A

Register Number

Part III - MATHEMATICS

(English Version)

Time Allowed : 3 Hours]

[Maximum Marks : 200

3521

SECTION - A

N. B.: i) All questions are compulsory.

ii) Each question carries one mark.

iii) Choose the most suitable answer from the given four alternatives. $40 \times 1 = 40$

1. If
$$|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}|$$
, then
a) \vec{a} is parallel to \vec{b} b) \vec{a} is perpendicular to \vec{b}
c) $|\vec{a}| = |\vec{b}|$ d) \vec{a} and \vec{b} are unit vectors.
2. The shortest distance of the point (2, 10, 1) from the plane
 $\vec{r} \cdot (3\vec{t} - \vec{j} + 4\vec{k}) = 2\sqrt{26}$ is

a) $2\sqrt{26}$ b) $\sqrt{26}$ c) 2 d) $\frac{1}{\sqrt{26}}$

3. The point of intersection of the lines $\frac{x-6}{-6} = \frac{y+4}{4} = \frac{z-4}{-8}$ and

2

$$\frac{x+1}{2} = \frac{y+2}{4} = \frac{z+3}{-2}$$
 is

(0,0,-4) a)

(1, 0, 0) b)

(0, 2, 0) c)

(1, 2, 0). d)

The projection of $3\vec{i} + \vec{j} - \vec{k}$ on $4\vec{i} - \vec{j} + 2\vec{k}$ is 4.

a)	$\frac{9}{\sqrt{21}}$	mark	Ties one	b)	$\frac{-9}{\sqrt{21}}$
c)	$\frac{81}{\sqrt{21}}$			d)	$\frac{-81}{\sqrt{21}}.$

The centre and radius of the sphere $|\vec{r} - (2\vec{\iota} - \vec{j} + 4\vec{k})| = 5$ are 5.

(2, -1, 4) and 5 a)

(2, 1, 4) and 5 b)

(-2, 1, 4) and 6 c)

(2, 1, -4) and 5. d)

6.

The distance between the foci of the ellipse $9x^2 + 5y^2 = 180$ is

4 a)

8

c)

A

2. d)

b)

6

of the holes (2. FO. L. L. Son

7. The directrices of the hyperbola $x^2 - 4(y - 3)^2 = 16$ are

a) $y = \pm \frac{8}{\sqrt{5}}$ b) $x = \pm \frac{8}{\sqrt{5}}$ c) $y = \pm \frac{\sqrt{5}}{8}$ d) $x = \pm \frac{\sqrt{5}}{8}$.

8. The point of intersection of tangents at t_1 and t_2 to the parabola $y^2 = 4ax$ is

- a) $\left[a \left(t_1 + t_2 \right), a t_1 t_2 \right]$
- b) $\begin{bmatrix} at_1 t_2, a(t_1 + t_2) \end{bmatrix}$
- c) $[at^2, 2at]$

A

d) $\begin{bmatrix} at_1 t_2, a(t_1 - t_2) \end{bmatrix}$.

9. The slope of the tangent to the curve $y = 3x^2 + 3 \sin x$ at x = 0 is

a) 3 b) 2 c) 1 d) -1.

10. The function $f(x) = x^2$ is decreasing in

a) $(-\infty, \infty)$ b) $(-\infty, 0)$ c) $(0, \infty)$ d) $(-2, \infty)$.

3521

11. The area between the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and its auxiliary circle is

4

- a) $\pi b(a-b)$
- b) $2\pi a(a-b)$
- c) $\pi a(a-b)$
- d) $2\pi b(a-b)$.

