Super Talent Batches

Q.2 A reversible heat engine receive 2 kJ of heat from reservoir at 1000°K and certain amount of heat from another reservoir at 800°K. It rejects 1 kJ of heat to reservoir at 400°K. Find net work output

Solution:

 \Rightarrow

For reversible heat engine

 $(\Delta S)_{Reversible cycle} = 0$

 $-\frac{Q_1}{T_1} - \frac{Q_2}{T_3} + \frac{Q_3}{T_3} = 3$

E MADE India's Best Institute for IES, GATE & PSUs

GATE-2014 Exam Solutions (15 Feb) Page Mechanical Engineering (Morning Session)

 $\frac{2}{1000} - \frac{Q_2}{800} - \frac{1}{400} = 0$ \Rightarrow $Q_2 = 0.4 \text{ kJ}$ \Rightarrow From heat balance, $Q_1 + Q_2 = W_N + Q_3$ $2 + 0.4 = W_N + 1$ \Rightarrow $W_N = 1.4 \text{ kJ}$ \Rightarrow

End of Solution

2

For a fully developed flow of water in a pipe of dia. = 10 cm, V = 0.1 m/**Q.3** sec. Kinematic viscosity = 10^{-5} m²/sec. Find Darcy friction factor

Solution:

$$R_e = \frac{VD}{v} = \frac{0.1 \times 0.1}{10^{-5}} = 1000$$

Darcy friction factor,

$$f = \frac{64}{R_e} = \frac{64}{1000}$$

= **0.064**

• End of Solution

End of Solution

Q.4 For completely submerged body with centre of gravity G, Centre of buoyancy B. Submerged body will be stable if

- (a) G above B (c) G coincident with B
- (b) G below B
- (d) Independent of G and B

- Ans. (b)
 - B should be above G.

Q.5 Water flow through pipe, whose inner dia. = 10 mm at the rate of 36 kg/ hr at 25°C. Viscosity at 25°C = 0.001 kg/ms. Find Reynold's No.

Solution:

d = 10 mm = 0.01 m
m = 36 kg/hr =
$$\frac{36}{3600} = \frac{1}{100}$$
kg/sec
= 10⁻² kg/sec
 $\mu = 0.001$ kg/m-s
R = ?

Mechanical Engineering (Morning Session) India's Best Institute for IES, GATE & PSUs 3 $R_{e} = \frac{\rho V d}{\mu} = \frac{\rho d}{\mu} \times \frac{Q}{A} \qquad (Q = \text{flow rate } m^{3}/\text{sec})$ $= \frac{\rho Q d}{\mu \times \frac{\pi}{4} d^2} = \frac{4\rho Q}{\pi d\mu}$ $R_{e} = \frac{4m}{\pi d\mu} = \frac{4 \times 10^{-2}}{\pi \times 0.01 \times 0.001}$ = 1273.2End of Solution

GATE-2014 Exam Solutions (15 Feb)

Page

Q.6 1.5 kg of water in saturated liquid state at 2 bar ($v_f = 0.00106$, $u_f = 504$ kJ/ kg, $h_f = 505$ kJ/kg). Heat added at constant pressure till temperature becomes $400^{\circ}C$ (v = 1.5, u = 2967, h = 3277 kJ/kg). Find the heat added.

Solution:

 \Rightarrow

MADE

EASY

From the First law of thermodynamics dq = du + Pdv $= (u_2 - u_1) + P(v_2 - v_1)$ $=(2967 - 504) + 2 \times 10^{2}(1.5 - 0.00106)$ = 2762.78 kJ/kg For 1.5 kg of water $Q = 2762.78 \times 1.5$ = 4144.182 kJEnd of Solution

Q.7 For an Otto cycle, given, pressure at inlet = 0.1 MPa, temperature at inlet = 308° K, $\gamma = 1.4$, R = 288.8 J/kgK. Compression ratio = 8. Maximum temperature = 2660° K. Find the heat supplied.

