0037
C. 0.0038
d. 0.0039
438. The capacitor opposes any change in voltage across it by
a. passing a voltage proportional to the rate of change of current
b. acting as a short circuit at time equal to zero

c. passing a current

 proportional to the rate of change of voltaged. acting as a short voltage at time equal to infinity
439. What is the most common non-sinusoidal waveform?
a. square wave
b. triangular wave
c. trapezoidal wave
d. sawtooth wave
440. Which of the following capacitors is suitable for dc filter circuits?
a. mica
b. ceramic
c. paper
d. electrolytic
441. A series RLC circuit has R of $10 \mathrm{ohm}(\mathrm{s})$ and XI of 5 ohm(s). Its impedance in rectangular form is given by
a. $10+j 5$ ohm(s)
b. $10+\mathbf{j} 10$ ohm(s)
C. 10-j 5 ohm(s)
d. 10-j 10 ohm(s)
442. What is the reciprocal of capacitance?
a. reluctance
b. susceptance
c. elastance
d. conductance
443. If the output resistance of a voltage source is 4 ohm(s), its internal
resistance should be

a. $40 h m(s)$

b. 8 ohm(s)
c. 2 ohm(s)
d. infinite
444. The curve between current and frequency is termed as
a. voltage curve
b. gain curve
c. power curve
d. resonance curve
445. What is the total effective capacitance of two 0.25 microfarad capacitors connected in series?

a. 0.125 microfarad

b. 1.25 microfarad
c. $\mathbf{0 . 5 0}$ microfarad
d. 2.5 microfarad
446. \qquad can be used to estimate resonant frequency and to find reactance at any frequency for any value of capacitor or inductor.
a. Smith chart
b. reactance chart
c. impedance chart
d. resonance curve
447. For a parallel AC circuit,
\qquad is used as a reference phasor.

a. voltage

b. power
c. current
d. resistance
448. For a series AC circuit,
\qquad is not used as a
a. voltage
b. impedance
C. current
d. resistance
449. If a certain circuit has a current that is lagging the voltage by 45 degrees, then it displays
a. pure inductive reactance
b. resistance and capacitive reactance
c. resistance and inductive reactance
d. pure capacitive reactance
450. \qquad is the maximum voltage that can be applied across the capacitor for very short period of time.
a. working voltage
b. surge voltage
c. stray voltage
d. peak voltage
451. What is expected when two 20 kohm(s), $1 \mathbf{W}$ resistor in parallel are used instead of one $10 \mathrm{kohm}(\mathrm{s})$, 1 watt?
a. provides higher current
b. provides less power
c. provides more power
d. provides wider tolerance
452. Which of the following materials has the lowest dielectric strength?
a. glass
b. paper
C. mica
d. teflon
453. The distance between the capacitor plates increases two times, then its capacitance
a. increases two times
b. increases four times
c. decreases two times
d. decreases four times
454. The ratio between the active power and the apparent power of a load in an ac circuit is called
a. quality factor
c. power ratio
d. power reactive
455. When the power factor of a circuit is zero,
a. power absorbed is maximum
b. power absorbed is minimum
c. power absorbed is zero
d. the impedance is minimum
456. How many degrees of phase represents one full cycle?
a. 360
b. 180
C. 270
d. 90
457. Which of the following does not generally affect the value of a capacitor?
a. the dielectric material used
b. the surface are of the plates
c. the thickness of the dielectric
d. the voltage applied to the plate
458. What is the purpose of a load in an electric circuit?
a. to increase the circuit current
b. to decrease the circuit current
c. to utilize the electrical energy
d. to make the circuit complete
459. The power factor of a certain circuit in which the voltage lags behind the current is 80%. To increase the power to 100%, it is necessary to add \qquad to the circuit.
a. inductance
b. capacitance
c. resistance
d. impedance
460. Refers to the outwardcurving distortion of the lines of force near the edges of two parallel metal plates that form a capacitor.
a. skin effect

b. night effect

c. edge effect

d. hall effect
461. If voltage across the plates of 2-farad capacitor is increased by 4 V , then charge on the plates will
a. decrease by 2 C
b. increase by 2 C
c. decrease by 4 C
d. increase by 4 C
462. What does a capacitor store?
a. voltage
b. charge
c. current
d. power
463. The mutual inductance between two coils is \qquad the reluctance of magnetic path.
a. directly proportional to
b. inversely proportional to
c. independent of
d. equal to
464. The result of rust in electrical (wire) connection is
a. inductance
b. conductance
c. impedance

d. resistance

465. Which of the following is a disadvantage of wirewound resistors?
a. it has reactance in radiofrequency circuits
b. it cannot handle much power
c. it draws a large amount of current
d. it cannot handle high voltage
466. The resistance of an insulator \qquad when its temperature is increased
a. decreases
b. remains the same

d. varies

467. The wavelength of an alternating waveform depends upon the \qquad of the variation.
a. period
b. number
c. frequency
d. amplitude
468. Delta to wye or wye to delta transformation technique is applied to a
\qquad network.
a. one-terminal
b. two-terminal
c. three-terminal
d. complex
469. For greater accuracy, the value of phase angle theta should be determined from
a. cos theta
b. tan theta
c. sin theta
d. sec theta
470. Inductance reactance applies only to sine waves because it
a. increases with lower frequencies
b. increases with lower inductance
c. depends on the factor 2pi
d. decreases with higher frequencies
471. \qquad increases the resistance of wire at high frequencies.
a. temperature
b. voltage
c. skin effect
d. insulation
472. An inductor carries 2 A dc. If its inductance is $\mathbf{1 0 0}$ $\mu \mathrm{H}$, then what is its inductive reactance?

a. zero

b. $\mathbf{1 . 3}$ kohm(s)
c. 628 ohm(s)
d. -629 ohm(s)
473. Barium-strontium titanite dielectric material is also called

a. ceramic

b. polyester
c. electrolytic
d. bakelite
474. In the 5-band method of capacitor color coding, the
first band indicates
a. temperature coefficient
b. tolerance
c. 1st digit
d. capacitance value
475. What is the most convenient way of achieving large capacitance?

a. by using multiplate construction

b. by using air as dielectric
c. by decreasing distance between plates
d. by using dielectric of low permittivity
476. A linear circuit is one whose parameters
a. change with change in voltage
b. change with change in current
c. do not change with voltage and current
d. change with change in voltage and current
477. For a linear, \qquad -
voltage or current is used to calculate average power
a. rms
b. peak
c. average
d. instantaneous
478. When two coils of identical reactance are in parallel without mutual inductance, the reactance of the combination is \qquad the reactance of each coil.

a. 1/2

b. twice
c. four times
d. $1 / 4$
479. Which of the following is also known as anti-resonant circuit?

a. parallel resonant circuit

b. series resonant circuit
c. tuned circuit
d. tank circuit
480. In a complex number 5
$+\mathbf{j 1 0}, 10$ is called \qquad part.

a. imaginary

b. real
c. conjugate
d. integer
481. The presence of an electric current is made known by
a. electric shock
b. effects produced
c. magnetic shock
d. flashing
482. The reciprocal of a complex number is

a. a complex number

b. a real number
c. an imaginary number
d. a whole number
483. Which of the following has negative temperature coefficient?

a. carbon

b. nickel
c. brass
d. constantan
484. Which of the following is a common material used in wire-wound resistors?

a. manganin

b. carbon
c. bronze
d. german silver wire
485. If one resistance in a series connection is open, then

a. the current is zero in all other resistances

b. the current is maximum in all the other resistances
c. the voltage is zero across the open resistance
d. the voltage is infinite across the open resistance
486. What determines the magnitude of electric current?
a. the rate at which electrons are produced
b. the type of material used
c. the current carrying capacity of the circuit
d. the rate at which electrons pass a given point
487. For a carbon
composition resistor, typical resistance values range from
a. $\mathbf{2 . 7}$ ohm(s) to $\mathbf{2 2 ~ M o h m (s) ~}$
b. $\mathbf{1 0 0 0}$ ohm(s) to 10000 ohm(s)
c. $10 \mathrm{ohm}(\mathrm{s})$ to $10 \mathrm{Mohm}(\mathrm{s})$
d. 2.7 ohm(s) to 2.7 Gohm(s)
488. A lead conductor has a resistance of $25 \mathrm{ohm}(\mathrm{s})$ at 0 degrees Celsius. Determine its resistance at - 30 degrees Celsius
a. $220 \mathrm{hm}(\mathrm{s})$
b. 24ohm(s)
c. $120 h m(s)$
d. $110 \mathrm{hm}(\mathrm{s})$
489. An impedance given by 90 cis (-45 deg) is a/an
\qquad impedance.
a. inductive
b. conductive
c. resistive

d. capacitive

490. If a coil has a Q of 10 , it means that

> a. the energy stored in the magnetic field of the coil is 10 times the energy wasted in its resistance
> b. the energy wasted in its resistance is 10 times the energy stored in the magnetic field of the coil
> c. it is a low Q coil
> d. it is a high Q coil
491. What is the rms value of the square value?

a. equals its peak value

b. equals its peak-to-peak value
c. peak divided by square root of two
d. peak divided by pi
492. The rms value of a triangular or sawtooth waveform is \qquad times its peak value.
a. 0.577
b. 0.500
C. 0.25
d. 0.707
493. In a multiple capacitor, the plate area is
a. increased
b. the same
c. decreased
d. variable
494. What is the time constant for L of 240 mH in series with R of 20 ohm(s)?
a. 12 ms
b. 4.9 s
c. 83.3 s
d. 12 s
495. In an ac circuit, the power dissipated as heat depends on
a. impedance
b. capacitive reactance
c. resistance
d. inductive reactance
496. Which of the following dielectric materials makes the lowest-capacitance capacitor?
a. paper
b. mica

c. air

d. electrolyte
497. In adding or subtracting phasor quantities, \qquad
form is the most convenient.
a. polar
b. rectangular
c. trigonometric
d. exponential
498. In dividing or multiplying phasor quantities, \qquad form is used.

a. polar

b. rectangular
c. trigonometric

d. exponential

499. The power factor of a circuit is equal to
a. RZ
b. Xc/Z
c. XI/Z
d. R / Z
500. The capacitance of a capacitor is \qquad relative permittivity.
a. directly proportional to
b. inversely proportional to
c. equal to
d. inversely proportional to the square of
501. If a multiple capacitor has 10 plates, each of area 10 square cm, then
a. 10 capacitors will be in parallel
b. 10 capacitors will be in series
c. 9 capacitors will be in parallel
d. 9 capacitors will be in series
502. Of the equivalent combination of units, which one is not equal to watt?
a. $\operatorname{ohm}(\mathrm{s})^{\wedge} 2 / \mathrm{V}$
b. AV
c. $\mathrm{A}^{\wedge} 2$ * ohm(s)
d. J/s
503. A neon glow lamp used as a night light ionizes at approximately
a. 70 V
b. 80 V
c. 90 V
d. 100 V
504. What dielectric is generally employed by a variable capacitor?
a. mica
b. air
c. electrolyte
d. ceramic
505. A switch designed to have low capacitance between its terminal when open.
a. LOCAP switch
b. AntiLOCAP switch
c. Anticapacitance switch
d. capacitance switch
506. A resistor wound with a wire doubled back on itself to reduce the inductance.
a. bifilar resistor
b. wire-wound resistor
c. anti-inductive resistor
d. bleeder resistor
507. \qquad is a fusion of elements, without chemical action between them.
a. mixture
b. compound
c. alloy
d. ionization
508. In calculating maximum instantaneous power voltage or current is used.
a. peak
b. average
C. rms
d. instantaneous
509. The area of capacitor plates increases two times, then its capacitance
a. increases two times
b. increases four times
c. decreases two times
d. decreases four times
510. If the inductance is decreased, the impedance of the circuit containing a resistor, a capacitor and an inductor connected in series to an ac source
a. decreases
b. increases
c. decreases or increases
d. decreases, increases or remains the same
511. When the movable plates of a gang capacitor completely overlaps the fixed plates, the capacitance of the capacitor is
a. halfway between the maximum and the minimum
b. maximum
C. minimum
d. zero
512. In a circuit, a passive element is one which
a. supplies energy
b. receives energy
c. both supplies and receives energy

d. attenuates signal

513. Rationalizing the denominator of a complex number means
a. eliminating the \mathbf{j}
component in the
denominator
b. adding \mathbf{j} component in the denominator
c. eliminating the \mathbf{j} component in the numerator
d. adding the \mathbf{j} component in the numerator
514. When two complex conjugates are subtracted, the result is a

a. quadrature component only

b. complex component
c. in-phase component
d. real component
515. A coil of inductance L has an inductive reactance of $X I$ in an ac circuit in which the effective current is I. The coil is made from a superconducting material. The rate at which the power is dissipated in the coil is
a. 0
b. $\mathrm{I}^{\wedge} \mathbf{2}$ * XI
c. $\mathbf{I} * \mathbf{X I}$
d. $\mathrm{I} * \mathrm{XI}^{\wedge} 2$
516. If the capacitance of mica capacitor is 5 times the capacitance of air capacitor, then the relative permittivity of mica is
a. 2.5
b. 5
C. 10
d. 25
517. The hot resistance of an incandescent lamp is about
\qquad times its cold resistance.
a. 10
b. 5
C. 50
d. 100
518. When the temperature of a copper wire is increased, its resistance is

a. increased

b. decreased
C. constant
d. zero
520. A trimmer is a variable capacitor in which capacitance is varied by changing the
a. number of plates
b. dielectric
c. distance between the plates
d. plate area
521. The reason why electrical appliances are not connected in series.

a. greater electrical power

 savingb. power loss is minimum
c. appliances have different current ratings
d. all of the above
522. From its definition, the unit of electric field, E is the N / C and the equivalent of E is the
a. $V(m)^{\wedge} 2$
b. $\mathrm{v}(\mathrm{m})$
c. $V / m^{\wedge} 2$
d. V / m
523. Which of the following is the peakiest?
a. square wave
b. sinusoidal wave
c. triangular wave
d. rectangular wave
524. Why are inductance and capacitance not relevant in a dc circuit?
a. because it is a simple circuit
b. because dc circuits only require resistance as load
c. because they do not exist in a dc circuit
d. because frequency of dc is zero
525. When capacitors are connected in parallel, the total capacitance is

a. greater than the largest capacitor

b. smaller than the largest capacitor
c. smaller than the smallest capacitor
d. greater than the smallest capacitor
526. When current and voltage are in phase in an ac circuit, the \qquad is equal to zero.
a. resistance
b. reactance
c. inductance
d. capacitance
527. Thevenin's theorem is what form of an equivalent circuit?
a. current
b. voltage
c. both current and voltage
d. neither current nor voltage
528. Which of the following combination of length and cross-sectional area will give a certain volume of copper the least resistance?
a. $2 L$ and $A / 2$
b. does not matter because the volume of copper remains the same
c. L and A
d. L/2 and 2A
529. The ratio between the reactive power and the apparent power of an ac load is called
a. quality factor
b. power factor
c. power ratio
d. reactive factor
530. What is the efficiency under the conditions of maximum power transfer?
a. 50%
b. 100%
c. 25 \%
d. 75%
531. The charging of a capacitor through a resistance follows what law?
a. linear law
b. hyperbolic law
c. inverse-square law
d. exponential law
532. Norton's theorem is what form of an equivalent circuit?
a. voltage

b. current

c. both voltage and current
d. neither voltage nor current
533. What is the total capacitance of 10 capacitors, each of $20 \mu \mathrm{~F}$, in series?
a. $200 \mu \mathrm{~F}$
b. $2 \mu F$
C. $\mathbf{1 0 0} \mu \mathrm{F}$
d. $0.5 \mu \mathrm{~F}$
534. An inductive load always has a \qquad power factor.
a. leading
b. lagging
c. zero
d. unity
535. When resistances are connected in parallel, the total resistance is
b. greater than the smallest resistance in the connection
c. between the smallest and greatest resistance in the connection
d. increasing or decreasing depending upon the supply voltage
536. The arc across a switch when it opens an RL circuit is a result of the
a. large self-induced voltage across L
b. long time constant
c. low resistance of the open switch
d. surge of resistance
537. \qquad is a rotating vector whose projection can represent either current of voltage in an ac circuit.
a. polar diagram
b. scalar quantity
c. velocity
d. phasor
538. Which factor does not affect resistance?
a. length
b. resistivity
c. cross-sectional area
d. mass
539. Which of the following capacitors are used only in dc circuits?
a. mica
b. ceramic
c. mylar
d. electrolytic
540. The maximum power transfer theorem is used in
a. power system
b. electronics circuits
c. refrigeration
d. air conditioning
541. In Norton's theorem, the short circuit current is obtained by
a. operating the load terminals
b. shorting the load terminals
c. opening the voltage source
d. shorting the voltage source
542. For maximum power transfer, what is the relation between load resistance RI and the internal resistance of the voltage source?
a. $\mathbf{R I}=\mathbf{2 r}$
b. $\mathbf{R I}=1.5 \mathbf{r}$
c. $\mathrm{RI}=\mathrm{r}$
d. $\mathbf{R I}=\mathbf{3} \mathbf{r}$
543. A capacitor of $0.5 \mu \mathrm{~F}$ charged to 220 V is connected across an uncharged $0.5 \mu \mathrm{~F}$ capacitor. What is the voltage across each capacitor?
a. 220 V
b. 150 V
c. 110 V
d. 22 V
544. When capacitors are connected in series, the total capacitance is
a. smaller than the smallest capacitor
b. smaller than the largest capacitor
c. greater than any of the capacitor
d. greater than the largest capacitor
545. What theorem is generally used in the analysis of vacuum tubes?
a. superposition theorem
b. Millman's theorem
c. Thevenin's theorem
d. Norton's theorem
546. Another term of the quality factor of the resonant circuit.

a. figure of merit

b. figure of demerit
c. noise factor
d. noise figure
547. Which of the following represents the energy stored in a capacitor?
a. (CV^2)/2
b. (2Q^2)/C
c. (C^2)/V
d. CV
548. What theorem is usually used in the analysis of transistor circuit?
a. superposition theorem
b. Millman's theorem
c. Thevenin's theorem
d. Norton's theorem
549. Which of the following capacitors has the highest cost per $\mu \mathrm{F}$?
a. plastic
b. air
c. mica

d. electrolytic

550. Under the conditions of maximum power transfer, a voltage source is delivering a power of 15 W to the load. What is the power generated by the source?
a. 60 W
b. 30 W
c. 15 W
d. 4 W
551. Which of the following is neither a basic physical law nor derivable from one?
a. ohm's law
b. coulomb's law
c. kirchoff's first law
d. kirchoff's second law
552. Another term for superconductor.
a. generic conductor
b. ultraconductor
c. cryotron
d. cryogenic conductor
553. A circuit whose parameters change with voltage or current.
a. non-linear circuit
b. linear circuit
c. complex circuit
d. passive circuit
554. The potential gradient in a cable is maximum in

a. conductor

b. outer sheath
c. insulation
d. uniformly all over
555. The Q-factor of a parallel resonant circuit is also known as

a. current magnification factor

b. voltage magnification factor
c. load factor
d. leakage factor
556. The Q-factor of a series resonant circuit is also known as
a. current magnification factor
b. voltage magnification factor
c. load factor
d. leakage factor
557. What is the form factor of a triangular wave?
a. 1.16
b. 1.11
c. 1.73
d. 1.41
558. In a rectangular wave, the form factor is
a. 1.11
b. 1.16
c. 1.0
d. 1.73
559. Which of the following dielectric materials makes the highest-capacitance capacitor?
a. air
b. barium-strontium titanite
c. mica
d. electrolyte
560. In a circuit, an active element is one which
a. supplies energy
b. receives energy
c. both supplies and receives energy
d. amplifies signal
561. An electric circuit contains
a. passive elements
b. active elements
c. both active and passive elements
d. reactive elements
562. What is the hot resistance of a $100 \mathrm{~W}, 220$ V incandescent lamp?
a. 2.2 ohm(s)
b. 22 ohm(s)
c. 484 ohm(s)
d. 4.84 ohm (s)
563. Which statement is true about a passive circuit?
a. A circuit with neither a source of current nor a source of potential difference
b. A circuit with voltage source
c. A circuit with a current source
d. A circuit with only resistance as load
564. \qquad is a closed path made of several branches of the network.
a. junction
b. node
c. terminal
d. loop
565. The internal resistance of an ideal voltage source is
a. infinite
b. equal to the load
resistance

c. zero

d. to be determine
566. What is the conductance of a circuit having three 10 ohm(s) resistors in parallel?
b. 3.33 S
c. 0.33 S
d. 30 S
567. Electric energy refers to
a. volt divided by coulomb
b. volt-ampere
c. volt-coulomb
d. watt divided by time
568. A capacitor requires 12 $\mu \mathrm{C}$ of charge to raise its potential to 3 V . What is the capacitance of the capacitor?
a. $36 \mu \mathrm{~F}$
b. $15 \mu \mathrm{~F}$
c. $0.25 \mu \mathrm{~F}$
d. $4 \mu \mathrm{~F}$
569. A capacitor opposes change in
a. voltage
b. current
c. voltage and current
d. neither voltage or current
570. What is the total resistance of a two equal valued resistors in series?
a. the difference of both
b. the product of bot
c. twice as one
d. the sum of their reciprocals
571. The ratio of maximum value to the effective value of an alternating quantity is called
a. form factor
b. peak factor
c. dynamic factor
d. leakage factor
572. For series capacitors, total charge is
a. the sum of individual charges
b. equal to the charge of either capacitors
c. equal to the product of the charges
d. the quotient of the charges
573. Series resonant circuit is sometimes known as
a. rejector circuit

b. acceptor circuit

c. inductive circuit
d. capacitive circuit
574. The force of attraction or repulsion between two poles is inversely proportional to the square of the distance between them. This is known as
a. Newton's first law
b. Faraday's first law of electromagnetic induction
c. Coulomb's first law
d. Coulomb's second law
575. Whenever a conductor cuts magnetic flux, an emf is induced in it. This is known as
a. Coulomb's Law
b. Joule's Law
c. Faraday's Law
d. Ohm's Law
576. A law that states that the polarity of the induced voltage will oppose the change in magnetic flux causing the induction
a. Joule's Law
b. Faraday's Law
c. Coulomb's Law
d. Lenz' law
577. States that current in a thermionic diode varies directly with three-halves power of anode voltage and inversely with the square of the distance between the electrodes when operating conditions are such that the current is limited only by the space charge
a. Hall's Law
b. Joule's Law
c. Child's Law

d. Coulomb's Law

578. States that the ratio of the thermal conductivity to the electric conductivity is proportional to the absolute temperature of all metals
a. Wien's displacement law
b. Hartley's Law
c. Hall's Law
d. Wiedemann-Franz law
579. A law establishing the fact that the algebraic sum of the rises and drops of the mmf around a closed loop of a magnetic circuit is equal to zero
a. Kirchoff's circuital law
b. Maxwell's circuital law
c. Ampere's circuital law
d. Coulomb's circuital law
580. "The net electrical charge in an isolated system remains constant". This is known as the

a. Law of conservation of charge

b. Coulomb's first law
c. Coulomb's second law
d. Law of conservation of energy
581. Lenz's law is the consequence of the law of conservation of
a. energy
b. charge
c. field lines
d. momentum
582. Lenz' law states that the direction of the induced emf and hence current
a. is determined by the rate of current flux
b. is found by the right hand rule
c. is found by the left hand rule

d. always opposes the cause producing it

583. If you hold a conductor with right hand so that the stretched thumb points in the direction of the current, then, encircling fingers will give the direction of magnetic lines of force round the conductor. This is known as
a. left hand cork screw rule
b. right hand cork screw rule

c. left hand rule

d. right hand rule

584. If a right-handed bottle opener cork screw is assumed to be along the conductor so as to advance in the direction of current flow, the motion of the handle will indicate the direction of magnetic flux produced around the conductor. This is known as
a. right hand rule
b. left hand rule
c. cork screw rule
d. end rule
585. If in looking at any one end of a solenoid, the direction of current flow is found to be clockwise then the end under observation is a south pole. This is known as
a. right hand rule
b. left hand rule
c. cork screw rule

d. end rule

586. If the solenoid is gripped by the right hand with the fingers pointing to the direction of the current flow, the outstretched thumb will then point the north pole. This is known as
a. right hand rule
b. helix rule
c. end rule
d. cork screw rule
587. The process by which an emf and hence current is generated or induced in an inductor when there is a change in the magnetic flux linking the conductor is called

a. electromagnetic induction

b. mutual induction
c. Faraday's law
d. electromagnetic
interference
588. The emf induced in a coil due to the change in its own flux linked with it is called
a. mutually induced emf
b. dynamically induced emf
c. statically induced emf
d. self induced emf
589. The emf induced in a coil due to the changing current of another neighboring coil is called
a. mutually induced emf
b. self induced emf
c. statically induced emf
d. dynamically induced emf
590. When a conductor is stationary and the magnetic field is moving or changing, the emf induced is called
a. statically induced emf
b. mutually induced emf
c. self induced emf
d. dynamically induced emf
591. The magnetic potential
in a magnetic circuit can be measured in terms of

a. mmf

b. emf
c. farad
d. coulomb
592. A substance that attracts pieces of iron
a. conductor
b. semiconductor

c. magnet

d. all of the above
593. The phenomenon by which a substance attracts pieces of iron

a. magnetism

b. electromagnetism
c. naturalism
d. materialism
594. Which of the following is a natural magnet?
a. steel
b. magnesia

d. soft iron

595. Defined as the pole which when placed in air from a similar and equal pole repels it with a force of
1/(4*pi*Uo)newtons
a. north pole
b. south pole
c. unit pole
d. magnetic pole
596. The point in a magnet where the intensity of magnetic lines of force is maximum
a. magnetic pole
b. south pole
c. north pole
d. unit pole
597. The straight line passing through the two poles of a magnet is called
a. real axis
b. Cartesian axis
c. magnetic axis
d. imaginary axis
598. The branch of engineering which deals with the magnetic field of electric current is known as
a. magnetism
b. electromagnetism
c. electrical engineering
d. electronics engineering
599. The space outside the magnet where its poles have a force of attraction or repulsion on magnetic pole is called
a. magnetic field
b. electric field
c. electromagnetic field
d. free space field
600. The total number of magnetic lines of force in a magnetic field is called

a. magnetic flux

b. magnetic flux density
c. magnetic flux intensity
d. magnetic potential
601. The phenomenon by which a magnetic substance
becomes a magnet when it is placed near a magnet
a. magnetic effect
b. magnetic phenomenon
c. magnetic induction
d. electromagnetic induction
602. Which of the following magnetic materials which can be easily magnetized in both directions?

a. soft magnetic materials

b. hard magnetic materials
c. high hysteresis loss materials
d. low hysteresis loss materials
603. Which of the following materials has permeability slightly less than that of free space?
a. paramagnetic
b. non-magnetic
c. ferromagnetic
d. diamagnetic
604. Materials whose permeabilities are slightly greater than that of free space
a. paramagnetic
b. non-magnetic
c. ferromagnetic
d. diamagnetic
605. Materials that have very high permeabilities (hundred and even thousand times that of free space).
a. paramagnetic
b. non-magnetic
c. ferromagnetic
d. diamagnetic
606. The current of the electric circuit is analogous to which quantity of a magnetic circuit.
a. mmf
b. flux
c. flux density
d. reluctivity
607. What is the diameter of an atom?
a. about $10^{\wedge} \mathbf{- 1 0} \mathbf{m}$
b. about $10^{\wedge}-10 \mathrm{~cm}$
c. about $10^{\wedge} \mathbf{- 1 0} \mathbf{~ m m}$
d. about 10^-10 um
608. Defined as a closed path in which magnetic induction or flux flows.
a. electric circuit

b. magnetic circuit

c. electronic circuit
d. electromagnetic circuit
609. The force which sets up or tends to set up magnetic flux in a magnetic circuit
a. dynamic force
b. electromotive force
c. potential difference
d. magnetomotive force
610. Referred to as the specific reluctance of a material.
a. resistivity

b. reluctivity

c. conductivity
d. permeability
611. The property of a material which opposes the creation of a magnetic flux in it.
a. resistance

b. reluctance

c. permeance
d. conductance
612. It is the reciprocal of reluctance and implies the ease of readiness with which magnetic flux is developed
a. resistance
b. conductance
c. permeance
d. inductance
613. The ability of a material to conduct magnetic flux through it.
a. permittivity
b. reluctivity
c. conductivity
d. permeability
614. The ratio of the permeability of a material to the permeability of air or vacuum.
a. relative permeability
b. relative permittivity
c. relative conductivity
d. relative reluctivity
615. Permeance is analogous to
a. conductance
b. reluctance
c. admittance
d. resistance
616. The property of the magnetic materials of retaining magnetism after withdrawal of the magnetizing force is known as
a. retentivity
b. reluctivity
c. resistivity
d. conductivity
617. The quantity of magnetism retained by a magnetic material after withdrawal of the magnetizing force is known as
a. leftover magnetism
b. hysteresis
c. residual magnetism
d. coercivity
618. The amount of magnetizing force to counter balance the residual magnetism of a magnetic material is referred to as
a. reluctivity
b. susceptibility
c. coercivity
d. retentivity
619. The ratio of the total flux (flux iron path) to the useful flux (flux in air gap).
a. leakage flux
b. leakage current
c. leakage coefficient
d. leakage factor
620. Defined as the number of lines per unit area through
any substance in a plane at right angles to the lines of force
a. flux
b. flux lines
c. flux density
d. flux intensity
621. Defined as the flux density produced in it due to its own induced magnetism
a. magnetic field intensity
b. electric field intensity
c. electromagnetic field intensity
d. intensity magnetization
622. The force acting on a unit n-pole placed at that point is called
a. magnetic field intensity
b. electric field intensity
c. electromagnetic field intensity

d. intensity magnetization

623. The ratio between the intensity of magnetization produced in substance to the magnetizing force producing it
a. magnetic reluctivity
b. magnetic resistivity
c. magnetic susceptibility
d. magnetic conductivity
624. The lagging effect between flux density of the material and the magnetizing force applied.
a. permeance
b. eddy current

c. hysteresis

d. reluctance
625. Refers to the magnetic lines of force

a. flux

b. hysteresis
c. current
d. magnetomotive force
626. Refers to the nonmetallic materials that have the ferromagnetic properties of iron.

