Super Talent Batches

India's Best Institute for IES, GATE \& PSUs

Eligibility	- Top 2000 Rank in GATE	- Appeared in IES or 3 PSUs Interview
(Any of the following)	- B.Tech from IIT	B.Tech from Private Engineering college with 70% marks

[^0]Q. 1 The process utilizing mainly thermal energy for removing material is
(a) USM
(b) ECM
(c) AJM
(d) LBM

Ans. (d)

Method		Mechanics of Removal
USM	-	Brittle fracture
ECM	-	Electrolysis
AJM	-	Mechanical action
LBM	-	Melting, vaporization i.e., thermal

Q. 2 Hot tearing in metal casting is due to
(a) high fluidity
(b) high melting point temperature
(c) wide range of solidification temperature
(d) low coefficient of thermal expansion

Ans. (c)
Due to residual stress, for wide range of solidification temperature hot tears develop in the casting.

End of Solution
Q. 3 A minimal spanning tree in network model involves
(a) all the nodes with cycle/loop allowed
(b) all the nodes with cycle/loop not allowed
(c) shortest path between start and end nodes
(d) All the nodes with directed

Ans. (b)
Q. 4 In which of the following options will the expression $\mathrm{P}<\mathrm{M}$ is true
(a) $\mathrm{M}<\mathrm{R}<\mathrm{P}<\mathrm{S}$
(b) $\mathrm{M}>\mathrm{S}<\mathrm{P}<\mathrm{S}$
(c) Q $<$ M $<$ F $<$ P
(d) $\mathrm{P}=\mathrm{A}<\mathrm{R}<\mathrm{M}$

Ans. (d)

End of Solution
Q. 5 The value of one US dollar is ₹ 65 compared to last 60 year. The Indian rupee has
(a) depressed
(b) depreciated
(c) appreciated
(d) stabilized

Ans．（b）
Indian rupee has depreciated．

Q． 6 Advice is
（a）verb
（b）noun
（c）adjective
（d）both verb and noun

Ans．（b）
Advice is noun－mean suggestion．
Advice is verb－mean to give advice．

Q． 7 Next term of the sequence $7 \mathrm{G}, 11 \mathrm{~K}, 13 \mathrm{M}$ ，is
（a） 15 Q
（b） 17 Q
（c） 15 P
（d） 17 P

Ans．（b）

A	B	C	D	E	F	G
			$\mathbf{1 1}$		$\mathbf{1 3}$	
H	I	J	K	L	\mathbf{M}	N
		$\mathbf{1 7}$				
O	P	\mathbf{Q}	R	S	T	U

Q． 8 A man can row at $8 \mathrm{~km} / \mathrm{hr}$ in still water．If it takes him thrice as long to row upstream as compared to row downstream velocity of flow in $\mathrm{km} / \mathrm{hr}$ is

Solution：

Let the velocity of man in still water and velocity of flow is V_{1} and V_{2} respectively．
Given，$\quad \mathrm{V}_{1}=8 \mathrm{~km} / \mathrm{hr}$
Time taken by the man when it rows along the flow direction

$$
\begin{equation*}
t=\frac{x}{V_{1}+V_{2}}=\frac{x}{8+V_{2}} \tag{i}
\end{equation*}
$$

and time taken when rows against the flow direction

$$
\begin{equation*}
3 t=\frac{x}{8-V_{2}} \tag{ii}
\end{equation*}
$$

Dividing eq．（ii）by（i），we get
made easy India's Best Institute for IES, GATE \& PSUs

$$
\begin{array}{rlrl}
3 & =\frac{1}{\left(8-\mathrm{V}_{2}\right)} \times\left(8+\mathrm{V}_{2}\right) \\
\Rightarrow & 8+\mathrm{V}_{2} & =24-3 \mathrm{~V}_{2} \\
\Rightarrow \quad \mathrm{~V}_{9} & =4 \mathrm{~km} / \mathrm{hr}
\end{array}
$$

Q. 9 Consider objective function $\mathrm{Z}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=3 \mathrm{x}_{1}+9 \mathrm{x}_{2}$, with the constrains
$\mathrm{x}_{1}+\mathrm{x}_{2} \leq 8$
$\mathrm{x}_{1}+2 \mathrm{x}_{2} \leq 4$
$x_{1} \geq 0, x_{2} \geq 0$
Then maximum value of objective function is \qquad

