|                    |        | ractice or any attempt to commit nation will DISQUALIFY THE CA |                     |
|--------------------|--------|----------------------------------------------------------------|---------------------|
|                    | PAPER  | R - I CHEMISTRY & PH                                           | IYSICS              |
| Version Code       |        | Question Booklet<br>Serial Number                              |                     |
| Time : 150 Minutes |        | Number of Questions : 120                                      | Maximum Marks : 480 |
| Name of Candida    | te     |                                                                |                     |
| Roll Number        |        |                                                                |                     |
| Signature of Cand  | didate |                                                                |                     |
|                    | INIC   | TRUCTIONS TO THE CANDID                                        | ATE                 |

## INSTRUCTIONS TO THE CANDIDATE

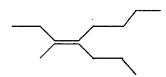
- 1. Please ensure that the VERSION CODE shown at the top of this Question Booklet is the same as that shown in the OMR Answer Sheet issued to you. If you have received a Question Booklet with a different VERSION CODE, please get it replaced with a Question Booklet with the same VERSION CODE as that of the OMR Answer Sheet from the Invigilator. THIS IS VERY IMPORTANT.
- 2. Please fill in the items such as name, signature and roll number of the candidate in the columns given above. Please also write the Question Booklet Sl. No. given at the top of this page against item 4 in the OMR Answer Sheet.
- Please read the instructions given in the OMR Answer Sheet for marking answers.
   Candidates are advised to strictly follow the instructions contained in the OMR Answer Sheet.
- 4. This Question Booklet contains 120 Questions. For each Question, five answers are suggested and given against (A), (B), (C), (D) and (E) of which, only one will be the Most Appropriate Answer. Mark the bubble containing the letter corresponding to the 'Most Appropriate Answer' in the OMR Answer Sheet, by using either Blue or Black ball point pen only.
- 5. Negative Marking: In order to discourage wild guessing, the score will be subject to penalization formula based on the number of right answers actually marked and the number of wrong answers marked. Each correct answer will be awarded FOUR marks. One mark will be deducted for each incorrect answer. More than one answer marked against a question will be deemed as incorrect answer and will be negatively marked.

IMMEDIATELY AFTER OPENING THIS QUESTION BOOKLET, THE CANDIDATE SHOULD VERIFY WHETHER THE QUESTION BOOKLET ISSUED CONTAINS ALL THE 120 QUESTIONS IN SERIAL ORDER. IF NOT, REQUEST FOR REPLACEMENT.

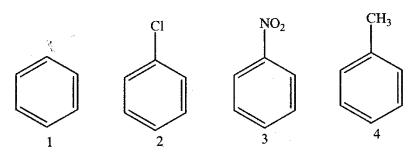
DO NOT OPEN THE SEAL UNTIL THE INVIGILATOR ASKS YOU TO DO SO

## PLEASE ENSURE THAT THIS BOOKLET CONTAINS 120 QUESTIONS SERIALLY NUMBERED FROM 1 TO 120 (Printed Pages : 32)

Among the following which are ambidentate ligands?


b.  $NO_3^-$  c. EDTA<sup>4-</sup>

|    | d. $C_2O_4^{2-}$                        | e. SCN <sup>-</sup>                   | f. H <sub>2</sub> NC     | H <sub>2</sub> CH <sub>2</sub> NH <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                        |
|----|-----------------------------------------|---------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
|    | (A) a and                               | b                                     | (B)                      | c and d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | a and f                                                                |
|    | (D) c and                               | f                                     | (E)                      | a and e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                        |
| 2. | is six and                              | there is no mo                        | lecule of                | hydration in it                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . The volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | of 0.1 M AgNO <sub>3</sub> f 0.01 M solution                           |
|    | (A) 40 m                                | L                                     | (B)                      | 20 mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 60 mL                                                                  |
| 3. | \$150 WAS \$15 KG                       | L<br>form of butant<br>bonds, Iπ bond | Mar Sign Con             | AND SEA OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                        |
|    |                                         | bonds, 1 π bond                       |                          | 993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 42552                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                        |
|    | 9/90                                    | bonds, 1 π bone                       | 강한 왕(왕) 식민(라             | 100 TO 10 | 2,590 RUGOL 4855 8315.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                        |
|    | 34575                                   | bonds, $2 \pi$ bonds                  | Harrie Carlo             | will be waster at the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - 1692 - YOMAY - 1882 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - 1682 - |                                                                        |
|    | (E) 13 σ                                | bonds, 1 π bond                       | and 2 ion                | le pairs of elect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | rons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                        |
| 4. | The Prussi formation                    |                                       | obtained i               | n the Lassaigne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e's test for nitr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ogen is due to the                                                     |
|    | (A) iron(                               | II) hexacyanofe                       | errate(III)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                        |
|    |                                         | III) hexacyanof                       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                        |
|    | (C) iron(                               | III) hexacyanof                       | errate(III)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                        |
|    | • • • • • • • • • • • • • • • • • • • • | II) hexacyanofe                       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                        |
|    | (E) sodiu                               | ım hexacyanofe                        | errate(III)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                        |
| 5. | 20% carbo<br>yields amr                 | on, 6.7% hydro                        | gen, 46.79<br>solid resi | % nitrogen and due. The solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I the rest oxygresidue gives a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | are same, contains<br>gen. On heating it<br>violet colour with<br>I is |
|    | $(A)$ $NH_2$                            | COONH4                                | (B)                      | CH <sub>3</sub> COONH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NH <sub>2</sub> NHCHO                                                  |
|    | (D) HCC                                 | ONH <sub>4</sub>                      | (E)                      | NH <sub>2</sub> CONH <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                        |
|    |                                         |                                       | S                        | D L 3171-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MARKET                                                                 |
|    |                                         |                                       | Space for                | r Rough Work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                        |
|    |                                         |                                       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                        |
|    |                                         |                                       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                        |


1.

a. NO,

**6.** Give the IUPAC name of the alkene



- (A) Z-3-methyl-4-propyl-3-octene
- (B) E-3-methyl-4-propyl-3-octene
- (C) E-4-butyl-3-methyl-3-heptene
- (D) E-2-ethyl-3-propyl-2-heptene
- (E) Z-2-ethyl-3-propyl-2-heptene
- 7. Which of the following isomer will have the highest octane number?
  - (A) n-octane
  - (B) 2-methylheptane
  - (C) 2-methylpentane
  - (D) 2,2,4-trimethylpentane
  - (E) 2-methylhexane
- 8. From which one of the following, both ethylene and acetylene could be prepared in a single step reaction
  - (A) CH<sub>3</sub>CH<sub>2</sub>OH
  - (B) Br-CH<sub>2</sub>-CH<sub>2</sub>-Br
  - (C) CH<sub>3</sub>CH<sub>2</sub>Br
  - (D) Br-CH<sub>2</sub>-CH<sub>2</sub>-OH
  - (E) CH<sub>3</sub>COOH
- **9.** The decreasing order of reactivity towards electrophilic substitution reaction of the following compounds is



- (A) 1 > 3 > 4 > 2
- (B) 4 > 1 > 3 > 2
- (C) 4 > 1 > 2 > 3

- (D) 4 > 2 > 1 > 3
- (E) 2 > 4 > 1 > 3

- 10. Which among following statements are true with respect to electronic displacement in a covalent bond?
  - 1) Inductive effect operates through  $\pi$  bond
  - 2) Resonance effect operates through  $\sigma$  bond
  - 3) Inductive effect operates through  $\sigma$  bond
  - 4) Resonance effect operates through  $\pi$  bond
  - 5) Resonance and inductive effects operate through  $\sigma$  bond
  - (A) 3 and 4