Solution:

MADE EASY India's Best Institu	ute for IES, GATE & PSUs	GATE-2014 Exam Solutions Mechanical Engineering (Morr	
Given:	$P_{1} = 0.1 \text{ MPa}$ $T_{1} = 308^{\circ}\text{K}$ $\gamma = 1.4$ $R = 288.8 \text{ J/kg}$ $r = 8$ $T_{3} = 2660^{\circ}\text{K}$ $Q_{S} = mC_{v}(T_{3} - T_{3})$		(i)
	$C_{v} = \frac{R}{\gamma - 1} = \frac{288}{0.4}$ $= 722 \text{ J/kgK}$ $\frac{T_{2}}{T_{1}} = \left(\frac{V_{1}}{V_{2}}\right)^{\gamma - 1} = 0$. <u>8</u> 1	()
\Rightarrow	$T_{2} = 308 \times (8)^{0.0}$ $= 707.6^{\circ}K$ $Q_{S} = 1 \times 722 (2)$ $= 1409.6 \text{ kJ}$	4 1660 - 707.6)	

Q.8 Given x is random variable,
$$P(x)$$
 is probability density

	x	1	2	3	1
	P(x)	0.3	0.6	0.1	
Find standard deviation	on.				
(a) 0.18				(b)	0.36
(c) 0.54				(d)	0.6

Ans. (d)

Mean,

$$\overline{x} = \frac{\Sigma f_i x_i}{\Sigma f_i}$$

-

$$= \frac{1 \times 0.3 + 2 \times 0.6 + 3 \times 0.1}{0.3 + 0.6 + 0.1} = 1.8$$

Standard deviation

$$\sigma_{x} = \sqrt{\frac{\Sigma f_{i} x_{i}^{2}}{N} - \overline{x}^{2}}$$
$$= \sqrt{\frac{0.3 \times 1^{2} + 0.6 \times 2^{2} + 0.1 \times 3^{2}}{1} - 1.8^{2}}$$
$$= 0.6$$

• • • End of Solution

India's Best Institute for IES, GATE & PSUs

Q.9
$$y = f(x)$$
 is the solution of $\frac{d^2y}{dx^2} = 0$. Boundary conditions are, $y = 5$, $x = 10$.

$$\frac{dy}{dx} = 2$$
 at x = 10. Find f(15) = ?

Solution:

 \Rightarrow

 $x = 10, \frac{dy}{dx} = 2$ At $C_1 = 2$

 $\frac{dy}{dx} = C_1$

 $\frac{\mathrm{d}^2 \mathrm{y}}{\mathrm{d} \mathrm{x}^2} = 0$

So,

Hence,

 $\frac{\mathrm{d}y}{\mathrm{d}x} = 2$ $y = 2x + C_2$ x = 10, y = 5 \Rightarrow At $5 = 2 \times 10 + C_2$ \mathbf{So} $C_2 = -15$ y = 2x - 15 \Rightarrow Hence,

$$y = 2x - 15$$

 $f(15) = y|_{x=15}$
 $= 2 \times 15 - 15$
 $= 15$

End of Solution

Q.10 Value of
$$\lim_{x\to 0} \frac{x - \sin x}{1 - \cos x}$$
 is
(a) 0 (b) 1
(c) 3 (d) Not defined

Ans. (a)

 $\underset{x\rightarrow 0}{\lim}\frac{x-\sin x}{1-\cos x}$ (0/0 form, applying 'L' Hospital rule) $dx(x - \sin x)$

$$= \lim_{x \to 0} \frac{dx(x - \sin x)}{\frac{d}{dx}(1 - \cos x)}$$

$$= \lim_{x \to 0} \frac{1 - \cos x}{0 + \sin x} \qquad (0/0 \text{ form})$$

MADE EASY MADE EASY India's Best Institute for IES, GATE & PSUs

GATE-2014 Exam Solutions (15 Feb) Page Mechanical Engineering (Morning Session) 6

$$= \lim_{x \to 0} \frac{\sin x}{\cos x}$$
$$= 0$$

End of Solution

The argument of the complex no. $\frac{1+i}{1-i}$, where $i = \sqrt{-1}$ is Q.11

Solution:

$$\frac{1+i}{1-i} \times \frac{1+i}{1+i} = \frac{(1+i)^2}{1-i^2} = \frac{1+i^2+2i}{1+1}$$
$$= i = 0 + i$$

ment $\theta = \tan^{-1}\left(\frac{y}{x}\right)$
$$= \tan^{-1}\left(\frac{1}{0}\right)$$
$$= \tan^{-1}(\infty)$$
$$= \frac{\pi}{2}$$