Solution:

$$
\begin{aligned}
& (\mathrm{Z})_{4,0}=3 \times 4+9 \times 0=12 \\
& (\mathrm{Z})_{0,2}=3 \times 0+9 \times 2=18 \\
& (\mathrm{Z})_{\max }=18
\end{aligned}
$$

Q. 10 The damping ratio of single DOF spring mass damping system, with mass of 1 kg , stiffness $=100 \mathrm{~N} / \mathrm{m}$ and viscous damping coefficient of $25 \mathrm{Ns} / \mathrm{m}$ is

Solution:

$$
\text { Damping ratio, } \quad \begin{aligned}
\zeta & =\frac{\mathrm{C}}{\mathrm{C}_{\mathrm{c}}}=\frac{\mathrm{C}}{2 \sqrt{\mathrm{~km}}} \\
& =\frac{25}{2 \sqrt{1 \times 100}}=\frac{25}{20} \\
& =1.25
\end{aligned}
$$

Q. 11 An amount of 100 kW of heat is transferred through a wall in steady state. One side of wall is maintained at $127^{\circ} \mathrm{C}$ and other at $27^{\circ} \mathrm{C}$. The entropy generation (in W/K) is

Solution:

$$
\begin{aligned}
\left(\mathrm{S}_{2}-\mathrm{S}_{1}\right) & =\int_{1}^{2} \frac{\mathrm{dQ}}{\mathrm{~T}}+(\Delta \mathrm{S})_{\text {gen }} \\
\Rightarrow \quad 0 & =\frac{100}{400}-\frac{100}{300}+(\Delta \mathrm{S})_{\text {gen }} \\
\Rightarrow \quad(\Delta \mathrm{S})_{\text {gen }} & =0.083 \mathrm{~kW} / \mathrm{K} \\
& =83.33 \mathrm{~W} / \mathrm{K}
\end{aligned}
$$

Alternate:

$$
\begin{aligned}
\Delta \mathrm{S}_{1} & =\frac{\mathrm{Q}}{\mathrm{~T}_{1}}=\frac{\mathrm{Q}}{400} \\
\Delta \mathrm{~S}_{2} & =\frac{\mathrm{Q}}{\mathrm{~T}_{2}}=-\frac{\mathrm{Q}}{300} \\
\Delta \mathrm{~S} & =\Delta \mathrm{S}_{1}+\Delta \mathrm{S}_{2} \\
& =\frac{100 \times 10^{3}}{400}-\frac{100 \times 10^{3}}{300} \\
& =-\frac{1000}{12}=-83.33 \mathrm{~W} / \mathrm{K}
\end{aligned}
$$

Q. 12 Annular disc has mass m, inner radius R, outer radius $=2 R$. Disc rolls on a flat surface without slipping. If the velocity of centre of mass is V. Then kinetic energy is

Solution:

$$
\begin{aligned}
& \mathrm{I}=\frac{\mathrm{m}\left[(2 \mathrm{R})^{2}-\mathrm{R}^{2}\right]}{2}=\frac{3}{2} \mathrm{mR}^{2} \\
& \mathrm{~V}_{\text {max }}=2 \omega \mathrm{R} \\
& \mathrm{~V}_{\text {min }}=0 \\
& \mathrm{~V}=\frac{\mathrm{V}_{\text {max }}+\mathrm{V}_{\text {min }}}{2}=\omega \mathrm{R} \\
& \text { Rotational } \\
& \text { K.E. }=\frac{1}{2} \mathrm{I} \omega^{2} \\
& =\frac{1}{2} \times \frac{3}{2} \mathrm{mR}^{2} \times \frac{\mathrm{V}^{2}}{\mathrm{R}^{2}}=\frac{3}{4} \mathrm{mV}^{2} \\
& \text { Linear K.E. } \quad=\frac{1}{2} \mathrm{mV}^{2} \\
& \text { Total K.E. } \\
& =\frac{3}{4} \mathrm{mV}^{2}+\frac{1}{2} \mathrm{mV}^{2} \\
& =\frac{5}{4} \mathrm{mV}^{2}
\end{aligned}
$$