a. ferrites

b. ferromagnetic
c. diamagnetic
d. paramagnetic
627. The air space between poles of magnets

a. air gap

b. free space
c. vacuum
d. atmosphere
628. One that has magnetic poles produced by internal atomic structure with no external current necessary
a. diamagnetic
b. permanent magnet
c. paramagnetic
d. electromagnetic
629. Magnetic fields of the earth as a huge magnet with north and south poles.
a. diamagnetic
b. ferromagnetic
c. terrestrial magnetism
d. terrestrial ferromagnetism
630. Used to maintain strength of magnetic field.
a. Container
b. Air gap
c. Keeper
d. Source
631. All magnetic field originates from
a. moving electric charge
b. iron atoms
c. magnetic domain
d. permanent magnets
632. Magnetic fields do not interact with
a. moving permanent magnets
b. stationary permanent magnets
c. moving electric charges
d. stationary electric charges
633. The magnetic field
inside a solenoid
b. is uniform
c. increases with distance from the axis
d. decreases with distance from the axis
634. When the ferromagnetic substance is inserted in a current-carrying solenoid, the magnetic field is
a. greatly decreased
b. greatly increased
c. slightly decreased
d. slightly increased
635. The magnetic field of a bar magnet most closely resembles that of
a. a horseshoe magnet
b. a straight current-carrying wire
c. a stream of electrons moving parallel to one another
d. a current-carrying wire loop
636. The magnetic field of a magnetized iron bar when strongly heated
a. becomes weaker
b. becomes stronger
c. reverses direction
d. is unchanged
637. A permanent magnet does not exert force on
a. an unmagnetized iron bar
b. a magnetized iron bar
c. a moving electric charge
d. a stationary electric charge
638. A current is flowing east along a power line. If the earth's field is neglected, the direction of the magnetic field below it is

a. north

b. south
c. east
d. west
639. The emf produced in a wire by its motion across a
magnetic field does not depend upon
a. the diameter of the wire
b. the length of the wire
c. the orientation of the wire
d. the flux density of the field
640. The induced emf in a wire loop that is moved parallel to a uniform magnetic field is
a. zero
b. dependent on the area of the loop
c. dependent on the shape of the loop
d. dependent on the magnitude of the field
641. When a wire loop is rotated in a magnetic field, the direction of the induced emf changes one in every _ revolution.
a. $1 / 3$
b. 1/2
c. 1/4
d. 2/3
642. The magnetic flux through a wire loop in a magnetic field does not depend on
a. the area of the loop
b. the magnitude of the loop

c. the shape of the loop

d. the angle between the plane of the loop and the direction
643. Steel is hard to magnetize because of its
a. low permeability
b. high permeability
c. high density
d. high retentivity
644. Paramagnetic substance has a relative permeability of
a. slightly less than one
b. equal to one
c. slightly greater than one
d. very much greater than one
645. A group of magnetically aligned atoms is called
a. range
b. Iattice

c. domain

d. crystal
646. The force between two magnetic poles varies with distance between them. The variation is \qquad to the square of that distance
a. equal
b. greater than
c. directly proportional
d. inversely proportional
647. Permeability means

a. the conductivity of the material for magnetic lines of force

b. the magnetization test in the material after exciting field has been removed
c. the strength of an electromagnet
d. the strength of the permanent magnet
648. \qquad is an
electromagnet with its core in the form of a close magnetic ring.
a. solenoid
b. paraboloid

c. toroid

d. cycloid
649. A magnetic material loses its ferromagnetic properties at a point called
a. curie temperature
b. inferred absolute temperature
c. room temperature
d. absolute temperature
650. Small voltages generated by a conductor with current in an external magnetic field.
a. skin effect
b. magnetic effect
c. hall effect
d. flywheel effect
651. The emission of electrons from hot bodies is called
a. radiation effect
b. Edison effect
c. skin effect
d. hall effect
652. The ability of a mechanically stressed ferromagnetic wire to recognize rapid switching of magnetization when subjected to a dc magnetic field.
a. Wartheim effect
b. Wiedemann effect
c. Wiegand effect
d. Edison effect
653. An effect which is generally used in the gaussmeter to measure flux density.
a. skin effect
b. magnetic effect
c. hall effect
d. flywheel effect
654. The contribution to the ionization in an ionization chamber by electrons liberated from the walls.
a. skin effect
b. wall effect
c. Hall effect
d. Edison effect
655. The tiniest element of matter.
a. atom
b. proton
c. electron
d. neutron
656. All matters (gas, liquid, and solid) are composed of
a. neutrons
b. particles
c. electrons
d. atoms
657. The simplest type of atom to exist is the atom.
a. helium
b. hydrogen
c. boron

d. oxygen

658. What revolves around the positive nucleus in a definite orbit?
a. atom
b. proton

c. electron

d. neutron
659. The uncharged particles which have no effect on its atomic charge?
a. nucleons
b. electrons
c. protons

d. neutrons

660. The diameter of a hydrogen atom is approximately \qquad cm
a. $1.1 \times 10^{\wedge}-6$
b. $1.1 \times 10^{\wedge}-7$
c. $1.1 \times 10^{\wedge}-8$
d. $1.1 \times 10^{\wedge}-9$
661. The K shell or the first shell has how many permissible number of orbiting electrons?
a. 1
b. 2
C. 3
d. 4
662. Germanium atom has protons and \qquad electrons.
a. 32,32
b. 32, 42
C. 42, 32
d. 34, 34
663. A germanium atom has an atomic weight of 72. How many neutrons are these?
a. 32
b. 40
C. 34
d. 36
664. How many neutrons does a copper atom have?
a. 32
b. 33
c. 34
d. 29
665. Bonding of atoms that is due to the attraction between positive ions and a group of negative ions.
a. ionic bonding
b. covalent bonding
c. electrostatic bonding
d. metallic bonding
666. An alloy of 22 percent iron and 78 percent nickel.

a. permalloy

b. alnico
c. constantan
d. manganin
667. An alloy of 40 percent iron and 60 percent nickel.
a. alnico
b. permalloy
c. hipernik
d. manganin
668. A commercial alloy of aluminum, nickel, and iron, with cobalt, copper, and titanium added to produce about 12 grades.
a. alnico
b. brass
c. aluminum
d. constantan
669. The idea of preventing one component from affecting another through their common electric and magnetic field is referred to as
a. Hall effect
b. grounding
c. shielding
d. limiting
670. The physical motion resulting from the forces of magnetic fields is called
a. motor action
b. rotation
c. repulsion
d. torque action
671. Flux linkages equals
a. flux times area of core
b. flux times number of turns times area of core
c. flux times number of turns times length of core
d. flux times number of turns
672. Which of the following is a vector quantity?
a. magnetic potential
b. magnetic field intensity
c. magnetic permeability
d. flux density
673. Which of the following electric quantities is vector in character?

a. field

b. charge
c. energy
d. potential difference
674. The quantity $10 \wedge 8$ maxwells is equivalent to one
a. Weber
b. gauss
c. Gilbert
d. tesla
675. What is the unit of reluctance?
a. Maxwell
b. gauss
c. At/Wb
d. Weber
676. What is the SI unit of magnetic flux?
a. Tesla
b. Weber
c. Maxwell
d. Gauss
677. What is the unit of magnetomotive force?
a. volt
b. tesla
c. ampere-turn
d. Weber
678. What is the cgs unit of magnetomotive force?
a. Gilbert
b. Ampere-turn
c. Maxwell
d. Weber
679. The unit of flux is \qquad in cgs system.
a. Tesla
b. Gilbert
c. Maxwell
d. Oersted
680. Flux density is measured in
a. Tesla
b. Weber
c. Ampere-turn
d. Maxwell
681. The customary energy unit in atomic and nuclear physics is
a. joule
b. volt-coulomb
c. electron-volt
d. watt-second
682. One ampere-turn is equivalent to \qquad gilberts.
a. 1.16
b. 1.26
c. 1.36
d. 1.46
683. The magnetic flux of 2000 lines is how many in maxwells?
a. 1000
b. 2000
c. 4000
d. 8000
684. How much is the magnetic flux of 2000 lines in weber?
a. $2 \times 10^{\wedge-5}$
b. $2 \times 10^{\wedge}-3$
c. $2 \times 10^{\wedge} 5$
d. $2 \times 10^{\wedge} 3$
685. One Oersted (Oe) is equivalent to \qquad Gb/cm.

a. 1

b. 10
c. 100
d. 1000
686. One electron volt (1 eV) is equivalent to \qquad joules.
a. $1.3 \times 10^{\wedge}-19$
b. $1.4 \times 10^{\wedge}-19$
c. $1.5 \times 10^{\wedge}-19$
d. $1.6 \times 10^{\wedge}-19$
687. An electron-volt (eV) is a unit of

a. energy

b. potential difference
c. charge
d. momentum
688. The unit of electrical energy is
a. joule
b. watt-second
c. kilowatt-hour
d. all of these
689. Electrons at the outer shell are called
a. outer shell electrons
b. inner shell electrons
c. semiconductor electrons

d. valence electrons

690. Which of the following has the least number of valence electrons?

a. conductor

b. semiconductor
c. insulator
d. semi-insulator
691. A good conductor has how many valence electrons?

a. 1

b. 4
c. 2
d. 8
692. Which element has four valence electrons?
a. conductor
b. insulator
c. semiconductor
d. semi-insulator
693. A negative ion results
when an atom gains an additional
a. electron
b. proton
c. neutron
d. atom
694. An atom or a group of atoms that carries a net electric charge.
a. positive ion
b. negative ion
c. ion
d. electron
695. Hysteresis refers to the _ between flux density of the material and the magnetizing force applied.
a. leading effect
b. ratio
c. equality
d. lagging effect
696. Hydrogen is an example of a \qquad material.
a. paramagnetic
b. diamagnetic
c. ferromagnetic
d. non-magnetic
697. Cobalt is an example of a \qquad material.
a. paramagnetic
b. diamagnetic
c. ferromagnetic
d. non-magnetic
698. The evaporation of electrons from a heated surface is called
a. radiation
b. convection
d. conduction
699. Electron is a Greek word for
a. amber
b. fire
c. stone
d. heat
700. Gases whose particles are charged are known as
a. conductors
b. insulators
c. gaseous conductors

d. plasma

701. What principle states that each electron in an atom must have a different set of quantum numbers?
a. inclusion principle
b. exclusion principle
c. quantum principle
d. electron principle
702. The energy stored in an electrostatic field or electromagnetic field is called
a. electromagnetic energy
b. kinetic energy
c. potential energy
d. rest energy
703. Which of the following statements is TRUE?
a. Silicon dioxide is a good conductor
b. the current carriers in conductors are valence electrons
c. for conductors, the valence electrons are strongly attracted to the nucleus
d. the valence electrons are located in the nucleus of an atom
704. How many electrons are needed in the valence orbit to give a material stability?
a. 8
b. 4
c. 6
d. 5
705. Residual magnetism refers to the flux density, which exists in the iron core when the magnetic field intensity is
a. minimized
b. reduced to zero
c. maximize
d. unity
706. Magnetic intensity is a
a. phasor quantity
b. physical quantity
c. scalar quantity
d. vector quantity
707. The core of a magnetic equipment uses a magnetic material with
a. least permeability
b. Iow permeability
c. moderate permeability
d. high permeability
708. Which of the following is a paramagnetic material?
a. carbon
b. copper
c. bismuth
d. oxygen
709. The permeability of permalloy is
a. very much greater than the permeability of air
b. slightly greater than permeability of air
c. slightly less than
permeability of air
d. equal to the permeability of air
710. A-t/m is a unit of
a. mmf
b. emf
c. reluctance

d. magnetizing force

711. The force between two magnetic poles is \qquad their poles strength.

a. equal to

b. directly proportional to
c. inversely proportional to
d. directly proportional to the square root of
712. The magnetic energy stored in an inductor is
\qquad current.
a. directly proportional to
b. inversely proportional to
c. directly proportional to the square of
d. inversely proportional to the square of
713. One of the main application of an air-cored choke.
a. radio frequency
b. audio frequency
c. power supply
d. power transformer
714. How is the mutual inductance between two coils decreased?
a. by using a common core
b. by moving the coils closer
c. by moving the coils apart
d. by increasing the number of turns of either coil
715. \qquad bond is formed when one or more electrons in the outermost energy orbit of an atom are transferred to another.
a. ionic
b. covalent
c. metallic

d. Van der Waals

716. In electro-mechanical conversion devices like generators and motors, the reason why a small air gap is left between the rotor and stator is to
a. permit mechanical
clearance
b. increase flux density in air gap
c. decrease the reluctance of magnetic path
d. complete the magnetic path
717. \qquad bond is formed when electrons in the outermost energy orbits of
the atoms are shared between two or more electrons.
a. ionic
b. covalent
c. metallic

d. Van der Waals

718. Why is it that the magnitude of magnetomotive force required for air gap is much greater than that required for iron part of magnetic circuit?
a. because air is a gas
b. because air has the highest relative permeability
c. because air is a conductor of magnetic flux

d. because air has the lowest relative permeability

719. What type of bond is formed when there exists some form of collective interactions between the (negatively charged) electrons and the (positively charged) nuclei in a solid?
a. ionic
b. covalent

c. metallic

d. Van der Waals

720. Permeance of a magnetic circuit is \qquad the cross-sectional area of the circuit.
a. directly proportional to
b. inversely proportional to
c. dependent of
d. independent of
721. Formed when there exist distant electronic interactions between (opposite) charges present in the neighboring atoms or molecules.
a. ionic bond
b. covalent bond
c. metallic bond

d. Van der Waals bond

722. Defined as the ratio of the volume occupied by the atoms or ions in a unit cell divided by the volume of the unit cell and is used to measure the compactness of a crystal.

a. atomic packing factor (APF)

b. ionic packing ratio (IPR)
C. atomic compacting factor (ACF)

d. ionic compacting ratio

 (ICR)723. A factor used to correct for electrostatic forces of the more distant ions in an ionic solid.
a. Avogadro's number
b. Planck's constant
C. Boltzmann's constant
d. Madelung constant
724. The conduction of electricity across the surface of a dielectric is called.

a. creepage

b. skin effect
c. surface effect
d. crosstalk
725. A magnetic circuit carries a flux phi(i) in the iron part and flux phi(g) in the air gap. What is the leakage coefficient?
a. phi(i) / phi(g)
b. phi(i) \times phi(g)
c. phi(g) / phi(i)
d. phi(i) + phi(g)
726. A law stating that the magnetic susceptibilities of most paramagnetic substances are inversely proportional to their absolute temperatures.

a. Curie's law

b. Child's law
c. CR law
d. Curie-Weiss Iaw
727. The reluctance of the magnetic circuit is \qquad relative permeability of the material comprising the circuit.
a. directly proportional to
b. inversely proportional to
c. independent of

d. dependent of

728. A law relating between the magnetic and electric susceptibilities and the absolute temperatures which is followed by ferromagnets, antiferromagnets, non-polar ferroelectrics, anti-
ferroelectrics and some paramagnets.
a. Curie's law
b. CR law
c. Child's law
d. Curie-Weiss Iaw
729. Theory of ferromagnetic phenomena which assumes each atom is a permanent magnet which can turn freely about its center under the influence of applied fields and other magnets.
a. Ewing's theory of ferromagnetism

b. Oersted's ferromagnetism theory

c. Maxwells' magnetic theory
d. Ampere's circuital law
730. The reluctance of a magnetic circuit varies with
a. length X area
b. area / length
c. length / area
d. length + area
731. A theorem which states that an electric current flowing in a circuit produces a magnetic field at external points equivalent to that due to a magnetic shell whose bounding edge is the conductor and whose strength is equal to the strength of the current.
a. Joule's Iaw
b. Faraday's law
c. Volta's theorem
d. Ampere's theorem
732. What is the usual value of the leakage coefficient for electrical machines?
a. 0.5 to 1
b. 1 to 5
c. 5 to 10
d. 1.15 to 1.25
733. The science of adapting electronics to aerospace flight.
a. avionics
b. aerotronics
c. aerodynamics

d. astrionics

734. The reluctance of a magnetic circuit is not dependent on which of the following?
a. number of turns of coil
b. magnetomotive force

c. flux density in the circuit

d. current in the coil
735. Another term for corona discharge.
a. lightning
b. sparking
c. aurora
d. corona effect
736. The B-H curve for \qquad is a straight line passing through the origin.
a. cobalt
b. air
c. hardened steel
d. soft iron
737. The phenomenon that when an electric current passes through an arisotropic crystal, there is an absorption or liberation of heat due to the nonuniformity in the current distribution.

a. Bridgman effect

b. Corona effect
c. Dember effect
d. Destriau effect
738. The B-H curve of \qquad is not a straight line.
a. air
b. wood
c. silicon steel
d. soft iron
739. If a magnetic flux cuts across 200 turns at a rate of $2 \mathrm{~Wb} / \mathrm{s}$, the induced voltage
according to Faraday's law is about
a. 400 V
b. 100 V
c. 200 V
d. 600 V
740. What is the SI unit of reluctance?
a. AT
b. AT/m
c. $\mathbf{N} / \mathbf{W b}$
d. AT/Wb
741. A magnetizing force of 1000 At/m will produce a flux density of \qquad in air.
a. $1.257 \mathrm{mWb} / \mathrm{sq} \mathrm{m}$
b. $0.63 \mathrm{~Wb} / \mathrm{sq} \mathrm{m}$
c. $1.257 \mathrm{~Wb} / \mathrm{sq} \mathrm{m}$
d. $0.63 \mathrm{mWb} / \mathrm{sq} \mathrm{m}$
742. Hysteresis loss can be reduced by the following.
a. increasing mmf of the circuit
b. using material of narrow hysteresis loop
c. using ferromagnetic core
d. Iaminating the magnetic circuit
743. The core of a transformer heats up when its primary is fed from an ac source because of
a. permeability of core
b. ferromagnetism
c. reluctance of core

d. hsyteresis loss

744. Which of the following materials has the least hysteresis loop area?
a. soft iron
b. silicon steel
c. hard steel
d. wrought iron
745. Core materials of a good relay have \qquad hysteresis loop.

a. large

b. narrow

d. very narrow

746. The magnetic materials should have a large
hysteresis loss for one of the following applications.
a. transformers
b. AC motors
c. permanent magnets
d. DC generators
747. If the magnetic material is located within a coil through which alternating current (60 Hz frequency) flows, then \qquad hysteresis loops will be formed every second.
a. 60
b. 120
C. $\mathbf{3 0}$
d. 180
748. There are how many compounds available in nature?
a. 105
b. 1000
c. $\mathbf{3 0 0}, 000$
d. unlimited
749. Hysteresis is a phenomenon of \qquad in a magnetic circuit.
a. setting up constant flux
b. lagging of H behind B
c. lagging of B behind H
d. leading of B ahead H
750. What is a measure of the density and sign of the electric charge at a point relative to that at some time?

a. electric potential

b. electric charge
c. electric current
d. electric intensity
751. \qquad is a substance whose molecules consist of the same kind of atom.
a. mixture
b. compound
c. element
d. isotope
752. Hipernik is an alloy containing \qquad iron and nickel.
a. 40%; 60%
b. 60\% ; 40 \%
c. 50\%; 50 \%
d. 70%; 30%
753. The mass of proton is the mass of an electron
a. equal to
b. about 1837 times
c. less than
d. 200 times
754. What is the maximum number of electrons that can be accommodated in the last orbit of an atom?
a. 4
b. 2
C. 8
d. 18
755. The electrons in the last orbit of an atom are called ___ electrons.
a. free
b. valence
c. bound
d. thermionic
756. If the number of valence electrons of an atom is less than 4, the substance is called
a. a conductor
b. a semiconductor
c. an insulator
d. a superconductor
757. If the number of valence electrons of an atom is more than 4, the substance is called
a. a semiconductor
b. a conductor

c. an insulator

d. a semi-insulator
758. If the number of valence electrons of an atom is exactly 4 , then the substance is called
b. a conductor
c. an insulator
d. a cryogenic conductor
759. If the number of valence electrons of an atom is less than 4, then the substance is probably
a. a metal
b. an insulator
c. a non-metal
d. a semiconductor
760. One coulomb of charge consists of \qquad electrons.
a. $624 \times 10^{\wedge 16}$
b. $\mathbf{6 2 . 4 \times 1 0 \wedge 1 6}$
c. $6.24 \times 10^{\wedge} 16$
d. $0.624 \times 10^{\wedge} 16$
761. A one cubic cm. of copper has how many free electrons at room temperature?
a. $80 \times 10^{\wedge 18}$
b. $8.5 \times 10^{\wedge} 22$
c. $\mathbf{2 0 \times 1 0 \wedge 1 0}$
d. $\mathbf{5 0 \times 1 0 \wedge} \mathbf{2 0}$
762. Electric current in a wire is the flow of \qquad electrons.

a. free

b. valence
c. bound
d. loose
763. Electromotive force in a circuit

a. causes free electrons to flow

b. increases the circuit resistance
c. maintains circuit resistance
d. is needed to make the circuit complete
764. The resistance of a material is \qquad its area of cross-section.
a. directly proportional
b. independent of
c. inversely proportional to
d. equal to
765. If the length and area of cross-section of a wire are doubled, then its resistance
a. becomes four times
b. becomes sixteen times
c. remains the same
d. becomes two times
766. A length of wire has a resistance of 10 ohms. What is the resistance of a wire of the same material three times as long and twice the cross-sectional area?
a. $\mathbf{3 0}$ ohms
b. $\mathbf{2 0}$ ohms
C. $\mathbf{1 5}$ ohms
d. 7 ohms
767. What is the SI unit of specific resistance or resistivity?
a. Ohm-circular mil per inch
b. Ohm-circular mil per foot
C. ohm -m
d. ohm-cm
768. The resistivity of a conductor \qquad with an increase in temperature.

a. increases

b. decreases
c. remains the same
d. becomes zero
769. What is the SI unit of conductance?
a. Siemens
b. Mhos
c. Ohms
d. $1 / 0 h m s$
770. If the resistance of a material 2 m long and 2 sq m in area of cross-section is $\mathbf{1 . 6}$ $x 10^{\wedge}-18$, then its resistivity is
a. $3.2 \times 10^{\wedge}-18$ ohm-m
b. $1.6 \times 10^{\wedge}-18$ ohm-m
c. $0.64 \times 10^{\wedge}-18$ ohm-m
d. $0.16 \times 10^{\wedge}-18$ ohm-m
771. What is the SI unit of conductivity?
a. Ohms/m
b. Ohms-m
c. Siemens-m
d. Siemens/m
772. The temperature coefficient of resistance of conductors is
a. positive
b. zero
c. negative
d. infinite
773. The temperature coefficient of resistance of semiconductors is
a. positive
b. zero

c. negative

d. infinite
774. What determines the value of the temperature coefficient of resistance of a material?
a. length
b. cross-sectional area
c. volume
d. nature and temperature
775. The temperature coefficient of resistance of a conductor \qquad with an increase in temperature.
a. increases
b. decreases
c. remains the same
d. becomes negative
776. The temperature coefficient of resistance of insulators is
a. zero
b. negative
c. positive
d. infinite
777. The temperature coefficient of resistance of eureka is
a. positive
b. negative
c. almost zero
d. infinite
778. If the value of alpha(o) of a conductor is $1 / 234$ per degree Celsius, then the value of alpha(18) is
a. 1/218 per degree Celsius
b. 1/252 per degree Celsius
c. 1/272 per degree Celsius
d. 1/273 per degree Celsius
779. If the value of alpha(25) of a conductor is $1 / 255$ per degree Celsius, then the value of alpha(20) is
a. 1/300 per degree Celsius
b. 1/250 per degree Celsius
c. 1/230 per degree Celsius
d. 1/260 per degree Celsius
780. If the value of alpha(50) of a conductor is $1 / 230$ per degree Celsius, then the value of alpha(0) is
a. 1/180 per degree Celsius
b. 1/150 per degree Celsius
c. 1/280 per degree Celsius
d. 1/230 per degree Celsius
781. Ohm's law cannot be applied to which material?
a. copper
b. silver
c. silicon carbide
d. aluminum
782. What is the practical unit of electrical energy?
a. watt
b. kilowatt-hour
c. kilowatt-second
d. megawatt-hour
783. A 200-watt lamp working for 24 hours will consume approximately
\qquad units.
a. 50
b. 5
C. 24
d. 0.5
784. The hot resistance of an incandescent lamp is about
\qquad its cold resistance.
a. 10 times
b. 100 times
c. 5 times

d. 50 times

785. Under ordinary conditions, a body is considered
a. positively charged
b. neutral
c. negatively charged
d. stable
786. A positively charged body has
a. deficit of electrons
b. excess of neutrons
c. excess of electrons
d. deficit of protons
787. A negatively charged body has
a. deficit of electrons
b. excess of protons
c. excess of electrons
d. deficit of neutrons
788. This paper does not exhibit electricity because it contains the same number of

a. protons and electrons

b. neutrons and electrons
c. neutrons and positrons
d. atoms
789. What is the value of the absolute permittivity of air?
a. $8.854 \mathrm{uF} / \mathrm{m}$
b. $8.854 \times 10^{\wedge}-12 \mathrm{mF} / \mathrm{m}$
c. $8.854 \times 10^{\wedge}-12 \mathrm{~F} / \mathrm{m}$
d. $8.854 \times 10^{\wedge}-12 \mathrm{uF} / \mathrm{m}$
790. What is the relative permittivity of air?
a. 0
b. 1
c. $8.854 \times 10^{\wedge}-12$
d. 4*pi $^{*} 10^{\wedge-7}$
791. If two similar charges 1 coulomb each, are placed 1 m apart in air, then the force of repulsion is
a. $8 \times 10^{\wedge} 6 \mathrm{~N}$
b. $9 \times 10^{\wedge} 9 \mathrm{~N}$
c. $10^{\wedge} 6 \mathrm{~N}$
d. $5 \times 10^{\wedge} 6 \mathrm{~N}$
792. If the relative permittivity of a material is 10, then its permittivity is
a. 4^{*} pi $\times 10^{\wedge-7 ~ F / m ~}$
b. 4^{*} pi $\times 10^{\wedge}-6 \mathrm{~F} / \mathrm{m}$

c. $8.854 \times 10^{\wedge}-11 \mathrm{~F} / \mathrm{m}$

d. $8.854 \times 10^{\wedge}-12 F / m$
793. The force between two charges placed a given distance apart \qquad as the relative permittivity of the medium is increased.
a. increases
b. decreases
c. remains unchanged
d. becomes infinite
794. What is another name for relative permittivity?
a. dielectric strength
b. electric intensity
c. potential gradient
d. dielectric constant
795. The relation between absolute permittivity of air, epsilon(o), absolute permeability of air, mu(0), and velocity of light, c, is given by
a. $\mathrm{mu}(0) * \operatorname{epsilon(0)}=\mathrm{c}^{\wedge} \mathbf{2}$
b. $\mathrm{mu}(0) * \operatorname{epsilon(0)}=\mathrm{c}$
c. $1 /(\mathrm{mu}(0) * \operatorname{epsilon}(0))=\mathrm{c}$
d. $1 /(\mathrm{mu}(0) * \operatorname{epsilon}(0))=$ c^2
796. The dielectric constant of most material lies between

a. 1 and 100

b. 10 and 20
c. 20 and 50
d. 50 and 100
797. A test charge means a charge of
a. -1 C
b. 1 electron
C. +1 C
d. -20 C
798. Electric lines of force leave or enter the charge surface at an angle of
a. 30 degrees
b. 45 degrees

c. 90 degrees

d. depending upon the angle of launch and entry
799. Electric field intensity is measured in

a. volts/meter

b. newtons/meter
c. newton-meter
d. amperes/meter
800. Electric field intensity is a \qquad quantity.
a. scalar
b. phasor
C. vector
d. variable
801. Electric field intensity at a point due to a given charge if the relative
permittivity of the medium decreases.
a. decreases
b. remains unchanged
c. increases
d. becomes zero
802. The electric field intensity between the parallel plate capacitor is 20 N/C. If an insulating slab of relative permittivity 5 is placed between the plates, then electric field intensity will be
a. 20 N/C
b. 100 N/C
C. $4 \mathrm{~N} / \mathrm{C}$
d. 40 N/C
803. The electric field density is a \qquad quantity.
a. phasor
b. vector
c. scalar
d. variable
804. The permittivity of a given material is given by one of the following formulas.
a. DE
b. E/D
c. $D^{\wedge} 2 / E$
d. D/E
805. Electric field intensity at a point is numerically equal to \qquad at that point.
a. potential gradient
b. potential difference
c. dielectric constant
d. the force
806. Three charges of $+5 \mathrm{C}_{\text {, }}-$ 6 C , and +9 C are placed inside a sphere. What is the total flux passing through the surface of the sphere?

a. 8 C

b. 14 C
c. 20 C
d. -6 C
807. The potential at a point due to a charge is 15 V . If the distance is increased three times, the potential at the point will be
a. 5 V
b. 18 V
c. 45 V
d. 15 V
808. Electric potential is a
\qquad quantity.
a. scalar
b. phasor
c. vector
d. variable
809. The electric potential at a point in air due to a charge is $\mathbf{2 1} \mathbf{V}$. If air is replaced by a medium of relative permittivity of 3 , then electric potential will be
a. 63 V
b. 21 V
c. 7 V
d. 42 V
810. The electric potential across part $A B$ of a circuit is 5V; point A being at higher potential. If a charge of 5 C moves from a A to B, then energy released is
a. 5 joules
b. 25 joules
c. 10 joules
d. 100 joules
811. What is the other name for dielectric strength?
a. breakdown voltage
b. electric intensity
c. potential gradient
d. dielectric constant
812. Which of the following materials has the highest dielectric strength?
a. glass
b. oiled paper
C. mica
d. air
813. What is used as the insulating material or dielectric in an electric iron?
a. oiled paper
b. mica
c. paraffin
d. titanate compound
814. What is used as the dielectric material in high voltage transformers?
a. mica
b. paraffin
c. porcelain
d. oiled paper
815. One farad equals
a. 1 coulomb/volt
b. 1 newton/coulomb
c. 1 newton-meter

d. 1 volt/second/ampere

816. Which of the following is used by permanent magnets as the magnetic material?
a. iron
b. nickel
C. soft steel
d. hardened steel
817. Which of the following is used by temporary magnets as the magnetic material?
a. hardened steel
b. cobalt steel

c. soft iron

d. tungsten steel
819. What is the main advantage of temporary magnets?
a. the magnetic flux can be changed
b. hysteresis can be decreased
c. magnetic materials can be used
d. abundance of ferromagnetic material that can be temporarily
magnetized
820. Permanent magnets can be found in
a. electric bells

b. earphones

c. relays
d. dynamic loudspeakers
821. Temporary magnets are commonly employed in
a. electric instruments
b. motors
c. moving coil loudspeakers
d. magnetos
822. The force between two magnetic poles is \qquad their pole strengths.
a. directly proportional to
b. the sum of
c. inversely proportional to
d. the product of
823. If the distance between two magnetic poles decreases by 2 times, the force between them
a. decreases two times

b. increases four times

c. increases two times
d. decreases four times
824. The force between two magnetic poles is \qquad the relative permeability of the medium.
a. directly proportional to
b. independent of

d. equal to

825. Two similar poles, each of 1 Wb , placed 1 m apart in air will experience a repulsive force of

a. 63000 N

b. $63 \times 10^{\wedge}-3 \mathrm{~N}$
c. $8 \times 10^{\wedge} 12 \mathrm{~N}$
d. 796 kN
826. One weber of flux is equal to \qquad magnetic
lines of force.
a. $10^{\wedge} 6$
b. $10^{\wedge} 10$
c. 4^{*} pi $\times 10^{\wedge} 7$
d. $10^{\wedge} 8$
827. The unit of flux density is
a. Wb/m
b. tesla
C. AT/m
d. $\mathbf{N} / \mathbf{W b}$
828. What is the typical saturation flux density for most magnetic materials?
a. $4 \mathrm{~Wb} / \mathrm{sq} \mathrm{m}$
b. $5 \mathrm{~Wb} / \mathrm{sq} \mathrm{m}$
c. $1 \mathrm{~Wb} / \mathrm{sq} \mathrm{m}$
d. $2 \mathrm{~Wb} / \mathrm{sq} \mathrm{m}$
829. Magnetic field intensity is a \qquad quantity.
a. scalar
b. phasor
c. vector

d. variable

830. The force acting on a pole of $5 \mathbf{W b}$ is $25 \mathbf{N}$. What is the intensity of the magnetic field?
a. $5 \mathrm{~N} / \mathrm{Wb}$
b. 25 N/Wb
c. 125 N/Wb
d. $0.2 \mathrm{~N} / \mathrm{Wb}$
831. The relative permeability of a magnetic material is $10^{\wedge} 5$. What is its permeability?
c. 4^{*} pi $\times 10^{\wedge}-2 \mathrm{H} / \mathrm{m}$
d. 4^{*} pi $\times 10^{\wedge-7 ~ H / m ~}$
832. Which of the following has the highest permeability?
a. soft iron
b. steel
c. air
d. permalloy
833. A magnetic pole produces 5000 field lines. How much is the flux in Webers?

