

AIEEE and other Entrance Exams **MATHEMATICS Notes & Key Point**

www.onlineteachers.co.in

TRIGONOMETRIC RATIOS AND IDENTITIES

Chapter - 1

- 1. T- Ratios of various angles and their Signs in four quadrants
 - $\sec\theta = \frac{1}{\cos\theta}$ • $\csc\theta = \frac{1}{\sin\theta}$
 - $\cos^2 \theta + \sin^2 \theta = 1$ • $1 + \tan^2 \theta = \sec^2 \theta$
- $\cot \theta = \frac{1}{\tan \theta}$ • $1 + \cot^2 \theta = \csc^2 \theta$
- Values of T -functions of some Particular Angles

θ-	(0)	$\left(\frac{\pi}{6}\right)$	$\left(\frac{\pi}{4}\right)$	$\left(\frac{\pi}{3}\right)$	$\left(\frac{\pi}{2}\right)$	(π)	$\left(\frac{3\pi}{2}\right)$	(2π)	II	I
sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	0	- 1	0	only sinθ and cosecθ are ⊣ ve	All are ⊣ ve
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	- 1	0	1	only $tan \theta$ and $cot \theta$ are $\exists ve$	only cosθ and secθ are ⊣ ve
tan	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	not defined	0	not defined	0 Me ^{rs}	°О° _Ш ш	IV

					No.				
Values of T -functions in terms of other T -functions									
Quadrant	Ι	II	III	INOU	IV	Ι	II	III	IV
Angle	$(2\pi + x)$	(π- x)	$(\pi + x)$	$(2\pi - x)$	(- x)	$\left(\frac{\pi}{2}-\mathbf{x}\right)$	$\left(\frac{\pi}{2} + x\right)$	$\left(\frac{3\pi}{2}-x\right)$	$\left(\frac{3\pi}{2}+x\right)$
sin	sin x	sin x	ð sin x	- sin x	- sin x	cos x	COS X	- cos x	- cos x
cos	cos x	T COS X	- COS X	COS X	COS X	sin x	- sin x	- sin x	sin x
tan	tanx	- tan x	tan x	- tan x	- tan x	cot x	- cot x	cot x	- cot x
cosec	cosec x	cosec x	- cosec x	- cosec x	- cosec x	sec x	sec x	- sec x	- sec x
sec	sec x	- sec x	- sec x	sec x	sec x	cosec x	- cosec x	- cosec x	cosec x
cot	cot x	- cot x	cot x	- cot x	- cot x	tan x	- tan x	tan x	- tan x

2. Range of T - Ratios:

• $-1 \le \sin \theta \le 1$

• $|\csc \theta| \ge 1$

3. Period of T - ratios

- All T-ratios are periodic functions.
- Period $\tan \theta$ of and $\cot \theta$ is π
- Period of $\sin \theta$, $\cos \theta$, $\csc \theta$ and $\sec \theta$ is 2π

4. Sum and Difference formula:

• $\cos(x + y) = \cos x \cos y - \sin x \sin y$ • $\sin(x + y) = \sin x \cos y + \cos x \sin y$

- $-1 \le \cos\theta \le 1$ • $|\sec \theta| \ge 1$
- $< \tan \theta < \propto$
- $< \cot \theta < \propto$

- $\cos(x y) = \cos x \cos y + \sin x \sin y$ $\sin(x y) = \sin x \cos y \cos x \sin y$

<i>C</i> LPHA
EDUCATION

- $\tan(x+y) = \frac{\tan x + \tan y}{1 \tan x \tan y}$, • $\cot(x+y) = \frac{\cot x \cot y - 1}{\cot y + \cot x}$ • $\cot(x-y) = \frac{\cot x \cot y + 1}{\cot y - \cot x}$ • $\tan(x-y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}$ • $\sin 2x = 2 \sin x \cos x$ • $\cos 2x = \cos^2 x - \sin^2 x = 2\cos^2 x - 1 = 1 - 2\sin^2 x$ • $\sin x = 2\sin\frac{x}{2}\cos\frac{x}{2}$ • $\cos x = \cos^2 \frac{x}{2} - \sin^2 \frac{x}{2} = 2\cos^2 \frac{x}{2} - 1 = 1 - 2\sin^2 \frac{x}{2}$ • $1 + \cos 2x = 2\cos^2 x$ • $1 - \cos 2x = 2\sin^2 x$ • $1 - \cos x = 2\sin^2 \frac{x}{2}$ • $1 + \cos x = 2\cos^2 \frac{x}{2}$ • $\frac{1-\cos x}{\sin x} = \tan \frac{x}{2}$ • $\frac{1+\cos x}{\sin x} = \cot \frac{x}{2}$ $\sqrt{\frac{2}{2}}$ $\sqrt{\frac{2}{2}}$ $\sqrt{\frac{2}{2}}$ $\sqrt{\frac{1-\cos 2x}{1+\cos 2x}}$ $\sqrt{\frac{1-\cos 2x}{1+\cos 2x}}$ $\sqrt{\frac{1-\cos 2x}{1+\cos 2x}}$ $\sqrt{\frac{1-\cos 2x}{1+\cos 2x}}$ $\sqrt{\frac{1-\cos x}{1+\cos x}}$ $\sqrt{\frac{1-\cos x}{1+\cos x}}$ • $\sin x = \sqrt{\frac{1 - \cos 2x}{2}}$ • $\sin \frac{x}{2} = \sqrt{\frac{1 - \cos x}{2}}$ • $\sin 2x = \frac{2\tan x}{1+\tan^2 x}$ • $\sin x = \frac{2\tan x/2}{1+\tan^2 x/2}$ • $\tan 3x = \frac{3\tan x - \tan^3 x}{1 - 3\tan^2 x}$ • $\sin 3x = 3\sin x - 4\sin^3 x$ • $\cos 3x = 4\cos^3 x - 3\cos x$ • $\sin(x + y) \sin(x - y) = \sin^2 x - \sin^2 y = \cos^2 y - \cos^2 x$ • $\cos(x + y)\cos(x - y) = \cos^2 x - \sin^2 y = \cos^2 y - \sin^2 x$ 5. Product Into Sum or Difference Formulae: • $2\cos x \sin y = \sin(x + y) - \sin(x - y)$ • $2\sin x \cos y = \sin(x + y) + \sin(x - y)$ • $2\cos x \cos y = \cos(x + y) + \cos(x - y)$ • $2\sin x \sin y = \cos(x-y) - \cos(x+y)$
- 6. <u>Sum and Difference Into Product Formulae :</u>