Q. 13 A group consisting of equal no. of men and women. Of the group 20% of men and 50% of women are unemployed. If a person is selected at random from this group. The probability of selected person being employed is

Solution:

Probability of selected person being employed

$$
\begin{aligned}
& =0.5 \times 0.5+0.5 \times 0.8 \\
& =0.25+0.40 \\
& =0.65
\end{aligned}
$$

Q. 14 Next term of the series $81,54,36,24$ is

Solution:

81, 54, 36, 24
$1 \times 3^{4}, 2 \times 3^{3}, 4 \times 3^{2}, 8 \times 3^{1}, 16 \times 3^{0}$
Ans. 16
Q. 15 Actual scales of product in different month of a particular year are given below
Sep. Oct. Nov. Dec. Jan. Feb

| 180 | 280 | 250 | 190 | 240 |
| :--- | :--- | :--- | :--- | :--- | :--- |

The forecast at the sales, using the 4 month moving average method for the month of Feb is

Solution:

$$
\begin{aligned}
\mathrm{f}_{\mathrm{Feb}} & =\frac{250+250+190+240}{4} \\
& =240
\end{aligned}
$$

Q. 16 A Diesel engine has a compression ratio 17 and cutoff take place at 10% of the stroke. Assuming ratio of specific heat $\gamma=1.4$. The air standard efficiency in percent is

Solution:

$$
\begin{aligned}
& \left(\mathrm{V}_{3}-\mathrm{V}_{2}\right)=\frac{10}{100}\left(\mathrm{~V}_{1}-\mathrm{V}_{2}\right) \\
& \Rightarrow \quad \frac{\mathrm{V}_{3}-\mathrm{V}_{2}}{\mathrm{~V}_{1}-\mathrm{V}_{2}}=0.1 \\
& \Rightarrow \quad \frac{\frac{\mathrm{~V}_{3}}{\mathrm{~V}_{2}}-1}{\frac{\mathrm{~V}_{1}}{\mathrm{~V}_{2}}-1}=0.1 \\
& \Rightarrow \quad \frac{\rho-1}{r-1}=0.1 \\
& \Rightarrow \quad \frac{\rho-1}{17-1}=0.1 \\
& \Rightarrow \quad \rho=2.6 \\
& \text { (} \rho=\text { cut off ratio and } r=\text { compression ratio) } \\
& \text { Thermal efficiency, }
\end{aligned}
$$

$$
\begin{aligned}
\eta_{\text {th }} & =1-\frac{1}{r^{\gamma-1}}\left[\frac{\rho^{r}-1}{\gamma(\rho-1)}\right] \\
& =1-\frac{1}{17^{0.4}}\left[\frac{2.6^{1.4}-1}{1.4 \times(2.6-1)}\right] \\
& =59.6 \%
\end{aligned}
$$

Q. 17 Consider a simply supported beam of length 50h with a rectangular crosssection of depth 'h' and width $2 h$, the load carried at mid point. Find the ratio of the maximum shear stress to the maximum bending stress in the beam.
(a) 0.02
(b) 0.10
(c) 0.05
(d) 0.01

Ans. (d)

$$
\begin{aligned}
\gamma_{\max } & =\frac{3}{2} \frac{\mathrm{P}}{\mathrm{~A}}=\frac{3 \mathrm{P}}{4 \mathrm{~h}^{2}} \\
\mathrm{M}_{\max } & =\frac{\mathrm{PL}}{4}=\frac{\mathrm{P} \times 50 \mathrm{~h}}{4}=12.5 \mathrm{Ph} \\
\mathrm{I} & =\frac{\mathrm{bh}^{2}}{12}, \mathrm{z}=\frac{\mathrm{bh}^{2}}{6} \frac{\mathrm{bh}^{2}}{6}=\frac{2 \mathrm{~h} \times \mathrm{h}^{2}}{6}=\frac{\mathrm{h}^{3}}{6}
\end{aligned}
$$

made easy India's Best Institute for IES, GATE \& PSUs

$$
\begin{aligned}
& \sigma_{\max }=\frac{\mathrm{M}_{\max }}{\mathrm{z}}=\frac{12.5 \mathrm{Ph}}{\mathrm{~h}^{3}} \times 6=\frac{75 \mathrm{P}}{\mathrm{~h}^{2}} \\
& \frac{\gamma_{\max }}{\sigma_{\max }}=\frac{0.75}{75}=0.01
\end{aligned}
$$