- (B) 1 and 2
- (C) 2 and 4

(D) 1 and 3

- (E) 2 and 3
- 11. Which of the following is not aromatic?
  - (A) Benzene
  - (B) Cyclopentadienyl cation
  - (C) Cyclopropenyl cation
  - (D) Tropylium cation
  - (E) Cyclopentadienyl anion
- 12. Which among the following compound will exhibit optical isomerism?
  - (A) tert-butylamine
  - (B) sec-butylamine
  - (C) Isobutylamine
  - (D) n-Butylamine
  - (E) Neopentylamine
- 13. The most stable geometrical isomer among the following is

(A) , 
$$CH_2$$
- $CH_3$   $H$   $CH_2$ - $CH_3$   $H$   $CH_2$ - $CH_3$   $H$   $CH_2$ - $CH_3$   $CH_3$   $CH_3$   $CH_3$   $CH_4$   $CH_5$   $CH_$ 

(D) 
$$CH_3$$
  $H$   $H_3C-H_2C$   $H$   $CH_3$   $CH_3$ 

14. The R-isomers among the following are

- (A) i and ii only
- (B) i and iii only
- (C) ii and iii only
- (D) iii and iv only
- (E) i, ii and iv only
- 15. CCl<sub>4</sub> is a well known fire extinguisher. However after using it to extinguish fire, the room should be well ventilated. This is because
  - (A) it is flammable at higher temperatures
  - (B) it is toxic
  - (C) it produces phosgene by reaction with water vapour at higher temperatures
  - (D) it is corrosive
  - (E) it is anaesthetic
- 16. Which of the following will be least reactive in nucleophilic substitution?
  - (A) CH<sub>3</sub>-CH<sub>2</sub>-CH<sub>2</sub>Cl
  - (B)  $(CH_3)_3CC1$
  - (C) CH<sub>3</sub>-CHCl-CH<sub>3</sub>
  - (D)  $^{\prime}CH_2=CH-CH_2CI$
  - (E) CH<sub>2</sub>=CHCl

- 17. The hydrolysis of 2-bromo-3-methylbutane by  $S_N1$  mechanism gives mainly
  - (A) 3-methyl-2-butanol
  - (B) 2-methyl-2-butanol
  - (C) 2,2-dimethyl-2-propanol
  - (D) 2-methyl-1-butanol
  - (E) 1-pentanol
- 18. Which of the following pathways produces 2-hexanone?
  - (i) 1-hexyne is treated with H<sub>2</sub>SO<sub>4</sub>, HgSO<sub>4</sub> and water
  - (ii) 3-methyl-2-heptene is treated with O<sub>3</sub> followed by hydrolysis
  - (iii) n-butyl magnesium bromide reacts with acetaldehyde followed by hydrolysis and then chromic acid oxidation
  - (iv) hydroboration-oxidation of 1-hexyne
  - (A) (i), (ii) and (iii)
  - (B) (i) and (ii) only
  - (C) (i), (ii) and (iv)
  - (D) (i) and (iii) only
  - (E) all the four methods
- 19. When 2-chloro-2-methyl butane is heated with alcoholic KOH, the possible product/s is/are
  - (a)  $(CH_3)_2C=CHCH_3$  (b)  $CH_2=C(CH_3)CH_2CH_3$ 
    - (B) (a) and (c)
- (C) (b) and (c)

(c)  $(CH_3)_2CHCH=CH_2$ 

(D) (a) only

(A) (a), (b) and (c)

(E) (a) and (b)

20. Anisole 
$$\xrightarrow{\text{(CH}_3)_3\text{CCI}} \xrightarrow{\text{Cl}_2/\text{FeCl}_3} \xrightarrow{\text{HBr}} X$$

The product 'X' in the above series of reactions is

(A) 
$$OCH_3$$
 $Br$ 
 $C(CH_3)_3$ 

(D) 
$$Cl$$
  $C(CH_3)_3$ 

(E) 
$$Cl$$

$$C(CH_3)_3$$

- 21. Which of the following exists as zwitter ion?
  - (A) p-Aminophenol
- (B) Sulphanilic acid
- (C) Salicylic acid

- (D) Ethanolamine
- (E) p-Amino acetophenone
- 22. The major product in the reaction of N-phenylbenzamide with  $\mathrm{Br}_2$  /Fe is

- 23. When nitrobenzene is reduced with zinc and methanolic NaOH, the product obtained is
  - (A) aniline
  - (B) phenyl hydroxylamine
  - (C) p-aminophenol
  - (D) azobenzene
  - (E) hydrazobenzene
- 24. Denaturation of protein
  - (A) disrupts the primary or secondary or tertiary structure of protein
  - (B) disrupts the secondary and tertiary structures only
  - (C) disrupts all the primary, secondary and tertiary and even the quaternary structure of protein
  - (D) will not affect the original biological activity
  - (E) is always irreversible
- 25. If one strand of DNA has the sequence ATGCTTGA, the sequence in the complimentary strand would be
  - (A) TCCGAACT
  - (B) TACGTAGT
  - (C) TACGAACT
  - (D) TACGTAGT
  - (E) TACGAATC

- 26. Pick out the incorrect statement(s) from the following
  - 1. Glucose exists in two different crystalline forms,  $\alpha$ -D-glucose and  $\beta$ -D-glucose
  - 2.  $\alpha$ -D-glucose and  $\beta$ -D-glucose are anomers
  - 3.  $\alpha$ -D-glucose and  $\beta$ -D-glucose are enantiomers
  - 4. Cellulose is a straight chain polysaccharide made of only  $\beta$ -D-glucose units
  - 5. Starch is a mixture of amylose and amylopectin, both contain unbranched chain of  $\alpha$ -D-glucose units
  - (A) 1 and 2 only
- (B) 2 and 3 only
- (C) 3 and 4 only

- (D) 3 and 5 only
- (E) 4 and 5 only
- 27. Which of the following statement is not true?
  - (A) Some disinfectants can be used as antiseptic at low concentration
  - (B) Sulphadiazine is a synthetic antibacterial
  - (C) Pheromones provide chemical means of establishing communication
  - (D) Aspirin is analgesic and antipyretic
  - (E) Norethindrone is a pheromone
- 28. The environmental friendly method of killing harmful insects is through the use of
  - (A) insecticides
  - (B) sex attractants
  - (C) sex harmones
  - (D) pesticides
  - (E) antibiotics
- 29. The process of 'eutrophication' is due to
  - (A) increase in concentration of insecticide in water
  - (B) increase in concentration of fluoride ion in water •
  - (C) the reduction in concentration of the dissolved oxygen in water due to phosphate pollution in water
  - (D) attack of younger leaves of a plant by peroxyacetyl nitrate
  - (E) increase in concentration of radioactive substances in water

| 30. |                                   | following, the number of prote<br>less than the number of electro | ons is greater than neutrons but |
|-----|-----------------------------------|-------------------------------------------------------------------|----------------------------------|
|     | (A) D <sub>3</sub> O <sup>+</sup> | (B) SO <sub>2</sub>                                               | (C) H <sub>2</sub> O             |
|     | (D) $S^{2-}$                      | (E) OH-                                                           |                                  |