a. $50 \times 10^{\wedge}-6$

b. $5 \times 10^{\wedge}-6$
c. $500 \times 10^{\wedge}-6$
d. $500 \times 10^{\wedge}-5$
834. As the magnetic intensity decreases, the relative permeability of a magnetic material
a. decreases
b. remains the same

c. increases

d. becomes zero
835. The permeability of a material having a flux density of $5 \mathrm{~Wb} / \mathrm{sq} \mathrm{m}$ is $10^{\wedge}-5 \mathrm{H} / \mathrm{m}$. What is the value of the magnetizing force?
a. $5 \times 10^{\wedge}-5 \mathrm{~N} / \mathrm{Wb}$
b. $500 \times 10^{\wedge} 3 \mathrm{~N} / \mathrm{Wb}$
c. 4^{*} pi $\times 10^{\wedge}-7 \mathrm{~N} / \mathrm{Wb}$
d. 4 * $\mathrm{pi} \times 10^{\wedge} 7 \mathrm{~N} / \mathrm{Wb}$
836. Which of the following is a diamagnetic material?
a. aluminum
b. silver

c. air

d. cobalt
837. The greater percentage of materials are \qquad .
a. diamagnetic
b. paramagnetic
c. ferromagnetic
d. non-magnetic
a. 4 *pi $\times 10^{\wedge} 5 \mathrm{H} / \mathrm{m}$
b. 4^{*} pi $\times 10^{\wedge-12 ~ H / m ~}$
m . With a cast iron core of relative permeability 100 inserted, the flux density will become.
a. $10^{\wedge}-3 \mathrm{~Wb} / \mathrm{sq} \mathrm{m}$
b. $10^{\wedge}-2 \mathrm{~Wb} / \mathrm{sq} \mathrm{m}$
c. $10^{\wedge} 3 \mathrm{~Wb} / \mathrm{sq} \mathrm{m}$
d. $0.1 \mathrm{~Wb} / \mathrm{sq} \mathrm{m}$
839. AT/m is a unit of
a. $\mathbf{m m f}$
b. magnetizing force
c. reluctance
d. magnetic flux density
840. The direction of force on a current carrying conductor placed in a magnetic field can be found by
a. cork screw rule
b. fleming's left hand rule
c. fleming's right hand rule
d. using a compass
841. When a current carrying conductor is placed in a magnetic field, the maximum force will act on the conductor when the conductor is at an angle of
\qquad to the magnetic field.
a. 45 deg
b. 60 deg
c. $\mathbf{3 0} \mathbf{~ d e g}$
d. 90 deg
842. A magnetic field is
a. the current flow through space around a permanent magnet
b. the force set up when current flows through a conductor
c. the force that drives current through a resistor.
d. the force between the plates of a charged capacitor.
843. Ohm's law can be used only to a \qquad circuit or component.
a. unilateral
b. exponential
c. trivalent
d. linear
844. When the current flows, the magnetic field about a
conductor is in what direction?
a. the same as the current direction
b. opposite the current direction
c. omnidirectional
d. in the direction determined by the left hand rule
845. The magnetic field around the conductor is determined by the
a. size of the conductor
b. amount of current
c. current divided by the resistance
d. resistance divided by the current
846. Back emf refers to the
a. current equal to the applied emf
b. opposing emf
c. current opposing the applied emf
d. voltage opposing the applied emf
847. The magnetic flux through a coil changes. This results to the induced emf acting in a direction as to
a. oppose the change
b. aid the change
c. either oppose or aid the change
d. neither oppose nor aid the change
848. A magnetic flux of $2.5 \times$ $10^{\wedge}-4 \mathrm{~Wb}$ through and area of $5 \times 10^{\wedge}-4$ square meters results in
a. 5 Wb of flux
b. 0.5 Tesla of flux density
c. $5 \times 10^{\wedge}-5 \mathrm{~Wb}$ of flux
d. $\mathbf{5 0 0 0}$ Tesla of flux density
849. If a 20 V potential is applied across a relay coil with 50 turns having 1 ohm of resistance, the total magnetomotive producing magnetic flux in the circuit is
a. 10 Wb
b. 50 T
C. 1000 A-t/m
d. 1000 A-t
850. What is the reluctance of a magnetic path having a length of $2 \times 10^{\wedge}-3 \mathrm{~m}$ and cross-sectional area of 2.5 x $10^{\wedge}-3 \mathrm{sq}$. m. The relative permeability is 100 .

a. 6366 A-t/Wb

b. 6000 A-t/Wb
c. $8 \times 10^{\wedge}-3$ A-t/Wb
d. 0.8 A-t/Wb
851. Calculate the permeability (in $T / A * t / m$) of a magnetic material that has a relative permeability of 300.
a. $3.78 \times 10^{\wedge}-4$
b. $3.78 \times 10^{\wedge}-5$
c. $3.78 \times 10^{\wedge}-3$
d. $3.78 \times 10^{\wedge}-6$
852. Calculate the flux density that will be produced by the field intensity of 2000 A-t/m for a permeability of $126 \times 10^{\wedge}-6$ T/A-t/m.
a. 0.252 G
b. $0.252 \times 10^{\wedge}-2 \mathrm{~T}$
c. 0.252 T
d. $0.252 \times 10^{\wedge}-2$ G
853. How many turns are needed to produce a magnetomotive force of 1000
A.t for a coil with 6 amperes?
a. 6000 turns
b. 600 turns

c. 167 turns

d. 67 turns
854. A 6-V battery is connected across a solenoid of 100 turns having a resistance of 2 ohms. Calculate the number of ampere-turns.
a. 100
b. 50
c. $\mathbf{3 0 0}$
d. 600
855. One of the solid structures in which the position of the atoms or ions are predetermined.

a. crystalline solid

b. amorphous solid
c. polycrystalline solid
d. poly-amorphous solid
856. MMF in a magnetic
circuit corresponds to in an electric circuit.

a. emf

b. voltage drop
c. electric field intensity
d. potential gradient
857. \qquad solid has no defined crystal structure except perhaps in the arrangement of the nearest neighboring atoms or ions.
a. crystalline

b. amorphous

c. polycrystalline

d. poly-amorphous

858. Amorphous solid is also called
a. crystalline
b. non-crystalline
c. polycrystalline

d. homogenous

859. A principle that states that only two electrons with different spins are allowed to exist in a given orbit.
a. Bohr's principle
b. Pauli exclusion principle
c. Avogadro's principle
d. Coulomb's principle
860. Who discovered the relationship between magnetism and electricity that serves as the foundation for the theory of electromagnetism?
a. Luigi Galvani
b. Hans Christian Oersted
c. Andre Ampere
d. Charles Coulomb
861. Who demonstrated the theory of electromagnetic induction in 1831?
a. Michael Faraday
b. Andre Ampere
c. James Clerk Maxwell
d. Charles Coulomb
862. Who developed the electromagnetic theory of light in 1862?
a. Heinrich Rudolf Hertz
b. Wilhelm Roentgen
c. James Clerk Maxwell
d. Andre Ampere
863. Who discovered that a current-carrying conductor would move when placed in a magnetic field?

a. Michael Faraday

b. Andre Ampere
c. Hans Christian Oersted
d. Gustav Robert Kirchoff
864. Who discovered the most important electrical effects which is the magnetic effect?
a. Hans Christian Oersted
b. Sir Charles Wheatstone
c. Georg Ohm
d. James Clerk Maxwell
865. Who demonstrated that there are magnetic effects around every currentcarrying conductor and that current-carrying conductors can attract and repel each other just like magnets?
a. Luigi Galvani
b. Hans Christian Oersted
c. Charles Coulomb
d. Andre Ampere
866. Who discovered superconductivity in 1911?

a. Kamerlingh Onnes

b. Alex Muller
c. Geory Bednorz
d. Charles Coulomb
867. The magnitude of the induced emf in a coil is directly proportional to the ratio of the change of flux linkages. This is known as
a. Joule's Law
b. Faraday's second law of electromagnetic induction
c. Faraday's first law of electromagnetic induction

d. Coulomb's Law

868. Whenever the flux linking a coil or current changes, an emf is induced in it. This is known as
a. Joule's Law
b. Coulomb's Law
c. Faraday's first law of electromagnetic induction
d. Faraday's second law of electromagnetic induction
869. The force of attraction or repulsion between two magnetic poles is directly proportional to their strengths is called
a. Newtons' first law
b. Faraday's first law of electromagnetic induction

c. Coulomb's first law

d. Coulomb's second law
870. Which of the following amplifiers is considered linear?
a. Class A
b. Class B
c. Class C
d. Either A or B
872. The voltage gain of a common collector
configuration is
a. unity
b. zero
c. very high
d. moderate
873. A two-transistor class B amplifier is commonly called
a. push-pull amplifier
b. dual amplifier
c. symmetrical amplifier
d. differential amplifier
874. If a transistor is operated in such a way that output current flows for 160 degrees of the input signal, then it is \qquad operation.
a. class A
C. class B
d. class AB
875. Which coupling has the best frequency response?
a. direct
b. RC
c. transformer
d. transistor
876. A transistor amplifier has high output impedance because
a. emitter is heavily doped
b. collector is wider than emitter or base
c. collector has reverse bias
d. emitter has forward bias
877. Which of the following is considered an amplifier figure of merit?

a. gain-bandwidth product

b. beta($ß$)
c. alpha(a)
d. temperature
878. A piece of equipment in an oscilloscope used to indicate pulse condition in a digital logic circuit.
a. probe
b. test prods
c. connector
d. Iogic probe
879. A linear circuit that compares two input signals and provides a digital level output depending on the relationship of the input signals.

a. comparator

b. controller
c. compressor
d. switch
880. What type of coupling is generally used in power amplifiers?

a. transformer

b. direct
C. RC
d. inductive
881. Which amplifier whose output current flows for the entire cycle?
a. Class A
b. Class B
c. Class C
d. Class AB
882. The coupling capacitor Cc must be large enough to \ldots in an RC coupling scheme?
a. pass dc between stages
b. dissipate high power
c. prevent attenuation of Iow frequency
d. prevent attenuation of high frequency
883. What is the point of intersection of dc and ac load lines called?
a. operating point
b. cut off point
c. saturation point
d. breakdown
884. An oscillator produces oscillations.
a. damped
b. modulated
c. undamped
d. sinusoidal
885. \qquad is the operating point in the characteristic curve.
a. quiescent point
b. load point
c. biasing point
d. saturation point
886. Oscillators operate on the principle of

a. positive feedback

b. negative feedback
c. signal feedthrough
d. attenuation
887. In class A amplifier, the output signal is
a. distorted
b. the same as input
c. clipped
d. smaller in amplitude than the input
888. What happens if the input capacitor of a transistor amplifier is short-circuited?

a. biasing conditions will change

b. transistors will be destroyed
c. signals will not reach the base
d. biasing will stabilize
889. Which is used to establish a fixed level of current or voltage in a transistor?
a. biasing
b. loading
c. load line
d. coupling
890. Which power amplifier has the highest collector efficiency?
a. class A
b. class C
C. class B
d. class AB
891. \qquad is a non-linear type of amplifier.
a. class C
b. class AB
C. Class B
d. class A
892. An AF transformer is shielded to
a. keep the amplifier cool
b. prevent induction due to stray magnetic fields
c. protect from rusting
d. prevent electric shock
893. Amplitude distortion is otherwise known as \qquad distortion.
a. intermodulation
b. harmonic
c. phase
d. resonant
894. What represents common-emitter small signal input resistance?
a. hie
b. hfe
c. hib
d. hoe
895. The ear is not sensitive to \qquad distortion.
a. frequency
b. amplitude
c. harmonic
d. phase
896. Class C is an amplifier whose output current flows for
a. less than one half of the entire input cycle
b. the entire input cycle
c. twice the entire input cycle
d. greater than one half the entire input cycle
897. If gain without feedback and feedback factor are A and B respectively, then gain with negative feedback is given by
a. $A /(1-A B)$
b. $A /(1+A B)$
C. $(1+A B) / A$
d. $(1+A B) \times A$
898. The collector current in a common base configuration is equal to
a. alpha times emitter current plus leakage current
b. alpha times base current plus leakage current
c. beta times emitter current plus leakage current
d. beta times collector current plus leakage current
899. Which is not a basic BJT amplifier configuration?
a. common-drain
b. common-base
c. common-emitter
d. common-collector
900. The value of collector
load resistance in a transistor
amplifier is \qquad the output impedance of the transistor.
a. equal to
b. more than
c. less than
d. not related to
901. What is the purpose of RC or transformer coupling?
a. to block ac
b. to separate bias of one
stage from another
c. to increase thermal stability
d. to block dc
902. The bandwidth of a single stage amplifier is ___ that of multistage amplifier.
a. equal to
b. less than
c. more than
d. independent
903. \qquad is the time taken by the electrons or holes to pass from the emitter to the collector.
a. transit time
b. recombination
C. transient time
d. duty cycle
904. To obtain good gain stability in a negative feedback amplifier, $A B$ is
a. equal to 1
b. very much greater than 1
c. less than 1
d. zero
905. The basic concept of the electric wave filter was originated by
a. Campbell and Wagner
b. Norton
C. Foster
d. Bode and Darlington
906. Which configuration has the lowest current gain?

a. common-base

b. common-collector
c. common-emitter
d. emitter follower
907. What transistor configuration offers no phase reversal at the output?
a. common-base
b. common-collector
c. common-emitter
d. Both A and B
908. The number of stages that can be directly coupled is limited because
a. change in temperature can cause thermal instability
b. circuit becomes heavy and costly
c. it becomes difficult to bias the circuit

d. circuit's resistance becomes too large

909. The input capacitor in an amplifier is called \qquad capacitor.
a. coupling
b. stray
c. bypass
d. electrolytic
910. AC load line has a/an slope compared to
that of dc load line.
a. zero
b. smaller
c. bigger
d. infinite
911. A multistage amplifier uses at least how many transistor?
a. 1
b. 3
C. 4

d. 2

912. RC coupling is used for amplification.
a. voltage
b. current
c. signal
d. power
913. An ammeter's ideal resistance should be

a. zero

b. unity
c. infinite
d. the same with the circuit's resistance
914. \qquad is the circuit that can increase the peak-topeak voltage, current, and power of a signal?
a. power supply
b. attenuator
c. amplifier
d. filter
915. When a non-linear distortion in an amplifier is D without feedback, with negative voltage feedback it will be
a. $D /(1+A B)$
b. $(1+A B) / D$
C. $D \times(1+A B)$
d. $D \times(1-A B)$
916. A tuned amplifier uses what load?
a. resistive
b. capacitive
c. LC tank
d. inductive
917. The voltage gain over mid-frequency range in an RC coupled amplifier
a. changes instantly with frequency
b. is constant
c. is independent of the coupling
d. is maximum
918. The input impedance of an amplifier \qquad when negative voltage feedback is applied.
a. decreases
b. becomes zero
c. increases
d. is unchanged
919. The input impedance of an amplifier \qquad when
negative current feedback is applied.
a. remains unchanged
b. decreases
c. increases
d. becomes zero
920. To obtain the frequency response curve of an amplifier \qquad is kept constant.
a. generator output level
b. amplifier output
c. generator frequency
d. amplifier frequency
921. A type of oscillator wherein the frequency is determined by the charge and discharge of resistorcapacitor networks used in conjunction with amplifiers or similar devices.
a. sinewave oscillator
b. beta generating circuit
c. relaxation oscillator
d. simply an oscillator
922. The driver transformer has center-tapped secondary to provide
a. forward bias to transistors of push-pull circuit
b. two signals 180 degrees out of phase to transistors of push-pull circuit
c. impedance matching
d. two signals in phase with each other
923. What is the advantage of RC coupling scheme?
a. good impedance matching
b. economy
c. high efficiency
d. simplicity
924. A type of filter which is having a single continuous transmission band with neither the upper nor the lower cut-off frequencies being zero or infinite is called
a. band stop filter
b. low pass filter
c. high pass filter
d. band pass filter
925. An instrument use to measure ones location in terms of coordinates

a. GPS

b. ILS
c. FANS
d. GSM
926. Transformer coupling is used for \qquad amplification.
a. current
b. power
c. voltage
d. signal
927. What is the typical voltage of coupling capacitor Cc in RC coupling?
a. about 100 pF
b. about $0.1 \mu \mathrm{~F}$
c. about $10 \mu \mathrm{~F}$
d. about $0.01 \mu \mathrm{~F}$
928. An electronic transfer from one stage to the next is termed as \qquad _.
a. doping
b. mixing

c. coupling

d. connecting
929. An amplifier configuration where the input signal is fed to the emitter terminal and the output from the collector terminal is called
a. common base
b. common emitter
c. clipper
d. common collector
930. If the noise factor of an ideal amplifier expressed in $d B$, then it is

a. 0

b. 0.1
C. 1

d. 10

931. A feedback circuit is
\qquad frequency.
a. independent of
b. strongly dependent on
c. moderately dependent on
d. relatively dependent on
932. What is the basic purpose of applying negative feedback to an amplifier?
a. to increase gain
b. to reduce distortion
c. to keep the temperature within limits
d. to increase input signal
933. The capacitors are considered \qquad in the dc equivalent circuit of a transistor amplifier.
a. short
b. partially short

c. open

d. partially open
934. Which frequency produces the highest noise factor?
a. 10 kHz
b. 500 Hz
c. 1 kHz
d. 100 Hz
935. Power amplifiers handle
\qquad signals.
a. very small
b. small

c. large

d. very large
936. The operating point is generally located \qquad of dc load line in class A operation.

a. at the middle

b. at saturation point
c. at cut off point
d. at end point
937. Which of the following describes a common collector amplifier
b. low current gain
c. Iow power gain
d. Iow input resistance
938. The general
characteristics of a common base amplifier are
a. high voltage gain, low current gain, high power gain and very low input resistance
b. high voltage, high current gain, high power gain and low input resistance
c. Iow voltage gain, high current gain, very high power gain and low input resistance
d. none of the choices
939. To amplify dc signals, multistage amplifier uses what coupling?
a. RC
b. direct
c. transformer
d. resistor
940. What oscillator is used in order to produce frequencies in the microwave region?
a. Wien bridge
b. Hartley
c. Klystron
d. Crystal
941. Practically, the voltage gain of an amplifier is expressed
a. in volts unit
b. in dB unit
c. as an absolute value
d. as a whole number
942. What coupling provides maximum voltage gain?
a. RC
b. direct
C. transformer
d. resistor
943. The gain of an amplifier when negative
feedback is added.
a. increases
b. remains unchanged
c. reduces
944. Feedback factor is always

a. less than 1

b. equal to 1
c. more than 1
d. zero
945. \qquad operation is used for general amplification where no distortion can be tolerated.
a. class A
b. class B
C. class AB
d. class C
946. \qquad operation is used either where the signal needs to be cut in half, such as in pulse detector or noise detectors or where the pushpull operation of two stages is required.
a. class A
b. class B
C. class AB
d. class C
947. \qquad operation is used where a portion of a signal only is required, such as the synchronizing pulse separator of a television receiver.
a. class A
b. class B
C. class AB
d. class C
948. \qquad operation has little use in general purpose amplifiers, but is used in high frequency oscillators
a. class A
b. class AB
C. class B
d. class C
949. Why is it that transformer coupling provides high frequency?

a. DC resistance is low

b. collector voltage is stepped up
c. collector voltage is stepped down
d. AC resistance is high
950. For constant-k highpass filter, cut-off frequency (in Hz) is given by
a. $1 /(4 \mathrm{pi} \operatorname{sqrt}(\mathrm{LC}))$
b. 1/(pi sqrt(LC))
c. 1/(2pi sqrt(LC))
d. pi/ sqrt(LC)
951. Class C operation can
have \qquad percent
efficiency.
a. 100%
b. 78.5\%
c. 50\%
d. 70\%
952. The efficiency of class $A B$ operation has a maximum of between \qquad percent
a. 90 to 100%
b. 60 to 80%
c. 50 to 78.5%
d. 40.5 to 60%
953. Transformer coupling is generally employed when load resistance is
a. large
b. very large
c. small
d. zero
954. A dc voltage supply provides 60 V when the output is unloaded. When connected to a load the output drops to 56 V . Calculate the value of the voltage regulation.
a. 8.1%
b. 7.1%
C. 5\%
d. 12\%
955. Which of the following amplifier below is a choice when higher power gain is a requirement.
a. common base
b. common emitter
c. common collector

d. hybrid connection

956. The signal generator generally used in laboratories is \qquad oscillator.
a. crystal
b. Wien-bridge
c. Hartley
d. phase-shift
957. A buffer amplifier is used for
a. maximum loading and minimum mismatch
b. minimum loading and minimum mismatch
c. maximum loading and maximum mismatch
d. minimum loading and maximum mismatch
958. Parasitic oscillations are caused by
a. output negative feedback
b. push-pull operation
c. poor interstage coupling
d. transistor interelectrode capacitance
959. Which is a fixedfrequency oscillator?
a. phase-shift oscillator
b. Colpitt's oscillator
c. Hartley oscillator
d. Crystal oscillator
960. The approximate operating frequency of a phase shift oscillator is given by
a. 1/(2pi sqrt(LC))
b. 1/(2piRC sqrt6)
c. $1 /(2 \mathrm{piRC})$
d. 1/(29RC)
961. The frequency of the ripple voltage at the output of a full-wave rectifier at 60 cycles.

a. 120 cycles

b. $\mathbf{6 0}$ cycles
c. $\mathbf{2 4 0}$ cycles
d. $\mathbf{4 8 0}$ cycles
962. Cascaded amplifiers total decibel gain is equal to
a. the sum of the individual gains
b. the product of the individual gains
c. the difference of the individual gains
d. the quotient of the individual gains
963. In an LC oscillator, if the value of L is increased four times, then frequency of oscillations is
a. decreased 2 times
b. decreased 4 times
c. increased 2 times
d. increased 4 times
964. A class A power amplifier is otherwise known as

a. single ended amplifier

b. Darlington amplifier
c. symmetrical amplifier
d. differential amplifier
965. The power input to a power amplifier is \qquad quantity.
a. ac
b. pulsating dc
c. dc
d. sinusoidal
966. When shock-excited, a crystal will produce alternating emf longer than an LC circuit because crystal
a. has greater mechanical strength
b. has fewer losses
c. is small-sized
d. is very rigid
967. The stability of a regulated power supply is equivalent to

a. change of output voltage over the change in supply voltage

b. change in supply voltage over the change of output voltage
c. product of the output voltage and the supply voltage
d. the difference of an output voltage to its supply voltage
968. An oscillator circuit that uses a tapped coil in the tuned circuit is called
a. Hartley
b. Colpitts
c. crystal
d. pierce
969. If you move towards an oscillating circuit, its frequency changes because of
a. hand capacitance
b. movement of body
c. noise of foot
d. stray capacitance
970. Which of the following is not a FET amplifier configuration
a. common base amplifier
b. common drain amplifier
c. common source amplifier
d. common gate amplifier
971. The number of transistor in a single stage amplifier is
a. 2
b. 3
c. 1
d. 4
972. Series current negative feedback occurs when the feedback voltage is proportional to the
a. output voltage
b. output impedance

c. output current

d. output power
973. Which of the following is NOT an oscillator requirement?
a. attenuator
b. amplifier
c. tank circuit
d. feedback
974. An amplifier with efficiency 85% is likely to be
a. class A
b. class B
c. class AB
d. class C
975. What is the phase difference between the output and input voltage of a CE amplifier?
a. 180 deg
b. 270 deg
c. 0 deg
d. 90 deg
976. Class C operation is preferred in oscillators because
a. it is more efficient
b. it gives larger outputs
c. it produces square waves
d. it increases stability
977. A type of oscillator which are composed of one or more amplifying devices with some frequencydetermining networks introducing positive feedback at a particular frequency so that oscillation is sustained at that frequency.
a. sinewave oscillator
b. square-wave oscillator
c. relaxation oscillator
d. limiter
978. What is the desired input impedance of a transistor?
a. low
b. very low
c. high
d. very high
979. What is the maximum efficiency of class B?
a. 50%
b. $\mathbf{9 0 \%}$
c. $\mathbf{6 0 . 5 \%}$
d. 78.5\%
980. When a transistor is cut off
a. maximum current flows
b. maximum voltage appears across load
c. maximum voltage appears across transistor
981. In an LC circuit, when the capacitor energy is maximum, the inductor energy is
a. maximum
b. minimum
c. half-way between maximum and minimum

d. zero

982. What is the approximate gain of an amplifier with negative feedback?
a. the feedback factor
b. the reciprocal of feedback factor plus one
c. the reciprocal of feedback factor

d. the feedback factor plus one

983. The operating point in a transistor amplifier moves along \qquad when an ac signal is applied.
a. dc load line
b. ac load line
c. both dc and ac load lines
d. cut-off
984. An oscillator converts
a. ac power into dc power
b. dc power into ac power
c. mechanical power into ac power
d. electrical power into mechanical power
985. What is the active device in a transistor oscillator?
a. LC tank circuit
b. biasing circuit
c. transistor
d. feedback circuit
986. When the collector supply is 5 V , then collector cut off voltage under dc conditions is
a. 20 V
b. 10 V
c. $\mathbf{2 . 5 V}$
d. 5 V
987. The common base amplifier has compared to CE and CC amplifier.
a. a lower input resistance
b. a larger current gain
c. a larger voltage gain
d. a higher input resistance
988. When a FET with a lower transconductance is
substituted into a FET amplifier circuit, what happens?
a. the current gain does not change
b. the voltage gain decreases
c. the circuit disamplifies
d. the input resistance decreases
989. In the zero signal conditions, a transistor sees
\qquad load.
a. dc
b. ac
c. both dc and ac
d. resistive
990. What is the gain of an amplifier with negative feedback if the feedback factor is 0.01?
a. 10
b. 1000
C. 100
d. 500
991. The current gain of an emitter follower is
a. equal to 1
b. greater than 1
c. less than 1
d. zero
992. The current in any branch of a transistor amplifier that is operating is
a. ac only

b. the sum of ac and dc

c. the difference of ac and dc
d. dc only
993. An ideal differential amplifiers common mode rejection ratio is
a. infinite
b. zero
c. unity
d. undetermined
994. An open fuse circuit has a resistance equal to

a. zero

b. unity
c. at least $1000 h m(s)$ at standard temperature
d. infinity
995. What is the purpose of dc conditions in a transistor?
a. to reverse bias the emitter
b. to forward bias the emitter
c. to set up the operating point
d. to turn on the transistor
996. The ac variation at the output side of power supply circuits are called \qquad _.

a. ripples

b. pulses
c. waves
d. filters
997. What is the purpose of emitter capacitor?
a. to forward bias the emitter
b. to reduce noise in the am
c. to avoid voltage drop in gain
d. to stabilize emitter voltage
998. A common emitter circuit is also called \qquad circuit.
a. grounded emitter
b. grounded collector
c. grounded base
d. emitter follower
999. The output signal of a common-collector amplifier is always
a. larger than the input signal
b. in phase with the input signal
c. out of phase with the input signal
d. exactly equal to the input signal
1000. Calculate the ripples of the filter output if a dc and ac voltmeter is used and measures the output signal from a filter circuit of 25 Vdc and 1.5 Vrms.
a. 5\%
b. 10\%
c. $\mathbf{5 0 \%}$
d. 6%
1001. What is the ideal maximum voltage gain of a common collector amplifier?
a. unity
b. infinite
c. indeterminate
d. zero
1002. The output power of a transistor amplifier is more than the input power due to additional power supplied by
a. transistor
b. collector supply
c. emitter supply
d. base supply
1003. When a transistor amplifier feeds a load of low resistance, its voltage gain will be

a. Iow

b. very high
c. high
d. moderate
1004. The capacitors are considered \qquad in the ac equivalent circuit of a transistor amplifier.
a. open
b. partially open
c. short
d. partially short
1005. For highest power gain, \qquad configuration is
used.
a. CC
b. CB
c. CE
d. CS
1006. What is the most important characteristic of a common collector amplifier?
a. has high input voltage
b. has high input resistance
c. has high output resistance
d. it is an amplifier circuit
1007. Which of the item below does not describe a common emitter amplifier.
a. high voltage gain
b. high current gain
c. very high power gain
d. high input resistance
1008. CC configuration is used for impedance matching because its

a. input impedance is very

 highb. input impedance is very low
c. output impedance is very low
d. output impedance is zero
1009. Which of the following is the other name of the output stage in an amplifier?
a. load stage
b. audio stage
c. power stage
d. RF stage
1010. When amplifiers are cascaded
a. the gain of each amplifier is increased
b. a lower supply voltage is required
c. the overall gain is increased
d. each amplifier has to work less
1011. In a common emitter amplifier, the capacitor from emitter to ground is called the
a. coupling capacitor

b. bypass capacitor

c. decoupling capacitor
d. tuning capacitor
1012. A class A power
amplifier uses \qquad transistor/s.