12. The volume generated by rotating the triangle with vertices at (0, 0), (3, 0) and(3, 3) about *x*-axis is

a) 18π

b) 2π

d)

9π.

c) 36π

13. $\int_{a}^{b} f(x) \, \mathrm{d}x$ is

A

a)
$$2\int_{0}^{a} f(x) dx$$

b)
$$\int_{a}^{b} f(a-x) dx$$

c)
$$\int_{a}^{b} f(b-x) dx$$

d)
$$\int_{a}^{b} f(a+b-x) dx$$

14. The integrating factor of $\frac{dy}{dx} + 2\frac{y}{x} = e^{4x}$ is a) $\log x$ **b**) x^2 c) ex d) x. 15. The complementary function of $(D^2 + 1)y = e^{2x}$ is $(Ax + B)e^{x}$ a) b) $A \cos x + B \sin x$ $(Ax+B)e^{2x}$ c) d) $(Ax + B)e^{-x}$. 16. If p is true and q is unknown, then a) $\sim p$ is true b) $p V (\sim p)$ is false c) $p \wedge (\sim p)$ is true d) p V q is true. 17. If $f(x) = \begin{cases} kx^2 & ; 0 < x < 3 \\ 0 & ; elsewhere. \end{cases}$ is a probability density function, then the value of k is $\frac{1}{3}$ b) $\frac{1}{6}$ a) c) $\frac{1}{9}$ d) $\frac{1}{12}$. 18. Given E(x+c) = 8 and E(x-c) = 12, then the value of c is - 2 a) **b**) 4 c) - 4 **d**) 2.

A

[Turn over

3521

5

19. In a Poisson distribution, if P(x=2) = P(x=3) then the value of its parameter λ -is

6

- 2 b) a) 6 d) 0. c) 3

d)

A

20. Which of the following are correct ? E(aX+b)=aE(X)+bΙ. $\mu_2 = \mu_2' - (\mu_1')^2$ II. $\mu_2 = Variance$ III. IV. $Var(aX+b) = a^2 var(X)$. I, II and III b) All a) d) I and IV. c) II and III 21. If $A = \begin{bmatrix} 2 & 0 & 1 \end{bmatrix}$, then the rank of AA^T is 2 b) a) 1 d) 0. 3 c) 22. If A is a matrix of order 3, then det (kA) is $k^3 \det(A)$ a) $k^2 \det(A)$ b) k det (A) c) det (A).

23.	If .	A = [0 0], then A^{12}	is	ndanu:	28igo		
•	a)	0	0 60			b)	0	0 5 ¹²]	ile
	cl	0	0 0			d)	[1	0	
	0,	Lo	0]				Lo	ıſ	

24. In a homogeneous system ρ (*A*) < (the number of unknowns) then the system has

a) only trivial solution

b) trivial solution and infinitely many non-trivial solutions

c) only non-trivial solutions

d) no solution.

25. If \overrightarrow{a} and \overrightarrow{b} include an angle 120° and their magnitudes are 2 and $\sqrt{3}$, then \overrightarrow{a} , \overrightarrow{b} is equal to

a) √3

b) -√3

c) 2

d) $-\frac{\sqrt{3}}{2}$.

26. If $x^2 + y^2 = 1$ then the value of $\frac{1 + x + iy}{1 + x - iy}$ is

a) x - iy b) 2x

c) -2iy d) x + iy.

A

27. The polar form of the complex number $(i^{25})^3$ is

8

- a) $\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}$
- b) $\cos \pi + i \sin \pi$
- c) $\cos \pi i \sin \pi$
- d) $\cos\frac{\pi}{2} i\sin\frac{\pi}{2}$.

28. The value of $i + i^{22} + i^{23} + i^{24} + i^{25}$ is

- a) i b) i
 - c) 1 d) 1.

29. Which of the following is incorrect regarding n^{th} roots of unity ?

- a) The number of distinct roots is n
- b) The roots are in G.P. with common ratio $cis\left(\frac{2\pi}{n}\right)$

c) The arguments are in A.P. with common difference $\frac{2\pi}{n}$

d) Product of the roots is 0 and the sum of the roots is ± 1 .

30. If the line 4x + 2y = c is a tangent to the parabola $y^2 = 16x$ then c is

a) -1 b) -2

c)

A

4

d) - 4.