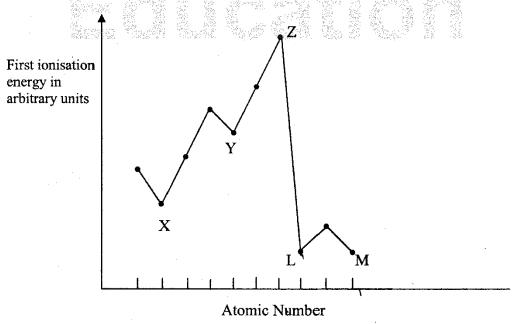
- A metal M of equivalent mass E forms an oxide of molecular formula  $M_xO_y$ . The 31. atomic mass of the metal is given by the correct equation
  - (A) 2E(y/x)(B) xyE (C) E/y (D) y/E (E) E/2 (x/y)
- 32. The maximum kinetic energy of photoelectrons ejected from a metal, when it is irradiated with radiation of frequency  $2 \times 10^{14} \, \mathrm{s}^{-1}$  is  $6.63 \times 10^{-20} \, \mathrm{J}$ . The threshold frequency of the metal is
  - (A)  $2 \times 10^{-14} \text{ s}^{-1}$  (B)  $3 \times 10^{14} \text{ s}^{-1}$  (C)  $2 \times 10^{14} \text{ s}^{-1}$  (D)  $1 \times 10^{-14} \text{ s}^{-1}$  (E)  $1 \times 10^{14} \text{ s}^{-1}$
- Arrange the following ions in the order of decreasing X-O bond length, where X is the central atom in SiO<sub>4</sub><sup>4-</sup>, ClO<sub>4</sub><sup>-</sup>, PO<sub>4</sub><sup>3-</sup>, SO<sub>4</sub><sup>2-</sup>
  - (A)  $CIO_{4}^{-} > SO_{4}^{2-} > PO_{4}^{3-} > SiO_{4}^{4-}$ (B)  $SiO_{4}^{4-} > PO_{4}^{3-} > SO_{4}^{2-} > CIO_{4}^{-}$
  - (C)  $SiO_4^{4-} > PO_4^{3-} > ClO_4^- > SO_4^{2-}$
  - (D)  $SiO_4^{4-} > SO_4^{2-} > PO_4^{3-} > ClO_4^{-}$

  - (E)  $SO_4^{2-} > PO_4^{3-} > ClO_4^- > SiO_4^{4-}$
- Oxidation number of iodine in IO<sub>3</sub>, IO<sub>4</sub> KI and I<sub>2</sub> respectively are 34.
  - (A) -1, -1, 0, +1
- (B) +3, +5, +7, 0
- (C) +5, +7, -1, 0

- (D) -1, -5, -1, 0
- (E) -2, -5, -1, 0
- 35. In which of the following ions there is no S-S bond
  - (A)  $S_2O_4^{2-}$  (B)  $S_2O_6^{2-}$  (C)  $S_2O_2^{2-}$  (D)  $S_2O_3^{2-}$  (E)  $S_2O_7^{2-}$

- When a bottle of dry ammonia and a bottle of dry HCl connected through a long tube are opened simultaneously at both ends, at first
  - (A) a white ring is formed at the centre of the tube
  - (B) a white ring is formed near the ammonia bottle-
  - (C) entire length of tube turns white
  - (D) a white ring is formed near HCl bottle
  - (E) no white ring is formed
- 37. A 4.0 dm<sup>3</sup> flask containing N<sub>2</sub> at 4.0 bar was connected to a 6.0 dm<sup>3</sup> flask containing helium at 6.0 bar, and the gases were allowed to mix isothermally. Then the total pressure of the resulting mixture will be
  - (A) 10.0 bar
- (B) 5.2 bar
- (C) 3.6 bar

(D) 1.6 bar


- (E) 5.0 bar
- 38. 4.48 L of an ideal gas at STP requires 12.0 calories to raise its temperature by 15°C at constant volume. The C<sub>p</sub> of the gas is
  - (A) 3 cal

(B) 4 cal

(C) 7 cal

(D) 6 cal

- (E) 9 ca
- 39. In the graph below, the one which represents an alkali metal with the higher atomic number is



(A) X

(B) Y

(C) Z

(D) L

(E) M

| 40. | Which two elemen                                                     | ts in the periodic | table would yo                    | ou expect to cor                     | mbine in the most  |  |  |
|-----|----------------------------------------------------------------------|--------------------|-----------------------------------|--------------------------------------|--------------------|--|--|
|     | violent fashion                                                      |                    |                                   |                                      |                    |  |  |
|     | (A) H and O                                                          |                    |                                   |                                      |                    |  |  |
|     | (B) Cl and F                                                         |                    |                                   |                                      |                    |  |  |
|     | (C) Mg and N                                                         |                    |                                   |                                      |                    |  |  |
|     | (D) P and O                                                          |                    |                                   |                                      |                    |  |  |
|     | (E) Cs and F                                                         |                    |                                   |                                      |                    |  |  |
| 41. | An element 'X' be                                                    | longs to fourth p  | period and fifted                 | enth group of th                     | ne periodic table. |  |  |
|     | Which one of the 'X'? It has                                         | following is true  | regarding the                     | outer electronic                     | configuration of   |  |  |
|     | (A) partially filled                                                 | l 'd' orbitals and | l completely fill                 | ed 's' orbitals                      |                    |  |  |
|     | (B) completely filled 's' orbital and completely filled 'p' orbitals |                    |                                   |                                      |                    |  |  |
|     | (C) completely filled 's' orbital and half-filled 'p' orbitals       |                    |                                   |                                      |                    |  |  |
|     | (D) half-filled 'd'                                                  | orbitals and con   | pletely filled 's                 | ' orbitals                           |                    |  |  |
| 3   | (E) completely fi                                                    | lled 'd', 's' and  | 'p' orbitals                      |                                      |                    |  |  |
| 42. | Which of the follow                                                  | ving metal is not  | manufactured b                    | w electrolysic?                      |                    |  |  |
| 72. | \$1,57,587,586                                                       | F.3. F.            | 1 - پور                           | , 5 (10 %)<br>** (1.12)<br>** (1.12) | A.1                |  |  |
|     | (A) Na<br>(D) Fe                                                     | (B)<br>(E)         | Mg<br>Ti                          | (C)                                  | Al                 |  |  |
|     |                                                                      |                    |                                   |                                      |                    |  |  |
| 43. | The method not use                                                   | ed in metallurgy   | to refine the imp                 | oure metal is                        |                    |  |  |
|     | (A) Mond's proce                                                     | ess                |                                   |                                      |                    |  |  |
| •   | (B) Van-Arkel pr                                                     | ocess              |                                   |                                      |                    |  |  |
|     | (C) Amalgamatio                                                      | n process          |                                   |                                      |                    |  |  |
|     | (D) Liquation                                                        |                    |                                   |                                      |                    |  |  |
|     | (E) Zone-refining                                                    |                    |                                   |                                      |                    |  |  |
| 44. | Which of the follow                                                  | ving on thermal    | decomposition y                   | rields a basic as                    | well as an acidic  |  |  |
|     | oxide?                                                               |                    |                                   |                                      |                    |  |  |
|     | (A) KClO <sub>3</sub>                                                | (B)                | Na <sub>2</sub> CO <sub>3</sub>   | <sub>×</sub> (C)                     | NaNO <sub>3</sub>  |  |  |
|     | (D) CaCO <sub>3</sub>                                                | (E)                | NH <sub>4</sub> NO <sub>3</sub> × |                                      |                    |  |  |
|     |                                                                      | Space fo           | r Rough Work                      |                                      |                    |  |  |
|     |                                                                      | Space 10           | I Wasii War                       |                                      |                    |  |  |

- 45. The ion(s) that act/s as oxidizing agent in solution is/are
  - (A) Tl<sup>+</sup> and Al<sup>3+</sup>
  - (B)  $B^{3+}$  and  $Al^{3+}$
  - Tl<sup>3+</sup> only
  - (D)  $B^{3+}$  only
  - (E) Ti<sup>3+</sup> only
- 46. Molecular shapes of  $SF_4$ ,  $CF_4$  and  $XeF_4$  are
  - (A) the same with 1, 1 and 1 lone pairs of electrons respectively on the central atom
  - the same with 1, 0 and 2 lone pairs of electrons respectively on the central (B)
  - (C) different with 0, 1 and 2 lone pairs of electrons respectively on the central
  - (D) different with 2, 0 and 1 lone pairs of electrons respectively on the central
  - (E) different with 1, 0 and 2 lone pairs of electrons respectively on the central atom
- 47. Pick out the stronger reducing agent among the following oxyacids of phosphorus
  - (A) hypophosphorous acid (B) phosphorous acid
  - (C) hypophosphoric acid
- (D) pyrophosphorous acid
- (E) phosphoric acid
- A transition metal 'A' has 'spin-only' magnetic moment value of 1.8 BM. When it 48. is reacted with dilute sulphuric acid in the presence of air, its compound 'B' is formed. 'B' reacts with compound 'C' to give compound 'D' with the liberation of iodine. Then the metal A and compounds B, C and D are respectively
  - (A) Ti, TiSO<sub>4</sub>, KI and TiI<sub>2</sub>
  - (B) Zn,  $ZnSO_4$ , KI and  $Zn_2I_2$
  - (C) · Cu, CuSO<sub>4</sub>, KI and Cu<sub>2</sub>I<sub>2</sub>
  - (D) Cu, CuSO<sub>4</sub>, Cu<sub>2</sub>I<sub>2</sub> and CuI<sub>2</sub>
  - (E) Cu, CuSO<sub>4</sub>, KI and CuI<sub>2</sub>