a. 2

b. 1
C. 3
d. 4
1013. What is the maximum collector efficiency of a resistance loaded class A power amplifier?
a. 50\%
b. $\mathbf{7 8 . 5 \%}$
c. 25%
d. $\mathbf{3 0 \%}$
1014. What is the maximum collector efficiency of a transformer coupled class A power amplifier?
a. $\mathbf{3 0 \%}$
b. $\mathbf{8 0 \%}$
c. $\mathbf{4 5 \%}$
d. 50%
1015. Class C amplifiers are used as
a. AF amplifiers
b. small signal amplifiers
c. RF amplifiers
d. IF amplifiers
1016. Find the voltage drop developed across a
D'Arsonval meter movement having an internal resistance of 1 kohm(s) and a full scale deflection current of 150 microamperes.
a. $\mathbf{1 5 0}$ microvolts
b. 150 mV
c. 150 V
d. 200 mV
1017. If the capacitor from emitter to ground in a common emitter amplifier is removed, the voltage gain
a. increases
b. decreases
c. becomes erratic
d. remains the same
1018. Comparatively, power amplifier has \qquad B.
a. large
b. very large
c. small
d. very small
1019. The driver stage usually employs \qquad amplifier.
a. class A power
b. class C
c. push-pull
d. class AB
1020. The push-pull circuit must use \qquad operation.
a. class A
b. class B
c. class C
d. class AB
1021. A complementarysymmetry amplifier has

a. 1 PNP and 1 NPN transistor

b. 2 PNP transistors
c. 2 NPN transistors
d. 2 PNP and 2 NPN transistors
1022. Power amplifiers generally use transformer coupling because coupling provides
a. cooling of the circuit
b. distortionless output

c. impedance matching

d. good frequency response
1023. The output transformer used in a power amplifier is a/an \qquad transformer.
a. 1:1 ratio
b. step-down
c. step-up
d. isolation
1024. Transformer coupling can be used in \qquad amplifiers.
a. only power
b. only voltage
c. either power or voltage
d. neither power nor voltage
1025. When negative current feedback is applied to an
amplifier, its output
impedance

a. increases

b. remains unchanged
c. decreases
d. becomes zero
1026. The quiescent current of a FET amplifier is
a. Ids
b. id
c. ID
d. Id
1027. The total decibel voltage gain of two cascaded voltage amplifier where individual voltage gains are 10 and 100 is
a. 20
b. 60
c. 800
d. 1000
1028. The frequency response of the combined amplifier can be compared with
a. an OR gate
b. a negative feedback amplifier
c. a positive filter
d. an AND gate
1029. Minimum interference with frequency response can be given by

a. direct coupling

b. RC coupling
c. transformer coupling
d. instrumentation and control
1030. The impedance of a load must match the impedance of the amplifier so that
a. minimum power is transferred to the load
b. the efficiency can be maintained at a low level
c. the signal-to-noise ratio is maximized
d. maximum power is transferred to the load
1031. The ratio of output rms power in watts to the input
dc power in watts in the different amplifier class is called \qquad -
a. gain
b. amplification factor
C. efficiency
d. phase power
1032. Consider a zener diode with a slope resistance of 10ohm(s) in series with a 900hm(s) resistor fed from dc supply containing a ripple voltage of $\mathbf{2 0} \mathbf{~ m V}$ peak-topeak. Compute for the ripple voltage in load.
a. $1 \mathrm{mVp}-\mathrm{p}$
b. $2 \mathbf{~ m V p}-p$
C. 1 Vp-p
d. $6 \mathrm{mVp}-\mathrm{p}$
1033. The \qquad of a
common collector
configuration is unity.
a. voltage gain
b. current gain
c. power gain
d. input impedance
1034. Transmit time is the time taken by the electrons or holes to pass from
a. emitter to collector
b. collector to emitter
c. base to emitter
d. base to collector
1035. The \qquad the voltage regulation, the better the operation of the voltage supply circuit.
a. smaller
b. bigger
C. moderate
d. biggest
1036. In transistor amplifier, what transformer is used for impedance matching?
a. step up
b. power
c. step down
d. isolation
1037. If an amplifier has a power gain of 100 , then its dB gain is
a. 10
b. 40
c. 20
d. 100
1038. In order to have more voltage gain from a transistor amplifier the transistor used should have
a. thin collector

b. thin base

c. wide emitter
d. thin emitter
1039. The final stage of an amplifier uses \qquad coupling.
a. direct
b. RC

c. transformer

d. impedance
1040. The largest theoretical voltage gain obtained with a common collector amplifier is
a. 100
b. 10
c. unity
d. infinite
1041. Increasing the overall Beta is an advantage of
a. clap oscillator
b. crystal oscillator
c. Darlington pair
d. CE amplifier
1042. The frequency of oscillation is \qquad L and C in an LC oscillator.
a. inversely proportional to square root of
b. directly proportional to square root of
c. directly proportional to
d. independent of the values of
1043. An oscillator employs
\qquad feedback.
a. positive
b. negative
c. both positive and negative
d. neither positive nor negative
1044. The reason why RC coupling is not used to amplify extremely low frequencies.
a. there is considerable power loss
b. electrical size of coupling capacitor becomes very large
c. there is hum in the output
d. electrical size of coupling capacitor becomes very small
1045. Given three amplifiers with a gain of 10 and are connected in cascade. How much is the overall gain?
a. 24
b. 10,000
C. 30
d. 20
1046. A pair of filter common on high fidelity system which separate audio frequency band signals into two separate groups, where one is fed to the tweeter and the other to the woofer is called
a. equalizer
b. synthesizer
c. cross over network
d. hybrid
1047. The frequency response of transformer coupling is
a. good
b. excellent

c. poor

d. very good
1048. The simplest variablefrequency sinusoidal oscillator is
a. the complicated Colpitts circuit
b. the crystal circuit
c. the Armstrong circuit
d. the phase shift circuit
1049. Which of the following is provided by a CB transistor amplifier?

a. voltage gain

b. power gain
c. current gain
d. gain stability
1050. In the initial stages of a multistage amplifier, \qquad coupling is used.
a. link
b. RC
c. transformer
d. impedance
1051. In three amplifiers are connected in a multistage arrangement, each with a voltage gain of 30; compute for the overall voltage gain?
a. 90
b. 27,000
C. 10
d. 30
1052. If $A v$ is 50 and $A i$ is 200, what is the power gain of a common emitter amplifier?
a. 1,000
b. 10,000
C. 100
d. $\mathbf{1 0 0}, 000$
1053. The gain of an amplifier with feedback is known as \qquad gain.
a. closed loop
b. resonant
c. open loop
d. unity
1054. Negative feedback is employed in
a. oscillators
b. rectifiers
C. amplifiers
d. receivers
1055. The gain of an amplifier is expressed in dB unit because
a. it is a simple unit
b. calculations become easy
c. human ear response is logarithmic
d. it is the most appropriate unit
1056. What is the typical value of the emitter bypass capacitor Ce in a multistage amplifier?
a. about $0.1 \mu \mathrm{~F}$
b. about $50 \mu \mathrm{~F}$
c. about 100 pF
d. about $0.01 \mu \mathrm{~F}$
1057. In a multistage amplifier, if the stages have R and C component only, ___ operation is apparent.
a. class B
b. class
c. class A
d. class AB
1058. In practice, what is normally varied in order to change frequency of oscillations?
a. capacitance
b. inductance
c. resistance
d. impedance
1059. What is the main consideration in the output stage of an amplifier?
a. power output
b. voltage gain
c. power gain
d. current gain
1060. Transformer coupling provides high gain because
a. transformer is very efficient
b. transformer matching can be achieved
c. transformer steps up the voltage
d. transformer steps up the current
1061. When negative voltage feedback is applied to an amplifier, its output impedance
a. remains unchanged
b. decreases
c. increases
d. becomes zero
1062. An LC oscillator cannot be used to produce \qquad frequencies.
a. high
b. very high
c. audio
d. very low
1063. A transistor converts
a. dc power into ac power
b. ac power into dc power
c. high resistance into low resistance
d. low resistance into high resistance
1064. Hartley oscillator is commonly used in which of the following?
a. radio receivers
b. TV receivers
c. radio transmitters
d. CATV
1065. An oscillator oscillates due to
a. negative feedback

b. positive feedback

c. both positive and negative feedback
d. neither positive and negative feedback
1066. Generally, tuned amplifiers are operated in

a. class C

b. class A
c. class B
d. class AB
1067. A tuned amplifier is used in what application?

a. radio frequency

b. audio frequency
c. intermediate frequency
d. low frequency
1068. What is the ratio of output to input impedance of a CE amplifier?
a. very low
b. very high

c. moderate

d. approximately 1

1069. For a constant output frequency, the simplest sinusoidal oscillator circuit due to construct is \qquad -.

a. the crystal circuit

b. the phase-shift circuit
c. the Colpitts circuits
d. the Hartley circuit
1070. The frequency stability of the oscillator output is maximum in \qquad oscillator.
a. LC
b. crystal
c. phase-shift
d. Wien bridge
1071. Transformer coupling introduces what type of distortion?
a. amplitude
b. frequency
c. phase
d. intermodulation
1072. A pulsating dc applied to power amplifiers causes
a. burning of transistor
b. hum in the circuit
c. excessive forward voltage
d. excessive reverse voltage
1073. What is the disadvantage of impedance matching?
a. it gives distorted output
b. it requires a transformer
c. it gives low power output
d. it is expensive
1074. In a phase-shift oscillator, \qquad RC sections are generally used.

a. 3

b. 4
c. 2
d. 5
1075. In a phase shift oscillator, what are the frequency determining elements?
a. L and C
b. R, L and C

c. R and C

d. R and L

1076. When the gain is 20 without feedback and 12 with negative feedback, feedback factor is
a. 0.033
b. $3 / 5$
c. 5/3
d. 1/5
1077. The input impedance of which amplifier depends strongly on load resistance?
a. CE
b. CC
c. $C B$
d. CD
1078. What capacitors are used in transistor amplifiers?
a. paper
b. electrolytic
c. mica
d. mylar
1079. An important limitation of crystal oscillator is
a. its low output
b. its high \mathbf{Q}
c. less availability of quartz crystal

d. its high output

1080. What type of feedback is used in Wien bridge oscillator?
a. +
b. -

c. both + and -

d. either + or -
1081. What is the most costly coupling?
a. RC coupling
b. direct
c. transformer
d. inductive
1082. Which of the following below is not a description of the two-stage amplifiers
a. the input resistance is equal to the input resistance of the first stage unless feedback is applied
b. its output resistance is equal to the output resistance of the final stage unless feedback is applied
c. its noise level is equal to the accumulated noise of the two stages, either by multiplying the noise voltage amplitudes together or by adding the noise decibel levels together
d. the output resistance is equal to the output resistance of the first stage unless feedback is applied
1083. What is the axis that connects the corners of a crystal?

a. X

b. mechanical
c. \mathbf{Y}
d. Z
1084. What is the piezoelectric effect in a crystal?

a. voltage is developed because of mechanical stress

b. change in resistance because of temperature
c. change of frequency
because of temperature
d. current is developed due to force applied
1085. The input resistance of a common emitter amplifier is affected by
a. Re, re, and β
b. Rc and re
c. B and re
d. a and re
1086. What is the typical Q of a crystal?
a. 100
b. 50
c. 1000
d. more than $\mathbf{1 0 , 0 0 0}$
1087. When the output of an amplifier is $\mathbf{1 0 ~ V}$ and 100 mV from the output is fed back to the input, feedback factor is
a. 10
b. 0.1
c. 0.01
d. 0.15
1088. Determine the attenuation in dB for a T-pad for which R1 = R2 = 40 ohm(s) and R3 = 36 ohm(s). The pad connects a 50 ohm(s) generator to a 50 ohm(s) load.
a. 9.83 dB
b. 8.93 dB
c. 10.83 dB
d. 11.93 dB
1089. \qquad is usually employed at the output stage of an amplifier.
a. class A power amplifier
b. push-pull amplifier
C. pre-amplifier
d. differential amplifier
1090. Why is it that the size of a power transistor is made considerably large?
a. to provide easy handling
b. to dissipate more heat
c. to simplify construction
d. to facilitate connections
1091. When crystal
frequency increases with
temperature, it has
temperature co-efficient.

a. +

b. -
c. 0
d. infinite
1092. What is the purpose of the bypass capacitor in a common-emitter amplifier?

a. it increases voltage gain

b. it decreases voltage gain
c. it provides ac grounding
d. no effect in the circuit
1093. An emitter follower is equivalent to
a. common emitter amplifier
b. common collector amplifier
c. common base amplifier
d. hybrid connection
1094. The crystal oscillator frequency is very stable due to \qquad of the crystal.
a. rigidity
b. ductility
c. high Q
d. low \mathbf{Q}
1095. The bandwidth of an amplifier \qquad when negative feedback is applied.
a. decreases
b. remains unchanged
c. becomes infinite
d. increases
1096. The term $1+A B$ in the expression for gain with negative feedback is known as
a. gain factor
b. sacrifice factor
c. feedback factor
d. quality factor
1097. Emitter follower employs \qquad negative feedback.
a. 50 \%
b. 25 \%
c. 75%
d. 100%
1098. What application where one would most likely find a crystal oscillator?

a. radio transmitter

b. AF generator
c. radio receiver
d. oscilloscope
1099. What is the most important consideration in power amplifiers?
a. collector efficiency
b. biasing the circuit
c. to keep the transformer cool
d. amplifier distortion
1100. When the gain versus frequency curve of a transistor amplifier is not flat, \qquad distortion is present.
a. amplitude
b. frequency
c. intermodulation
d. phase
1101. In a Colpitt's oscillator, feedback is obtained
a. by magnetic induction
b. by a tickler coil
c. from the center of split capacitors
d. from the center of split capacitors
1102. When the collector resistor in a common emitter amplifier is increased in value the voltage gain

a. increases

b. decreases
c. remains the same
d. becomes erratic
1103. The output signal of a CE amplifier is always

a. out of phase with the input

 signalb. equal to the input signal
c. in phase with the input signal
d. larger than the input signal
1104. What is the purpose of capacitors in a transistor amplifier?
a. to protect the transistor
b. to cool the transistor
c. the couple or bypass ac component
d. to provide biasing
1105. What is the phase difference between voltage across collector load and signal voltage in a common emitter amplifier?

a. 0 degrees

c. 180 degrees
d. 90 degrees
1106. When CE configuration is used for an oscillator, the voltage fed back must
a. be inverted by 180 degrees
b. be taken from a capacitor
c. have a 0 degree phase shift
d. taken from an inductor
1107. Class B operation has a maximum possible efficiency of \qquad percent.
a. 100%
b. 78.5%
c. 75\%
d. 2.2\%
1108. The most stable sinewave oscillator which uses piezo-electric quartz crystal.
a. Crystal oscillator
b. Wien-bridge oscillator
c. DC restorer
d. Hartley and Colpitts oscillator
1109. To sustain oscillations, the power gain of the amplifier may be
a. between 0.1 and 0.5
b. any value from 0.5 upward
c. equal to or greater than 1
d. infinite
1110. In a phase-shift oscillator, 180 degrees phase shift is obtained by
a. a transformer
b. LC tank circuit
c. three RC sections
d. three LC sections
1111. Feedback circuit
usually employs \qquad network.
a. resistive
b. inductive
c. capacitive
d. active
1112. Emitter follower is used for

a. impedance matching

b. voltage gain
c. current gain
d. power gain
1113. One of the items below is a characteristic of cascaded amplifiers?
a. doubled transconductance
b. total gain is lessen

c. increased overall gain

d. increased overall amplification ratio
1114. Logic analyzer is used to
a. verify the logic operation of the gates in a circuit
b. to display the fall time
c. to sample and display systems signal
d. to analyze the logic operation of the system
1115. Quartz crystal is most commonly used in crystal oscillator because
a. it is easily available
b. it has superior electrical properties
c. it is quite inexpensive
d. it is very rugged
1116. The operating frequency of a Wien-bridge oscillator is given by
a. 1/(2pi sqrt(LC))
b. $1 /(2 p i R C)$
C. $1 /(4$ piLC $)$
d. $1 /(29 R C)$
1117. Which operation gives the maximum distortion?
a. class A
b. class C
C. class B
d. class AB
1118. Low efficiency of a power amplifier results in
a. low forward bias
b. Iess battery consumption
c. more battery consumption
d. Iow power output
1119. In an LC oscillator, the frequency of oscillations is given by
a. 1/(2pi sqrt(LC))
b. 2pi/ sqrt(LC)
c. sqrt(LC)/2pi
d. 2pi/ sqrt(LC)
1120. Class A operation has a maximum possible efficiency of \qquad percent
a. 100\%
b. 50%
c. 75%
d. 25%
1121. Is a nucleonic sensing method employing usually one or more radioisotope sources and radiation detectors

a. Radiation sensing

b. Sonic level sensing
c. Conductivity level sensing
d. Dielectric variation sensing
1122. Concerned with the measurement of electric signals on the scalp which arise from the underlying neural activity in the brain (including synaptic sources).
a. ECG
b. EEG
c. Ultrasound
d. EKG
1123. In therapeutic radiology and in nuclear medicine, the energies of interest range from about
a. $\mathbf{1 0}$ to $\mathbf{1 0 0} \mathbf{~ k e V}$
b. $\mathbf{1 0 0}$ to 10000 keV
c. $\mathbf{1 0 0 0 0}$ to 100000 keV
d. 1 to 10 keV
1124. Which of the following is a four-layer diode with an anode gate and a cathode gate?
b. SCR
c. SBS
d. SUS
1125. \qquad is basically a two terminal parallel-inverse combination of semiconductor layers that permits triggering in either direction.
a. diac
b. triac
c. quadrac
d. shockley diode
1126. What is the typical value of the interbase resistance of a UJT?
a. 20 kohm(s)
b. between 4 to 4 kohm(s)
c. 4 kohm(s)
d. between 4 to 10 kohm(s)
1127. PUT stands for
a. programmable unijunction transistor
b. programmable universal transistor
c. pulse unijunction transistor
d. pulse universal transistor
1128. Which thyristor conducts current in both direction when turned on?
a. diac
b. SCR
c. quadrac
d. SCS
1129. \qquad is a 3 terminal device used to control large current to a load.

a. SCR

b. SCS
c. GTO
d. thyristor
1130. Another term for thermoelectric effect.
a. Seebeck effect
b. Hall effect
c. photoelectric effect

d. thermal effect

1131. \qquad are the regions corresponding to open circuit condition for the controlled rectifier which block the flow of charge from anode to cathode.
a. forward blocking region
b. reverse blocking region
c. breakdown region

d. both A and B above

1132. The V-I characteristics of a triac in the first and third quadrants are essentially identical to those of \qquad in the first quotation.

a. SCR

b. UJT
c. transistor
d. SCS
1133. When temperature increases, the inter-base resistance of a UJT
a. remains unchanged
b. increases
c. decreases
d. is zero
1134. The 3 terminals of a triac are
a. drain, source, gate
b. two main terminals and a gate terminal
c. cathode, anode, gate
d. anode, source, gate
1135. A triac is equivalent to two SCRs
a. in parallel
b. in inverse-parallel
c. in series
d. in inverse-series
1136. In diagnostic radiology and for superficial therapy purposes, the energy spectrum of radiation varies from about
a. 1 to 10 keV
b. 10 to 100 keV
c. 100 to 10000 keV
d. 10000 to 100000 keV
1137. The x-ray region of the electromagnetic spectrum has a corresponding range of wavelengths from
a. 0.1 to 0.0001 nm
b. 0.1 to 0.0001 pm
c. 0.1 to $0.0001 \mu \mathrm{~m}$
d. 0.1 to 0.0001 mm
1138. The 3 terminals of an SCR are the
a. anode, cathode, grid
b. cathode, anode, gate
c. anode, cathode, drain
d. drain, source, gate
1139. If a body is considered as a conducting sphere of 0.5 m radius, its capacitance to infinity is
a. 55 pF
b. 55 nF
c. $55 \mu \mathrm{~F}$
d. 55 F
1140. How many
semiconductor layers does an SCR have?

a. 4

b. 2
c. 3
d. 5
1141. A triac is a \qquad switch.
a. unidirectional
b. mechanical
c. bidirectional
d. omnidirectional
1142. Which of the following is the normal way to turn on an SCR?
a. by breakover voltage
b. by appropriate anode current
c. by appropriate cathode current
d. by appropriate gate current
a. only +
b. only -
c. both + and -
d. neither + nor -
1144. A diac has how many terminals?

a. 2

b. 4
C. 3
d. 5
1145. An SCR combines the features of
a. a rectifier and resistance
b. a rectifier and capacitor
c. a rectifier and transistor
d. a rectifier and inductor
1146. Which is the control element in an SCR?
a. anode
b. cathode
C. gate
d. cathode supply
1147. How many
semiconductor layers does a triac have?
a. 2
b. 4
C. 3
d. 1
1148. A diac has how many semiconductor layers?
a. 3
b. 4
C. 2
d. 5
1149. The p-type emitter of ac UJT is \qquad doped.
a. lightly
b. moderately
c. heavily
d. not
1143. A triac can pass a
portion of \qquad half-cycle
through the load.
1150. A diac has
a. one pn junction
b. three pn junctions

c. two pn junctions

d. four pn junctions
1151. A UJT is sometimes called \qquad diode.
a. double-based
b. single-based
c. a rectifier
d. a switching
1152. A diac is \qquad switch.

a. an ac

b. a mechanical
c. a dc
d. both ac and dc
1153. An effect that reduces the possibility of accidental triggering of the SCS.
a. Miller effect
b. Rate effect
c. End effect
d. Flywheel effect
1154. Which device does not have a gate terminal?
a. triac
b. SCR
c. FET
d. diac
1155. An SCR is a \qquad triggered device.

a. current

b. power
c. voltage
d. noise
1156. When a UJT is turned on the resistance between emitter terminal and lower base terminal
a. remains unchanged
b. increases
c. decreases
d. becomes zero
1157. A UJT has
a. two pn junction
b. three pn junctions

c. one pn junction

d. four pn junctions
1158. The UJT may be used as
a. an amplifier
b. a rectifier

c. a sawtooth generator

d. a multivibrator
1159. Which of the following is the normal way to turn on a diac?
a. by breakover voltage
b. by gate voltage
c. by gate current
d. by anode current
1160. Essentially, power electronics deals with the control of ac power at what frequencies?
a. 20 kHz
b. 1,000 kHz
C. frequencies less than 10 Hz

d. 60 Hz frequency

1161. When the emitter terminal of a UJT is open, the resistance between baseterminals is generally
a. Iow
b. extremely low
c. high
d. extremely high
1162. AC power in a load can be controlled by connecting
a. two SCRs in series
b. two SCRs in parallel
c. two SCRs in parallel opposition
d. two SCRs in series opposition
1163. Which equation defines the intrinsic stand off ratio (aeta) of a UJT?
a. $\mathbf{R b} 1 /(\mathbf{R b} 1+R b 2)$
b. (Rb1+Rb2)/Rb1
c. ($\mathrm{Rb} 1+\mathrm{Rb} 2) / R b 2$
d. Rb1 + Rb2
1164. To turn off an SCR, which of the following is done?
a. reduce gate voltage to zero
b. reverse bias the gate
c. reduce anode voltage to zero
d. reduce cathode voltage to zero
1165. Control system that maintains a speed, voltage, or other variable within specified limits of a preset level.
a. controller
b. regulator
c. sensor
d. computer
1166. To turn on a UJT, the forward bias on emitter diode should be \qquad the peak point voltage.
a. more than
b. less than
c. equal to
d. twice
1167. When temperature increases, the intrinsic stand off ratio
a. increases
b. decreases
c. essentially constant
d. becomes zero
1168. Dimensionless parameter of the secondorder characteristic equation.

a. damping ratio

b. accuracy
c. efficiency ratio
d. transfer function ratio
1169. \qquad is the ratio of two exponential functions of time.

a. transfer function

b. damping ratio
c. efficiency
d. gain
1170. An SCR whose state is controlled by the light falling upon a silicon semiconductor layer of the device.
a. SCS
b. GTO
C. thyristor
d. LASCR
1171. A diac is simply
a. a single junction
b. a three junction device

c. a triac without a gate terminal

d. an SCR

1172. What region lies between the peak point and valley point of UJT emitter characteristics?
a. saturation
b. cut-off
c. negative-resistance
d. positive resistance
1173. Refers to the application of electronic theory, technology, instrumentation and computing system to biological research and medical problems.
a. medical electronics
b. genetics electronics
c. biomedical engineering
d. biomedical electronics
1174. Which device exhibits negative resistance region?
a. diac
b. triac
C. transistor
d. UJT
1175. The UJT operates in what region after peak point?
a. cut off
b. negative resistance
c. saturation
d. positive resistance
1176. SCR is rectifier constructed of silicon material. Silicon is chosen because
a. it is the most abundant material
b. of its strength and ruggedness
c. it is much cheaper than any other material
d. of its high temperature and power capabilities
1177. A transconduction principle used primarily in optical sensors.
a. photoconductive transconduction
b. photovoltaic transconduction
c. electromagnetic transconduction
d. piezoelectric transconduction
1178. Is a solid state equivalent of gas-filled triode.
a. TRIAC
b. thyristor
c. SCR
d. SCS
1179. The supply voltage is generally \qquad that of breakover voltage in an SCR.
a. equal to
b. less than
c. greater than
d. twice
1180. The triac is
fundamentally a/an \qquad
with a gate terminal for controlling the turn-on conditions of the bilateral device in either direction.
a. SCR
b. quadrac
c. Shockley diode

d. diac

1181. When the supply voltage exceeds the breakover voltage of an SCR, it

a. starts conducting

b. stops conducting
c. conducts leakage current
d. conducts thermal current
1182. The step response of a first order system is given by
a. $y(t)=A(0)$
b. $y(t)=A(0)+A(1) e^{\wedge}(s 1 t)$
$+A(2) e^{\wedge}(s 2 t)+A(3) e^{\wedge}(s 3$
t)
c. $y(t)=A(0)+A(1)) e^{\wedge}(s 1$
$t)+A(2) e^{\wedge}(s 2 t)$
d. $y(t)=A(0)+A e^{\wedge}(s t)$
1183. A feedback control system in which the controlled variables is mechanical position.
a. closed-loop feedback control system
b. open-loop feedback control system
c. servomechanism
d. mechanical
servomechanism
1184. What is that voltage above which the SCR enters the conduction region?
a. reverse breakover voltage
b. forward breakover voltage
c. holding voltage
d. trigger voltage
1185. A locus or path of the roots traced out on the splane as a parameter is changed.
a. root locus
b. hyperbola
c. parabola
d. circle
1186. A control system in which the output is related to the input by device parameters only.
a. open loop control system
b. closed loop control system
c. servomechanism
d. feedback control system
1187. What is the value of current below which the SCR switches from forward blocking region under stated conditions?
a. holding current
b. forward current
c. reverse current

d. trigger current

1188. What is the value of the zener or avalanche region of the fundamental two-layer semiconductor diode?
a. reverse breakdown voltage
b. forward breakdown voltage
c. breakdown voltage
d. breakover voltage
1189. The required gate
triggering current of GTO is
a. 20 mA
b. 10 mA
C. 30 mA
d. 40 mA
1190. An automatic speed control device using the centrifugal force on rotating flyweights as the feedback element.
a. regulator
b. flywheel governor
c. field control
d. throttle valve
1191. What is the sensing element of acceleration transducer?
a. damper
b. spring
c. seismic mass

d. crystal

1192. Some areas where GTO is applicable.
a. counters
b. pulse generators
c. multivibrators
d. all of the above
1193. A Greek work which means "switch".
a. ristor
b. trans

c. thy

d. thyristor
1194. What is the typical turn-on time of an SCR?
a. $1 \mu \mathrm{~s}$
b. $5 \mu \mathrm{~s}$
c. $\mathbf{1 0 \mu s}$
1195. An SCR is a solid state equivalent of which tube?
a. triode
b. gas-filled triode
c. pentode
d. tetrode
1196. The gate of an SCR is
\qquad with respect to its cathode.

a. +

b. at zero potential
C. -
d. at infinite potential
1197. A normally operated SCR has an anode which is with respect to cathode.
a.
b. +
c. at zero potential
d. at infinite potential
1198. A device which can measure humidity directly, with a single sensing element. It is usually calibrated in terms of relative humidity.

a. hygrometer

b. tachometer
c. Venturi meter
d. hydrometer
1199. One of the most widely used sensing elements, particularly for pressure ranges higher than 2 MPa .
a. bellows
b. bourdon tube
c. capsule
d. straight tube
1200. Which of the following can change the angle of conduction in an SCR?
a. changing anode voltage
b. changing gate voltage
c. reverse biasing the gate
d. changing cathode voltage
1201. An SCR is a member of the \qquad family.
a. thyrector
b. thyratron
C. thyristor
d. transistor
1202. How many pn junction does an SCR have?
a. 2
b. 4
C. 3
d. 5
1203. Which of the following is NOT a method primarily used for density sensing?
a. sonic
b. radiation
c. vibrating element
d. differential
1204. When SCR starts
conducting, then \qquad loses all control.
a. gate
b. anode
c. cathode
d. anode supply
1205. An SCR when turned on has a typical voltage across of
a. zero
b. 0.1 V
c. infinite

d. 1 V

1206. The typical turn off time of an SCR is about
a. 20 to $40 \mu \mathrm{~s}$
b. 5 to $30 \mu \mathrm{~s}$
c. 1 to $5 \mu \mathrm{~s}$
d. 15 to $25 \mu s$
1207. An SCR is made of what material?
a. silicon
b. carbon
c. germanium
d. gallium-arsenide
1208. ECG stands for electrocardiography while EEG stands for
a. electroextracellugraphy
b. electroemyography
c. electroencephalography
d. electrovectorcardiography
1209. Acceleration
transducers are called
a. gyros
b. force transducers
c. tachometers
d. accelerometers
1210. When an SCR is compared to a switch, it is considered as a \qquad switch.
a. bidirectional
b. mechanical
c. unidirectional
d. omnidirectional
1211. When the firing angle of an SCR is increased, its output
a. decreases
b. increases
c. remains unchanged
d. doubles
1212. When an SCR is OFF, the current in the circuit is
a. exactly zero
b. large leakage current
c. small leakage current
d. thermal current
1213. An SCR can exercise control over \qquad of ac supply.
a. + or - half cycles
b. both + and - half cycles
c. only + half cycle
d. only - half cycle
1214. What is the most widely used attitude and attitude-rate transducers?
a. flowmeter
b. psychometer
d. hygrometer
1215. A sensing element which is typically made from a thin-walled tube formed into deep convolutions and sealed at one end, whose displacement can then be made to act on a transduction element.
a. diaphragm
b. bellow
c. capsule
d. bourdon tube
1216. The voltage across an SCR when it is turned on is about
a. 0.5 V
b. 0.1 V
c. 1 V
d. 5 V
1217. An SCR is made of silicon and not germanium because silicon
a. is inexpensive
b. has low leakage current
c. is mechanically strong
d. is tetravalent
1218. What is the control element of an SCR?
a. gate
b. anode
c. grid
d. cathode
1219. Which of the following is a common application of UJT?
a. amplifier
b. rectifier
c. multivibrator
d. sawtooth generator
1220. The integrated circuit was invented at Texas Instrument in 1958 by
a. Jonathan Kurtz
b. James Faug

d. Harold Lanche

1221. Which component cannot be fabricated into Ics?
a. diode
b. resistor
c. inductor
d. transistor
1222. The purpose of a comparator in op-amps
a. detect the occurrence of a changing input voltage
b. maintain a constant output when the dc input voltage changes
c. produce a change in output when an input voltage equals a reference voltage
d. amplify an input voltage
1223. The op-amp
comparator circuit uses
a. negative feedback
b. a resistor
c. positive feedback
d. no feedback
1224. \qquad is a complete electronic circuit, containing transistors, diodes, resistors, and capacitors processed on and contained entirely within a single chip of silicon.
a. integrated circuit (IC)
b. monolithic IC
c. linear IC
d. digital IC
1225. A process used to produce IC semiconductor elements.
a. alloy junction
b. mesa diffusion
c. grown junction
d. planar diffusion
1226. Which integrated circuit has more than 1,000 gates?
a. small-scale integration (SSI)
b. medium-scale integration (MSI)
c. large-scale integration (LSI)
d. very large-scale integration (VLSI)
1227. A characteristic that does not apply to an op-amp.