Q. 18 Which one of the following pair of equation describes an irreversible heat engine
(a) $\oint \delta Q>0$ and $\oint \frac{\delta Q}{T}<0$
(b) $\oint \delta \mathrm{Q}<0$ and $\oint \frac{\delta \mathrm{Q}}{\mathrm{T}}<0$
(c) $\oint \delta Q>0$ and $\oint \frac{\delta Q}{T}>0$
(d) $\oint \delta Q<0$ and $\oint \frac{\delta Q}{T}>0$

Ans. (a)
Classius inequality for irreversible heat engine $\oint \frac{d Q}{T}<0$.
Heat content of irreversible heat engine $d Q>0$.
Q. 19 Definite integration $\int_{1}^{3} \frac{1}{\mathrm{x}} \mathrm{dx}$ is evaluated using trapezoidal rule with size of

1. The correct answer is

Solution:

$$
\begin{aligned}
\mathrm{I} & =\mathrm{h}\left[\frac{1}{2} \mathrm{f}(\mathrm{a})+\mathrm{f}\left(\mathrm{x}_{1}\right)+\frac{1}{2} \mathrm{f}(\mathrm{~b})\right] \\
\mathrm{f}(\mathrm{x}) & =\frac{1}{\mathrm{x}}, \mathrm{f}(\mathrm{a})=\mathrm{f}(1)=1 \\
\mathrm{f}(\mathrm{x})_{1} & =\mathrm{f}(2)=\frac{1}{2}, \mathrm{f}(\mathrm{~b})=\mathrm{f}(3)=\frac{1}{3} \\
\therefore \quad \mathrm{I} & =1\left[\frac{1}{2}+\frac{1}{2}+\frac{1}{6}\right]=\frac{7}{6}=1.167
\end{aligned}
$$

made easy India's Best Institute for IES, GATE \& PSUs
Q. 20 If a function is continuous at a point
(a) the limit of function may not exist at that point
(b) the function must be derivative at that point
(c) limit of function at the point tends to infinity
(d) the limit must exist at the point and this value of limit should be same as the value of function at a point

Ans. (d)
Q. 21 A cylindrical riser of dia. 'd', height ' h ' is situated at the top of casting and casting is of close type sand mold. Assume riser has constant volume, for the least rate of solidification $\mathrm{h}: \mathrm{d}$ will be
(a) $1: 2$
(b) $2: 1$
(c) $1: 4$
(d) $4: 1$

Ans. (a)
For least solidification time, surface area should be minimum.

$$
\begin{aligned}
\mathrm{A} & =\pi \mathrm{dh}+\frac{\pi \mathrm{d}^{2}}{4} \quad \text { (for top riser) } \\
\mathrm{V} & =\frac{\pi}{4} \mathrm{~d}^{2} \mathrm{~h} \\
\Rightarrow \quad \mathrm{~h} & =\frac{4 \mathrm{~V}}{\pi \mathrm{~d}^{2}} \\
\mathrm{~A} & =\frac{4 \mathrm{~V}}{\mathrm{~d}}+\frac{\pi}{4} \mathrm{~d}^{2}
\end{aligned}
$$

For A to be minimum,

$$
\begin{aligned}
& \frac{\partial \mathrm{A}}{\partial \mathrm{~d}}=0 \\
& \Rightarrow \quad-\frac{4 \mathrm{~V}}{\mathrm{~d}^{2}}+\frac{\pi \mathrm{d}}{2}=0 \\
& \text { or } \quad \mathrm{d}^{3}=\frac{8 \mathrm{~V}}{\pi}=\frac{8}{\pi} \frac{\pi}{4} \mathrm{~d}^{2} \times \mathrm{h} \\
& \Rightarrow \quad \frac{\mathrm{~h}}{\mathrm{~d}}=\frac{1}{2}=1: 2
\end{aligned}
$$