- Which of the following pairs of transition metal ions are the stronger oxidising 49. agents in aqueous solutions?
  - (A)  $V^{2+}$  and  $Cr^{2+}$
  - (B) Ti<sup>2+</sup> and Cr<sup>2+</sup>
  - (C)  $Mn^{3+}$  and  $Co^{3+}$
  - (D)  $V^{2+}$  and  $Fe^{2+}$
  - (E)  $Ni^{2+}$  and  $Fe^{2+}$
- 50. Which one of the following d-block elements has half-filled penultimate d-subshell as well as half-filled valence s-subshell?
  - (A) Cr

(B)

(C) Pt

(D) Cu

- (E) Au
- 51. Which one of the following combinations will give the highest stability to a nucleus with atomic number Z and mass number N?
  - (A) Even Z and odd N
  - (B) Odd Z and even N
  - (C) Even Z and even N
  - (D) Odd Z and odd N
  - Same value of Z and N
- **52.** The mass of helium atom is 4.0026 amu, while that of the neutron and proton are 1.0087 and 1.0078 amu respectively on the same scale. Hence, the nuclear binding energy per nucleon in the helium atom is about
  - (A) 5 MeV

- 12 MeV (B)
- (C) 14 MeV

- (D) 10 MeV
- (E) 7 MeV
- The number of  $\beta$ -particles emitted during the change  ${}^{c}_{a}X \rightarrow {}^{b}_{d}Y$  is given by *5*3.

- (B)  $d + \frac{a-2b}{2} + c$  (C)  $d + \frac{c-b}{2} + a$

- (D)  $d + \frac{c b}{2} a$
- (E)  $a + \frac{c-b}{2} d$

- 54. For the hypothetical reversible reaction  $\frac{1}{2}A_2(g) + \frac{3}{2}B_2(g) \rightarrow AB_3(g)$  the value of  $\Delta H$  is -20 kJ mol<sup>-1</sup> while the values of standard entropies of  $A_2$ ,  $B_2$  and  $AB_3$  are 60, 40 and 50 JK<sup>-1</sup> mol<sup>-1</sup> respectively. The temperature (in Kelvin) at which the above reaction attains equilibrium is
  - (A) 400

(B) 250

(C) 200

(D) 350

- (E) 500
- 55. Change in internal energy, when 4 kJ of work is done on the system and 1 kJ of heat is given out by the system, is
  - (A) +1 kJ

(B) -5 kJ

(C) +5 kJ

(D) +3 kJ

- (E) -3 kJ
- 56. Which one of the ions in the table below would have the largest value of enthalpy of hydration?

|     | Ionic rad | ius in nm    | Charge of ion |                  |  |  |
|-----|-----------|--------------|---------------|------------------|--|--|
| (A) | 0.065     |              | +2            | 155 j.<br>155 j. |  |  |
| (B) | 0.095     |              | +1            | 544              |  |  |
| (C) | 0.135     |              | +2            |                  |  |  |
| (D) | 0.169     |              | +1            |                  |  |  |
| (E) | 0.181     | 27.4<br>1974 | -1            |                  |  |  |

- 57. Number of H<sup>+</sup> ions present in 250 ml of lemon juice of pH=3 is
  - (A)  $1.506 \times 10^{22}$
- (B)  $1.506 \times 10^{23}$
- (C)  $1.506 \times 10^{20}$

- (D)  $3.012 \times 10^{21}$
- (E)  $2.008 \times 10^{23}$
- Equimolar concentrations of H<sub>2</sub> and I<sub>2</sub> are heated to equilibrium in a 2 litre flask. At equilibrium, the forward and the backward rate constants are found to be equal. What percentage of initial concentration of H<sub>2</sub> has reacted at equilibrium?
  - (A) 33%

(B) 66%

(C) 50%

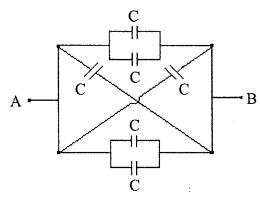
(D) 40%

- (E) 20%
- 59. Which one of the following solutions will have pH close to unity?
  - (A) 100 ml of M/ 10 HCl + 100 ml of M/ 10 of NaOH
  - (B) 55 ml of M/10 HCl + 45 ml of M/10 of NaOH
  - (C) 10 ml of M/ 10 HCl + 90 ml of M/ 10 of NaOH
  - (D) 75 ml of M/5 HCl + 25 ml of M/5 of NaOH
  - (E) 50 ml of M/5 HCl + 50 ml of M/5 of NaOH

