3027

Regis Num

iher	ster	5		a second	
	ber		S. Mark		

Part III - PHYSICS

(English Version)

Time Allowed : 3 Hours]

A

[Maximum Marks : 150

PART - I

	ì	N. B.: i) Answer all the question	s	A REAL PROPERTY AND A REAL
		ii) Choose and write the co	orrect	answer.
		iii) Each question carries of	ne ma	ark. $30 \times 1 = 30$
1.	The	e forbidden energy gap for silicon is	of the	e order of
	a)	0.7 eV	b)	1.1 eV
	c)	0.3 eV	d)	10 eV.
2.	Acc	cording to the laws of Boolean algebra	a, the	e expression ($A + AB$) is equal to
	a)	А	b)	AB
	c)	В	d)	Ā.
3.	An	example for non-sinusoidal oscillator	is	
	a)	Multivibrator	b)	RC oscillator
	c)	Colpitts oscillator	d)	Crystal oscillator.
4.	The	RF channel in a radio transmitter p	roduc	
	a)	audio signals	3.24	a stear a start and a start a s
	b)	high frequency carrier waves		Annalise in a
	c)	both audio signal and high frequen	cy ca	rrier waves
	d)	low frequency carrier waves.		and the property of the second

[Turn over

5. An FM signal has a resting frequency of 105 MHz and highest frequency of 105.03 MHz, when modulated by a signal. Then the carrier swing is

a)	0.03 MHz	b)	0.06 MHz
c)	0.03 kHz	d)	60 MHz.

6. According to special theory of relativity the only constant in all frames is

a)	mass	•		ł)	length

c) velocity of light d) time.

7. In β -decay,

3027

a) atomic number decreases by one

- b) mass number decreases by one
- c) proton number remains the same
- d) neutron number decreases by one.
- 8. In the nuclear reaction

 $_{80}$ Hg 198 + X $\rightarrow _{79}$ Au 198 + $_1$ H 1 ,

X stands for

A

a)	proton	b)	electron
2	neutron	d)	deuteron.

9. The half-life of a radioactive element is 300 days. The disintegration constant of the radioactive element is

a)	0.00231 day	b)	0.00231 / day
c)	0.0231/day	d)	0.0231 day.

10. The nuclear force is due to the continuous exchange of particles called

a)	leptons		b)	hyperons	
0	mesons		d).	photons.	

11. The chromium ions doped in the ruby rod

- a) absorbs red light b) absorbs green light
- c) absorbs blue light d) emits green light.

				3021
12	. 1h :	a discharge tube, the source of posit	ive r	ays (canal rays) is
	a)	cathode		
	·b)	anode		
	c)	gas atoms present in the discharge	e tub	e
	d)	fluorescent screen.		
13.	The	e minimum wavelength of X-rays pro	duce	d in an X-ray tube at 1000 kV is
	- a)	0∙0124 Å	b)	0·124 Å
	c)	1·24 Å	d)	0·00124 Å.
14.	The	ionisation potential of hydrogen atom	m is	
	a)	13.6 eV	b)	– 13.6 eV
	Ċ)	13.6 V	d)	- 13.6 V.
15.	At t	he threshold frequency, the velocity	of th	e electrons is
*	a)	zero	b)	minimum
	c)	maximum	d)	infinite.
16.	In a	n A.C. circuit		
	a)	the average value of current is zero	· · · ·	
	b)	the average value of square of curre		s zero
	c)	the average power dissipation is zer		
	d)	the rms current is $\sqrt{2}$ times of peal		
17.		In electromagnetic wave the phase inetic field \vec{B} is	diffe	rence between electric field \vec{E} and
	a)	$\frac{\pi}{4}$	Ы	$\frac{\pi}{2}$
	aj	4	b)	2
	c)	π	d)	zero.
18.		2 set to be a set of the set of the set of the set of the set		ace such that the reflected ray is
		acted ray is	IC DO	etween the reflected ray and the
1	a)	57·5°	b)	32.5°
	c)	90°	d)	115°.
A]			[Turn over

3027		4	
19. Soap b	pubbles exhibit brilliant colours	in sunli	ght due to
a) s	cattering of light	b)	diffraction of light
c) p	olarisation of light	d)	interference of light.
20. The ra	adii of Newton's dark rings are		
a) 1	1:2:3:	b)	$\sqrt{1}:\sqrt{2}:\sqrt{3}:$
c) `	$\sqrt{1}:\sqrt{3}:\sqrt{5}:$	d)	1:4:9:
21. Of the	e following devices, which has	small res	sistance?
a) 1	Voltmeter	-	
b)	Moving coil galvanometer		
c)	Ammeter of range 0 – 1 A		
d)	Ammeter of range 0 – 10 A.		and house any shirtened with
	resistance of the filament of a 1	110 W, 2	20 V electric bulb is
	440 Ω	b)	220 Ω
	484 Ω	d)	848 Ω.
	self-inductance of a straight co	nductor i	IS
		b)	infinity
a)	zero	d)	very small.
	very large		
	C. (direct currrent) of 5 A] emating current) of	Toquees	the same heating effect as an A
	50 A rms current	b)	5 A peak current
a)			none of these.
c)	15 A rms current		Charles and a state of the series in
	ctor of a series resonant circui		$1, \overline{L}$
a)	$Q = \frac{1}{L} \sqrt{\frac{R}{C}}$		$Q = \frac{1}{R}\sqrt{\frac{L}{C}}$
c)	$Q = \frac{1}{R}\sqrt{\frac{C}{L}}$	d)	$Q = \frac{1}{C}\sqrt{\frac{L}{R}}.$
A			