Argu

Q.12 The state of stress of a point is given by $\sigma_{\!_X}$ = -6 MPa, $\sigma_{\!_V}$ = 4 MPa and τ_{xy} = -8 MPa. The maximum tensile stress (in MPa) at that point is

Solution:

$$\sigma_1 = \frac{\sigma_x + \sigma_y}{2} + \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$
$$= \frac{-6+4}{2} + \sqrt{\left(\frac{-6-4}{2}\right)^2 + \left(-8\right)^2}$$
$$= -1 + \sqrt{25+64}$$
$$= 8.4339 \text{ MPa}$$

End of Solution

• • • End of Solution

Q.13 For a job in manufacturing process, arrival rate is 5 per shift of 8 hrs following Poisson's distribution. Service rate for the job is 40 min. Find the ideal time (in hr) of the job

Corporate Office: 44-A/1, Kalu Sarai, New Delhi-16 | Email : madeeasydelhi@gmail.com | Visit: www.madeeasy.in

GATE-2014 Exam Solutions (15 Feb) Page Mechanical Engineering (Morning Session)

7

(a)
$$\frac{1}{4}$$
 (b) $\frac{7}{5}$
(c) $\frac{14}{3}$ (d) $\frac{2}{3}$

ER

India's Best Institute for IES, GATE & PSUs

Ans. (d)

 \mathbf{S}

Arrival rate, $\lambda = \frac{5}{8}$ jobs per hour

ervice rate,
$$\mu = \frac{60}{40} = \frac{3}{2}$$
 jobs per hour

Fraction of time job is idle

$$= 1 - \frac{\lambda}{\mu} = 1 - \frac{5}{8} \times \frac{2}{3} = \frac{7}{12}$$

...

MADE

Idle time = Expected waiting time in the system × Probability of idleness

$$= \frac{1}{\mu - \lambda} \times \frac{7}{12} = \frac{1}{\frac{3}{2} - \frac{5}{8}} \times \frac{7}{12} = \frac{1}{\frac{12 - 5}{8} \times \frac{12}{7}}$$
$$= \frac{1}{\frac{7}{8} \times \frac{12}{7}} = \frac{8}{12} = \frac{2}{3}$$

• End of Solution

Water jet strikes a stationary vertical plate with a volume flow rate of 0.05 **Q.14** m³/sec and exerts a force of 1000 N on the plate. Find out the dia. of jet

Solution:

Given,

 \Rightarrow

 $Q = 0.05 \text{ m}^3/\text{sec}$ $F_n = \rho A V^2$ $= \rho A \times \left(\frac{Q}{A}\right)^2$ $= \frac{\rho Q^2}{A} = \frac{4\rho Q^2}{\pi d^2}$ $1000 = \frac{4 \times 1000 \times 0.05^2}{\pi d^2}$