| <ul> <li>(A) linear</li> <li>(B) tetrahedral</li> <li>(C) square planar</li> <li>(D) octahedral</li> <li>(E) hexagonal</li> <li>(E) N<sub>2</sub> (C) (C) (C) (D) (C) (D) (C) (E) Ar</li> <li>(E) Ar</li> <li< th=""><th></th></li<></ul> |                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| (C) square planar (D) octahedral (E) hexagonal  61. Which among the following gas will greatly deviate from Henry's lat (A) H <sub>2</sub> (B) N <sub>2</sub> (C) (C) (D) CO <sub>2</sub> (E) Ar  62. The temperature at which 10% aqueous solution (w/v) of glucose osmotic pressure of 16.4 atm, is (R=0.082 dm³ atm K <sup>-1</sup> mol <sup>-1</sup> ) (A) 360° C (B) 180 K (C) 9 (D) 300 K (E) 360 K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |
| <ul> <li>(D) octahedral</li> <li>(E) hexagonal</li> <li>61. Which among the following gas will greatly deviate from Henry's late (A) H<sub>2</sub> (B) N<sub>2</sub> (C) (C) (D) CO<sub>2</sub> (E) Ar</li> <li>62. The temperature at which 10% aqueous solution (w/v) of glucose osmotic pressure of 16.4 atm, is (R=0.082 dm³ atm K<sup>-1</sup> mol<sup>-1</sup>) <ul> <li>(A) 360° C</li> <li>(B) 180 K</li> <li>(C) 9</li> <li>(D) 300 K</li> <li>(E) 360 K</li> </ul> </li> <li>63. A direct current deposits 54 g of silver (Atomic mass = 108) during</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |
| <ul> <li>(E) hexagonal</li> <li>61. Which among the following gas will greatly deviate from Henry's late (A) H<sub>2</sub> (B) N<sub>2</sub> (C) (C) (D) CO<sub>2</sub> (E) Ar</li> <li>62. The temperature at which 10% aqueous solution (w/v) of glucose osmotic pressure of 16.4 atm, is (R=0.082 dm³ atm K<sup>-1</sup> mol<sup>-1</sup>) (A) 360° C (B) 180 K (C) 9 (D) 300 K (E) 360 K</li> <li>63. A direct current deposits 54 g of silver (Atomic mass = 108) during</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |
| <ul> <li>61. Which among the following gas will greatly deviate from Henry's late (A) H<sub>2</sub> (B) N<sub>2</sub> (C) (C) (D) CO<sub>2</sub> (E) Ar</li> <li>62. The temperature at which 10% aqueous solution (w/v) of glucose osmotic pressure of 16.4 atm, is (R=0.082 dm³ atm K<sup>-1</sup> mol<sup>-1</sup>) <ul> <li>(A) 360° C</li> <li>(B) 180 K</li> <li>(C) 9</li> <li>(D) 300 K</li> <li>(E) 360 K</li> </ul> </li> <li>63. A direct current deposits 54 g of silver (Atomic mass = 108) during</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
| (A) H <sub>2</sub> (B) N <sub>2</sub> (C) (C) (D) CO <sub>2</sub> (E) Ar  62. The temperature at which 10% aqueous solution (w/v) of glucose osmotic pressure of 16.4 atm, is (R=0.082 dm³ atm K <sup>-1</sup> mol <sup>-1</sup> ) (A) 360° C (B) 180 K (C) 9 (D) 300 K (E) 360 K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |
| <ul> <li>(D) CO<sub>2</sub> (E) Ar</li> <li>62. The temperature at which 10% aqueous solution (w/v) of glucose osmotic pressure of 16.4 atm, is (R=0.082 dm³ atm K<sup>-1</sup> mol<sup>-1</sup>) <ul> <li>(A) 360° C</li> <li>(B) 180 K</li> <li>(C) 9</li> </ul> </li> <li>63. A direct current deposits 54 g of silver (Atomic mass = 108) during</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | w in water?       |
| <ul> <li>62. The temperature at which 10% aqueous solution (w/v) of glucose osmotic pressure of 16.4 atm, is (R=0.082 dm³ atm K⁻¹ mol⁻¹)</li> <li>(A) 360° C</li> <li>(B) 180 K</li> <li>(C) 9</li> <li>(D) 300 K</li> <li>(E) 360 K</li> <li>63. A direct current deposits 54 g of silver (Atomic mass = 108) during</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CH <sub>4</sub>   |
| osmotic pressure of 16.4 atm, is (R=0.082 dm³ atm K <sup>-1</sup> mol <sup>-1</sup> )  (A) 360° C (B) 180 K (C) 9  (D) 300 K (E) 360 K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |
| (A) 360° C (B) 180 K (C) 9 (D) 300 K (E) 360 K  63. A direct current deposits 54 g of silver (Atomic mass = 108) during                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | will exhibit the  |
| (D) 300 K (E) 360 K  63. A direct current deposits 54 g of silver (Atomic mass = 108) during                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 187<br>1884 - 188 |
| 63. A direct current deposits 54 g of silver (Atomic mass = 108) during                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 90 K              |
| 그 그 그 그 그 그 그 그 사람들은 그래 그렇게 되었다. 그렇게 하는 그 살아 그렇게 하게 그렇게 되었다. 그래 그래에 그렇게 그래에 그래,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |
| 그 그 그 그 그 그 그 그 사람들은 그래 그렇게 되었다. 그렇게 하는 그 살아 그렇게 하게 그렇게 되었다. 그래 그래에 그렇게 그래에 그래,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | the electrolysis  |
| 1971-1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1972 - 1973 - 1973 - 1973                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                 |
| aluminium chloride solution by the same amount of electricity?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                 |
| (A) 4.5 g (B) 5.4 g (C) 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 54 g              |
| (D) 2.7 g (E) 27 g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |
| 64. The equilibrium constant of the following redox reaction at 298 K is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s $1 \times 10^8$ |
| $2 \text{ Fe}^{3+}(aq) + 2I^{-}(aq) \rightleftharpoons 2 \text{ Fe}^{2+}(aq) + I_{2}(s)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |
| If the standard reduction potential of iodine becoming iodide is +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.54 V, what is   |
| the standard reduction potential of Fe <sup>3+</sup> / Fe <sup>2+</sup> ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |
| (A) $+ 1.006 \text{ V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |
| (B) $-1.006 \text{ V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |
| (C) $+0.77$ V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |
| (D) $-0.77 \text{ V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |
| (E) $-0.652 \text{ V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |
| Space for Rough Work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |

The geometry at which carbon atoms in diamond are bonded to each other is

60.

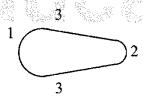

| 65. | A ga                                                                       | as P at 1 atm. is bu                                                                                         | bbled through                    | a solution   | containir            | ng a mixtu       | $are of 1 M Q^{-}$ and        |
|-----|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------|--------------|----------------------|------------------|-------------------------------|
|     | 1 M R <sup>-</sup> ions at 25°C. If the E° value for them lie in the order |                                                                                                              |                                  |              |                      |                  |                               |
|     | R>C                                                                        | )>P then                                                                                                     |                                  |              |                      |                  |                               |
|     | (A)                                                                        | Q will oxidize P                                                                                             | but not R                        |              |                      |                  |                               |
|     | (B)                                                                        | Q will oxidize R                                                                                             | but not P                        |              |                      |                  |                               |
|     | (C)                                                                        | Q will oxidize bo                                                                                            | th P and R                       |              |                      |                  |                               |
|     | (D)                                                                        | Q will reduce bot                                                                                            | th P and R                       |              |                      |                  |                               |
|     | (E)                                                                        | Q will neither ox                                                                                            | cidize nor red                   | uce P        |                      |                  |                               |
| 66. | For                                                                        | a reaction taking p                                                                                          | place in three                   | steps, the   | rate cons            | tants are I      | $k_1$ , $k_2$ and $k_3$ . The |
|     | over                                                                       | rall rate constant k                                                                                         | $= \frac{k_1 k_2}{k_3}$ . If the | energy of    | activation           | values fo        | or the first, second          |
|     | and                                                                        | third stages are res                                                                                         | spectively 40                    | , 50 and 60  | kJ mol <sup>-1</sup> | , then the       | overall energy of             |
|     | activ                                                                      | zation in kJ mol <sup>–1</sup> i                                                                             |                                  |              |                      |                  |                               |
|     | (A)                                                                        | 30                                                                                                           | (B)                              | 40           |                      | (C)              | 60                            |
|     | (D)                                                                        | 50                                                                                                           | (E)                              | 150          | - 1                  |                  |                               |
|     |                                                                            |                                                                                                              |                                  |              |                      | Ma Bi            |                               |
| 67. |                                                                            | ch among the follo                                                                                           | FROM AND STATE                   | e linear? (a | (x-x) is the         | ne concen        | tration of reactant           |
|     | rema                                                                       | aining after time, t                                                                                         | ? ****** ***                     |              | 11000                | partition of the | , jedi                        |
|     | (1)                                                                        | (a-x) vs t, for a f                                                                                          |                                  |              |                      |                  |                               |
|     | (2)                                                                        | (a-x) vs t, for a z                                                                                          | ero order reac                   | etion        |                      |                  |                               |
|     | (3)                                                                        | (a-x) vs $t$ , for a s                                                                                       | econd order re                   | eaction      |                      |                  |                               |
|     | (4)                                                                        | 1/(a-x) vs t, for                                                                                            | a second orde                    | r reaction   |                      |                  |                               |
|     | (A)                                                                        | 1 and 2                                                                                                      | (B)                              | 1 and 3      |                      | (C)              | 2 and 3                       |
|     | (D)                                                                        | 2 and 4                                                                                                      | (E)                              | 1 and 4      |                      |                  |                               |
| 68. | The                                                                        | average molar he                                                                                             | at capacities                    | of ice and   | water are            | e respectiv      | vely 37.8 J mol <sup>-1</sup> |
|     | and                                                                        | and 75.6 J mol <sup>-1</sup> and the enthalpy of fusion of ice is 6.012 kJ mol <sup>-1</sup> . The amount of |                                  |              |                      |                  |                               |
|     |                                                                            | required to change                                                                                           |                                  |              |                      |                  |                               |
|     | (A)                                                                        | 2376 J                                                                                                       | (B)                              | 4752 J       |                      | (C)              | 3970 Ј                        |
|     | (D)                                                                        | 1128 J                                                                                                       | (E)                              | 1985 J       |                      | ( · · )          |                               |
|     | \ /                                                                        |                                                                                                              | くり                               | -            |                      |                  |                               |