a. low power

b. high gain
c. high input impedance
d. low output impedance
1228. An integrator op-amp uses what element in the feedback path?
a. capacitor
b. resistor
c. inductor
d. transistor
1229. Which integrated circuit has more than 100 gates?
a. small scale integration (SSI)
b. medium scale integration (MSI)

c. large scale integration (LSI)

d. very large scale integration (VLSI)
1230. Which of the choices below are sources of output offset voltage

a. the differences in Vbe

 valuesb. the differences in Vce values
c. the differences in transistor voltage
d. all of the choices
1231. The voltage gain of a differential amplifier
a. equal the AC collector resistance divided by two times the AC resistance of the emitter diode
b. sum of two emitter current
c. equals the difference
between two base currents
d. is half of either collector current
1232. Which integrated circuit has $\mathbf{1 0}$ to $\mathbf{1 0 0}$ gates?
a. small-scale integration
(SSI)
b. medium-scale integration (MSI)
c. large-scale integration (LSI)
d. very large-scale
integration (VLSI)
1233. Integrated circuits having up to 9 gates is called

a. small-scale integration (SSI)

b. medium-scale integration (MSI)
c. large-scale integration (LSI)
d. very large-scale integration (VLSI)
1234. What is a VCO?
a. exhibits a frequency that can be varied with a dc control voltage
b. a single pole low pass filter
c. is the terminal of the opamp where input resistors are placed
d. all of the choices
1235. The reason why
integrated circuits are divided into digital and linear categories is because
a. they either possess analog or digital signals
b. they are either used as input or output components
c. up to the present these are the only two known categories
d. they are simply circuits that happen to be constructed integrally and like all circuits, are either switching type or amplifying type
1236. How is the output of a differentiator related to the
input in an op-amp?

a. the output of a

 differentiator is proportional to the rate of change of the inputb. the output of a differentiator is inversely proportional to the rate of change of the input
c. the two parameters are not related
d. the two parameters are equal to each other
1237. I.Cs have advantages over discrete device circuits which is
a. lower cost
b. high reliability
c. smaller size
d. all of the above
1238. Dual in line package
(DIP) is the most popular IC
package because
a. it is low in cost
b. it is one of the tiniest packages known
c. it ruggedly resists
vibration due to its solid construction
d. all of the above
1239. What is the typical input resistance of the opamp when measured under open-loop?
a. 2 MO
b. $\mathbf{3}$ MO
c. $\mathbf{1 . 5} \mathrm{MO}$
d. $\mathbf{2 . 5} \mathrm{MO}$
1240. After assembly, the
I.Cs are tested and classified as either
a. military
b. industrial
c. military or industrial
d. military and industrial
1241. For a constant input voltage to an integrator, why is the voltage across the capacitor linear?
a. capacitor does not dissipate heat
b. capacitor current is constantly changing
c. capacitor current is linear
d. capacitor current is constant
1242. Upon what principle does a relaxation oscillator operate?
a. resistors in cascade
b. the charging and discharging of a capacitor
c. the rectification process of a diode
d. switching transistors
1243. I.Cs for military and space applications are tested in the temperature range of
a. 0 C to 70 C
b. -55 C to 125 C
c. $\mathbf{- 1 7 3}$ C to 100 C
d. $\mathbf{- 1 0} \mathbf{C}$ to $\mathbf{2 5} \mathbf{C}$
1244. For most commercial and industrial applications, I.Cs are tested in the temperature range of
a. 0 C to 70 C
b. -55 C to 125 C
c. $\mathbf{- 1 7 3} \mathrm{C}$ to $\mathbf{1 0 0} \mathrm{C}$
d. $\mathbf{- 1 0} \mathbf{C}$ to $\mathbf{2 5} \mathbf{C}$
1245. An IC op amp that combines FETs and bipolar transistors
a. BIFET
b. MOSFET
c. CMOS
d. IGFET
1246. A mass of metal attached to the case of a transistor to allow the heat to escape more easily.
a. flag
b. heat sink
c. op amp
d. photodiode
1247. Which of the following IC processes digital signals?

a. digital IC

b. discrete IC
c. linear IC
d. monolithic IC
1248. Which of the following IC processes analog signals?
a. digital IC
b. discrete IC

c. linear IC

d. monolithic IC
1249. A signal that is applied with equal strength to both inputs of a differential amplifier or an op amp.
a. common emitter circuit
b. common ratio signal
c. CMRR
1250. A basic circuit that a designer can modify to get more advanced circuits.
a. experimental
b. prototype
c. peak detector
d. loading
1251. What is the most commonly used type of linear IC?
a. 741
b. 555 timer
c. operational amplifier
d. LM340
1252. What has been considered as the industry standard of linear I.Cs?
a. 555 timer
b. 741 op amp
c. LM340
d. LM317
1253. What type of response characterizes the single pole, low pass filter?

a. flat from dc to the critical frequency

b. current downward up to the maximum frequency
c. curved upward up to the maximum frequency
d. no response
characteristics
1254. Which of the item below is an advantage of a shunt regulator over a series type?

a. has an inherent current

 limitingb. efficient than series regulator because of its component used
c. a non regulating device
d. none of the choices
1255. The most popular IC used in timing circuits is the
a. 555 timer
b. 741
c. LM317
d. LM340
1256. The total power
dissipated by the operational
amplifier is typically
a. 5 mW
b. 0.5 mW
C. $\mathbf{5 0} \mathbf{~ m W}$
d. 500 mW
1257. In the standard letternumber identification code of operational amplifiers, the letter prefix which normally consists of two or three letters identifies the
a. manufacturer
b. type of packaging
c. type of op amp
d. temperature range of operation
1258. An op amp circuit that has its output tied directly to the inverting input terminal
is called a
a. current follower
b. inverting amplifier
c. non-inverting amplifier
d. voltage follower
1259. Most op amp circuits use
a. positive feedback
b. negative feedback
c. open loop operation
d. closed loop operation
1260. The three most common package suffix code are the following except one.

a. A

b. D
C. J
d. N
1261. What is the package suffix code for a plastic dual in line for surface mounting on a pc board?

a. D

b. J
C. \mathbf{N}
d. \mathbf{P}
1262. What is the approximate short circuit
current output of 741 op amp?
a. 15 mA
b. 25 mA
c. $\mathbf{3 0 m A}$
d. 35 mA
1263. A circuit whose components are soldered or otherwise connected mechanically
a. discrete circuit
b. non discrete circuit
c. biasing circuits
d. integrated circuits
1264. MPP value in an op amp is synonymous with
a. output voltage swing
b. equal to the difference of the two supply voltages
c. the maximum unclipped peak to peak output of an amplifier
d. all of the choices
1265. What is the highest undistorted frequency out of an op amp for a given slew rate and peak voltage?
a. power bandwidth
b. cut off frequency
c. critical frequency

d. 3 dB bandwidth

1266. What is summing point in op-amps?
a. simulates mathematical integration
b. acts as a scaling differentiator
c. determines the rate of change of the integrator output voltage
d. a terminal of the op amp where the input resistors are commonly connected
1267. In terms of circuit component, what does the term pole refer to?
a. a single RL circuit
b. a single RC circuit
c. a cascaded amplifier
d. a summing amplifier
1268. What is the slew rate of a 741 op amp?

a. $0.5 \mathrm{~V} / \mu \mathrm{s}$

b. $1 \mathrm{~V} / \mu \mathrm{s}$
c. $0.5 \mathrm{~V} / \mathrm{ms}$
d. $1 \mathrm{~V} / \mathrm{ms}$
1269. What specification of an operational amplifier which tells how fast the output voltage can change?
a. frequency response
b. common mode rejection ratio
c. slew rate
d. open loop voltage gain
1270. What is the typical
input bias current of a 741 op amp?
a. 70 nA
b. 80 nA
c. 90 nA
d. 100 nA
1271. The \qquad of an op amp is its voltage gain when there is no negative feedback.
a. CMRR
b. unity gain
c. close loop
d. open loop
1272. The term 'monolithic' is derived from the combination of the Greek words 'monos' and 'lithos' which means
a. single element
b. single wafer
C. single stone
d. single chip
1273. A technique used to eliminate the need for inductive elements in monolithic integrated circuits.
a. projection printing
b. photolithographic
c. LC synthesis
d. RC synthesis
1274. Most linear I.Cs are
low power devices with power dissipation ratings of
a. 5 W
b. $1 \mu \mathbf{W}$
c. less than $1 \mathbf{W}$
d. more than $1 \mathbf{W}$ but less than 2 W
1275. An integrated circuit for both astable and monostable applications.
a. 741 op amp
b. discrete I.Cs
c. monolithic I.Cs
d. 555 timer
1276. Astable multivibrator is
a. a square wave clock
b. equivalent to a flip-flop
c. a one shot multivibrator
d. monostable in nature
1277. In a 5 level detector circuit
a. the noninverting input is connected to +5 V
b. the input signal is limited to 5 V peak value
c. the inverting input is connected to +5 V
d. the input signal must be riding on a +5 Vdc level
1278. To convert a summing amplifier to an averaging amplifier
a. all inputs must be of the same value
b. the ratio of Rf/R must be equal to the reciprocal of the number of inputs
c. all input resistors must be of different value
d. the ratio of $R f / R$ must equal to the number of inputs
1279. An oscillator is
described by
a. regenerative feedback
b. no feedback
c. an integrator or differentiator
d. unity gain and zero phase shift around the feedback loop
1280. To use a comparator for zero level detection, the inverting input is connected to

a. ground

b. a positive reference voltage
c. the dc supply voltage
d. a negative reference voltage
1281. In most modern IC op amps, the 741 requires _ power supplies.
a. 1
b. 2
C. 3
d. 4
1282. In an op amp
integrator, the feedback path consist of
a. a capacitor
b. an inductor
c. a resistor and a capacitor in series
d. a resistor and capacitor in parallel
1283. Microwave I.Cs cover the range from
a. 0.5 to 15 GHz
b. 15 to $\mathbf{3 0} \mathbf{~ G H z}$
c. $\mathbf{3 0}$ to $\mathbf{4 5} \mathbf{~ G H z}$
d. 45 to 100 GHz
1284. Considered as the fundamental form of IC.
a. hybrid
b. MSI
c. VLSI
d. monolithic
1285. Plastic dual in line for insertion into sockets has a package suffix code of
a. N
b. \mathbf{P}
c. both A and B
d. J
1286. What is the specific application of $\mu \mathrm{A} 741 \mathrm{C}$ op amp?

a. for commercial

b. for industrial
c. for military
d. for experimental
1287. What is the most common method used for the growth of single crystals for IC fabrication?
a. epitaxial growth
b. Czochralsky pulling technique
c. film deposition
d. photolithography
1288. The charge coupled device (CCD) is a unique and versatile semiconductor structure invented in 1969 by

a. W.S. Boyle and G.E. Smith

b. W.F. Davis and R.C. Huntin
c. D. Cave and W. Blood Jr.
d. H.H Stellrecht and C.S.

Meyer
1289. The value of the input voltage that switches the output of a comparator or Schmitt trigger.

a. trip point

b. firing voltage
c. threshold voltage
d. all of the choices
1290. A type of ground that appears at the inverting input of an op amp that uses negative feedback.
a. earth ground
b. equipment ground
c. true ground
d. virtual ground
1291. The Intel i486 32-bit microprocessor incorporates chip. transistors on a single

a. 1 million

b. 100 thousand
c. 2 million
d. 200 thousand
1292. In IC op amps, the input bias circuit is defined as
a. the average of the two base currents
b. the total of the base currents
c. the inverse of the base currents
d. the difference of the base currents
1293. CMRR means
a. common mode rejection ratio
b. the ratio of differential voltage gain to common mode voltage gain
c. A and B choices
d. the difference between the two base voltages
1294. The typical dimension of a MOSFET in a single IC chip is
a. $\mathbf{4}$ mils $\times 6.5$ mils
b. $\mathbf{2}$ mils $\times 12$ mils
c. $\mathbf{3}$ mils $\times 4.5$ mils
d. 1.5 mils $\times \mathbf{3}$ mils
1295. The maximum rate that an output voltage of an op amp can change
a. slew rate
b. CMRR
c. input offset voltage
d. tail current
1296. The unwanted capacitance between connecting wires and ground
a. summer capacitor
b. stray wiring capacitance
c. biasing capacitance
d. feedback capacitance
1297. The typical dimension of a BJT in a single IC chip is
a. $\mathbf{4}$ mils $\times 6.5$ mils
b. $\mathbf{2}$ mils $\times 12$ mils
c. $\mathbf{3}$ mils $\times 4.5$ mils
d. $\mathbf{1 . 5}$ mils $\mathbf{x} \mathbf{~ m i l s}$
1298. The typical dimension of a diode in a single IC chip is
a. $\mathbf{4}$ mils $\times 6.5$ mils
b. $\mathbf{2}$ mils $\times 12$ mils
c. $\mathbf{3}$ mils $\times 4.5$ mils
1299. Which of the items below is equivalent to a relaxation oscillator.

a. astable multivibrator

b. flip-flop
c. monostable multivibrator
d. bistable multivibrator
1300. The unity gain
frequency of an op amp
a. is the frequency where the voltage gain of an op amp is 1
b. indicates the highest usable frequency
c. it equals the gain
bandwidth product
d. all of the choices
1301. If the base 10 is called decimal number system, then base 12 is called
a. bidecimal number system
b. dodecimal number system
c. duodecimal number system
d. all of the above
1302. What is the principal method used in the fabrication of semiconductor devices for hybrid and monolithic I.Cs?
a. epitaxial growth
b. photolithographic process
c. isolation diffusion
d. planar technology
1303. The gain reduction in operational amplifier is known as
a. roll off
b. back off
c. gain off
d. attenuation
1304. The rate of gain reduction in operational amplifiers.
a. 5 dB per decade (-5
dB/decade)
b. 6 dB per decade (-6
dB/decade)
c. 10 dB per decade (-10
dB/decade)
d. $\mathbf{2 0 ~ d B}$ per decade (-20 dB/decade)
1305. A capacitor inside an op amp that prevents oscillations.
a. compensating capacitor
b. limiting capacitor
c. biasing capacitor
d. coupling capacitor
1306. A device that contains its own transistors, resistors, and diodes.

a. IC

b. CMOS
c. logic gates
d. all of the choices
1307. \qquad provides a parameter specifying the maximum rate of change of the output when driven by a large step-input signal
a. step rate
b. slew rate
c. step rate
d. dynamic rate
1308. The absolute maximum rating for op-amps internal power dissipation is

a. 500 mW

b. 300 mW
c. 200 mW
d. 100 mW
1309. What is the absolute maximum rating for an op amp differential input voltage?
a. $\pm 10 \mathrm{~V}$
b. $\pm 20 \mathrm{~V}$
c. $\pm 30 \mathrm{~V}$
d. $\pm 50 \mathrm{~V}$
1310. The maximum CMRR of $\mu \mathrm{A} 741$ op amp is
a. 60 dB
b. 70 dB
c. 80 dB
d. 90 dB
1311. The letter prefix LM identifies which of the following manufacturers?
a. National Semiconductor Corporation
b. Texas Instruments
c. Motorola
d. Signetics
1312. What is the letter prefix used by Fairchild semiconductor on their op amp product?
a. $\mu \mathrm{A}$
b. FS
c. SG
d. NE
1313. Which of the following is not part of the 3 temperature-range codes of op amps for commercial, industrial and military applications?

a. $\mathbf{- 3 0}$ to $\mathbf{2 0 0} C$

b. 0 to 70 C
c. -25 to 85 C
d. -55 to 125 C
1314. What identifies the package style that houses the op amp chip?
a. letter suffix
b. letter prefix
c. circuit designator
d. military specification code
1315. The package suffix code for ceramic dual in line is
a. J
b. D
c. N
d. P
1316. The summing amplifier has two or more inputs, and its output voltage is proportional to the \qquad of the algebraic sum of its input voltages
a. positive
b. negative
c. reciprocal
d. inverse
1317. When higher power
I.Cs are needed, we can use
a. monolithic I.Cs
b. thin film I.Cs
c. thick film I.Cs
d. B and Conly
1318. In IC op amps, one of the most important input characteristics is the \qquad which is defined as the difference between the base currents.
a. input bias current
b. input offset current
c. total base currents
d. all of the choices
1319. Monolithic I.Cs are
a. forms of discrete circuits
b. combination of thin film and thick film circuits
c. also called hybrid I.Cs
d. used for high power application
1320. A \qquad is a group of cells that generate electric energy from their internal chemical reaction
a. battery
b. regulator
c. power supply
d. solar array
1321. Which of the following is the main function of a battery?

a. to provide a source of steady dc voltage of fixed polarity

b. to provide a source of steady dc voltage of variable polarity
c. to provide a source of variable dc voltage of fixed polarity
d. to provide a source of variable dc voltage of variable polarity
1322. The volt is a unit of
a. electromotive force
b. energy
c. force
d. magnetomotive force
1323. A transformer will work on

a. ac only

b. ac as well as dc
c. dc only
d. pulsating dc
1324. In a chemical cell, current is the movement of
a. positive and negative ions
b. positive charges
c. positive ions only
d. negative ions only
1325. What is the nominal output of an automotive battery having six lead-acid cells in series?
a. 12 V
b. 24 V
c. 6 V
d. 3 V
1326. The speed of a dc motor is
a. directly proportional to flux per pole
b. inversely proportional to flux per pole
c. inversely proportional to applied voltage
d. inversely proportional to armature current
1327. Low-speed alternators are driven by
a. hydraulic turbines
b. diesel engines
c. hydraulic engines
d. diesel engines
1328. High-speed alternators are driven by
a. diesel engines

b. steam turbines

c. hydraulic turbines
d. diesel engines
1329. The common $9-\mathrm{V}$ flat battery for transistor radio has \qquad cells connected in series.
a. twelve
b. three
C. six
d. nine
1330. For the same rating, the size of low-speed alternator is \qquad that of
high-speed alternator.
a. about the same as
b. less than
c. more than
d. twice
1331. Which of the following is not a secondary cell?
a. Silver-Zinc
b. Nickel-iron
c. silver oxide
d. lead-acid
1332. Which of the following is not a primary cell?
a. carbon-zinc
b. zinc chloride
c. edison cell
d. mercuric acid
1333. The brush voltage drop in a dc machine is about
a. 0.1 V
b. 2 V
C. 10 V
d. 20 V
1334. Carbon brushes are used in a dc machine because
a. carbon lubricates and polishes the commutator
b. contact resistance is decreased
c. carbon is cheap
d. carbon is abundant
1335. Considered as the main types of battery
a. lithium cell and alkaline
b. carbon-zinc dry cell and lead-sulfuric wet cell
c. leclanche cell and carbonzinc
d. voltaic cell and lithium cell
1336. Which of the following is the main function of a dc motor?
a. to generate power
b. to change mechanical energy to electrical energy
c. to change electrical energy to mechanical energy
d. to change chemical energy to mechanical energy
1337. Which motor has the best speed regulation?
a. series
b. shunt
c. commulatively compounded
d. differentially compounded
1338. A method of converting chemical energy into electrical energy by dissolving two different conducting materials in an electrolyte.
a. battery
b. cell

c. voltaic cell

d. charging
1339. A commulatively compounded motor does not run at dangerous speed at light loads because of the presence of
a. shunt winding
b. interpoles
c. series
d. compensating windings
1340. DC shunt motors are used in those applications where \qquad is required.
a. high starting torque
b. high no-load speed
c. practically constant speed
d. variable speed
1341. Galvanic cell is the other name of
a. voltaic cell
b. primary cell
c. secondary cell
d. solar cell
1342. For the same rating motor has the highest
starting torque.
a. shunt
b. differentially compounded
c. commulatively
compounded

d. series

1343. The voltage regulation of an alternator with a power factor of 0.8 lagging is at unity power factor.

a. greater than

b. the same as
c. smaller than
d. 100 \%
1344. Which is the most suitable for punch presses?
a. shunt motor
b. differentially compounded motor
c. series motor
d. commulatively compounded motor
1345. In a vacuum cleaner,
\qquad motor is generally
used.
a. shunt
b. series
c. commulatively
compounded
d. differentially compounded
1346. A type of secondary cell that can be recharged but with an electrolyte that cannot be refilled.
a. sealed rechargeable cell
b. sealed secondary cell
c. leclanche cell
d. alkaline cell
1347. Silver-cadmium is a secondary cell with a nominal open-circuit voltage of

a. 1.1 V

b. 1.2 V
c. 1.5 V
d. 1.35 V
1348. Which is a variable speed motor?
a. series
b. commulatively
compounded
c. shunt
d. differentially compounded
1349. The most commonly used method of speed control of a dc motor is by varying
a. voltage applied to the motor
b. field strength
c. effective number of conductors in series
d. armature circuit resistance
1350. \qquad give the relative activity in forming ion charges for some of the chemical elements
a. electrochemical series
b. electrical series
c. electromotive series
d. both a and c above
1351. The ac armature winding of an alternator is
a. always star-connected
b. star-delta connected
c. generally delta-connected
d. pi-connected
1352. The air-gap in an alternator is \qquad in an induction machine.
a. much shorter than
b. about the same as
c. much longer than
d. one-half than
1353. Nickel-iron cell is a secondary cell with a nominal open-circuit voltage output of 1.2 and is otherwise known as
a. leclanche cell
b. galvanic cell
c. voltaic cell
d. edison cell
1354. A dc series motor is suitable for
a. cranes
b. lathes
c. pump
d. punch presses
a. series
b. differentially compounded
c. shunt
d. commulatively
compounded
1356. The voltage output of a cell depends on
a. its elements
b. electromotive series
c. its electrodes
d. electrochemical series
1357. The alternators driven by \qquad do not have a
tendency to hunt.
a. diesel engines
b. steam turbines
c. water turbines
d. prime movers
1358. Damper windings are used in alternators to
a. prevent hunting
b. achieve synchronism
c. reduce windage losses
d. reduce eddy current loss
1359. Leclanche's cell is the other name of
a. lead-acid cell
b. zinc chloride
c. carbon-zinc cell
d. mercuric oxide
1360. The primary leakage flux links

a. primary winding only

b. secondary winding only
c. both primary and
secondary windings
d. neither primary nor secondary windings
1361. Overheating of a dc motor is due to
a. insufficient end play
b. overloads
c. loose parts
d. rough commutator
1355. Which is the most suitable motor for elevators?
1362. A small 9-V battery might be used to provide power to
a. an electric stove
b. an electronic calculator
c. a personal computer
d. a radio transmitter
1363. The frequency of the system with which several alternators are paralleled can be increased by simultaneously \qquad of all generators.
a. increasing the field excitation
b. decreasing the field excitation

c. increasing the speed of prime movers

d. decreasing the speed of prime movers
1364. A transformer is an efficient device because it

a. is a static device

b. uses capacitive coupling
c. uses inductive coupling
d. uses electric coupling
1365. The amount of back emf of a shunt motor will increase when
a. the load is increased
b. the field is strengthened
c. the field is weakened
d. the load is decreased
1366. Three cells connected in series form a

a. battery

b. voltage divider
c. voltage multiplier
d. hybrid
1367. What can be found in a transformer with open-circuit test?
a. copper losses
b. turns ratio
c. total equivalent resistance
d. total equivalent leakage reactance
1368. Transformers having ratings less than 5kVA are generally
a. oil cooled
b. water cooled
c. natural air cooled
d. self-cooled
1369. An example of a rechargeable dc source is a/an
a. Iithium battery
b. photovoltaic cell
c. optoisolator
d. lead-acid battery
1370. The voltage of the busbar to which several alternators are paralleled may be raised by simultaneously \qquad of all alternators.
a. increasing field excitation
b. decreasing field excitation
c. increasing input to prime movers
d. decreasing input to prime movers
1371. The rating of an alternator is expressed in
a. kW
b. kVA
c. HP
d. kVAR
1372. Commulatively compounded motors are used in applications where \qquad is required.
a. variable speed
b. poor speed regulation
c. sudden heavy loads for short duration
d. constant speed
1373. Which motor never uses belt-connected loads?

a. series

b. commulatively compounded
C. shunt
d. differentially compounded
1374. A stand-alone solar power system
a. relies on the electric utility at night
b. uses solar panels and batteries
c. requires the use of dry cells
d. needs a full-wave rectifier
1375. A transformer will have zero efficiency at
a. full-load
b. half full-load
c. no-load
d. twice the load
1376. The efficiency of a transformer will be maximum when
a. leakage reactances of the two windings are equal
b. resistances of the two windings are equal
c. copper loss is equal to constant loss
d. copper loss is zero
1377. The armature winding of a dc machine is \qquad winding.
a. an open-circuit
b. a closed-circuit
c. partly open-circuit and partly closed-circuit
d. lap
1378. The speed at which a 6-pole alternator would be driven to generate 50 cycles per second is
a. 1500 rpm
b. $\mathbf{5 0 0}$ rpm
C. $\mathbf{1 0 0 0}$ rpm
d. 1200 rpm
1379. A 12-V battery is rated at 48 Ah. If it must deliver an average of $\mathbf{2 . 0}$ A, how long will the battery last before it needs recharging?
a. 48 hours
b. 4 hours
c. 96 hours
d. 24 hours
1380. Connecting batteries of equal voltage in parallel
a. multiplies the voltage available
b. increases the internal resistance
c. reduces the power available

d. multiplies the current

 available1381. A storage battery in which the electrodes are grids of lead containing lead oxides that change in composition during charging and discharging and the electrolyte is dilute sulfuric acid.
a. leclanche battery
b. nickel-cadmium battery

c. lead-acid battery

d. faure storage battery
1382. The common dry cell, which a primary cell having a carbon positive electrode and a zinc negative electrode in an electrolyte of sal ammoniac and a depolarizer.

a. leclanche cell

b. faure storage cell
c. lead-acid cell
d. lithium cell
1383. The maximum flux produced in the core of a transformer is
a. directly proportional to supply frequency
b. inversely proportional to supply frequency
c. inversely proportional to primary voltage
d. inversely proportional to secondary voltage
1384. A transformer is so designed that primary and secondary windings have
a. loose magnetic coupling
b. tight magnetic coupling
c. critical magnetic coupling
d. good electric coupling
1385. Four carbon-zinc cells in series will provide about
a. 2 Vdc
b. 6 Vdc
c. 9 Vdc
d. 8 Vdc
1386. \qquad refers to a method in which the charger and the battery are always connected to each other for supplying current to the load.
a. continuous charging
b. float charging
c. infinite charging
d. on-line charging
1387. A series motor designed to operate in dc or ac.
a. shunt motor
b. series motor
c. universal motor
d. compound motor
1388. Combination of ac motor, dc generator, and exciter to provide adjustable voltage dc power to a dc motor.
a. Ward-Leonard system
b. Half-wave SCR adjustable voltage supply
C. compound motor
d. universal motor
1389. A motor takes a large current at starting because
a. the armature resistance is high
b. back emf is low
c. back emf is high
d. shunt field is producing the weak field
1390. A series motor will overspeed when
a. the load is increased
b. the armature current is opened
c. the field is opened
d. load is removed
1391. When the load on an alternator is increased, the terminal voltage increases if the load power factor is
a. unity
b. leading
c. lagging
d. zero
1392. The efficiency of the turbo-alternator \qquad with increase in speed.

a. decreases

b. remains the same
c. increases
d. becomes 100\%
1393. What is the output of a lead-acid cell?
a. 2.1 V
b. 1.5 V
c. 1.35 V
d. 1.25 V
1394. One of the following is a false statement.
a. storage cell has a reversible chemical reaction
b. carbon-zinc has unlimited shelf life
c. lead-acid cell is rechargeable
d. primary cell is not rechargeable
1395. In an alternator, the effect of armature reaction is minimum at power factor of
a. 0.866 lagging
b. 0.5 lagging
c. 0.866 leading
d. unity
1396. For given number of poles (>2) and armature conductors, lap winding will carry \qquad a wave winding.

a. more current than

b. same current as
c. less current than
d. half the current than
1397. An 8-pole duplex lap winding will have \qquad parallel paths
a. 8
b. 32
C. 4
d. 16
1398. To increase voltage output, cells are connected in
a. parallel
b. series-parallel
c. parallel-series
d. series
1399. To increase current capacity, cells are connected in
a. parallel
b. series
c. series-parallel
d. parallel-series
1400. Two things which are same for primary and secondary of a transformer are
a. ampere-turns and voltage per turn
b. resistance and leakage reactances
c. current and induced voltages
d. number of turns and power
1401. A transformer operates poorly at very low
frequencies because
a. permeability of core is increased
b. magnetizing current is abnormally high
c. primary reactance is too much increased
d. permeability of core is reduced
1402. In auto transformer, the primary and secondary are \qquad coupled.
a. only magnetically
b. magnetically as well as electrically
c. only electrically
d. directly
1403. A storage battery in which the plates consist of lead-antimony supporting grids covered with a lead oxide paste, immersed in weak sulfuric acid.
a. leclanche cell
b. primary cell
c. secondary battery
d. faure storage battery
1404. One of the following is a dry storage cell.
a. Leclanche cell
b. Edison cell
c. Mercury cell
d. Nickel-cadmium cell
1405. The field structure of a dc machine uses
a. salient-pole arrangement
b. non-salient pole arrangement
c. silicon steel
d. cast steel
1406. Small dc machine generally have \qquad poles.
a. 4
b. 2
C. 6
d. 8
1407. The armature of a dc machine is laminated in order to reduce
a. eddy current loss
b. copper loss
c. hysteresis loss
d. frictional loss
1408. To produce an output of 7.5 V , how many carbonzinc cells are connected in series
a. 4
b. 5
C. 6
d. 3
1409. The demand for a large increase in torque of a dc series motor is met by a
a. large decrease in current
b. large increase in speed
c. large decrease in speed
d. small decrease in speed
1410. As the load increases, a \qquad motor will speed up.
a. series
b. commulatively compounded
c. shunt
d. differentially compounded
1411. The flux in the core of a single-phase transformer is
a. purely alternating one
b. purely rotating one
c. partly alternating and partly rotating
d. constant
1412. When the primary of a transformer is connected to a dc supply,
a. primary draws small current
b. primary leakage resistance is increased
c. core losses are increased
d. primary may burn out
1413. A constant-source has
a. high internal resistance
b. minimum efficiency
c. minimum current capacity
d. Iow internal resistance
1414. If the excitation of an alternator operating in parallel with other alternators is increased above the normal value of excitation, its

a. power factor becomes

 more laggingb. output current decreases
c. power factor becomes more leading
d. output kW decreases
1415. The synchronous reactance of an alternator is generally \qquad armature resistance.
a. 5 times smaller than
b. $\mathbf{1 0}$ to $\mathbf{1 0 0}$ times greater than
c. 5 times greater than
d. 10 times smaller than
1416. DC series motors are used in those applications where \qquad required.

a. high starting torque

b. Iow no-load speed
c. constant speed

d. variable speed

1417. A dc motor is still used in industrial applications because it
a. is cheap
b. provides fine speed control
c. is simple in construction
d. has no replacement
1418. The stator of an alternator is wound for
\qquad on the rotor.
a. more number of poles than

b. the same number of poles

 asc. less number of poles than
d. twice the number of poles than
1419. Why are carbon brushes preferable compared to copper brushes?
a. they have longer life
b. they have lower resistance
c. are cheaper
d. they reduce sparking
1420. The synchronous reactance of an alternator
\qquad as the iron is
saturated.
a. decreases
b. remains the same
c. increases
d. becomes doubled
1421. A 4-pole dc machine has \qquad magnetic circuits.
a. 2
b. 4
c. 8
d. 6
1422. The current in armature conductors of a dc machine is
a. pure dc
b. ac
c. pulsating dc
d. pure dc plus pulsating dc
1423. The ac armature winding of an alternator operates at \qquad the field
a. the same voltage as
b. much higher voltage than
c. much lesser voltage than
d. half the voltage than
1424. Why are the field poles and armature of a dc
machine is laminated?
a. to reduce the weight of the machine
b. to reduce eddy current
c. to decrease the speed
d. to reduce armature current
1425. The back emf or counter emf in a dc motor
a. opposes the applied voltage
b. aid the armature current
c. aids the applied voltage
d. opposes the armature current
1426. The synchronous reactance of an alternator is due to
a. leakage flux
b. armature reaction
c. dc field excitation
d. hysteresis loss
1427. Back emf in a dc motor is maximum at
a. no load
b. half full-load
c. full load
d. 3/4 full load
1428. The mechanical power developed in a dc motor is maximum when back emf is equal to \qquad the applied voltage.
a. twice
b. 1/3
C. $1 / 2$
d. $1 / 4$
1429. The core-type transformer is generally suitable for
a. high voltage and small output
b. Iow voltage and high output
c. high voltage and high output
d. Iow voltage and low output
1430. The transformer that should never have the secondary open-circuited when primary is energized is
a. power transformer
b. auto transformer
c. voltage transformer
d. current transformer
1431. The field winding of an alternator is \qquad excited.