Q. 22 A machine produce 0,1 and 2 defective piece in a day with associated probability $\frac{1}{6}, \frac{2}{3}$ and $\frac{1}{6}$ respectively. The mean value and variance of number of defective piece produced by machining in a day respectively are
(a) 1 and $\frac{1}{3}$
(b) $\frac{1}{3}$ and 1
(c) 1 and $\frac{4}{3}$
(d) $\frac{1}{3}$ and $\frac{4}{3}$

Ans. (a)

x	0	1	2
$\mathrm{f}(\mathrm{x})$	$\frac{1}{6}$	$\frac{2}{3}$	$\frac{1}{6}$

Mean,

$$
\begin{aligned}
\mu & =\Sigma \mathrm{x}_{\mathrm{i}} \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)=0 \times \frac{1}{6}+1 \times \frac{2}{3}+2 \times \frac{1}{6}=1 \\
\mathrm{E}(\mathrm{x})^{2} & =\Sigma \mathrm{x}_{\mathrm{i}}^{2} \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)=0 \times \frac{1}{6}+1^{2} \times \frac{2}{3}+2^{2} \times \frac{1}{6}=\frac{2}{3}+\frac{2}{3}=\frac{4}{3} \\
\mathrm{~s}^{2} & =\operatorname{var}(\mathrm{x})=\mathrm{E}\left(\mathrm{x}^{2}\right)-\mu^{2} \\
& =\frac{4}{3}-1=\frac{1}{3}
\end{aligned}
$$

Q. 23

For what value of x deflection of A will be zero
(a) $0.25 l$
(b) $0.50 l$
(c) $0.33 l$
(d) l

Ans. (c)

$$
\frac{\mathrm{P}(1-\mathrm{x}) l^{2}}{2 \mathrm{EI}}-\frac{\mathrm{Pl} l^{3}}{3 \mathrm{EI}}=0
$$

$$
\begin{aligned}
\Rightarrow & \frac{1-\mathrm{x}}{2}-\frac{1}{3} & =0 \\
\Rightarrow & \frac{31-3 \mathrm{x}-21}{6} & =0 \\
\Rightarrow & \mathrm{x} & =\frac{1}{3}
\end{aligned}
$$

Q. 24 A double pipe counter flow heat exchanger transfers heat between two water streams. Tube side water at $19 \mathrm{ltr} / \mathrm{s}$ is heated from $10^{\circ} \mathrm{C}$ to 38°. Shell side water of $25 \mathrm{lts} / \mathrm{s}$ is entering at $46^{\circ} \mathrm{C}$. Assume constant properties of water, density is $1000 \mathrm{~kg} / \mathrm{m}^{3}$ and specific heat is $4186 \mathrm{~J} / \mathrm{kgK}$. The LMTD (in ${ }^{\circ} \mathrm{C}$) is

Solution:

$$
\begin{aligned}
\rho & =1000 \mathrm{~kg} / \mathrm{m}^{3} \\
\dot{\mathrm{~m}}_{\mathrm{c}} & =19 \mathrm{lit} . / \mathrm{s} \\
\dot{\mathrm{~m}}_{\mathrm{h}} & =25 \mathrm{lit} . / \mathrm{s}
\end{aligned}
$$

From energy balance,

$$
\begin{aligned}
\dot{\mathrm{m}}_{\mathrm{c}} \mathrm{C}_{\mathrm{w}}(38-10) & =\dot{\mathrm{m}}_{\mathrm{h}} \mathrm{C}_{\mathrm{w}}(46-\mathrm{x}) \\
\Rightarrow \quad \frac{19}{25} \times 28 & =46-\mathrm{x} \\
\text { or } \quad & =24.72^{\circ} \mathrm{C} \\
\mathrm{x} & =46^{\circ} \mathrm{C}, \mathrm{~T}_{\mathrm{h}_{2}}=24.72^{\circ} \mathrm{C}, \mathrm{~T}_{\mathrm{c}_{1}}=10^{\circ} \mathrm{C}, \mathrm{~T}_{\mathrm{c}_{2}}=38^{\circ} \mathrm{C} \\
\mathrm{~T}_{\mathrm{h}_{1}} & =48=8^{\circ} \mathrm{C} \\
\Delta \mathrm{~T}_{1} & =\mathrm{T}_{\mathrm{h}_{1}}-\mathrm{T}_{\mathrm{c}_{1}}=46-38 \\
\Delta \mathrm{~T}_{2} & =\mathrm{T}_{\mathrm{h}_{2}}-\mathrm{T}_{\mathrm{c}_{1}}=24.72-10=14.72^{\circ} \mathrm{C} \\
\Delta \mathrm{~T}_{\mathrm{lm}} & =\frac{\Delta \mathrm{T}_{1}-\Delta \mathrm{T}_{2}}{\log _{\mathrm{e}}\left(\frac{\Delta \mathrm{~T}_{1}}{\Delta \mathrm{~T}_{2}}\right)}=\frac{\Delta \mathrm{T}_{2}-\Delta \mathrm{T}_{1}}{\log _{\mathrm{e}}\left(\frac{\Delta \mathrm{~T}_{2}}{\Delta \mathrm{~T}_{1}}\right)} \quad\left(\because \Delta \mathrm{T}_{2}>\Delta \mathrm{T}_{1}\right)
\end{aligned}
$$