31. Which of the following curves is concave down?

a) $y = -x^2$ b) $y = x^2$ c) $y = e^x$ d) $y = x^2 + 2x - 3$.

32. One of the conditions of Rolle's theorem is

- a) f is defined and continuous on (a, b)
- b) f is differentiable on [a, b]

c) f(a) = f(b)

- d) f is differentiable on (a, b].
- 33. If $u = \frac{1}{\sqrt{x^2 + y^2}}$, then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ is equal to a) $\frac{1}{2}u$ b) uc) $\frac{3}{2}u$ d) -u.

34. If $x = r \cos \theta$, $y = r \sin \theta$, then $\frac{\partial r}{\partial x} =$

- a) $\sec \theta$ b) $\sin \theta$
- c) $\cos \theta$ d) $\csc \theta$. $\pi/4$
- 35. The value of $\int_{0}^{\pi/4} \cos^3 2x \, dx$ is
 - a) $\frac{2}{3}$
 - c) 0

A

b) $\frac{1}{3}$ d) $\frac{2\pi}{3}$.

3521

36. Solution of $\frac{dx}{dy} + mx = 0$, where m < 0 is

a) $x = ce^{-my}$ b) $x = ce^{-my}$

c) x = my + c d)

37. The order and degree of the differential equation $\frac{d^2 y}{dx^2} - y + \left(\frac{dy}{dx} + \frac{d^3 y}{dx^3}\right)^{3/2} = 0$

x = c.

are

- a) 2, 3b) 3, 3c) 3, 2d) 2, 2.
- 38. Which of the following is a tautology?
 - a) $p \vee q$ b) $p \wedge q$
 - c) $p \lor \sim p$ d) $p \land \sim p$.

39. Which of the following is not a binary operation on R?

- a) a * b = ab
- b) a * b = a b
- c) $a * b = \sqrt{ab}$
- d) $a * b = \sqrt{a^2 + b^2}$.

40. The value of $[3] + {}_{11}([5] + {}_{11}[6])$ is

a) [0] b) [1] c) [2] d) [3].

A

SECTION - B

N. B.: i) Answer any ten questions.

- ii) Question No. 55 is compulsory and choose any nine questions from the remaining.
- iii) Each question carries six marks. $10 \times 6 = 60$

41. Solve the following system of linear equations by determinant method.

$$2x - 3y = 7$$
, $4x - 6y = 14$.

42. If $A = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & -1 \\ 1 & 2 \end{bmatrix}$, verify that $(AB)^{-1} = B^{-1}A^{-1}$.

- 43. Find the equation of the sphere on the join of the points A and B having position vectors $2\overrightarrow{i} + 6\overrightarrow{j} 7\overrightarrow{k}$ and $2\overrightarrow{i} 4\overrightarrow{j} + 3\overrightarrow{k}$ and respectively as a diameter.
- 44. i) A force of magnitude 5 units acting parallel to $2\vec{i} 2\vec{j} + \vec{k}$ displaces the point of application from (1, 2, 3) to (5, 3, 7). Find the work done.
 - ii) The volume of a parallelopiped whose edges are represented by $-12\vec{i} + \lambda \vec{k}, \ 3\vec{j} \vec{k}, \ 2\vec{i} + \vec{j} 15\vec{k}$ is 546. Find the value of λ .
- 45. Find the square root of 7 + 24*i*.
- 46. Solve the equation $x^4 4x^3 + 11x^2 14x + 10 = 0$, if one root is 1 + 2i.

47. Evaluate $\lim_{x \to 1} x^{\frac{1}{x-1}}$.

A

48. i) Verify Rolle's theorem for the function $f(x) = \sin x$, $0 \le x \le \pi$.

ii) Prove that e^x is strictly increasing function on R.