a. dc

b. ac
c. both ac and dc
d. battery
1432. The salient-pole construction for field structure of an alternator is generally used for \qquad machine.
a. 2 pole
b. 8 pole
c. 4 pole
d. 6 pole
1433. When the speed of a dc motor increases, its armature current
a. increases
b. remains the same

c. decreases

d. becomes infinite
1434. The frequency of emf generated in an 8 pole alternator running at 900 rpm is
a. 50 Hz
b. 120 Hz
c. 60 Hz
d. 240 Hz
1435. In case of a 4 -pole machine, 1 mechanical degree corresponds to \qquad electrical degrees.

a. 2

b. 8
C. 4
d. 6
1436. The torque developed by a dc motor is directly proportional to

a. flux per pole x armature current

b. armature resistance x applied voltage
c. armature resistance x armature current
d. flux per pole x applied voltage
1437. AC machine in which the torque is produced by the interaction of ac currents in the stator and dc currents in the rotor turning in synchronism.
a. squirrel-cage motor
b. stepper motor
c. synchronous motor
d. induction motor
1438. Machine in which torque is produced by the interaction of ac currents in the stator and dc currents in the rotor turning in synchronism.

a. synchronous motor

b. induction motor
C. squirrel-cage motor
d. stepper motor
1439. The main drawback of a dc shunt generator is that
a. terminal voltage drops considerably with load
b. shunt field circuit has high resistance
c. generated voltage is small
d. it is expensive
1440. DC machines which are subjected to abrupt changes of load are provided with

a. interpole windings

b. compensating windings
c. equalizers
d. copper brushes
1441. The shaft torque in a dc motor is less than the total armature torque because of \qquad in the motor
a. copper losses
b. iron and friction losses c. field losses

d. hysteresis loss

1442. Armature reaction in a dc motor is increased
a. when the armature current increases
b. when the armature current decreases
c. when the field current increases
d. by interpoles
1443. An ideal transformer is one in which
a. has no losses and leakage reactance
b. does not work
c. has same number of primary and secondary turns
d. has the same primary and secondary voltage
1444. If a power transformer is operated at very high frequencies, then
a. primary reactance is too much increased
b. primary will draw power
c. core losses will be excessive
d. core loss is negligible
1445. With respect to the direction of rotation, interpoles on a dc motor must have the same polarity as the main poles
a. ahead of them
b. in parallel with them
c. behind them
d. beside them
1446. The open circuit test on a transformer is always made on

a. Iow-voltage winding

b. high-voltage winding
c. either low or high voltage windings
d. neither low or high voltage windings
1447. In the short circuit test in a transformer, winding is generally short-circuited.
a. high-voltage
b. Iow-voltage
c. either low or high-voltage winding
d. neither low nor highvoltage winding
1448. In a dc motor, the brushes are shifted from the mechanical neutral plane in a direction opposite to the rotation to
a. decrease speed
b. reduce sparking
c. increase speed
d. produce flat characteristics
1449. The number of cycles generated in a 6-pole alternator in one revolution is

a. 3

b. 5
C. 6
d. 2
1450. If the lagging load power factor of an alternator is decreased, the
demagnetizing effect of armature reaction
a. remains the same
b. is increased
c. is decreased
d. becomes infinite
1451. In very large dc motors with severe heavy duty, armature reaction effects are corrected by
a. using interpoles only

b. using compensatory windings in addition to interpoles

c. shifting the brush position
d. fixing the brush position
1452. The amount of copper in the primary is \qquad that of secondary.
a. about the same as
b. smaller than
c. greater than
d. twice
1453. The open-circuit test on a transformer gives
a. copper losses
b. iron losses
c. friction losses
d. total losses
1454. The speed of a \qquad motor is practically constant.
a. commulatively
compounded
b. differentially compounded
c. series
d. shunt
1455. The running speed of a dc series motor is basically determined by
a. field excitation
b. armature resistance

c. load

d. applied voltage
1456. If the excitation of an alternator operating in parallel with other alternators is decreased, its
a. power factor becomes more leading
b. output kW will change
c. power factor becomes more lagging
d. power factor becomes unity
1457. The distribution of load between two alternators operating in parallel can be changed by changing
a. phase sequence
b. field excitation of alternators
c. driving torques of prime movers

d. current direction

1458. After a shunt motor is up to speed, the speed may be increased considerably by
a. increasing field circuit resistance
b. decreasing field circuit resistance
c. increasing armature circuit resistance
d. reducing the load
1459. When the secondary of a transformer is short-
circuited, the primary
inductance
a. is decreased
b. remains the same
c. is increased
d. becomes zero
1460. For the same rating, \ldots motor has the least starting torque.
a. commulatively compounded
b. shunt
c. series
d. differentially compounded
1461. The deciding factor in the selection of a dc motor for a particular application is its \qquad characteristic.

a. speed-torque

b. torque-armature current
c. speed-armature current
d. speed
1462. The rotor of a turboalternator is made cylindrical in order to reduce
a. eddy current loss
b. windage losses
c. hysteresis loss
d. copper loss
1463. The disadvantage of a short-pitched coil is that
a. harmonics are introduced
b. waveform becomes nonsinusoidal
c. voltage round the coil is reduced
d. voltage round the coil is increased
1464. The demand for a large increase in torque of a dc shunt motor is met by a
a. large decrease in speed
b. large increase in current
c. large increase in speed
d. small increase in current
1465. For 20% increase in current, the motor that will give the greatest increase in torque is \qquad motor.
a. shunt
b. series
c. differentially compounded
d. commulatively compounded
1466. A cell used to detect infrared radiation, either its generated voltage or its change of resistance may be used as a measure of the intensity of the radiation.
a. lead sulfide cell
b. faure storage cell
c. infrared cell
d. leclanche cell
1467. A galvanic cell resulting from difference in potential between adjacent areas on the surface of a metal immersed in an electrolyte.
a. NiCd cell
b. Lead-acid cell
c. local cell
d. Lithium cell
1468. Which motor is used to start heavy loads?
a. series
b. differentially compounded
c. shunt
d. commulatively compounded
1469. When load is removed, the motor that will run at the highest speed is the \qquad motor.
a. shunt
b. commulatively compounded

c. series

d. differentially compounded
1470. The friction and windage losses in a dc motor depends upon

a. speed

b. armature current
c. flux
d. field and armature resistance
1471. If a transformer core has air gaps, then
a. reluctance of the magnetic path is decreased
b. hysteresis loss is
decreased
c. magnetizing current is greatly increased
d. eddy current is increased
1472. The effect of leakage flux in a transformer is to
a. increase copper losses
b. decrease copper losses
c. cause voltage drop in the windings
d. reduce eddy current losses
1473. The iron losses in a dc motor depend upon
a. flux only
b. both flux and speed
c. speed only
d. temperature
1474. The greatest
percentage of power loss in a dc motor is due to
a. windage loss
b. core loss
c. copper loss
d. friction loss
1475. Excessive sparking at the brushes may be caused due to
a. dirt on the commutator
b. misalignment of machine
c. loose coupling
d. worn bearings
1476. The temperature rise of a transformer is directly proportional to

a. apparent power

b. leakage reactance
c. reactive power
d. true power
1477. A graphical relation between the generated emf and the field current of a machine.
a. current generation curve
b. voltage generation curve
c. voltage-current curve
d. magnetization curve
1478. Majority of alternators in use have
a. revolving ac armature winding
b. stationary field type construction
c. revolving field type construction
d. stationary ac armature winding
1479. The stator of an alternator is identical to that of a
a. dc generator
b. 1-phase induction motor
c. 3-phase induction motor
d. Rosenberg generator
1480. Excessive motor vibration is caused by
a. too much brush tension
b. open armature coil
c. worn bearings
d. bent shaft
1481. Hot bearings of a dc motor may be caused by
a. poor ventilation
b. loose coupling
c. incorrect voltage
d. lack of or dirty lubricant
1482. Intermittent sparking at the brushes of a dc motor may be caused due to
a. an open armature coil
b. loose coupling
c. intermittent load
d. incorrect voltage
1483. When load on a transformer is increased, the eddy current loss
a. is decreased
b. remains the same
c. is increased
d. becomes zero
1484. The yoke of a dc machine is made of
a. silicon steel
b. aluminum
c. soft iron
d. cast steel
1485. The armature of a dc machine is made of
a. silicon steel
b. cast steel
c. wrought iron
d. soft iron
1486. The voltage per turn of the primary of a transformer is \qquad the voltage per turn of the secondary
a. more than
b. the same as
c. less than
d. twice
1487. The winding of the transformer with greater number of turns will be
a. high-voltage winding
b. low-voltage winding
c. either high or low voltage winding
d. high power
1488. The coupling field between electrical and mechanical systems of a dc machine is
a. electric field
b. both electric and magnetic fields
c. magnetic field
d. electromagnetic field
1489. The real working part of a dc machine is the
a. commutator
b. armature winding
c. field winding
d. stator
1490. Which dc machines are most common?
a. 2 pole
b. 6 pole

c. 4 pole

d. 8 pole
1491. The core-type
transformer provides
a. much longer magnetic path
b. lesser average length per turn

c. shorter magnetic path

d. longer magnetic path
1492. A machine with field excitation by both shunt and series windings.
a. complex machine
b. compound machine
c. universal machine
d. shunt/series machine
1493. The armature winding of a dc machine is placed on the rotor to
a. save iron
b. facilitate commutation
c. reduce losses
d. reduce armature reaction
1494. The yoke of a dc machine carries \qquad pole flux.
a. 1/3 of
b. two times of
c. $1 / 2$ of
d. 1/4 of
1495. The greatest eddy current loss occurs in the
\qquad of a dc machine.
a. field poles
b. commutating poles
c. yoke

d. armature

1496. The commutator pitch for a simplex lap winding is equal to
a. number of poles on the machine
b. 1
c. pole pairs
d. 2
1497. In a simplex wave winding, the number of parallel paths is equal to
a. number of poles in the machine

b. 2

c. number of pole pairs
d. 1
1498. In a practical
transformer, copper losses
account for how many percent of the total losses?
a. 75%
b. 25 \%
C. 85%
d. 95%
1499. By laminating the core of a transformer, \qquad decreases.
a. leakage reactance
b. eddy current loss
c. hysteresis loss
d. copper loss
1500. The number of parallel paths in a simplex lap winding is equal to
a. 2
b. number of poles
C. number of pair of poles
d. 1
1501. In a dc machine, the number of commutator segments is equal to
a. number of conductors
b. number of coils
c. twice the number of poles
d. twice the number of coils
1502. A dc compound generator having full-load terminal voltage equal to the no-load voltage is called
\qquad generator.
a. under-compounded
b. flat-compounded
c. over-compounded
d. uncompounded
1503. The terminal voltage of a \qquad generator varies
widely with changes in load current.
a. series
b. flat-compounded
C. shunt
d. over-compounded
1504. The nature of armature winding of a dc machine is decided by
b. back pitch
c. commutator pitch
d. number of coils
1505. The voltage regulation of an alternator is larger than that of a dc generator because of
a. large armature resistance
b. large leakage reactance
c. complex effects of
armature reaction
d. small armature resistance
1506. High-voltage dc machines use what winding?
a. Iap
b. wave
c. either lap or wave
d. open-circuit
1507. In a lap winding, the number of brushes required is equal to

a. number of poles

b. commutator pitch
c. number of pair of poles
d. number of coils
1508. What is the
approximate efficiency of a
large transformer?
a. 65%
b. $\mathbf{8 0 \%}$
c. $\mathbf{5 0 \%}$
d. 95%
1509. In a wave winding, the commutator pitch is approximately equal to
a. pole pitch
b. thrice the pole pitch
c. twice the pole pitch
d. half the pole pitch
1510. A triplex wave winding will have \qquad parallel paths.
a. 6
b. 4
C. 2
d. 8
1511. For a given dc generator, the generated voltage depends upon
a. flux only
b. both speed and flux
c. speed only
d. armature rotation
1512. For the same rating, a dc machine has \qquad an ac machine.
a. the same weight as
b. less weight than
c. more weight than
d. half the weight than
1513. Difference between the speeds of a rotating magnetic field and the associated rotor.
a. split
b. salient pole
c. slip
d. pull-out torque
1514. The field winding of a dc shunt machine usually carries \qquad of the rated current of the machine.
a. 2% to 5%
b. more than $\mathbf{2 0 \%}$
c. 15\% to 20\%
d. less than 0.5%
1515. A separately excited dc generator is not used because
a. it is costly
b. a separate dc source is required for field circuit
c. voltage drops considerably with load
d. it is bulky
1516. The effect of armature reaction is to

a. decrease the total flux

b. make the air-gap flux uniform
c. increase the total flux
d. make the flux constant
1517. In a dc generator, armature reaction \qquad pole tip
a. weakens the flux at the trailing

b. weakens the flux at the leading

c. strengthens the flux at the leading
d. strengthens the flux at the trailing
1518. The greatest percentage of heat loss in a dc machine is due to
a. eddy current loss
b. copper loss
c. hysteresis loss
d. frictional loss
1519. The size of a dc generator can be reduced by using
a. lap winding
b. high-resistance winding material
c. iron commutator
d. magnetic material of high permeability
1520. How many electrons are there in the fourth orbit of a copper electron
a. 1
b. 2
C. 3
d. 4
1521. The maximum permissible number of electrons in the third orbit is

a. 18

b. 8
c. 32
d. 2
1522. Varactor diodes are commonly used
a. as a voltage controlled capacitance
b. as a constant current source
C. as a voltage multiplier
d. as a constant voltage source
1523. The reason why electrons are not pulled into the nucleus of an atom.
a. because of the centrifugal or outward force created by their orbital motion
b. because of the force of attraction between them and the nucleus is weak
c. because they are not being attracted by the positive nucleus.
d. because of the strong bonding between them that resists any force pulling them towards the nucleus
1524. The electrons in the
largest orbit travel \qquad
than the electrons in the smaller orbits.
a. move slowly
b. faster
c. in the same velocity
d. a little bit slower
1525. A transistor configuration with the lowest current gain
a. common base
b. common emitter
c. common collector
d. emitter-follower
1526. A semiconductor in its purest form is called
a. pure semiconductor
b. doped semiconductor
C. intrinsic semiconductor
d. extrinsic semiconductor
1527. Valence orbit is the other term for
a. outer orbit
b. 3rd orbit
c. 4th orbit
d. 2nd orbit
1528. K shell means
a. first orbit
b. 2nd orbit
c. 3rd orbit
d. 4th orbit
1529. For either germanium or silicon diodes, the barrier
potential decreases \qquad a. 1
for each Celsius degree rise.
a. 1 mV
b. 3 mV
C. 4 mV
d. 2 mV
1530. A diode modeling circuit which considers, the threshold voltage, average resistance and switch as the diode's equivalent circuit.
a. ideal model
b. simplified model
c. piecewise linear model
d. real model
1531. There are two mechanisms by which holes and electrons move through a silicon crystal. They are
a. covalent bond and recombination
b. diffusion and drift
c. free and charge particles
d. forward and reverse bias
1532. A semiconductor is an element with a valence of
a. 4
b. 8
c. 2
d. 1
1533. What orbit controls the electrical properties of the atom?

a. valence orbit

b. first orbit
c. fourth orbit
d. M shell
1534. \qquad is a substance
that contains atoms with several bands of electrons but with only one valence electron.
a. insulator

b. conductor

c. semiconductor
d. resistor
1535. Pure silicon crystal atoms contain how many valence electrons as a result of covalent bonding?
b. 4
C. 8
d. 16
1536. The peak inverse voltage of a full wave center tapped rectifier circuit is equal to \qquad of the input signal.
a. thrice the peak
b. twice the peak
C. 1/2
d. 1/3
1537. Diffusion or storage capacitance is the term used to refer to
a. the reverse bias capacitance of a diode
b. the forward bias capacitance of a diode
c. the breakdown capacitance of a diode
d. the breakdown capacitance of the rectifier
1538. What is considered as the key to electrical
conductivity?
a. the number of electrons in the valence orbit
b. the number of protons in the nucleus
c. the number of neutrons in the nucleus
d. the number of protons plus the number of electrons in the atom
1539. Each atom in a silicon crystal has how many electrons in the valence orbit

a. 8

b. 32
C. 2
d. 4
1540. Lifetime is the amount of time between the creation and disappearance of a/an
a. free electron
b. proton
c. ion
d. neutron
1541. A silicon crystal is an intrinsic semiconductor

a. if every atom in the crystal is a silicon atom

b. if majority of the atoms in crystal is a silicon atom
c. if the crystal contains 14 silicon atoms
d. if the crystal is undamped
1542. At room temperature, a silicon crystal acts approximately like a/an
a. insulator
b. semiconductor
c. conductor
d. superconductor
1543. An extrinsic
semiconductor is a
a. doped semiconductor
b. pure semiconductor
c. good insulator
d. good conductor
1544. \qquad is associated with random motion due to thermal agitation in the movement of holes and electrons in a silicon crystal.
a. drift
b. diffusion
c. doping
d. recombination
1545. The peak inverse voltage of a half wave rectifier circuit is approximately equal to the _ of the input signal.
a. peak amplitude
b. frequency
c. voltage sinusoidal
d. current
1546. Silicon that has been doped with a trivalent impurity is called a/an

a. p-type semiconductor

b. n-type semiconductor
c. intrinsic semiconductor
d. extrinsic semiconductor
1547. Silicon that has been doped with a heptavalent impurity is called a/an
a. p-type semiconductor
b. n-type semiconductor
c. intrinsic semiconductor
d. extrinsic semiconductor
1548. \qquad is another term
for a pn crystal.

a. junction diode

b. PN junction
c. diode
d. lattice
1549. An acceptor atom is also called
a. pentavalent atom

b. trivalent atom

c. minority carrier
d. majority carrier

1550. A donor atom.

a. trivalent atom
b. aluminum
c. boron
d. pentavalent atom
1551. In an n-type semiconductor, free electrons are called
a. minority carriers
b. valence electrons
c. majority carriers
d. charge carriers
1552. In an n-type
semiconductor, holes are called

a. minority carriers

b. majority carriers
c. protons
d. charge carriers
1553. What is the barrier potential of germanium at 25 degrees Celsius?
a. 0.7 V
b. 0.3 V
c. 0.5 V
d. 0.4 V
1554. The barrier potential for a silicon diode at 25 degrees Celsius is approximately
a. 0.4 V
b. 0.3 V
c. 0.7 V
d. 0.5 V
1555. Each pair of positive and negative ions at the junction is called a/an
a. anion
b. positron
c. cation
d. dipole
1556. When temperature increases, barrier potential
\qquad .
a. remains the same
b. decreases
c. increases
d. either increases or decreases depending on the semiconductor material used
1557. Avalanche effects occurs at
a. higher reverse voltages
b. lower reverse voltages
c. higher forward voltages
d. lower forward voltages
1558. The creation of free electrons through zener effect is also known as
a. avalanche emission
b. thermionic emission
c. low-field emission
d. high-field emission
1559. Zener effect depends only on the
a. high-speed minority carriers
b. high-speed majority carriers
c. intensity of the electric field
d. intensity of the magnetic field
1560. \qquad is the
temperature inside the diode, right at the junction of the p and n-type materials.
a. junction temperature
b. ambient temperature
c. internal temperature
d. absolute temperature
1561. What is the input control parameter of a FET?

a. gate voltage

b. source voltage
c. drain voltage
d. gate voltage
1562. One of the important diode parameters which gives the magnitude of current the diode can handle without burning.
a. reverse saturation current
b. reverse current
c. forward current
d. forward breakdown current
1563. The maximum reverse voltage that can be applied before current surges is called
a. reverse recovery time
b. maximum junction voltage
c. forward voltage
d. reverse breakdown voltage
1564. Another name for Esaki diode
a. diac
b. hot-carrier diode
c. shockley diode
d. tunnel diode
1565. The most important application of Schottky diodes is in
a. digital computers
b. power supplies
c. amplifier circuits
d. voltage regulators
1566. A diode is a nonlinear device because
a. it produces a nonlinear graph
b. its current is not directly proportional to its voltage
c. it has a built-in barrier potential
d. it can rectify alternating current
1567. The sum of the resistances of the p-region and the n-region is called
a. junction resistance
b. extrinsic resistance
c. intrinsic resistance

d. bulk resistance

1568. What is the typical bulk resistance of rectifier diodes?

a. less than $10 h m(s)$

b. greater than 1ohm(s)
c. equal to 10hm(s)
d. it depends on the doping level
1569. The reverse bias diode capacitance is termed as

a. transition region

 capacitanceb. diffusion capacitance
c. storage capacitance
d. reverse capacitance
1570. The time taken by the diode to operate in the reverse condition from forward conduction.
a. maximum power time

b. reverse recovery time

c. lifetime
d. time allocation
1571. Approximately, the atomic weight of germanium is
a. 32
b. 28.09
c. 72.6
d. 16
1572. Atomic weight of silicon at 300 K is
a. 28.09
b. 72.6
C. 5.32
d. 16
1573. An LED and a phototransistor is equivalent to a/an
a. thermocouple
b. FET

c. optocoupler

d. regulator
1574. Optocoupler is otherwise known as
a. Iaser
b. photodiodes
C. optoisolator
d. photoconductive cell
1575. When the emitter junction is forward biased while the collector junction is reverse biased, the transistor is at \qquad region.
a. cut-off
b. saturation
c. active
d. breakdown
1576. When both the emitter and collector junction are forward biased, the transistor is said to be at
\qquad region.
a. active
b. cut-off
C. breakdown
d. saturation
1577. An equivalent circuit of a diode in which it is represented as a switch in series with a barrier potential.
a. first approximation
b. second approximation
c. third approximation
d. fourth approximation
1578. Which of the following is the equivalent circuit for a diode for third approximation?
a. a switch only
b. a switch in series with a battery in series with a resistance
c. a switch in series with a battery
d. a switch in series with a resistance
1579. A silicon crystal is a/an of a semiconductor if every atom in the crystal is a silicon atom.
a. extrinsic
b. intrinsic
c. p-type
d. n-type
1580. With pnp voltage divider bias, you must use
a. ground
b. negative power supplies
c. positive power supplies
d. resistors
1581. Two pn silicon diodes are connected in series opposing. A 5 V voltage is impressed upon them. Find the voltage across each junction at room temperature when nVt - 0.052 V .
a. $0.236 \mathrm{~V}, \mathbf{3 . 2} \mathrm{~V}$
b. $4.764 \mathrm{~V}, 0.236 \mathrm{~V}$
c. $0.036 \mathrm{~V}, 4.964 \mathrm{~V}$
d. $\mathbf{3 . 2 1}$ V, 1.79 V
1582. A half-wave signal has a period of
a. 16.7 ms
b. 8.3 ms
c. $16.7 \mu \mathrm{~s}$
d. $8.3 \mu \mathrm{~s}$
1583. A full-wave signal has a period of
a. $16.7 \mu \mathrm{~s}$
b. $8.3 \mu \mathrm{~s}$
c. 8.3 ms
d. $\mathbf{1 6 . 7} \mathbf{~ m s}$
1584. When doping
increases, \qquad of a semiconductor decreases.
a. impurity
b. conductivity
c. bulk resistance
d. minority carrier
a. FET
b. BJT
c. triode

d. tetrode

1586. Which of the following has the highest input impedance?
a. FET
b. BJT
c. MOSFET
d. crystal diode
1587. The frequency of a half-wave signal is
a. twice the line frequency
b. equal to the line frequency
c. one-half the line frequency
d. one-fourth the line frequency
1588. For a full-wave rectifier, the output frequency
a. equals one-half the input frequency
b. equals the line frequency
c. equals two times the input frequency
d. is three times the line frequency
1589. The average dc voltage of a half wave rectifier circuit is \qquad of the value of the peak input voltage.
a. 63.6%
b. 31.8%
c. 4.8%
d. 6.2%
1590. The average dc voltage of a full wave rectifier circuit is \qquad of the value of the peak input voltage.
a. 31.8%
b. 48.1%
c. 63.6%
d. 1%
1591. Typical leakage current in a pn junction is in the order of
b. mA
c. nA
d. PA
1592. The resistance of a forward biased pn junction is in the order of
a. ohm(s)
b. mohm(s)
c. $\mu \mathrm{ohm}$ (s)
d. kohm(s)
1593. The removal by electronic means of one extremity of an input waveform is called \qquad .
a. filtering
b. clamping
C. amplifying
d. clipping
1594. Which of the choices below does not describe a clipper circuit?
a. limiter
b. amplitude selector
c. slicer
d. baseline stabilizer
1595. The varactor diode is also called as
a. voltage-variable capacitance
b. varicap
c. epicap
d. all of the above
1596. A type of diode with no depletion layer.
a. varactor
b. varistor
c. Schottky diode
d. Shockley diode
1597. Varistors are used for line filtering to eliminate spikes and dips and is also called
a. transient regulator
b. transient limiter
c. transient filter
d. transient suppressor
1598. Defined as the random motion of holes and free electrons due to thermal agitation.
a. fission
b. fusion
c. diffusion
d. ionization
1599. The temperature coefficient of resistance of a semiconductor is
a. positive
b. negative
c. zero
d. infinity
1600. A large signal amplifier which is biased so that collector current flow continuously during the complete electrical cycle of the signal as well as when no signal is present.
a. Class A
b. Class B
C. Class AB
d. Class C
1601. A large signal amplifier which is biased so that current is non-zero for less than one-half cycle.
a. Class AB
b. Class C
c. Class A
d. Class B
1602. A class \qquad amplifier stage operates with a small forward bias on the transistor so that some collector current flows all the time.
a. A
b. B
C. $\mathbf{A B}$
d. \mathbf{C}
1603. A factor shown on a data sheet that tells how much you have to reduce the power rating of a device.
a. power factor
b. derating factor
c. reactive factor
d. reduction factor
1604. The time it takes to turn off a forward-biased diode is called the
a. forward recovery time
b. reverse recovery time
c. recombination
d. turn-off time
1605. A heavily doped semiconductor has

a. high resistance

b. no effect on the semiconductor characteristics
c. more heat dissipation
d. low resistance
1606. Gallium arsenide, aluminum arsenide, and gallium phospide are classified as
a. elementary semiconductor
b. compound semiconductor
c. intrinsic material by doping
d. insulators
1607. A lightly doped semiconductor has
a. low resistance
b. high resistance
c. no effect on the semiconductor
d. more heat dissipated behaviors
1608. The property or ability of a material to support charge flow or electron flow.
a. resistance
b. conductance
c. resistivity
d. permeance
1609. Also known as photodiffusion effect.
a. Dember effect
b. skin effect
c. Destriau effect
d. night effect
1610. An effect that occurs
within the entire bulk of a semiconductor material
rather than in a localized region or junction.
a. silicon effect
b. dember effect
c. bulk effect
d. destriau effect
1611. Photoconductive effect means
a. the decreased conductivity of an illuminated semiconductor junction
b. the increased conductivity of an illuminated
semiconductor junction
c. the conversion of photonic energy to electromagnetic energy
d. the conversion of an electromagnetic energy to photonic energy
1612. What happens to a photoconductive material when light strikes on it?
a. the conductivity of the material decreases
b. nothing important happens
c. the conductivity of the material stays the same
d. the conductivity of the material increases
1613. A type of diode for tuning receivers; operate with reverse bias and derived its name from voltagevariable capacitor.
a. zener diode
b. tunnel diode
c. varactor diode
d. crystal diode
1614. What semiconductor material is used in the construction of LED?
a. silicon
b. germanium
c. gallium
d. gallium arsenide
1615. \qquad is
approximately the sum of the number of protons and neutrons of an atom.

a. atomic mass

b. atomic number
c. atomic subscript
d. valence shell
1616. \qquad is the number of protons in the nucleus or the number of electrons in an atom.
a. atomic mass
b. atomic weight
c. atomic number
d. free electrons
1617. The charge of a proton has the same value to that of an electron but.

a. opposite in sign

b. greater in some cases
c. lesser than in some cases
d. usually not important
1618. Mass of proton or neutron is \qquad times that of an electron.
a. 1,386
b. 2,000
C. $\mathbf{1 , 8 3 6}$
d. 10
1619. A photodiode which conducts current only when forward biased and is exposed to light.
a. LAD
b. LED
c. PIN
d. photoconductor
1620. What is the most commonly used color for an LED?
a. orange
b. blue

c. red

d. green
1621. If the temperature of a semiconductor material increases, the number of free electrons

a. decreases

b. increases

c. remains the same
d. becomes zero
1622. Varactor diode's transition capacitance is directly proportional to the product of the permittivity of
the semiconductor material and the PN junction area but inversely proportional to its
a. resistance
b. voltage

c. depletion width

d. threshold voltage
1623. A \qquad is a lightsensitive device whose number of free electrons generated is proportional to the intensity of the incident light.

a. varicap

b. photodiode

c. Schottky diode
d. LED
1624. Which of the following is NOT one of the three distinct regions in the characteristic curve of a diode?
a. forward bias region
b. reverse bias region
c. breakdown region
d. saturation region
1625. Another name for saturation current in a diode, which arises from the fact that it is directly proportional to the cross-sectional area of the diode.
a. steady-state current
b. constant current
c. thermal current

d. scale current

1626. How much voltage would you measure across the base-emitter junction of a silicon transistor at class A?
a. 0 V
b. 0.3 V
c. 3.6 V
d. 0.7 V
1627. In an amplifier, the emitter junction is

a. forward biased

b. reverse biased
c. grounded
d. shorted
1628. A manufacturer quotes in his specifications that a
germanium diode conducts
50 mA at 1 V . Determine its bulk resistance
a. 100 ohms
b. 60 ohms
c. 14 ohms
d. $\mathbf{2 0}$ ohms
1629. A silicon diode has a maximum allowable junction temperature at 150 degrees Celsius. Find the maximum allowable power dissipation at 25 degrees Celsius ambient temperature if the diodes thermal resistance is 0.4 degrees Celsius/mW
a. $\mathbf{2 3 8} \mathrm{mW}$
b. 313 mW
c. $\mathbf{6 0 0 ~ m W}$
d. 117 mW
1630. What is the principal characteristic of a zener diode?
a. a constant current under conditions of varying voltage
b. a high forward current rating
c. a constant voltage under condition of varying current
d. a very high PIV
1631. A device whose internal capacitance varies with the applied voltage.
a. zener diode
b. photodiode
c. tunnel diode
d. varactor diode
1632. The \qquad transistor configuration has the highest value of input resistance.
a. common base
b. common emitter
c. emitter-stabilized
d. common collector
1633. A method of connecting amplifiers in cascade.
a. configuration
b. coupling
c. link
d. stages
1634. What is the largest region of a bipolar transistor?
a. base
b. emitter
c. collector

d. P-region

1635. A diode that has a negative resistance region and widely used in the design of oscillators, switching networks and pulse generators.
a. hot-carrier diode
b. tunnel diode
c. LED

d. Schottky diode

1636. Refers to a three-layer diode.
a. Shockley diode
b. Schottky diode
c. diac
d. triac
1637. Another name for a metal-oxide semiconductor field effect transistor is
a. JFET
b. GFET
c. IGFET
d. transistor
1638. In enhancement-type MOSFET's, the \qquad region is used if the FET is to operate as an amplifier.
a. triode region
b. diode region
c. cut-off region

d. saturation region

1639. In enhancement-type MOSFET's, the \qquad regions are used for operation as a switch.

a. triode and saturation

b. cut-off and saturation
c. saturation and active
d. cut-off and triode
1640. Unijunction transistor has three terminals, namely
a. gate, cathode, and anode
b. grid, plate, and cathode
c. base 1, base 2, and emitter
d. gate, base 1, and base 2
1641. What happens to the voltage drop across the diode when current flow increases rapidly in a forward-biased diode?
a. increases
b. decreases
c. becomes zero instantly
d. remains relatively constant
1642. What two elements widely used in semiconductor devices exhibit both metallic and nonmetallic
characteristics?
a. gold and silicon
b. germanium and gold
c. bismuth and galena
d. silicon and germanium
1643. What are the majority current carriers in the N -type silicon?