- 69. Statement: 'To stop bleeding from an injury ferric chloride can be applied.'
  Which comment about the statement is justified
  - (A) It is not true; ferric chloride is a poison
  - (B) It is true; Fe<sup>3+</sup> ions coagulate blood which is a negatively charged sol
  - (C) It is not true; Cl<sup>-</sup> ions form positively charged sol; profuse bleeding takes place
  - (D) It is true; coagulation takes place because of formation of negatively charged sol with Cl<sup>-</sup>
  - (E) It is not true; ferric chloride is ionic and gets into the blood stream
- 70. Shape-selective catalysis is a reaction catalysed by
  - (A) zeolites
  - (B) enzymes
  - (C) platinum
  - (D) Zeigler-Natta catalyst
  - (E) acids or bases
- 71. In an electrical field, the particles of a colloidal system move towards cathode. The coagulation of the same sol is studied using K<sub>2</sub>SO<sub>4</sub>(I), Na<sub>3</sub>PO<sub>4</sub>(II), K<sub>4</sub>[Fe(CN) <sub>6</sub>](III) and NaCl(IV). Their coagulating power should be
  - (A) (I) > (II) > (III) > (IV)
  - (B) (III) > (II) > (IV)
  - (C) (III) > (I) > (II) > (IV)
  - (D) (IV) > (III) > (I) > (II)
  - (E) (IV) > (I) > (II) > (III)
- 72. Both geometrical and optical isomerisms are exhibited by
  - (A) Dichlorobis(ethylenediamine)cobalt(III) ion
  - (B) Pentaamminechlorocobalt(III) ion
  - (C) Triamminotrichlorocobalt(III)
  - (D) Tetraamminedichlorocobalt(III) ion
  - (E) Trioxalatochromate(III) ion

| 73. | A spring of force constant $k$ is cut into two pieces such that one piece is double the length of the other. The force constant of the longer piece will be |        |        |                    |                     |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------------------|---------------------|--|--|
|     | (A) 1.5k                                                                                                                                                    | (B) 3k | (C) 2k | (D) $\frac{2}{3}k$ | $(E) \frac{1}{3} k$ |  |  |

- 74. An organ pipe P closed at one end vibrates in its first harmonic. Another organ pipe Q open at both ends vibrates in its third harmonic. When both are in resonance with a tuning fork, the ratio of the length of P to that of Q is
  - (A)  $\frac{1}{2}$  (B)  $\frac{1}{4}$  (C)  $\frac{1}{6}$  (D)  $\frac{1}{8}$  (E)  $\frac{1}{3}$
- 75. A string is hanging from a rigid support. A transverse pulse is excited at its free end. The speed at which the pulse travels a distance x is proportional to
  - (A) x (B)  $\frac{1}{x}$  (C)  $\frac{1}{\sqrt{x}}$  (D)  $x^2$  (E)  $\sqrt{x}$
- 76. The direction of electric field intensity  $(\overrightarrow{E})$  at a point on the equatorial line of an electric dipole of dipole moment  $(\overrightarrow{P})$  is
  - (A) along the equatorial line towards the dipole
  - (B) along the equatorial line away from the dipole
  - (C) perpendicular to the equatorial line and opposite to  $\overrightarrow{P}$
  - (D) perpendicular to the equatorial line and parallel to P
  - (E) along the axial line in the direction of P

77. Six capacitors each of capacitance of  $2 \mu F$  are connected as shown in the figure. The effective capacitance between A and B is

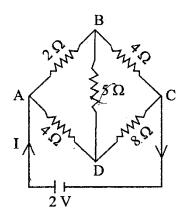



(A)  $12 \mu F$ 

- (B)  $8/3 \mu F$
- (C) 3 uF

(D) 6 μF

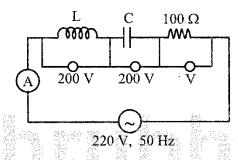
- (E)  $2/3 \mu F$
- 78. Consider a non-spherical conductor shown in the figure which is given a certain amount of positive charge. The charge distributes itself on the surface such that the charge densities are  $\sigma_1$ ,  $\sigma_2$ , and  $\sigma_3$  at the regions 1, 2 and 3 respectively. Then




- (A)  $\sigma_1 > \sigma_2 > \sigma_3$
- (B)  $\sigma_2 > \sigma_3 > \sigma_1$
- (C)  $\sigma_1 > \sigma_2 > \sigma_3$

- (D)  $\sigma_2 > \sigma_1 > \sigma_2$
- (E)  $\sigma_1 > \sigma_3 > \sigma_2$
- 79. A carbon resistor is marked with the rings coloured brown, black, green and gold. The resistance in ohm is
  - (A)  $3.2 \times 10^5 \pm 5\%$
- (B)  $1 \times 10^6 \pm 10\%$
- (C)  $1 \times 10^7 \pm 5\%$

- (D)  $1 \times 10^6 \pm 5\%$
- (E)  $1 \times 10^5 \pm 5\%$


80. In the Wheatstone's network shown in the figure, the current I in the circuit is



- (A) 1 A
- (B) 2 A
- (C) 0.25 A
- (D) 0.5 A
- (E) 0.33 A
- 81. A wire of resistance 5.5 ohm is drawn out uniformly so that its length is increased twice. Then its new resistance is

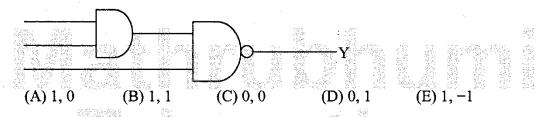
  - (A)  $44 \Omega$  (B)  $42 \Omega$
- (D) 11 Ω
- (E)  $22 \Omega$
- 82. A strong magnetic field is applied on a stationary electron. Then the electron
  - (A) moves in the direction of the field
  - (B) remains stationary
  - (C) moves perpendicular to the direction of the field
  - (D) begins to spin
  - (E) moves opposite to the direction of the field
- 83. The resistance of the shunt required to allow 2% of the main current through the galvanometer of resistance 49  $\Omega$  is
  - (A)  $1\Omega$
- (B)  $2\Omega$
- (C)  $0.2 \Omega$
- (D)  $0.1 \Omega$
- (E)  $0.01 \Omega$

- 84. A long wire carrying a steady current is bent into a circle of single turn. The magnetic field at the centre of the coil is B. If it is bent into a circular loop of nturns, the magnetic field at the centre of the coil for the same current is
  - (A) 2nB
- (B)  $2n^2B$  (C)  $n^2B$
- (D) nB
- (E)  $\frac{n}{2}$ B
- 85. The readings of ammeter and voltmeter in the following circuit are respectively



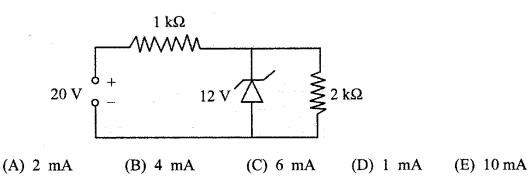
- 2 A, 200 V
- 1.5 A, 100 V

- 1.7 A, 200 V
- 2.2 A, 220 V
- In the transmission of a.c. power through transmission lines, when the voltage is 86. stepped up n times, the power loss in transmission
  - (A) increases n times
  - (B) decreases n times
  - (C) increases  $n^2$  times
  - decreases  $n^2$  times
  - decreases  $n^4$  times
- In an LCR series a.c. circuit, if  $\omega_0$  is the resonant angular frequency, then the 87. quality factor (Q-factor) is given by
  - (A)  $\omega_0 L/C$