26	. Wh	ich of the following quantities is scale	ar?	0027
	a)	Dipole moment		
	a)	Dipole moment	b)	Electric force
	,c)	Electric field	d)	Electric potential.
27	. The	e unit of electric field intensity is		
	a)	NC	b)	NC ⁻¹
	C)	Vm	d)	NC ⁻² .
. 28	. The	e magnitude of the force acting on	a c	harge of 2×10^{-10} C placed in a
		form electric field of 10 Vm ⁻¹ is		
	a)	$2 \times 10^{-9} N$	b)	4×10^{-9} N
	C)	2×10^{-10} N	d)	4×10^{-10} N.
29	. Ele	ctric potential energy (U) of two poin	it cha	arges is
	a)	$\frac{q_1 q_2}{4\pi \varepsilon_0 r^2}$	b)	$\frac{q_1 q_2}{4\pi \varepsilon_0 r}$
	c)	PE cos θ	d)	PE sin θ.
30	. In t	he case of insulators, as the tempera	ture	decreases, resistivity
	a)	decreases	b) .	increases

c) remains constant d) becomes zero.

PART - II

N. B. : Answer any fifteen questions. $15 \times 3 = 45$

31. State Gauss' law.

A

- 32. What is a capacitor ? Define its capacitance.
- 33. Two wires of same material and length have resistances 5 Ω and 10 Ω respectively. Find the ratio of radii of the two wires.
- 34. State Kirchhoff's second law for electrical network.

[Turn over

3027

- 35. Define mobility of electrons. Give its unit.
- 36. State Ampere's circuital law.

3027

- 37. Calculate the mutual inductance between two coils when a current of 4 A changing to 8 A in 0.5 s in one coil, induces an e.m.f. of 50 mV in the other coil.
- 38. State Fleming's right hand rule.
- 39. A 300 mm long tube containing 60 c.c. of sugar solution produces a rotation of 9° when placed in a polarimeter. If the specific rotation is 60°, calculate the quantity of sugar contained in the solution.
- 40. Why is the centre of the Newton's ring dark?
- 41. Calculate the longest wavelength of X-rays that can be analysed by a rock salt crystal of spacing d = 2.82 Å in the first order.
- 42. State Moseley's law.
- 43. What are the limitations of electron microscope ?
- 44. What is meant by breeder reactor ?
- 45. Mention any three properties of nuclear force.
- 46. Give the Boolean equation for the given logic diagram :

47. Draw the circuit for summing amplifier.

48. What is rectification ?

49. State de Morgan's theorems.

- 50. Mention the advantages of frequency modulation.
 - A

 $7 \times 5 = 35$

PART - III

7

- N. B.: i) Answer Question No. 54 compulsorily.
 - ii) Answer any six of the remaining 11 questions,
 - iii) Draw diagrams wherever necessary.
- 51. Define electric potential at a point. Obtain an expression for electric potential due to a point charge.
- 52. A copper wire of 10^{-6} m² area of cross-section, carries a current of 2 A. If the number of electrons per cubic metre is 8 × 10²⁸, calculate the current density and average drift velocity.

(Given $e = 1.6 \times 10^{-19} \text{ C}$).

- 53. Mention any five applications of superconductors.
- 54. A moving coil galvanometer of resistance 20 Ω produces full scale deflection for a current of 50 mA. How will you convert the galvanometer into (i) an ammeter of range 20 A and (ii) a voltmeter of range 120 V?

OR

A circular coil of radius 20 cm has 100 turns of wire and it carries a current of 5 A. Find the magnetic induction at a point along its axis at a distance of 20 cm from the centre of the coil.

- 55. Explain how an e.m.f. can be induced by changing the area enclosed by the coil in a uniform magnetic field.
- 56. State and prove Brewster's law.

A

- 57. Explain the origin of characteristic X-rays.
- 58. What is photoelectric effect ? State the laws of photoelectric emission.
- 59. Derive an expression for the de Broglie wavelength of matter waves.
- 60. The binding energy per nucleon for $_6 C^{12}$ nucleus is 7.68 MeV and that for $_6 C^{13}$ is 7.47 MeV. Calculate the energy required to remove a neutron from $_6 C^{13}$ nucleus.
- 61. Explain the working of a half wave diode rectifier.
- 62. With the help of block diagram, explain the operation of an FM superheterodyne receiver.

Turn over

PART - IV

N. B.: i) Answer any four questions in detail.

- ii) Draw diagrams wherever necessary. $4 \times 10 = 40$
- 63. What is an electric dipole ? Derive an expression for the electric field due to an electric dipole at a point on its axial line.
- 64. Deduce an expression for the force on a current carrying conductor placed in a magnetic field. Find the magnitude of the force.
- 65. What are eddy currents ? Explain their applications. How are they minimised ?
- 66. Derive an expression for bandwidth of interference fringes in Young's double slit experiment.
- 67. Draw a neat sketch of Ruby Laser. Explain its working with the help of energy level diagram.
- 68. Discuss the principle and action of a Bainbridge mass spectrometer to determine the isotopic masses.
- 69. What is meant by feedback ? Derive an expression for voltage gain of an amplifier with negative feedback.
- 70. Make an analysis of amplitude modulated wave. Plot the frequency spectrum.

A