a. free electrons

b. holes
c. bounded electrons
d. protons
1644. A/an \qquad is a diode that gives off light when energized.
a. photodiode
b. LED
c. photoconductive cell
d. tunnel diode
1645. Are solid state gallium arsenide devices that emit a beam of radiant flux when forward biased.
a. LEDs
b. photoconductive cells

c. IR emitters

d. photodiodes
1646. A graphical representation in transistor wherein the emitter current is plotted against the variable emitter base voltage Veb for constant value of collector-base voltage Vcb.

a. static curve

b. input characteristic curve
c. output characteristic curve

d. semilog curve

1647. When the collector current Ic is plotted against the collector base voltage at constant emitter current Ie, the curve obtained is called.

a. output characteristic curve

b. linear curve
c. V-I curve
d. semilog curve
1648. Eg for silicon is 1.12 eV and for Germanium is $\mathbf{0 . 7 2}$ eV . It can be concluded that
a. less number of electron
hole pairs will be generated in silicon than in germanium at room temperature
b. more number of electrons and hole pairs will be generated in silicon than in germanium at room temperature
c. high energy of charges is a property of silicon
d. the relationship of the two is not significant
1649. Junction diodes are commonly rated by its
a. maximum forward current and PIV
b. inductance and PIV
c. capacitance and maximum reverse current
d. circuits resistance and maximum forward current
1650. A special type of diode which is often used in RF switches, attenuators, and various types of phase shifting devices is called
a. zener diode
b. PIN diode
c. tunnel diode
d. varactor diode
1651. A volt-ampere characteristic curve that describes the relationship of the output voltage of a transistor to its output current at a step input current.
a. input characteristic
b. output characteristic
c. load line
d. saturation curve
1652. The use of coupling is particularly desirable in low level, low noise audio amplifier stages to minimize hum pick up from stray magnetic fields.
a. transformer
b. direct
c. RC
d. LC
1653. The way in which the gain of an amplifier varies with the frequency is called
a. logarithmic response
b. frequency response
c. voltage response
d. phase response
1654. The maximum rectification efficiency of a half wave rectifier is
a. 81.2 \%
b. 40.6%
c. 20.6 \%
d. 25 \%
1655. The maximum rectification efficiency of a full-wave rectifier is
a. 40.6 \%
b. 81.2%
c. 110 \%
d. 92%
1656. A coupled amplifier which has the major advantage of permitting power to be transformed from the relatively high output impedance of the first stage to the relatively low input impedance of the second stage.
a. RC coupling
b. Transformer coupling
c. direct coupling

d. stabilized coupling

1657. Electron mobility property of silicon at 300 K is approximately equal to
_sq m/v-s
a. 1.1
b. 0.135
c. 0.048
d. 45
1658. In a push-pull power amplifier, an input
transformer can be used as a providing equal
amplitude input signals
opposite in polarity.
a. phase reversal

b. phase-splitter

c. limiter
d. discriminator
1659. If the line frequency is 60 Hz , the output frequency of a bridge rectifier is
a. $\mathbf{3 0 ~ H z}$
b. 60 Hz
c. 120 Hz
d. 240 Hz
1660. Diode that operates in the reverse breakdown voltage and is used as a voltage regulator.
a. varactor diode
b. PIN diode
c. tunnel diode

d. zener diode

1661. Which of the following is considered a unipolar device?
a. capacitor
b. inductor
c. FET
d. BJT
1662. Invented the feedback amplifier in 1928.
a. Henry Brattain
b. Mark Twain
c. Harold Black
d. Bell Labs
1663. The arrow in a semiconductor symbols
a. always points towards the P region and away from the \mathbf{N} region
b. always points toward the N region and away from the P region
c. is not a significant symbol
d. always points toward the PN junction
1664. If the input power of a half wave rectifier has a frequency of 400 Hz , then the ripple frequency will be equal to \qquad
a. 800 Hz
b. 200 Hz
c. 100 Hz
d. 400 Hz
1665. If the input frequency of a full-wave rectifier is 400 Hz , the ripple frequency will be \qquad -.

a. twice as the input frequency

b. equal to the input frequency divided by two
c. quadruple of the input frequency
d. equal to a quarter of its input frequency
1666. Also called as the conventional amplifier.
a. common-collector circuit
b. emitter follower circuit
c. common base circuit
d. common emitter circuit
1667. Which of the following is true about emitter follower circuits?
a. the output signal is $\mathbf{1 8 0}$ degrees out of the phase with the input signal
b. the output signal is in phase with the input signal
c. the input signal is always equal to the output signal
d. an emitter follower circuit is equivalent to a common emitter connection
1668. The equation for JFET's transconductance
a. $\mathbf{g m}=$ delta Ic $/$ delta Vgs
b. $\mathbf{g m}=\mathbf{I g} / \mathbf{V g}$
c. $\mathbf{g m}=\mathrm{Vgs} / \mathrm{Ic}$
d. $\mathrm{gm}=\mathrm{Ic} / \mathrm{Vds}$
1669. Another name for a light activated diode (LAD) is
a. IR emitter
b. LED
c. photodiode
d. LCD
1670. The semiconductor devices that radiate light or utilize light are called

a. active devices

b. photoelectric devices

c. optoelectronic devices

d. passive devices
1671. Structural category of a semiconductor diode can either be
a. electrolytic and point contact
b. junction and point contact
c. electrolytic and vacuum
d. vacuum and gaseous
1672. Zener diodes can be primarily classified as
a. forward and reverse biased
b. varactor and rectifying
c. voltage regulation and voltage reference
d. gaseous and hot carrier
1673. The principal characteristics of a tunnel diode.
a. a constant current under conditions of varying voltage

b. a negative resistance region

c. a very high PIV device

d. an internal capacitance that varies with the applied voltage
1674. A special type of semiconductor diode which varies its internal capacitance as the voltage applied to its terminal varies.

a. varactor diode

b. point contact diode
c. zener diode
d. silicon controlled rectifier
1675. The maximum forward current in a junction diode is limited by its
a. peak inverse voltage
b. maximum forward voltage
c. leakage current

d. junction temperature

1676. What are the three terminals of FET?
a. gate, source, and drain
b. plate, cathode, and grid
c. gate, source, and grid
d. input, output, and ground
1677. When a transistor is fully saturated,
a. the emitter current is at its minimum value
b. the transistor alpha is at its maximum value
c. the beta of the transistor is at minimal value
d. the collector current is at its maximum value
1678. A FET without a channel and no current occurs with zero gate voltage is
a. enhancement-mode FET
b. depletion-mode FET
c. CMOS
d. metal-oxide transistor
1679. Which of the items below is a special precaution necessary in handling FET and CMOS devices?
a. they have fragile leads that might break off
b. they are light sensitive
c. they are susceptible to damage from static charges
d. they have microwelded semiconductor junctions that are suscpetible to breakage
1680. A data sheet gives these JFET values: Idss $=\mathbf{2 0}$ mA and pinch of voltage is 5 volts. What is the gatesource cut-off voltage?
a. 15 volts
b. $\mathbf{1 0}$ volts
c. $\mathbf{- 5}$ volts
d. 5 volts
1681. What is the dc resistance of the JFET in the ohmic region if the drain to source current at gate shorted is equal to 20 mA and the pinch off voltage is 5 volts?
a. $\mathbf{3 0 0} 0 \mathrm{ohm}(\mathrm{s})$
b. $\mathbf{2 5 0}$ ohm(s)
C. 1 kohm(s)
d. 100 ohm (s)
1682. Suppose a JFET has

Idss $=7 \mathrm{~mA}$ and $\operatorname{Vgs}($ off $)=-3$
V. Calculate the drain current
for a gate-source voltage of -
1 V.
a. 3.1 mA
b. 0.445 A
c. 4.45 mA
d. 31.2 mA
1683. \qquad are often called square law devices.
a. transistors
b. diodes
c. SCRs
d. JFETS
1684. Equivalent of transistor at saturation in JFET's is
a. breakdown
b. constant-current
c. pinch-off
d. ohmic
1685. When a JFET is cut-off, the depletion layers are

a. touching

b. separated
c. very far apart
d. close together
1686. The voltage that turns on an enhancement-mode device is the
a. gate-source cut-off voltage
b. pinch off voltage
c. threshold voltage
d. knee voltage

a. a JFET

b. a voltage source
c. a resistor
d. enhancement-mode MOSFET
1688. JFET's input impedance is
a. approaches unity
b. approaches zero
c. approaches infinity
d. is unpredictable
1689. The current gain of an emitter follower circuit is

a. high

b. Iow
c. moderate
d. very low
1690. The drift transistor has a high frequency cut off
a. due to the high resistance of the base area
b. since high voltage can be used
c. due to its inherent internal capacitance and low electron transit time through the base
d. due to the large area
1691. The maximum operating frequency of a transistor should be \qquad percent of the frequency cutoff of the transistor to ensure best performance.
a. 100
b. 20
C. 80
d. 50
1692. When transistor applications call for a temperature operating condition which exceeds 185 degrees Fahrenheit, which element is most suitable?
a. gallium
b. antimony
c. silicon
d. impossible to operate transistor above 185 degrees Fahrenheit
1693. \qquad is the most
important factor of a power transistor
a. output resistance

b. heat dissipation

c. input voltage
d. output parameter
1694. When the electron transit time through the base region is very short, this
a. creates a higher potential barrier
b. makes the transistor unable to amplify its signal
c. provides a higher cut-off frequency
d. provides a zener effect
1695. When the transistors are used in video amplifiers, its main limitation is
a. Iow peak voltage
b. poor frequency response
c. low peak current
d. poor filtering of signals
1696. Impedance matching in circuit is important for
\qquad transfer of energy.
a. minimum
b. enough
c. maximum
d. limited
1697. An amplifier has an output power of 3 watts. Determine the power output level with reference to 1 mW .
a. $\mathbf{3 4 . 7 7} \mathbf{~ d B m}$
b. 40 dBm
c. $\mathbf{- 3 0} \mathbf{d B m}$
d. $\mathbf{- 4 0 . 1} \mathrm{dBm}$
1698. A unijunction transistor is a three-terminal device consisting of \qquad semiconductor layers.
a. 1
b. 2
c. 3
d. 4
1699. It is the process by which atoms are constantly
losing and regaining free electrons.
a. ionization
b. covalent bond
c. recombination
d. parasitism
1700. Termed as unwanted oscillation that may occur in almost any type of circuits, oscillator, amplifier, power supply, receiver and transmitters.
a. white noise
b. parasitic oscillators
c. ripples
d. pulsating dc signal
1701. Which of the items below describes an RF amplifier which amplify a weak signal voltage in relatively the same proportion as it will amplify a stronger signal voltage?
a. Class A amplifier
b. Linear amplifier
c. Non-linear amplifier
d. Inverting amplifier
1702. It is the maximum amount of reverse voltage which can be applied on a diode before the breakdown point is reached.

a. Zener voltage

b. peak inverse voltage
c. breakdown voltage
d. threshold voltage
1703. It refers to any of the over 100 different substances which have never been separated into simpler substances by chemical means and which alone or in combination constitute all matter.
a. element
b. atom
c. holes
d. electrons
1704. It is also known as a solid state lamp which utilizes the fall of an electron from the conduction level to the valence level to develop an energy release in the form of heat or light.
a. LCD

b. LED

c. photodiode
d. photoconductive cell
1705. Which of the following is not true with alpha of a transistor.
a. it is the current gain of a common-base configuration
b. it is the ratio of the change in collector current to the change in emitter current
c. it is usually having a value of unity in some
approximations
d. it is the ratio of the change in collector current to the change in base current
1706. Present atomic theories place the mass and positive charge of an atom in a central nucleus composed of protons and
a. holes
b. core

c. neutrons

d. magnetron

1707. The \qquad as a
fundamental particle is considered as a bundle of radiant energy or light, the amount of energy being related to the frequency.
a. protons
b. LED

c. photons

d. comet

1708. Electron emitted by the mechanical impact of an ion striking a surface is called
a. primary electrons

b. secondary electrons

c. moderately doped electrons

d. polarized charge

1709. The break up of nuclei into nuclear fragments that are themselves nuclei is called
a. fission
b. isotope
c. neutrino
d. atom
1710. Particles of zero charge and zero mass.
a. fusion
b. neutrinos
c. fission
d. isotopes
1711. Approximate mass of an electron at rest.
a. $9.1096 \times 10^{\wedge}-31 \mathrm{~kg}$
b. $1.6726 \times 10^{\wedge} \mathbf{- 2 7} \mathbf{~ k g}$
c. $1.6726 \times 10^{\wedge}-31 \mathrm{~kg}$
d. $1.7588 \times 10^{\wedge} 11 \mathrm{~kg}$
1712. A term used to describe the outermost shell of an atom.
a. valence shell
b. free shell
c. electron shell
d. conductive shell
1713. Are the electrons at the outermost shell which are usually weakly attracted by the core such that an outside force can easily dislodge these electrons from the atom.

a. free electrons

b. orbiting electrons
c. bound electrons
d. loose electrons
1714. The reason why electrons are not pulled in the positively charged nucleus is because of the which usually became exactly equals the inward attraction of the nucleus.
a. kinetic energy
b. energy at rest

c. centrifugal force

d. frictional force

1715. Which of the following items is not a type of material?
a. conductor
b. semiconductor
c. insulator
1716. The highest energy band of an atom which can be filled with electrons.

a. valence band

b. conduction band
c. insulation band
d. energy level
1717. An energy band in which electrons can move freely.
a. valence band
b. conduction band
c. energy gap
d. insulation band
1718. Approximate energy gap in insulator is
a. $\mathrm{Eg}=>5 \mathrm{eV}$
b. $\mathrm{Eg}=1.1 \mathrm{eV}$
c. $\mathrm{Eg}=0.67 \mathrm{eV}$
d. $\mathrm{Eg}=4 \mathrm{eV}$
1719. The energy gap for semiconductors made of silicon is
a. $\mathrm{Eg}=5 \mathrm{eV}$
b. $\mathrm{Eg}=1.1 \mathrm{eV}$
C. $E g=0.67 \mathrm{eV}$
d. $\mathrm{Eg}=4 \mathrm{eV}$
1720. The energy gap for germanium made
semiconductors is
a. $\mathrm{Eg}=5 \mathrm{eV}$
b. $\mathrm{Eg}=1.1 \mathrm{eV}$
c. $\mathrm{Eg}=0.67 \mathrm{eV}$
d. no energy gap
1721. A type of material which usually has one valence electron.
a. insulator
b. semiconductor
c. conductor
d. transistor
1722. A type of material which usually has four valence electrons.
a. insulator
b. semiconductor
c. conductor
d. IGFET
1723. Which of the following is considered as the best conductor?

a. gold

b. silicon
c. germanium
d. mica
1724. Which of the following below is not taking place inside a silicon crystal?
a. some free electrons and holes are being created by thermal energy
b. other free electrons and holes are recombining
c. some free electrons and holes exist in an in-between state
d. some free electrons disappears in the lattice due to vaporization
1725. It is an arrangement of silicon atoms combined to form a solid such that there are now 8 electrons in the valence shell.

a. crystal

b. bonding
c. recombination
d. solid silicon
1726. The sharing of valence electrons to produce a chemically stable atom.
a. bound electrons
b. crystal
c. covalent bond
d. recombination
1727. The eight electrons which are tightly held by the atom are called
a. valence electrons
b. outermost shell
c. bound electrons
d. covalent electrons
1728. When an atom has bound electrons, it is described as
a. all charges do recombination
b. valence electrons disappear due to vapor
c. filled or saturated since valence orbit can hold not more than 8 electrons
d. merging of electrons and other particles
1729. Refers to the temperature of the surrounding air.
a. atmospheric temperature
b. ambient temperature
c. freezing point
d. cooling temperature
1730. The term used to describe the released electrons dislodged from its original shell due to increase in temperature which joins into a larger orbit.

a. free electrons

b. bound electrons
c. covalent electrons

d. merge electrons

1731. The term used to refer to the vacancy left by the free electron when it departs from its original shell.
a. proton

b. hole

c. neutron

d. nucleus

1732. The merging of a free electron and a hole inside the silicon crystal.
a. covalent bond
b. recombination
c. merged electron
d. valence bond
1733. The amount of time between the creation and disappearance of a free electron.
a. recombination time
b. bounding time

c. lifetime

d. propagation time
1734. The purpose of adding an impurity atom to an intrinsic crystal is
a. to alter its insulating property
b. to increase its electric conductivity
c. to stop conduction
d. to increase the resistivity of the semiconductor material
1735. An extrinsic semiconductor produces when a pentavalent
atom are added to the molten silicon
a. intrinsic
b. p-type
c. n-type
d. hybrid type
1736. Which of the items below is not a pentavalent atom?
a. phosphorous
b. aluminum
c. antimony
d. arsenic
1737. The reduction of power handling capability of the diode due to the increase of ambient temperature from room temperature.
a. maximum junction temperature
b. linear power derating factor
c. power factor
d. amplification factor
1738. The maximum temperature the diode can operate before burning.
a. maximum dissipation factor
b. maximum junction temperature

c. ambient temperature

d. boiling temperature rating
1739. Reverse recovery time of the diode is computed as the \qquad of the storage time and transition interval from the forward to reverse bias.
a. sum
b. product
c. quotient
d. difference
1740. An intrinsic semiconductor has some holes in it at room temperature. What causes these holes?
a. doping

b. thermal energy

c. free electrons
d. valence electrons
1741. When a diode is forward biased, the recombination of free electrons and holes may produce \qquad _
a. heat
b. light
c. radiation
d. all of the above
1742. Which of the following doping elements have a valence of 5 ?
a. gallium
b. boron
c. aluminum
d. phosphorous
1743. Which of the following doping elements have a valance of 4?
a. arsenic
b. gallium
c. aluminum
d. silicon
1744. Which of the following doping elements have a valance of 3 ?
a. gallium
b. boron
c. aluminum
d. phosphorous
1745. A positive charge outside the nucleus which is present only in semiconductor due to unfilled covalent bonds.
a. electron
b. proton
c. hole
d. neutron
1746. When charges are forced to move by the electric
field of a potential difference,
\qquad current is said to flow.
a. reverse
b. drift
c. leakage
d. threshold
1747. When a PN junction is connected to a battery in such a way that \mathbf{P}-side is connected to positive terminal of the battery and the negative terminal to N side, this connection is known as

a. forward bias

b. reverse bias
c. back bias
d. knee bias
1748. When a PN junction is connected to a battery in such a way that \mathbf{P}-side is connected to negative terminal of the battery and positive terminal to \mathbf{N}-side, this connection is known as

a. forward bias

b. reverse bias
c. depletion connection
d. positive bias
1749. An electron in the conduction band
a. losses its charge easily
b. jumps to the tip of the crystal
c. has higher energy than the electron in the valence band
d. has lower energy than the electron in the valence band
1750. An ideal diode
a. should have a zero resistance in the forward bias as well in the reverse bias
b. should have an infinitely large resistance in the forward bias and zero resistance in reverse bias
c. should have zero resistance in the forward bias and an infinitely large resistance in reverse bias
d. should have infinitely large resistance in forward as well as reverse bias
1751. Thermal voltage (VT)
is approximately equal to at room temperature (20 degrees Celsius).
a. 25 mV
b. 25 V
c. $\mathbf{1 0 0} \mathbf{~ m V}$
d. 100 V
1752. Boltzmann's constant is equivalent to
a. $1.62 \times 10^{\wedge}-18$ Celsius
b. $8.62 \times 10^{\wedge}-5 \mathrm{eV} / K e l v i n$
c. 0.7 V
d. $1.3 \times 10^{\wedge} 8 \mathrm{~V} / \mathrm{m}$
1753. The preferred form of biasing a JFET amplifier is through the
a. voltage divider bias
b. gate bias
c. self bias
d. source bias
1754. The gate-to-source on voltage of an \mathbf{n}-channel enhancement mode MOSFET is

a. less than Vth

b. equal to Vgs(off)
c. greater than Vds(on)
d. greater than Vgs(th)
1755. A mechanism for carrier motion in semiconductor which occurs when an electric field is applied across a piece of silicon.
a. carrier diffusion
b. carrier drift
c. recombination
d. diffusivity
1756. \qquad occurs in pn diodes when the minority carriers that cross the depletion region under the influence of the electric field, gain sufficient kinetic energy to be able to break covalent bonds in atoms with which they collide.
a. drift
b. avalanche breakdown
c. diffusion
d. saturation
1757. An extrinsic semiconductor which is produced when a trivalent atom are added to the molten silicon.
a. aluminum
b. N-type
c. P-type
d. holes
1758. It is a stable positive charge in the nucleus that is not free to move.
a. hole
b. proton
c. neutron
d. electron
1759. The creation of a voltage in a conductor or semiconductor by illumination of one surface.

a. dember effect

b. skin effect
c. destriau effect
d. night effect
1760. \qquad uses a material catwhisker as its anode and is classified as a hot-carrier diode.

a. PIN

b. point-contact diode
c. shockley diode
d. crystal diode
1761. What is the typical operating current of an LED?
a. 50 mA
b. 10 mA
C. 20 mA
d. 5 mA
1762. At absolute zero temperature, a semiconductor behaves as a/an
a. good conductor
b. superconductor

c. insulator

d. variable resistor
1763. Avalanche breakdown in a semiconductor takes place
a. when forward current exceeds a certain value
b. when potential barrier is reduced to zero
c. when reverse bias exceeds a certain value

d. when forward bias exceeds a certain value

1764. A cold-cathode glowdischarge diode having a copper anode and a large cathode of sodium or other material.
a. tunnel diode
b. BARITT diode
c. anotron
d. READ diode
1765. A microwave diode in which the carriers that transverse the drift region are generated by minority carrier injection from a forward-biased junction instead of being extracted from the plasma of an avalanche region.
a. IMPATT
b. TRAPATT

c. BARITT diode

d. Esaki diode

1766. A \qquad is an electronic circuit that converts AC to DC but where the DC output peak value can be greater than the AC input peak value.

a. voltage multiplier

b. rectifier
c. clamper
d. clipper
1767. Which of the item below does not mean a VARACTOR diode?
a. VOLTACAPS

b. VARICAPS

c. voltage variable capacitor
d. variable resistance diode
1768. What is the charge of a hole?
a. equal to that of a proton
b. equal to that of an electron
c. equal to that of a neutron
d. equal to zero
1769. It is the current gain for the common-emitter configuration
a. alpha
b. beta
c. delta
d. gamma
1770. When a factor of a junction transistor is 0.98 , the factor would be equivalent to \qquad value of transistor's beta.
a. 49
b. 60
c. 20
d. 38
1771. An emitter resistor is used for \qquad in most amplifier circuits.
a. temperature stabilization
b. biasing a bipolar junction transistor
c. current limitation
d. voltage amplification
1772. \qquad is a line drawn between the open-circuit voltage and the short-circuit current on a JFET
characteristic curve.
a. operating point
b. load line
c. tangent line
d. quiescent point
1773. Which of the choices below is another name for a photoconductive cell?
a. varicap
b. varistor
c. photoresistive device
d. photodiode
1774. When both the emitter and collector junctions are reversed biased, the
transistor is said to be at
\qquad region.
a. active
b. cut-off
c. saturation
d. amplifying
1775. A type of diode used for tuning receivers and is normally operated with reverse bias and derived its name from voltage variable capacitor.
a. hot-carrier diode
b. varactor diode
c. tunnel diode
d. zener diode
1776. A silicon npn tetrode that serves as a bistable negative-resistance device.
a. BJT
b. binistor
c. FET

d. thermistor

1777. A multiple-terminal solid-state device similar to a transistor that generates frequencies up to about $10,000 \mathrm{MHz}$ by injecting electrons or holes into a space-charge layer which rapidly forces these carriers to a collecting electrode.
a. magnetron
b. IMPATT
c. klystron
d. spacistor
1778. Which of the items below is not a good conductor?
a. electrolytes
b. ionized gases

c. silicon

d. silver

1779. What is the net charge if a certain semiconductor losses all 4 valence electrons?
a. +4
b. -4
C. +8
d. -8
1780. What is the net charge if a certain semiconductor gains one valence electron?
a. +1
b. -1
c. +4
d. -4
1781. What is the
approximate voltage drop of LED?
a. 0.3 V
b. 0.7 V
c. 1.5 V
d. 3.8 V
1782. Under standard conditions, pure germanium has a resistivity of
a. $60 \mathrm{ohm}(\mathrm{s})-\mathrm{cm}$
b. 60 ohm(s)-m
c. 60 ohm(s)-mm
d. $60 \times 10^{\wedge}-4$ ohm(s)-cm
1783. The holding of one extreme amplitude of the input waveform to a certain amount of potential is called
a. slicing
b. limiting
c. rectifying
d. clamping
1784. Clamper is also known as

a. DC restorer

b. rectifier
c. charger
d. clipper
1785. Percentage ripple can be calculated by getting the and multiplying the
result by 100\%
a. ratio of the input
resistance and input voltage
b. product of the ac current to the dc current
c. ratio of the ac voltage to dc voltage
d. addition of the ac and dc component of the given signal
1786. Which of the following materials has the smallest leakage current?
a. germanium
b. carbon
c. sulphur
d. silicon
1787. \qquad refers to the annihilation of a hole and electron.
a. doping
b. recombination
c. diffusion
d. bonding
1788. What are the two possible breakdown mechanism in pn junction diodes?
a. reverse and breakdown effects
b. diffusion
c. zener breakdown
d. zener and avalanche effects
1789. \qquad occurs in pn diodes when the electric field in the depletion layer increases to the point where it can break covalent bonds and generate electron hole pairs.
a. covalent breakdown
b. diffusion
c. zener breakdown
d. avalanche effect
1790. The amount of additional energy required to emit an electron from the surface of a metal is called
a. potential barrier
b. junction voltage

c. work function

d. knee voltage
1791. When the temperature of a pure semiconductor is increased, its resistances

a. decreases

b. remains the same
c. increases
d. cannot be estimated
1792. As a general rule, are found only in semiconductors.
a. electrons
b. bulk resistances
c. depletion layers

d. holes

1793. \qquad in a semiconductor is defined as the incomplete part of an electron pair bond.

a. hole

b. valence electron
c. impurity
d. ion
1794. When the number of free electrons is increased in a doped semiconductor, it becomes a/an \qquad semiconductor.
a. ntype
b. p type
c. pn type
d. np type
1795. Reducing the number of free electrons in a doped semiconductor forms a/an semiconductor.
a. n type
b. p type
c. pnpn type
d. npn type
1796. An acceptor atom contains how many valence electrons?
a. 1
b. 2
c. 3
d. 4
1797. The resistivity of an extrinsic semiconductor is
a. 1 ohm(s)-cm

b. 2 ohm(s)-cm

c. 3 ohm(s)-cm
d. 4 ohm(s)-cm
1798. The forward resistance of a crystal diode is in the order of
a. ohm(s)
b. mohm(s)
c. $\mu \mathrm{ohm}$ (s)
d. kohm(s)
1799. What is the ideal value of stability factor?

a. 1

b. 0.5
c. infinite
d. 100
1800. Approximate mass of a neutron at rest.
a. $1.6726 \times 10^{\wedge}-27 \mathrm{~kg}$
b. $9.1096 \times 10^{\wedge}$ - $31 \mathbf{k g}$
c. $1.6022 \times 10^{\wedge}-19 \mathrm{~kg}$
d. no mass
1801. Approximate mass at rest of a proton is \qquad to that of a neutron.
a. greater than
b. equal
c. less than
d. comparable
1802. Charge of an electron is approximately equal to
a. $1.6022 \times 10^{\wedge}$ - 19 C
b. -1.6726 x 10^-27 C
c. $-1.6022 \times 10^{\wedge}-19 \mathrm{C}$
d. no charge
1803. What capacitors are used in transistor amplifiers?
a. mica
b. air
c. electrolytic
d. paper
1804. What is the reason why a common collector is used for impedance matching?
a. its output impedance is very high
b. its output impedance is very low
c. its input impedance is very low
d. its input impedance is very high
1805. In power supplies, circuits that are employed in
separating the ac and dc components and bypass the ac components around the load, or prevent their generation are called
a. filters
b. limiters
c. series capacitors
d. diode circuits
1806. A nuclei with common number of protons, but with different number of neutrons.
a. fission
b. isotopes
c. atom
d. core
1807. What is the reason why FET has a high input impedance?
a. because its input is forward biased
b. because of the impurity atoms
c. because its input is reverse biased
d. because it is made of semiconductor material
1808. A MOSFET is
sometimes called \qquad FET.
a. open gate
b. shorted gate
c. metallic gate
d. insulated gate
1809. Which of the choices is an advantage of a MOSFET over a BJT in an RF amplifier circuit?
a. low voltage operation
b. low noise
c. Iow amplification of signals
d. compatibility
1810. The voltage gain of an emitter follower circuit is
a. high
b. low
c. very high
d. moderate
1811. A \qquad is considered a current controlled device.
a. diode
b. FET
c. transistor
d. resistor
1812. A \qquad is considered a voltage controlled device.

a. FET

b. diode
c. transistor
d. capacitor
1813. The value of a coupling capacitor, Cc in RC coupling is about
a. $0.01 \mu \mathrm{~F}$
b. $0.1 \mu \mathrm{~F}$
c. $10 \mu \mathrm{~F}$
d. $\mathbf{1 0 0} \mu \mathrm{F}$
1814. FET has a pinch off voltage of about
a. 0.5 V
b. 5 V
c. 10 V
d. 20 V
1815. What is the point of intersection between a diode characteristic and a load line?
a. Q point
b. quiescent point
c. operating point
d. all of the above
1816. A measure of the ability of an LED to produce the desired number of lumens generated per applied watt of electrical energy.
a. Iuminous intensity
b. luminous efficiency

c. Iuminous efficacy

d. Iuminous ability
1817. What kind of instrument is an ammeter?
a. An indicating
b. A recording
c. An integrating
d. A dc meter
1818. As the deflection of the moving system increases, the
controlling torque in an indicating instrument.
a. remains the same
b. increases
c. decreases
d. becomes zero
1819. Which is the best type of ammeter movement?
a. iron-wave
b. dynamometer
c. D'Arsonval
d. Moving Iron
1820. Which dynamometer type has uniform scale?