MADE EASY India's Best Institute for IES, GATE \& PSUs

$$
\Delta \mathrm{T}_{\mathrm{lm}}=\frac{14.72-8}{\log _{\mathrm{e}}\left(\frac{14.72}{8}\right)}=11.0206^{\circ} \mathrm{C}
$$

Q. 25 Consider the given project network, where numbers along various activities represent the normal time, the free float on activity $4-6$ and project duration, respectively are

(a) 2,13
(b) 0,13
(c) $-2,13$
(d) 2,12

Ans. (a)

Project duration $=13$
For 4-6 activity, free float $=8-4-2=2$
Q. 26 The divergence of the vector field $x^{2} y \hat{i}+x y \hat{j}+z^{2} \hat{k}, P(1,1,1)$ is
(a) 2
(b) 4
(c) 5
(d) 1

Ans. (c)

$$
\operatorname{div}\left[x^{2} y^{2} \hat{i}+x y \hat{j}+z^{2} \hat{k}\right]
$$

$$
\begin{aligned}
& =\frac{\partial}{\partial x}\left(x^{2} y\right)+\frac{\partial}{\partial y}(x y)+\frac{\partial}{\partial z}\left(z^{2}\right) \\
& =-2 x y+x+2 z
\end{aligned}
$$

At $\mathrm{P}(1,1,1)$
div. at $(1,1,1)$ is

$$
\begin{aligned}
& =2 \times 1 \times 1+1+2 \times 1 \\
& =5
\end{aligned}
$$

Q. 27 An analytic function of a complex variable $\mathrm{z}=\mathrm{x}+$ iy is expressed as $\mathrm{f}(\mathrm{z})=\mathrm{u}(\mathrm{x}, \mathrm{y})+\mathrm{iv}(\mathrm{x}, \mathrm{y})$ where $l=\sqrt{-1}$, if $\mathrm{u}=\mathrm{x}^{2}-\mathrm{y}^{2}$ the expression for v should be
(a) $x y+C$
(b) $2 x y+C$
(c) $x y-C$
(d) $x^{2} y^{2}+C$

Ans. (b)

$$
\begin{aligned}
& \frac{\partial u}{\partial z} & =\frac{\partial v}{\partial y} \\
\Rightarrow & \frac{\partial v}{\partial y} & =2 x \\
\therefore \quad & v & =2 x y+C
\end{aligned}
$$

Q. 28 Match the following

1. Elastic limit
2. Limit of proportionality
3. Upper yield point
4. Ultimate stress
5. Lower yield point
6. Failure point
(a) A-2, B-1, C-3, D-5, E-4, F-6
(b) A-1, B-3, C-2, D-4, E-5, F-6
(c) A-3, B-2, C-1, D-4, E-5, F-6
(d) A-2, B-3, C-4, D-5, E-1, F-6

Ans. (a)
Q. 29 In a hollow cylindrical tube of length L, conductivity ' k ', ' r_{i} ' is the inner radius and ' r_{0} ' is outer radius. T_{i} is greater than T_{o}. The thermal resistance is
(a) $\frac{1}{2 \pi k L} \ln \left(\frac{r_{i}}{r_{o}}\right)$
(b) $\frac{1}{2 \pi \mathrm{~kL}} \ln \left(\frac{\mathrm{r}_{0}}{\mathrm{r}_{\mathrm{i}}}\right)$
(c) $\frac{1}{2 \pi \mathrm{~kL}} \ln \left(\mathrm{r}_{\mathrm{i}} \times \mathrm{r}_{\mathrm{o}}\right)$
(d) $2 \pi \mathrm{~kL} \ln \left(\frac{\mathrm{r}_{\mathrm{i}}}{\mathrm{r}_{\mathrm{o}}}\right)$

