\qquad

2007 ANDHRA UNIVERSITY b.TECH COMPUTER SCIENCE ENGINEERING II B.TECH I SEMESTER DIGITAL LOGIC DESIGN

TIME: 3 HOUR
MARK: 70

	$>$ First Question Is Compulsory
	$>$ Answer Any Four From The Remaining Questions
	$>$ All Questions Carry Equal Marks
	$>$ Answer All Parts Of Any Question At One Place

1.a) Given that (79) $10=(142) \mathrm{b}$ determine the value of b .
b) Rewrite the following expression in a form that requires as few inversions as possible $b^{\prime} c+a c d^{\prime}+a^{\prime} c+c(a+c)\left(a^{\prime}+d^{\prime}\right)$
c) Represent the function ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) $=\mathrm{y}$ using Kamangh Map.
d) Explain the behavior of the following logic circuit with input A and output B
e) Realize an Inverter and Buffer using Half-Adder
f) Explain clearly how a Flip-Flop is used as a memory unit
g) Draw the waveforms for a 3-bit ripple down counter.
2. a) In a certain number system, X and Y are two successive digits. When written as $X Y$, it is equal to 25 and when written as YX, it is equal to 31 in decimal system. Find the base of the system Also find the values of X and Y .
b) Construct one of the error detecting codes for single digit BCD numbers and Hexadecimal numbers.
3. Demonstrate, without using perfect induction, whether or not each of the following is valid. $a)(x+y)\left(x+y^{\prime}\right)$ ($\left.x^{\prime}+y\right)\left(x^{\prime}+y^{\prime}\right)=0$ b) $a^{\prime} b+b^{\prime} c+c^{\prime} a=a b^{\prime}+b c^{\prime}+c a^{\prime} c$) $a b+a^{\prime} c+b c d=a b+a^{\prime} c$
b) Write the HDL description of the circuit specified by the following Boolean functions:
$\mathrm{x}=\mathrm{A}(\mathrm{CD}+\mathrm{B})+\mathrm{BC}^{\prime}$
$\left.\mathrm{y}=\left(\mathrm{AB}+\mathrm{A}^{\prime} \mathrm{B}\right) \mathrm{C}+\mathrm{D}^{\prime}\right)$
$\mathrm{z}=\left[(\mathrm{A}+\mathrm{B})\left(\mathrm{C}^{\prime}+\mathrm{D}^{\prime} \mathrm{B}\right)\right]^{\prime}$
4. Given the function $T(w, x, y, z)=S(1,3,4,5,7,8,9,11,14,15)$
a) Use the K - map to determine the set of all prime implicants. Indicate specifically the essential ones. Find three distinct minimal expressions for T .
b) Assume that only unprimed variables are available. Construct a circuit which realizes T.
5. a) Design a combinational circuit that multiplies two 2-bit numbers. a1 ao and b1bo, to produce a 4 -bit product c3c2c1c0. Use AND gates and half-adder.
b) Design a combinational circuit that has four inputs and four outputs. The output generates the 2 ;s complement of input binary number.
6. Design a sequential circuit specified by the state diagram given below using T Flip-Flops.
-----DIAGRAM-----
b) Draw and explain the logic diagram of a master-slave D flip-flop using NAND gates.
7. a) Design a synchronous BCD counter with JK flip-flops.
b) Design a shift register with parallel load that operates according to the following function table: Shift Load Register Operation

00 No Change
01 Load Parallel Data
1 X Shift Right
8. Write short notes on the following
a) Programmable Array Logic
b) Asynchronous Sequential Logic
c) HDL for registers and Counters d) D-latch and D-Flip-Flop