a. wattmeter

b. voltmeter
c. ammeter
d. ohmmeter
1821. When both deflecting and controlling torque act, the pointer of an indicating instrument comes to

a. rest

b. mid-position
c. maximum position

d. 3/4 position

1822. The output voltage of a thermocouple
a. remains constant with temperature
b. decreases with applied voltage
c. increases with
temperature
d. increases with applied voltage
1823. An instrument in which the magnitude of the measured quantity is indicated by means of a pointer.

a. analog instrument

b. digital instrument
c. ammeter
d. voltmeter
1824. If the pointer of an indicating instrument is in motion, then what opposes deflecting torque?
b. damping torque
c. damping and controlling torques
d. frictional torque
1825. How can electric currents be induced with a coil and a magnet?
a. by placing the coil parallel to the magnetic field
b. by placing the coil at right angles with the magnetic field
c. by moving either the magnet or the coil
d. by keeping the coil and the magnet perfectly stationary
1826. When should a fuse be replaced with a higher rated unit?
a. never
b. when the original value is not available
c. if it blows
d. when fuses of the original value are small in size
1827. The pointer of an indicating instrument is generally made of
a. copper
b. silver
c. aluminum
d. gold
1828. The time interval that a waveform is high (or low) is the \qquad of the signal.
a. pulse width
b. pulse length
c. pulse position
d. duty cycle
1829. A Wheatstone bridge is balanced if
a. the ratio of resistors on one side of the bridge is one while the ratio of resistors on the other side is infinity
b. the ratio of resistors on one side of the bridge is greater than the ratio of resistors on the other side
c. the ratio of resistors on one side of the bridge equals the ratio of resistors on the other side
d. the bridge uses identical resistors
1830. The pointer of an indicating instrument is in the final deflected position, the \qquad is zero.
a. deflecting torque
b. controlling torque

c. damping torque

d. frictional
1831. A moving system force in an analog instruments which causes the moving system to deflect from its zero position.
a. deflecting force
b. damping force
c. return-to-zero force
d. controlling force
1832. A moving system force in analog instruments which ensures that the deflection of the pointer for a given value of measured quantity always has the same value.
a. damping force
b. controlling force
c. NRZ force
d. deflecting force
1833. All voltmeters except one of the following are operated by the passage of current.
a. moving-iron
b. dynamometer
c. electrostatic
d. permanent-magnet moving coil
1834. Disc is made of what material in eddy current damping?
a. conductor and nonmagnetic material
b. conductor and magnetic material
c. non-conductor and nonmagnetic material
d. non-conductor and magnetic material
1835. The time interval between pulses is called
a. pulse frequency
b. pulse delay
c. pulse duration
d. pulse period
1836. An oscilloscope provides easy measurement of \qquad values.
a. instantaneous
b. rms
c. peak to peak
d. average
1837. An element in electronics which serves as a protection against overload?
a. resistor
b. transistor
c. semiconductor
d. fuse
1838. What sensor provides a dc voltage approximately 1V at 10 mW ?

a. diode sensor

b. thermocouple sensor
c. thermal sensor
d. thermistor sensor
1839. Hot-wire instrument has a/an \qquad scale.
a. uniform

b. squared

c. Iogarithmic
d. exponential
1840. For time
measurements, \qquad scale of the scope is used

a. horizontal

b. diagonal
c. vertical
d. both vertical and horizontal
1841. Fluid friction damping is employed in one of the following.
a. dynamometer wattmeter
b. induction type energy meter
c. hot-wire ammeter
d. Kelvin electrostatic voltmeter
1842. Current range
extension in moving coil instruments can be achieved by placing a \qquad in shunt
with the instrument.
a. Iow resistance resistor
b. high resistance resistor
c. high voltage transistor
d. capacitor
1843. Permanent-magnet moving coil instrument can be used in
a. ac work only
b. both dc and ac work

c. dc work only

d. neither dc nor ac works
1844. What CRT element provides for control of the number of electrons passing farther into the tube?
a. cathode
b. control grid
c. anode
d. phosphor screen
1845. \qquad refers to garaging the two adjustments of an AC bridge together in such a way that changing in one adjustment changes the other in a special way, but changing the second adjustment does not change the first.
a. logarithmic nulling
b. orthogonal nulling
c. exponential nulling
d. linear nulling
1846. When the vertical input is $0 V$, the electron beam may be positioned at the \qquad of the screen.
a. top center
b. vertical center
c. horizontal center
d. bottom center
1847. What is the reason why the scale of a
permanent-magnet moving coil instrument is uniform?
a. because of effective eddy current damping
b. because external magnetic field have no effect

c. because it is spring controlled

d. because it has no

 hysteresis loss1848. A sensing element that provides a dc voltage less than 10 mV with typical power range of 0.1 to 100 mW.

a. thermal converters

b. thermal sensors
c. thermocouple sensors
d. diode sensors
1849. Tank circuit frequency can be measured by \qquad .
a. voltmeter
b. signal generator
c. grid-dip meter

d. absorption meter

1850. Shunts are generally made of what material?
a. constantan
b. silver
c. aluminum
d. manganin
1851. \qquad meter is the most sensitive.
a. 10 mA
b. 1 mA
C. 1 A
d. $1 \mu \mathrm{~A}$
1852. A dynamometer instrument is mainly used as a/an
a. dc ammeter

b. wattmeter

c. dc voltmeter
d. ohmmeter
1853. Which movement is the most expensive?
a. D'Arsonval movement
b. dynamometer
c. moving-iron
1854. Attraction and repulsion instruments are considered as
a. moving-cell instruments
b. moving-iron instruments
c. electrodynamic instruments

d. dynamometer

1855. In wheatstone bridge, bridge balance is a condition where
a. there is no current that flows through the load
b. there is current that flows through the load
c. there is potential difference between load terminals
d. the galvanometer reading is maximum
1856. The temperature coefficient of resistance of the shunt material is

a. negligible

b. negative
c. positive

d. infinite

1857. In VTVMS, \qquad is used to balance both halves of the difference amplifier or cathode-coupled amplifier.
a. trigger adjust
b. scale
c. infinite adjust
d. zero adjust
1858. In an oscilloscope, _ adjusts the brightness of the spot by changing the current on the control grid.

a. intensity control

b. focus control
c. astigmatism control
d. position control
1859. A force in analog instrument which quickly brings the moving system to rest in its final position.

a. damping force

c. deflecting force
d. force at rest
1860. A small swamping resistance is connected in series with operating coil of a moving coil ammeter in order to compensate for the effects of
a. temperature variation
b. hysteresis
c. external magnetic fields
d. temperature inversion
1861. The resistance of a moving-coil instrument is $10 \mathrm{ohm}(\mathrm{s})$ and gives full-scale deflection at 10 mA . Calculate the resistance of the shunt required to convert the instrument to give full-scale deflection when the circuit current is 5 A.
a. $0.020040 h m$ (s)
b. $\mathbf{0 . 2 0 0 0 4 o h m (s)}$
c. 10 hm (s)
d. $\mathbf{2} .040 \mathrm{hm}(\mathrm{s})$
1862. The typical power range of a diode sensor is
a. $0.1 \mu \mathrm{~W}$ to 10 mW
b. 0.1 pW to 10 mW
c. 0.1 mW to 100 W
d. 0.1 nW to 10 mW
1863. A \qquad operates on the magnetic attractionrepulsion principles.
a. spectrum analyzer
b. oscilloscope
c. field strength meter
d. milliameter
1864. A dc bridge widely used for the accurate measurements of resistance.
a. Owen bridge
b. Hay bridge
c. Potentiometer bridge
d. Wheatstone bridge
1865. Which of the following is a dc bridge that is very useful for making extremely accurate voltage
measurements?
a. Wheatstone bridge
b. Potentiometer bridge
c. Kelvin bridge
d. Owen bridge
1866. Majority of analog measuring instrument utilizes one of the following effects.
a. heating effect
b. electrostatic effect
c. magnetic effect
d. chemical effect
1867. Multimeter typically provides measurement of values (for a
sinusoidal waveform).
a. peak

b. rms

c. average
d. instantaneous
1868. Dynamometer type instrument can be used for
a. ac work only
b. dc work only

c. both dc and ac works

d. neither dc nor ac works
1869. \qquad is an instrument in which springs provide the controlling torque as well as serve to lead current into and out of the operating coil.
a. moving-iron

b. permanent-magnet moving coil

c. hot-wire
d. iron-wire
1870. In VTVMS, \qquad refers to the smallest signal that can be reliably measured.
a. threshold signal
b. minimum signal

c. sensitivity

d. input signal
1871. The frequency of rotation in some rotating machinery can be measured by a
a. VTVM
b. tachometer
c. spectral meter
d. stroboscope
1872. Which of the items below describes an absorption meter's usage
a. check the output frequency of a transmitter
b. monitors the output current of a receiver
c. monitors the frequency ratio of a device

d. frequency generator

1873. An instrument used for observing voltage and current waveforms is the
\qquad .
a. multimeter
b. DMM
c. oscilloscope
d. telescope
1874. Which of the following forces does not act on the moving systems of analog instruments.
a. a deflecting force
b. a controlling force
c. a damping force
d. an electrostatic force
1875. When current through the operating coil of a moving-iron instrument is tripled the operating force becomes
a. six times
b. 1/2 time
c. 9 times
d. 3 times
1876. What is the typical fullscale deflection current of a moving coil instrument?
a. 50 mA
b. 50 nA
c. $50 \mu \mathrm{~A}$
d. 50 A
1877. An instrument used for measuring the amount of current flowing in a circuit.
a. voltmeter

b. ammeter

c. oscilloscope
d. meter amperage
1878. A type of meter that gives a precise reading of voltage, current or resistance
where there is the generation of samples at the input and then feeds it to a digital read-out.
a. VOM
b. VTVM
c. DMM
d. DTMF
1879. What is the typical fullscale voltage across a moving coil voltmeter?
a. 50 nV
b. $\mathbf{5 0} \boldsymbol{\mu} \mathrm{V}$
c. 50 V
d. $\mathbf{5 0} \mathbf{~ m V}$
1880. The period of a repetitive signal is
a. 1/4 cycle of the waveform
b. $\mathbf{2}$ cycles of the waveform
c. 1 cycle of the waveform
d. $\mathbf{1 / 2}$ cycle of the waveform
1881. An element of a CRT, that releases electrons when heated indirectly by a filament.

a. cathode

b. grid
c. anode
d. phosphor screen
1882. Moving-iron
instrument has a/an \qquad scale.
a. uniform
b. logarithmic
c. squared
d. exponential
1883. A pattern displayed by oscilloscopes which has a steady characteristic is called

a. Lissajous

b. Nyquist pattern
c. Barkhausen's criterion
d. Fermat's pattern
1884. A galvanometer with 20 ohms coil resistance has a full-scale deflection of 10 mA. A $\mathbf{0 . 0 2}$ ohm is placed across the meter to increase its rating capacity. What is
the new full scale current for the meter?
a. 1.01 A
b. 100.1 A
c. 10.10 A
d. 10.01 A
1885. Which of the following extends the range of a moving-iron ac ammeter?
a. a shunt
b. a multiplier
c. changing number of turns of operating coil

d. a series

1886. Which of the following is not a basic part of a CRT?
a. electron gun
b. focusing and accelerating elements
c. horizontal and vertical deflecting plates
d. sawtooth generator
1887. For amplitude measurements, \qquad scale is calibrated in either volts per centimeter (V / cm), or millivolts per centimeter (mV/cm).
a. horizontal
b. diagonal

c. vertical

d. voltage
1888. \qquad ammeter is used to measure high-frequency currents.
a. hot-wire
b. moving-iron
c. dynamometer

d. thermocouple

1889. Which of the voltmeter is used for measuring high direct voltage (say $\mathbf{1 0 k V}$)?
a. permanent-magnet moving coil
b. hot-wire
c. electrostatic
d. moving iron
1890. A common technique for measuring power at high frequency is to
a. employ high power meter
c. employ a sensing element
that converts the RF power to a measurable dc or lowfrequency signal
d. use thermocouples
1891. The \qquad provides
the visual display showing the form of the signal applied as a waveform on the front screen of a cathode ray oscilloscope.
a. television
b. computer
c. meter face
d. CRT
1892. Electrostatic instruments are exclusively used as

a. voltmeters

b. ohmmeters
c. ammeters
d. wattmeters
1893. What is the typical power range for thermocouple sensors?
a. 0.1 mW to 100 W
b. $0.1 \mu \mathrm{~W}$ to 100 mW
c. 0.1 nW to $100 \mu \mathrm{~W}$
d. 0.1 pW to 100 nW
1893. An electric pyrometer is an instrument used to measure
a. phase
b. high temperatures
c. frequency
d. power
1894. Which instrument is the most sensitive?
a. moving-iron
b. dynamometer
c. hot-wire
d. permanent-magnet moving coil
1895. Which is the most commonly used induction type instrument?
a. induction voltmeter
b. induction watt-hour meter

d. induction ammeter

1896. What type of instrument is the watt-hour meter?

a. an integrating

b. a recording
c. an indicating
d. a power meter
1897. A certain pulse measures 10 ms and has a period of 50 ms . The duty cycle is
a. 20%
b. $\mathbf{1 0 \%}$
c. 5%
d. 100%
1898. Indicating instrument is assumed to be most accurate at what part of the scale?
a. At beginning
b. at half or full
c. at ending
d. any part
1899. On a simple ohmmeter, the 0 ohm(s) mark is located
\qquad of the scale.
a. at far left
b. in the middle
c. at far right
d. anywhere
1900. One of the basic functions of electronic circuit is
a. the generation and manipulation of electronic waveshapes
b. the creation of a signal
c. the transmission of electric signal
d. the reception of electric signal
1901. What provides a visual representation of any waveform applied to the input terminals?
a. cathode ray oscilloscope (CRO)
b. cathode ray tube (CRT)
c. spectrum analyzer

d. VTVMs

1902. The interval of a pulse from start to end is the of the pulse.
a. period
b. width
c. position
d. duty cycle
1903. Considered as the "heart" of the cathode ray oscilloscope.
a. cathode ray tube (CRT)
b. sawtooth generator
c. horizontal amplifier
d. vertical amplifier
1904. A material that glows when struck by the energetic electrons in a CRT.
a. aquadag
b. silicon
c. germanium
d. phosphor
1905. What sensor provides a change of resistance with typical power range of $1 \mu \mathrm{~W}$ to 10 mW and with maximum frequency greater than 100GHz?
a. thermal converter
b. diode sensor
c. thermocouple sensor

d. thermistor sensor

1906. An ammeter with an internal resistance of 50 ohm(s) is used to measure a current through a load resistor $\mathrm{RI}=1$ kohm(s). Determine the percentage error of the reading due to ammeter insertion.
a. 67.4%
b. 6.74\%
c. 4.76%
d. 47.6%
1907. Most AC voltmeters have an rms scale which is valid only if the input signal being measured is a \qquad signal.
a. square wave
b. triangular
c. sawtooth
d. sinusoidal
1908. Which of the following bridges measures dc resistance?
a. wheatstone bridge
b. maxwell bridge
c. hay bridge
d. schering bridge
1909. What bridge is used to measure high-Q inductors (Q $>10)$?
a. wheatstone bridge
b. wien bridge

c. hay bridge

d. maxwell bridge
1910. Maxwell bridge
measures an unknown inductance in terms of known
a. resistance
b. frequency
c. inductance

d. capacitance

1911. \qquad is used for measuring medium Q coils (1 $<\mathrm{Q}<10$).
a. maxwell bridge
b. wheatstone bridge
c. kelvin bridge
d. hay bridge
1912. \qquad has a series RC
combination in one arm and a parallel RC combination in the adjoining arm and used as a notch filter in harmonic distortion analyzer.
a. wien bridge
b. maxwell bridge
c. kelvin bridge
d. hay bridge
1913. Sensitivity of a voltmeter is expressed in

a. ohm(s)/V

b. ohm(s)/A
c. V/ohm(s)
d. A/ohm(s)
1914. The smallest change in applied stimulus that will indicate a detectable change in deflection in an indicating instrument is called
a. sensitivity
b. accuracy
c. resolution
d. precision
1915. Insulation resistance is measured by which meter?
a. ohmmeter
b. insulation meter
c. wien bridge
d. megger
1916. What are the two principal electrodes in every tube?
a. Plate and control grid
b. Cathode and screen grid
c. Plate and cathode
d. Screen grid and control grid
1917. For given plate voltage, if negative potential on the control grid of a triode is increases, the plate current
a. decreases
b. remains the same
c. increases
d. becomes zero
1918. A vacuum diode can be used as
a. an amplifier
b. an oscillator
c. a rectifier
d. a regulator
1919. Which generates the least noise in operation?

a. triode valve

b. tetrode valve
c. pentode valve
d. octode valve
1920. A vacuum tube will conduct only if its plate is __ with respect to cathode.

a. +

b. -
c. at zero potential
d. an infinite potential
1921. Saturation in a tube is a condition where an
increase in plate voltage will produce
a. a rise in electron emission
b. a decrease in electron emission
c. no appreciable change in plate current
d. an appreciable change in plate current
1922. A vacuum diode can be used as
a. an amplifier
b. an oscillator

c. a rectifier

d. an attenuator
1923. Which tube generates the greatest noise?
a. triode
b. tetrode

c. pentode

d. diode
1924. Before ionization, a gas-filled tube has a \qquad resistance.

a. very high

b. very small
c. small
d. zero
1925. The negative resistance characteristics of the tetrode is due to
a. secondary emission
b. plate being + with respect to cathode
c. control grid being - with respect to cathode
d. screen grid being - with respect to cathode
1926. What emitter is used in X-ray tubes?
a. thoriated tungsten
b. oxide-coated

c. tungsten

d. nickel
1927. When the temperature of an emitter is increased two times, the electron emission
a. increases two times
b. increases four times
c. increases several million times

d. decreases two times

1928. What is the typical life span of an oxide coated emitter?
a. $\mathbf{5 0 0}$ hours
b. 200 hours
c. 1,000 hours
d. 10,000 hours
1929. The cathode heating time of a thermionic gas diode is \qquad that of a vacuum diode.
a. the same as
b. much less than
c. much more than
d. related to
1930. What is the solid state equivalent of thyratron?
a. FET
b. SCR
c. BJT
d. UJT
1931. The grid to plate capacitance is least in
\qquad valve
a. triode
b. tetrode

c. pentode

d. diode
1932. The peak inverse voltage of a diode is defined as the maximum allowable
a. negative voltage across the load resistor
b. negative voltage applied to plate with respect to cathode
c. positive voltage to plate with respect to cathode
d. positive voltage applied across the load resistor
1933. The equation that defines the dc plate resistance of a vacuum tube.

a. Eb/Ib

b. $\mathbf{I b}^{\wedge} \mathbf{2} \times \mathbf{E b}$
c. $I b \times E b$
d. Ib/Eb
1934. The voltage on the suppressor grid of a pentode is generally
a. + cathode
b. - cathode
c. zero cathode
d. at zero potential
1935. Which of the following defines the amplification factor of a vacuum tube?
a. deltaEb/deltaEc
b. deltaIb/deltaEb
c. deltaEc/deltaEb
d. deltaEb/deltaIb
1936. Which is the best tube for high frequency amplification?
a. triode valve
b. tetrode valve
C. pentode valve
d. diode valve
1937. A triode is normally operated with control grid at potential with respect to cathode.
a. +
b. high +
c. zero

d. -

1938. Once a thyratron is fired, its control grid \qquad over plate current.
a. loses all control
b. exercises rough control
c. exercises fine control
d. becomes helpless
1939. The \qquad voltage
should be reduced to zero to stop conduction in a
thyratron.
a. grid
b. filament
c. plate
d. heater
1940. What is the typical value of ac plate resistance for a triode?

a. $\mathbf{1 0 0 0}$ ohm(s)

b. 100 kohm(s)
c. 1,000 kohm(s)
d. 10 ohm(s)
1941. Direct coupling is used for \qquad amplification.
a. very low frequency
b. radio frequency
c. audio frequency
d. ultra high frequency
1942. A vacuum diode acts as a rectifier because of its __ conduction.
a. unidirectional
b. bidirectional
c. isotropic
d. omnidirectional
1943. Directly heated cathodes require amount of heating power.
a. very small
b. large
c. small
d. very large
1944. A hard tube is defined as a tube with
a. a tungsten filament
b. a gas in the envelope
c. a metal envelope
d. no gas in the envelope
1945. What operation results in severest distortion?
a. Class C
b. Class B
c. Class A
d. Class AB
1946. What is the typical plate efficiency of class A amplifier?
a. 50\%
b. 75\%
C. $\mathbf{3 0 \%}$
d. 10%
1947. For the same plate dissipation, the output power of a class B push-pull circuit is nearly \qquad that of class A operation.
a. 2 times
b. 4 times
c. 3 times
d. 5 times
1948. The screen grid potential is kept \qquad plate potential.

a. somewhat lower than

b. same as
c. somewhere higher than
d. at zero potential with respect to
1949. The output stage of a practical amplifier always employs what coupling?
a. RC coupling
b. Transformer coupling
c. Direct coupling
d. Impedance coupling
1950. The plate resistance of a tube is mainly due to

a. space charge

b. electrodes of the tube
c. vacuum in the tube
d. gas in the tube
1951. A vacuum tube is a device
a. linear
b. exponential
c. non-linear
d. bilateral
1952. What is the unit of transconductance?
a. ohm
b. Siemens/m
c. volt

d. Siemens

1953. Which provides the best frequency response?
a. transformer coupling
b. RC coupling
c. Direct coupling
d. Impedance coupling
1954. Voltage amplifiers are operated as
amplifiers.
a. Class A
b. Class B
c. Class C
d. Class AB
1955. The PIV of hot cathode gas diode is \qquad the
equivalent vacuum diode.
a. the same as that of
b. less than
C. more than
d. independent that of
1956. The anode-to-cathode potential of a gas-filled tube at which gas de-ionizes and stops conduction is called _ potential.

a. extinction

b. ionizing
c. striking
d. reverse
1957. For the same plate voltage, a gas diode can conduct \qquad the equivalent vacuum diode.
a. less current than
b. same current as
c. more current than
d. one-half the current than
1958. A thyratron can be used as
a. an oscillator
b. a controlled switch
C. an amplifier
d. an attenuator
1959. A pentode is a \qquad device.
a. constant current
b. linear
c. constant voltage
d. bilateral
1960. The actual voltage gain of a triode amplifier is less than μ due to
a. grid being negative with respect to cathode
b. voltage drop in ac resistance of the tube
c. plate being positive with respect to cathode
d. voltage drop in dc resistance of the tube
1961. For faithful amplification, the control grid should be \qquad with respect to cathode.
a. +

b. -

c. at zero potential
d. at infinite potential
1962. Which valve has the lowest amplification factor?

a. triode

b. pentode
c. tetrode
d. diode
1963. Which of the following would have the most effect on decreasing the life of a vacuum tube?
a. too much of a grid excitation
b. an excessive filament voltage
c. a grid current that is too Iow
d. a plate resistance value that is too high
1964. Valves in a radio receiver generally employ ___ heated cathodes.
a. directly
b. indirectly
c. oxide
d. nickel
1965. A vacuum diode acts as a \qquad switch.
a. bidirectional
b. unidirectional
c. controlled
d. omnidirectional
1966. What can be used for proper high frequency amplification?
a. triode
b. tetrode
c. pentode
d. diode
1967. The indirectly heated cathode of the diode is coated with
a. thoriated tungsten
b. nickel
c. carbon
d. strontium or barium oxide
1968. What started the conduction in a cold cathode tube?
a. thermionic emission

b. natural sources

c. secondary emission
d. thermal sources
1969. Which emitter is most commonly used in the tubes of a radio receiver?
a. tungsten
b. oxide coated
c. thoriated tungsten
d. constantan
1970. What is the real measure of a valve's amplification capability?
a. plate resistance

b. transconductance

c. amplification factor
d. gain
1971. Field emission is utilized in the mechanism of

a. vacuum tubes

b. gas-filled tubes
c. mercury pool devices

d. TV picture tubes

1972. A vacuum tube is normally operated in the temperature saturation region.
a. to protect against filament aging
b. to keep the tube envelope hot
c. to disperse the space charge
d. keep the tube envelope cold
1973. Plate saturation results when
a. filament voltage is too high
b. space-charge region is depleted
c. plate temperature is too low
d. space-charge region is saturated
1974. When the control grid of a triode is operated with positive potential with respect to cathode
a. the grid resistance decreases
b. the grid may overheat
c. the plate current decreases sharply
d. the grid resistance increases
1975. What is the solid state equivalent of cold cathode diode?
a. Zener diode
b. LED
c. varactor
d. photodiode
1976. The noise in a gas-
filled tube is \qquad that of a vacuum tube.
a. the same as
b. less than
c. more than
d. very much smaller than
1977. What is the phase difference of the output and input voltage of a groundedcathode amplifier?
a. 90 degrees
b. $\mathbf{3 6 0}$ degrees
c. $\mathbf{2 7 0}$ degrees
d. 180 degrees
1978. A grid controlled vacuum tube acts as
b. a controlled switch
c. a rectifier
d. an oscillator
1979. The filament voltage is a direct measure of
a. filament temperature
b. amplification
c. plate temperature
d. filament resistance
1980. The equation that defines the ac plate resistance of a vacuum tube?
a. deltaEb/deltaEc
b. deltaIb/deltaEc
c. deltaEb/deltaIb
d. deltaEc/deltaIb
1981. Ionization current which is a positive-ion current produced by collision between electrons and residual gas molecules in an electron tube is also called
a. plasma current
b. gas discharge
c. gas current
d. plasma discharge
1982. The transconductance of a pentode \qquad a triode
a. is more than that of
b. is about the same as for
c. is less than that of
d. is not comparable to that of
1983. The electrons emitted by a thermionic emitter are called
a. free electrons

b. thermionic electrons

c. loose electrons
d. bound electrons
1984. The unit of work function of metals.
a. Joules
b. Watt-hour
c. Electron-volt
d. Watt
1985. What is the typical operating temperature of an oxide coated cathode?
a. 750 degrees C
b. 500 degrees \mathbf{C}
c. 1200 degrees \mathbf{C}
d. 1000 degrees \mathbf{C}
1986. What is the amount of additional energy required to emit an electron from the surface of a metal?
a. surface barrier
b. threshold level

c. work function

d. potential
1987. Oxide coated emitters have electron emission of __ per watt of heated power.
a. 5-10 A
b. 50-100 A
c. 50-150 A
d. 150-1000 A
1988. What is a pentragrid converter?
a. a tube with a total of five electrodes
b. a tube with a total of five grids
c. a tube that can be used for frequency conversion
d. a tube that requires twice as much plate voltage as a single triode
1989. Which emission is most widely used in practice?
a. field
b. secondary
c. thermionic
d. photo
1990. What is the work function of an oxide coated cathode?
a. 4.0 electron-volts
b. $\mathbf{2 . 6 3}$ electron-volts
c. 4.52 electron-volts
d. 1.1 electron-volts
1991. A directly heated cathode has \qquad warm-up time.
a. zero
b. large
c. small
d. very large
1992. Which thermionic emitter has the highest operating temperature?
a. oxide coated
b. tungsten
c. thoriated-tungsten
d. eureka
1993. The internal resistance after ionization of a gas-filled tube is
a. low
b. very high
c. high
d. 0
1994. One advantage of a mercury vapor diode over the high rectifier is
a. its higher peak inverse voltage rating
b. its reduced rf interference effect
c. its lower voltage drop
when the plate current is flowing
d. the elimination of the need for a warm up period
1995. The screen grid is used to
a. increase the capacitance between the second grid and the plate
b. decrease the capacitance between the control grid and the plate
c. reduce the secondary emission effect
d. lower the tube's plate resistance
1996. A tube tester is used to check a triode's transconductance, which is the ratio of
a. a small change in cathode current to the corresponding small change in grid current
b. a small change in plate current to the corresponding small change in grid current
c. a small change in plate voltage to the corresponding small change in plate current
d. a small change in plate voltage to the corresponding small change in plate current
1997. Which emitter is used in high voltage (> $\mathbf{1 0} \mathbf{~ k V}$) applications?

a. tungsten

b. oxide coated
c. thoriated-tungsten
d. constantan
1998. Which of the following is a desirable characteristic of an emitter?
a. large work function
b. small work function
c. very large work function
d. very small work function
1999. Secondary emission effects are undesirable in
a. vacuum tubes
b. gas-filled tubes
c. I.Cs
d. transistors
2000. When a thyratron tube has fired, one thing that will cause it to stop conducting is
a. a more positive voltage on the plate
b. a more negative voltage on the control electrode
c. a more positive voltage on the control electrode

d. a negative voltage on the plate

2001. What would cause the plate current to increase in a pentode tube?
a. a short circuit between the plate and the screen grid
b. an open circuit in the lead that is connected to the control grid
c. a short circuit between the suppressor grid and the cathode
d. a short circuit between the control grid and the cathode
2002. In directly heated cathode, filament and cathode are
a. separate components

b. same components

c. made of metals
d. made of alloys
2003. What is provided by transformer coupling?

a. impedance matching

b. step-up in voltage
c. good frequency response
d. stability of gain
2004. What is one advantage of a pentode tube over a triode?
a. lower input impedance
b. Iower output impedance
c. less noise internally generated
d. less control grid to plate capacitance
2005. The load resistance RI in a triode amplifier should be nearly \qquad for good amplification.
a. 1/2 rp
b. 3 rp
C. rp
d. 2 rp
2006. A voltage amplifier is designed to have

a. high μ and RI

b. Iow μ and high RI
c. high rp and low RI
d. high μ and low RI
2007. What transformer secondary voltage is utilized in a center tapped circuit?

a. 1/2

b. 1/3
c. full
d. 1/8
2008. Class C amplifiers are used as \qquad amplifiers.
a. audio-frequency voltage
b. radio-frequency
c. audio-frequency power
d. audio-frequency current
2009. The typical application of a cold cathode tube is a

a. diode

b. tetrode
c. triode
d. pentode
2010. Vacuum tube rectifiers are \qquad affected by the changes in temperatures.

a. not

b. highly
c. greatly
d. severely
2011. The internal resistance of a gas-filled tube is that of a vacuum tube.
a. the same as
b. less than
c. more than
d. dependent
2012. The ionization potential in a gas diode depends upon
a. plate current
b. size of the tube
c. cathode construction
d. type and pressure of gas
2013. When the gas pressure in a gas-filled diode is increased, its PIV rating.
a. remains unchanged
b. decreases
c. increases
d. becomes infinite
2014. Ionization of cold cathode diode takes place at plate potential compared to hot cathode gas diode.
a. the same
b. much lower
d. zero
2015. A cold cathode diode is used as \qquad tube.
a. a rectifier
b. a regulating
c. a power-controlled
d. an amplifying
2016. For a conventional vacuum tube used in the uhf band.
a. the electron transit time becomes critical
b. the distance between the control grid and the plate must be increased
c. the physical size of the tube must be increased
d. only a pentode can be used because of noise effects