Ans. (b)
Q. 30 Given, $d_{1}=60, d_{2}=40$. Find $D=?$

Solution:

$$
\begin{aligned}
& \mathrm{d}_{1}=60, \mathrm{~d}_{2}=40 \\
& \mathrm{H}
\end{aligned}=\mathrm{H}_{1}+\mathrm{d}_{1} .
$$

$$
\begin{aligned}
\mathrm{D} & =\frac{\mathrm{d}_{1}}{2}+\mathrm{O}_{1} \mathrm{P}+\frac{\mathrm{d}_{2}}{2} \\
\mathrm{O}_{1} \mathrm{P} & =\sqrt{\left(\mathrm{O}_{1} \mathrm{O}_{2}\right)^{2}-\left(\mathrm{O}_{2} \mathrm{P}\right)^{2}} \\
& =\sqrt{50^{2}-\left[\left(\mathrm{H}_{1}-\mathrm{H}_{2}\right)+10\right]^{2}} \\
\mathrm{D} & =50+\sqrt{50^{2}-\left[10+\left(\mathrm{H}_{1}-\mathrm{H}_{2}\right)\right]^{2}} \\
& =50+\sqrt{50^{2}-[10+(5.55-0.55)]^{2}} \\
& =97.7
\end{aligned}
$$

Q. 31 A fair coin is tossed infinite times then find the probability of $4^{\text {th }}$ head occurs exactly at $10^{\text {th }}$ times.

Ans. (0.205)
Q. 32100 bulbs produced by a company it having of 5 defective bulbs with it. For checking section verifies with by taking 4 bulbs at a time from 100 bulbs of there is any bulb is defective then it will be rejected otherwise it allow to marketing. The probability of getting non defective section of 100 bulbs is

Ans. (0.95)
Q. 33 India is a land of rich heritage and cultural diversity, which of the following points corroborates this
(a) In Indian cricket team, players are selected from more than 10 states
(b) There are more than 25 languages and over 2000 dialects
(c) India has 29 of states and 7 union tertiaries
(d) India population has 1.1 million people

Ans. (b)
Q. 34 The real root of the equation $5 x-2 \cos x-1=0$ (upto two decimal accuracy) is

Solution:

$$
\begin{aligned}
\mathrm{f}(\mathrm{x}) & =5 \mathrm{x}-2 \cos \mathrm{x}-1 \\
\mathrm{f}^{\prime}(\mathrm{x}) & =5+2 \sin \mathrm{x}
\end{aligned}
$$

By Newton Raphson's equation

$$
\begin{array}{lrl}
& \mathrm{x}_{\mathrm{n}+1} & =\mathrm{x}_{\mathrm{n}}-\frac{\mathrm{f}\left(\mathrm{x}_{\mathrm{n}}\right)}{\mathrm{f}^{\prime}\left(\mathrm{x}_{\mathrm{n}}\right)} \\
\text { Assuming } & \mathrm{x}_{0} & =1 \\
\Rightarrow & \mathrm{x}_{1} & =1-\frac{5 \times 1-2 \cos (57.32)-1}{5+2 \sin (57.32)} \\
\Rightarrow & \mathrm{x}_{1} & =0.5632 \\
\text { Iterating again } & & \mathrm{x}=1 \mathrm{ra} \\
& & \mathrm{x}_{2}
\end{array}
$$

$$
\left(\mathrm{x}=1 \mathrm{rad} .=57.32^{\circ}\right)
$$

Iterating again

$$
\begin{aligned}
x_{3} & =0.5425-\frac{5 \times 0.5425-2 \cos (31.09)-1}{5+2 \sin (31.09)} \\
& =0.5424
\end{aligned}
$$

Required answer is 0.54

[^0]: Benefits

 - Better Teaching Environment
 - Extra teaching hours
 - In-depth coverage of subjects