	India's Best Institute f	OP 165, GATE	: o: Pous		gineering (Morning Session)	
	⇒).0564 m 5 6.4 mm			
					End of Solut	ion
Q.15	Which is a CH	FC refrige	erant			
	(a) R744			(b) R290		
	(c) R502			(d) R718		
Ans.			00			
	R744 R290	_	CO ₂ C-H- (Pro	nane)		
	R502	_	$CHClF_3$ +	$-CClF_2CF_3$		
	R718		Water	2 0		
					End of Solut.	ion
Q.16	Given $\begin{bmatrix} 1 & 0 \\ 2 & 6 \\ -1 & 0 \end{bmatrix}$	$\begin{pmatrix} 4\\2 \end{pmatrix} = -12$. Find de	eterminant of	$ \begin{array}{ccc} 4 & 12 & 8 \\ -2 & 0 & 4 \end{array} \right) = ? $	
Q.16 Solutio	on:	$ \begin{vmatrix} 0 \\ 4 \\ 2 \end{vmatrix} = -12 $ $ \begin{vmatrix} 0 \\ 2 \\ 8 \\ 4 \end{vmatrix} = 2 $		terminant of	$ \begin{array}{ccc} 4 & 12 & 8 \\ -2 & 0 & 4 \end{array} \right) = ? $	
	on:	$\begin{pmatrix} 5 & 0 \\ 2 & 8 \\ 5 & 4 \end{pmatrix} = 2$		eterminant of	$ \begin{array}{ccc} 4 & 12 & 8 \\ -2 & 0 & 4 \end{array} \right) = ? $	
	on:	$\begin{pmatrix} 5 & 0 \\ 2 & 8 \\ 5 & 4 \end{pmatrix} = 2$	$2^{n} \times -12$ $2^{3} \times -12$	terminant of		ioe
Solutio	bn: $ \begin{pmatrix} 2 & 6 \\ 4 & 12 \\ -2 & 0 \end{pmatrix} $	$ \begin{pmatrix} 3 & 0 \\ 2 & 8 \\ 3 & 4 \end{pmatrix} = 2 $ $ = 2 $ $ = -$	$2^{n} \times -12$ $2^{3} \times -12$ -96		$ \begin{array}{ccc} 4 & 12 & 8 \\ -2 & 0 & 4 \end{array} = ? $ • • • End of Solut	ion
	on:		$2^{n} \times -12$ $2^{3} \times -12$ -96 reld Alum			ion
Solutio	on: $ \begin{pmatrix} 2 & 6 \\ 4 & 12 \\ -2 & 0 \end{pmatrix} $ Why it is diffi- (a) low MP of (b) High therm	$\begin{pmatrix} 5 & 0 \\ 2 & 8 \\ 4 \end{pmatrix} = 2$ $= 2$ $= -$ cult to w Aluminiu	$2^n \times -12$ $2^3 \times -12$ -96 reld Alum			ion
Solutio	on: $ \begin{pmatrix} 2 & 6 \\ 4 & 12 \\ -2 & 0 \end{pmatrix} $ Why it is diffinent (a) low MP of (b) High therm (c) Softness	$\begin{pmatrix} 5 & 0 \\ 2 & 8 \\ 0 & 4 \end{pmatrix} = 2$ $= 2$ $= -$ cult to will to will all condu	$2^{n} \times -12$ $2^{3} \times -12$ -96 reld Alum um uctivity			ion
Q.17	on: $ \begin{pmatrix} 2 & 6 \\ 4 & 12 \\ -2 & 0 \end{pmatrix} $ Why it is diffine (a) low MP of (b) High therm (c) Softness (d) Specific he	$\begin{pmatrix} 5 & 0 \\ 2 & 8 \\ 0 & 4 \end{pmatrix} = 2$ $= 2$ $= -$ cult to will to will all condu	$2^{n} \times -12$ $2^{3} \times -12$ -96 reld Alum um uctivity			ion
Solutio	on: $ \begin{pmatrix} 2 & 6 \\ 4 & 12 \\ -2 & 0 \end{pmatrix} $ Why it is diffine (a) low MP of (b) High therm (c) Softness (d) Specific he	$\begin{pmatrix} 5 & 0 \\ 2 & 8 \\ 0 & 4 \end{pmatrix} = 2$ $= 2$ $= -$ cult to will to will all condu	$2^{n} \times -12$ $2^{3} \times -12$ -96 reld Alum um uctivity			ion
Q.17	on: $ \begin{pmatrix} 2 & 6 \\ 4 & 12 \\ -2 & 0 \end{pmatrix} $ Why it is diffine (a) low MP of (b) High therm (c) Softness (d) Specific he	$\begin{pmatrix} 5 & 0 \\ 2 & 8 \\ 0 & 4 \end{pmatrix} = 2$ $= 2$ $= -$ cult to will to will all condu	$2^{n} \times -12$ $2^{3} \times -12$ -96 reld Alum um uctivity			

Corporate Office: 44-A/1, Kalu Sarai, New Delhi-16 | Email : madeeasydelhi@gmail.com | Visit: www.madeeasy.in

GATE-2014 Exam Solutions (15 Feb) MADE EASy Page Mechanical Engineering (Morning Session) India's Best Institute for IES, GATE & PSUs 9 Solution: Given, m = 5Centre distance (n) = 450 mmSpeed reduction = 5:1 $\frac{Z_G}{Z_P} = \frac{5}{1}$ i.e., $Z_G = 5Z_P$...(i) \Rightarrow $\mathbf{x} = \mathbf{r}_1 + \mathbf{r}_2$ $= \frac{d_1 + d_2}{2}$ $= \frac{mZ_g + mZ_P}{2}$ $450 = \frac{5 \times Z_G + 5 \times Z_P}{2}$ \Rightarrow $\mathrm{Z}_{\mathrm{G}} + \mathrm{Z}_{\mathrm{P}} = 180$ \Rightarrow $5Z_{p}^{\circ} + Z_{p}^{\circ} = 180$ (from eq. (i)) \Rightarrow $Z_p = 30$ \Rightarrow End of Solution