- (B)  $(1/R) \sqrt{\frac{L}{C}}$
- (C)  $\omega_0 C/R$

(D)  $L/\omega_0 R$ 

(E) L/CR


| <ul> <li>88. Given below is a list of electromagnetic spectrum and its mode of production Which one does not match?</li> <li>(A) Gamma rays – Radioactive decay of the nucleus</li> <li>(B) Ultraviolet – Magnetron valve</li> </ul> |                         |                                    |                                |                    |                                     |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------|--------------------------------|--------------------|-------------------------------------|---------|
|                                                                                                                                                                                                                                      |                         |                                    |                                |                    |                                     |         |
|                                                                                                                                                                                                                                      | (D) Radiowa<br>wires    | ive – Rapid ac                     | celeration and                 | deceleration of    | f electrons in con                  | ducting |
|                                                                                                                                                                                                                                      | (E) X-rays              | - Coolidge tube                    | ;                              |                    |                                     |         |
| 89.                                                                                                                                                                                                                                  | wavelength 5            | _                                  | distance of the                | ne screen is 1 n   | uminated with a n from the slits, t | -       |
|                                                                                                                                                                                                                                      | (A) 1.5 mm              |                                    | (B) 0.75 m                     | m                  | (C) 1.25 mm                         |         |
|                                                                                                                                                                                                                                      | (D) 0.625 mm            | n                                  | (E) 2.5 mm                     |                    |                                     |         |
| 90.                                                                                                                                                                                                                                  | 1.414 is                |                                    | eviation in an                 |                    | ism of refractive                   | e index |
|                                                                                                                                                                                                                                      | (A) 60°                 | (B) 30°                            | (C) 90°                        | (D) 45°            | (E) 15°                             |         |
| 91.                                                                                                                                                                                                                                  | (44)                    | lent on a glass<br>acident ray and | 그렇게 가장하는 그 그렇다                 |                    | of 57.5°. Then th                   | e angle |
|                                                                                                                                                                                                                                      | (A) 57.5°               | (B) 115°                           | (C) 65°                        | (D) 145°           | (E) 205°                            |         |
| 92.                                                                                                                                                                                                                                  | -                       | •                                  |                                | _                  | wavelength λ. Trated through th     |         |
|                                                                                                                                                                                                                                      | (A) $\frac{\lambda}{2}$ |                                    | (B) $\frac{\lambda}{\sqrt{2}}$ |                    | (C) $\frac{\lambda}{2\sqrt{2}}$     |         |
|                                                                                                                                                                                                                                      | (D) $\frac{\lambda}{8}$ |                                    | (E) $\frac{\lambda}{4}$        |                    |                                     |         |
| 93.                                                                                                                                                                                                                                  | Two radioacti           | ve samples hav                     | e decay consta                 | ants $15x$ and $3$ | x. If they have the                 | he same |
|                                                                                                                                                                                                                                      |                         |                                    |                                |                    | ter a time $\frac{1}{6x}$ is        |         |
|                                                                                                                                                                                                                                      | (A) $\frac{1}{-}$       | (B) $\frac{e}{}$                   | (C) $\frac{1}{1}$              | (D) $\frac{2e}{}$  | (E) $\frac{1}{2}$                   |         |

- If the mass defect of  ${}_{8}O^{16}$  nucleus is 0.128 amu, then the binding energy per 94. nucleon of oxygen is
  - 8.2 MeV (A)
  - (B) 7.45 MeV
  - (C) 7.3 MeV
  - 7.1 MeV (D)
  - (E) 8.15 MeV
- 95. The output Y, when all the three inputs are first high and then low, will respectively be



- 96. In a common emitter configuration of a transistor, the voltage drop across a 500  $\Omega$ resistor in the collector circuit is 0.5 V when the collector supply voltage is 5 V. If the current gain in the common base mode is 0.96, the base current is
  - (A)  $\frac{1}{20} \mu A$

- (B)  $\frac{1}{5}\mu A$  (C)  $\frac{1}{20}mA$  (D)  $\frac{1}{10}mA$  (E)  $\frac{1}{24}mA$
- In the given circuit, the current through the resistor  $2\;k\Omega$  is 97.



| 98.  | sepa     | rated by a di                                        | =                  | for satisfacto | ry communicati  | of height 45 m are<br>on in line-of-sight |
|------|----------|------------------------------------------------------|--------------------|----------------|-----------------|-------------------------------------------|
|      | (A)      | 15 m                                                 | (B)                | 20 m           | (C)             | 30 m                                      |
|      | (D)      | 25 m                                                 | (E)                | 40 m           |                 |                                           |
| 99.  | i makiri | 그러면 발생하는 사람이 나를 가장                                   | quency for sky w   |                | on is 12 MHz, t | hen the maximum                           |
|      | ` '      | 1.78×10 <sup>12</sup> /m<br>0.56×10 <sup>12</sup> /m | 3 (B) (C) (E) (C)  |                | 3 (C) 1         | $.12 \times 10^{12} / \text{m}^3$         |
| 100. | A 10     | 000 kHz can                                          | rier wave is mo    | dulated by an  | audio signal o  | f frequency range                         |
|      | 100-     | 5000 Hz.The                                          | n the width of the | channel in kH  | łz is           |                                           |
|      | (A) 1    | 10                                                   | (B) 20             | (C) 30         | (D) 40          | (E) 50                                    |

- 101. Match the following
  - a. capacitance
- volt (ampere)-1
- b. magnetic induction
- ii. volt sec (ampere)<sup>-1</sup>
- c. inductance
- iii. newton (ampere)-1 (metre)-1
- d. resistance
- iv. coulomb<sup>2</sup> (joule)-1
- (A) a-ii, b-iii, c-iv, d-i
- (B) a-iv, b-iii, c-ii, d-i
- (C) a-iii, b-iv, c-i, d-ii
- (D) a-iv, b-i, c-ii, d-iii
- (E) a-ii, b-iv, c-i, d-iii
- 102. A 175 m long train is traveling along a straight track with a velocity 72 kmph. A bird is flying parallel to the train in the opposite direction with a velocity 18 kmph. The time taken by the bird to cross the train is
  - (A) 35 s

(C) 11.6 s

(D) 8.75 s

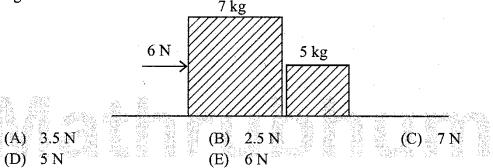
- (E) 7 s
- 103. Two bodies are thrown vertically upwards with their initial speeds in the ratio 2:3. The ratio of the maximum heights reached by them and the ratio of their time taken by them to return back to the ground respectively are
  - (A) 4:9 and 2:3
- (B) 2:3 and  $\sqrt{2}:\sqrt{3}$
- (C)  $\sqrt{2}$ :  $\sqrt{3}$  and 4: 9

- (D)  $\sqrt{2}:\sqrt{3} \text{ and } 2:3$
- (E) 4:9 and  $\sqrt{2}$ :  $\sqrt{3}$
- 104. When a ceiling fan is switched off, its angular velocity reduces to half its initial value after it completes 36 rotations. The number of rotations it will make further before coming to rest is (Assume angular retardation to be uniform)
  - (A) 10

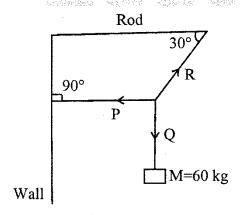
(B) 20 (C) 18

(D) 12

(E) 16


- 105. Two particles starting from a point on a circle of radius 4 m in horizontal plane move along the circle with constant speeds of 4 ms<sup>-1</sup> and 6 ms<sup>-1</sup> respectively in opposite directions. The particles will collide with each other after a time of
  - (A) 3.0 s