49. If
$$z = ye^{x^2}$$
, where $x = 2t$, $y = 1 - t$, then find $\frac{dz}{dt}$.

50. Evaluate
$$\int_{0}^{0} \frac{\sqrt{x}}{\sqrt{x} + \sqrt{3} - x} \, \mathrm{d}x.$$

3

3521

51. Solve
$$\frac{\mathrm{d}y}{\mathrm{d}x} + 2y \tan x = \sin x$$
.

52. Prove that $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$.

- 53. A game is played with a single fair die. A player wins Rs. 20 if a 2 turns up, Rs. 40 if a 4 turns up, loses Rs. 30 if a 6 turns up, while he neither wins nor loses if any other face turns up. Find the expected sum of money he can win.
- 54. Four coins are tossed simultaneously. What is the probability of getting
 - (i) exactly 2 heads, (ii) at least 2 heads, and (iii) at most 2 heads ?
 - 55. a) Let G be a group, $a, b \in G$. Then prove that $(a * b)^{-1} = b^{-1} * a^{-1}$.

OR

b) Find the equations of the tangent and normal to the parabola

 $x^{2} + 2x - 4y + 4 = 0$ at the point (0, 1).

SECTION - C

N. B.: i) Answer any ten questions.

- ii) Question No. 70 is compulsory and choose any nine questions from the remaining.
- iii) Each question carries ten marks. $10 \times 10 = 100$
- 56. Examine the consistency of the following system of equations. If it is consistent, solve them. (Use rank method)

x + y - z = 1, 2x + 2y - 2z = 2, -3x - 3y + 3z = -3.

- 57. Show that the lines $\frac{x-1}{3} = \frac{y-1}{-1} = \frac{z+1}{0}$ and $\frac{x-4}{2} = \frac{y}{0} = \frac{z+1}{3}$ intersect and hence find the point of intersection.
- 58. Find the vector and cartesian equations of the plane passing through the points with position vectors $3\overrightarrow{i} + 4\overrightarrow{j} + 2\overrightarrow{k}$, $2\overrightarrow{i} 2\overrightarrow{j} \overrightarrow{k}$ and $7\overrightarrow{i} + \overrightarrow{k}$.

A

- 60. On lighting a rocket cracker it gets projected in a parabolic path and reaches a maximum height of 4 m when it is 6 m away from the point of projection. Finally it reaches the ground 12 m away from the starting point. Find the angle of projection.
- 61. Find the eccentricity, centre, foci and vertices of the ellipse

 $16x^2 + 9y^2 - 32x + 36y - 92 = 0$ and draw the diagram.

13

^{59.} Solve $x^7 + x^4 + x^3 + 1 = 0$.

62. Prove that the line 5x + 12y = 9 touches the hyperbola $x^2 - 9y^2 = 9$ and find

its point of contact.

63. Find the intervals of concavity and the points of inflexion of the curve

$$u = 12x^2 - 2x^3 - x^4.$$

64. Trace the curve $y = x^3 + 1$.

- 65. Find the area between the curve $y = x^2 x 2$, x-axis and the lines x = -2and x = 4.
- 66. Prove that the curved surface area of a sphere of radius r intercepted between two parallel planes at the distances a and b from the centre of the sphere is $2\pi r(b-a)$ and hence deduce the surface area of the sphere (b > a).
- 67. Radium disappears at a rate proportional to the amount present. If 5% of the original amount disappears in 50 years, how much will remain at the end of 100 years? [Take A_0 as the initial amount]
- 68. Show that the set { [1], [3], [4], [5], [9] } forms an Abelian group under multiplication modulo 11.
- 69. Find c, μ and σ^2 of the normal distribution whose probability density function is given by $f(x) = ce^{-x^2 + 3x}, -\infty < x < \infty$.

A

15

3521

70. a) Solve: $(D^2 - 1)y = \cos 2x - 2 \sin 2x$.

A

OR

b) A car A is travelling from west to east at 50 km/hr and car B is travelling from south towards north at 60 km/hr. Both are headed for the intersection of the two roads. At what rate are the cars approaching each other when car A is 0.3 km and car B is 0.4 km from the intersection ?