Q.19 Mass P is attached with an inextensible string as shown in figure. Mass of P = 100 kg. mass of $S = 150 \text{ kg.} \mu$ for all surfaces = 0.4. Find F (in kN) required for movement of S.

India's Best Institute for IES, GATE & PSUs

$$= \left(\frac{1}{0.2} - 1\right) \times 1.5$$
$$= 6 \text{ minute}$$

End of Solution

Q.23 Given initial length 'L₀' subjected to drawing process. $L(t) = L_0(1 + t^2)$, (t is in minute) Find true strain (ϵ_T) in min⁻¹ = ?, at the end of '1' minute.

Solution:

 \Rightarrow

:..

$$\begin{split} \mathrm{L}(\mathrm{t}) &= \ \mathrm{L}_0(1 \ + \ \mathrm{t}^2) \\ \mathrm{\epsilon}_\mathrm{T} &= \ \int \mathrm{d} \mathrm{\epsilon} = \int \frac{\mathrm{d} \mathrm{L}}{\mathrm{L}} \\ \mathrm{L} &= \ \mathrm{L}_0(1 \ + \ \mathrm{t}^2) \\ \mathrm{d} \mathrm{L} &= \ \mathrm{L}_0 \ \times \ 2\mathrm{t} \ \mathrm{d} \mathrm{t} \end{split}$$

$$\varepsilon_{\rm T} = \int_0^1 \frac{2t {\rm L}_0 dt}{{\rm L}_0 \left(1+t^2\right)} = \int_0^1 \frac{2t dt}{\left(1+t^2\right)^2}$$

Now, Let $(1 + t^2) = z$ $\Rightarrow \qquad 2t dt = dz$

at	t =	0,	z = 1
at	t =	1,	z = 2

$$\varepsilon_{\rm T} = \int_1^2 \frac{dz}{z} = \log_e (z) \Big|_1^2$$
$$= \log_e 2 - \log_e 1$$

$$= 0.693 \text{ min.}^{-1}$$

• • End of Solution

Mass of the beam is 'm' and spring stiffness is 'k'. A hinge is attached with the beam as shown above. What will be the natural frequency of the system.

Q.25 Consider the following:

- I. Mating gear is a higher pair
- II. Revolute pair is lower pair

MADE EASY	NADE EASY ndia's Best Institute for IES, GATE & PSUs	GATE-2014 Exam Solutions (15 Feb) Mechanical Engineering (Morning Session)	Page 13
Ans.	(a) Both are correct(c) I is incorrect, II is correct(a)		
Q.26	Which one of the following is of (a) WEKO (c) FNTX	• • • End of Solution Id one out (b) IQWA (d) NVBD	n
Ans.	(d)	• • • End of Solutio	
Q.27 Solutio	12, 35, 81, 173, 357, on: $12 \times 2 + 12$ $35 \times 2 + 12$ $81 \times 2 + 12$ $173 \times 2 + 12$ $357 \times 2 + 12$	1 = 81 1 = 173 1 = 357	
Q.28 Solutio		••• <i>End of Solution</i> rs have a single child per family, while the probability that a child is	ne
Q.29		• • • <i>End of Solutio</i> a uniform speed crosses a platform in 6 g on the platform in 20 sec. Then find th	30
Solutio	on:		
	Platform length Train length	n = 280 m	
	$\therefore \qquad \frac{x + 280}{60}$ or 2	$x = \frac{280}{20}$ x = 560 m	
Q.30	(i) All the women are entrepret(ii) Source of the women are doThen by using above statements, w(a) All the doctors are entrepret(b) Some doctor are entreprete	octors. which of the following statement is inferred neurs	_
Corpo	rate Office: 44-A/1, Kalu Sarai, New Delhi-16 Em	ail : madeeasydelhi@gmail.com Visit: www.madeeasy.in	