(B) 2.5 s


(C) 2.0 s

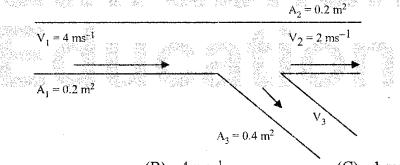
(D) 1.5 s

- (E) 3.5 s
- 106. Two blocks of masses 7 kg and 5 kg are placed in contact with each other on a smooth surface. If a force of 6 N is applied on the heavier mass, the force on the lighter mass is



107. A body of mass 60 kg is suspended by means of three strings P,Q and R as shown in the figure is in equilibrium. The tension in the string P is




- (A) 130.9 g N
- (B) 60 g N
- (C) 50 g N

- (D) 103.9 g N
- (E) 100 g N

| 108. | <b>08.</b> Two springs P and Q $(K_P = 2K_Q)$ are stretched by same weight. The ratio of w |            |                       |                         |                        | ratio of work                         |                                            |                  |
|------|--------------------------------------------------------------------------------------------|------------|-----------------------|-------------------------|------------------------|---------------------------------------|--------------------------------------------|------------------|
|      | done in stretching is                                                                      |            |                       |                         |                        |                                       |                                            |                  |
|      | (A) 2:1                                                                                    | (B)        | 2:3                   |                         |                        | (C                                    | ) 1:3                                      | 2                |
|      | (D) 1:1                                                                                    | (E)        | 3:4                   |                         |                        |                                       |                                            |                  |
| 109. | Two identical balls A and B                                                                | collide    | e head or             | n ela                   | astically.             | If the                                | elocit                                     | y of A and B     |
|      | before collision are 0.5 ms <sup>-1</sup> collision will be                                | and –      | -0.3 ms <sup>-</sup>  | ¹ res                   | spectively             | , then t                              | heir vo                                    | elocities after  |
|      | (A) $0.5 \text{ ms}^{-1} \text{ and } 0.3 \text{ ms}^{-1}$                                 |            | (B)                   | -0                      | .5 ms <sup>-1</sup> ar | nd 0.3                                | $ms^{-1}$                                  |                  |
|      | (C) $0.3 \text{ ms}^{-1} \text{ and } -0.5 \text{ ms}^{-1}$                                |            | (D)                   | 0.3                     | s ms <sup>-1</sup> and | l 0.5 n                               | $1s^{-1}$                                  |                  |
|      | (E) $-0.3 \text{ ms}^{-1} \text{ and } 0.5 \text{ ms}^{-1}$                                |            | ,                     |                         |                        |                                       |                                            |                  |
| 110. | In uniform circular motion of                                                              | a part     | icle                  |                         |                        |                                       |                                            |                  |
|      | (A) velocity is constant but acceleration is variable                                      |            |                       |                         |                        |                                       |                                            |                  |
|      | (B) velocity is variable but acceleration is constant                                      |            |                       |                         |                        |                                       |                                            |                  |
|      | (C) both speed and acceleration are constants                                              |            |                       |                         |                        |                                       |                                            |                  |
|      | <ul><li>(D) speed is constant but acc</li><li>(E) both speed and accelerate</li></ul>      |            | William with the con- | San San                 | ile                    |                                       | CO SEC<br>Sing Day<br>Sing Day<br>Till Day |                  |
|      |                                                                                            |            |                       |                         |                        |                                       | _                                          |                  |
| 111. | A system consisting of t                                                                   | 294 th 344 | [4] (938) A1          | 1.356                   | 1 NA 1988 1            | (5 d) 4 dd)                           | 1,9 04 1 11,994                            |                  |
|      | along the x-axis. A 0.4 kg                                                                 | ustrini fo | artis 1900 in the     | 2000                    | - 1 to 1 to 1 to 1     | J. 43 L. 45 T. T.                     | a 0.6                                      | kg mass is at    |
|      | a distance $x = 7$ m. The x-coc                                                            |            |                       | cem                     | re or mas              |                                       | . 45                                       |                  |
|      | (A) 5 m                                                                                    | (B)<br>(E) | 3.5 m<br>3 m          |                         |                        | (C                                    | ) 4.5                                      | 111              |
|      | (D) 4 m                                                                                    | ` ,        |                       |                         | _                      |                                       |                                            |                  |
| 112. | A simple pendulum has a tim                                                                | -          |                       |                         |                        |                                       |                                            |                  |
|      | taken to a height of R above t                                                             | he ear     | th's suri             | ace,                    | , its time p           | period i                              | s $T_2$ .                                  | then the ratio   |
|      | $\frac{T_2}{T_1}$ is                                                                       |            |                       |                         |                        |                                       |                                            |                  |
|      | (A) $\frac{1}{\sqrt{2}}$ (B) $\sqrt{2}$                                                    | /2         | · (                   | (C)                     | 2                      | (D)                                   | 4                                          | (E) 1/2          |
| 113. | Two planets have radii $r_1$ and of accelerations due to gravity                           |            |                       | $\operatorname{es} d_1$ | $_1$ and $d_2$ re      | especti                               | vely. T                                    | Then the ratio   |
|      | (A) $r_1d_1: r_2d_2$                                                                       | (B)        | $r_1d_2: n$           | $r_2 d_1$               |                        | (C                                    | ) $r_1^2 a$                                | $l_1: r_2^2 d_2$ |
|      | (D) $r_1 d_1^2 : r_2 d_2^2$                                                                | (E)        | $r_1^2 d_2$ :         | $r_2^2 d_1$             | I                      |                                       |                                            |                  |
|      | S                                                                                          | pace fo    | or Rough \            | Work                    | -                      | · · · · · · · · · · · · · · · · · · · |                                            |                  |

- 114. A body floats in water with one-third of its volume above the surface of water. If it is placed in oil, it floats with half of its volume above the surface of the oil. The specific gravity of the oil is
- (B)  $\frac{4}{3}$  (C)  $\frac{3}{2}$
- (D) 1
- (E)  $\frac{3}{4}$

- 115. Which one of the following statements is wrong?
  - Young's modulus for a perfectly rigid body is zero
  - Bulk modulus is relevant for solids, liquids and gases
  - Rubber is less elastic than steel
  - The Young's modulus and shear modulus are relevant for solids
  - The stretching of a coil spring is determined by its shear modulus
- 116. In the figure, the velocity V<sub>3</sub> will be



(A) zero

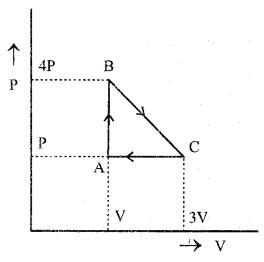
(B) 4 ms<sup>-1</sup> 1 ms<sup>-1</sup>

(D)  $3 \text{ ms}^{-1}$ 

- 2 ms-1 (E)
- 117. If a quantity of heat 1163.4 joule is supplied to one mole of nitrogen gas, at room temperature at constant pressure, then the rise in temperature is

(Given  $R = 8.31 \text{ J mole}^{-1} \text{ K}^{-1}$ )

(A) 54 K


(B) 28 K

(C) 65 K

(D) 8 K

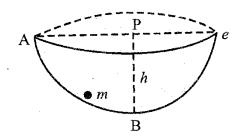
(E) 40 K

118. An ideal gas is taken around the cycle ABCA as shown in the P-V diagram



The total work done by the gas during the cycle is

(A) PV


(B) 2 PV

(D) 3 PV

- 119. A hot liquid is filled in a container and kept in a room of temperature of 25°C. The liquid emits heat at the rate of 200 Js-1 when its temp is 75°C. When the temperature of the liquid becomes 40°C, the rate of heat loss in Js-1 is
  - (A) 160

(B) 140 (E) 40

- (D) 60
- 120. A sphere of mass m makes SHM in a hemispherical bowl ABC and it moves from A to C and back to A via ABC, so that PB = h. If acceleration due to gravity is g the speed of the ball when it just crosses the point B is



- (A) 2gh
- (B) mgh
- (C)  $\sqrt{2} gh$