•
$$\sin x + \sin y = 2\sin\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right)$$

• $\cos x + \cos y = 2\cos\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right)$

•
$$\sin x - \sin y = 2\cos\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right)$$

• $\cos x - \cos y = -2\sin\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right)$

where $r = \sqrt{a^2 + b^2}$

Trigonometric Ratio of Some Important Angles :

•
$$\sin 18^\circ = \frac{\sqrt{5} - 1}{4}$$

• $\tan 22\frac{1}{2}^\circ = \sqrt{2} - 1$
• $\tan 15^\circ = 2 - \sqrt{3}$
• $\cos 36^\circ = \frac{\sqrt{5} + 1}{4}$
• $\cot 22\frac{1^\circ}{2} = \sqrt{2} + 1$
• $\cot 15^\circ = 2 + \sqrt{3}$

8. <u>Maximum and Minimum Values</u> (of $a \cos \theta + b \sin \theta$):

Let $a = r \cos \alpha$ and $b = r \sin \alpha$ Then, $a\cos\theta + b\sin\theta = r(\cos\alpha\cos\theta + \sin\alpha\sin\theta) = r\cos(\alpha - \theta)$ But $-1: \cos(\alpha - \theta) : 1$ $\cdot -r \le a\cos\theta + b\sin\theta \le r$ So the maximum value is $\left(\sqrt{a^2 + b^2}\right)$ and minimum value is $\left(-\sqrt{a^2 + b^2}\right)$

- 9. Some other useful Results :
 - $\sin (A + B + C) = \sum \sin A \cos B \cos C \prod \sin A$
 - $\cos(A + B + C) = \prod \cos A \sum \cos A \sin B \sin C$

•
$$\tan(A + B + C) = \frac{\sum \tan A - \prod \tan A}{1 - \sum \tan A \tan B}$$

•
$$\left(\sin\frac{A}{2} + \cos\frac{A}{2}\right)^2 = 1 + \sin A$$

•
$$\left(\sin\frac{A}{2} - \cos\frac{A}{2}\right)^2 = \sin A$$

- A sin B sin C $\operatorname{A sin B sin C} = \frac{1}{4} \sin 3A$ $\operatorname{A sin B sin C} = \operatorname{A cos}(60^\circ A) \cos(60^\circ + A) = \frac{1}{4} \cos 3A$ $\operatorname{A sin B sin C} = \operatorname{A cos}(60^\circ A) \cos(60^\circ + A) = \frac{1}{4} \cos 3A$

 - $\tan A \cot A = -2\cot 2A$
 - $\tan A + \cot A = 2 \operatorname{cosec} 2A$
- $\cos A + \cos B + \cos C + \cos (A + B + C) = 4\cos \frac{A + B}{2}\cos \frac{B + C}{2}\cos \frac{C + A}{2}$
- $\sin A + \sin B + \sin C + \sin (A + B + C) = 4\sin \frac{A + B}{2}\sin \frac{B + C}{2}\sin \frac{C + A}{2}$
- $\cos A \cos 2A \cos 2^2 A \dots \cos 2^{n-1} A = \frac{\sin 2^n A}{2^n \sin A}$

•
$$\sin a + \sin(a + d) + \sin(a + 2d) + \dots = \sin[a + (n-1)d] = \frac{\sin \frac{nd}{2}}{\sin \frac{d}{2}} \sin\left(\frac{2a + (n-1)d}{2}\right)$$

• $\cos a + \cos(a + d) + \cos(a + 2d) + \dots \cos[a + (n - 1)d] = \frac{\sin \frac{nd}{2}}{\sin \frac{d}{2}} \cos\left(\frac{2a + (n - 1)d}{2}\right)$

AIEEE and other Entrance Exams

www.onlineteachers.co.in

MATHEMATICS Notes & Key Point

TRIGONOMETRIC EQUATIONS AND INVERSE CIRCULAR FUNCTIONS

Chapter - 2

1. Solution of Trigonometric Equations

- Principal solutions : The solutions of a trigonometric equation for which $0 \le x < 2\pi$ are called principal solutions.
- General solution : A solution of a trigonometric equation, generalised by means of periodicity, is known as the general solution.
- 2. Some Examples of Principal Solutions
- $\sin \theta = 0$ = $\theta = \{0, \pi\}$ $\cos \theta = 0$ $\Rightarrow \theta = \left\{\frac{\pi}{2}, \frac{3\pi}{2}\right\}$ $\tan \theta = 0$ = $\theta = \{0, \pi\}$ • $\sin\theta = \frac{1}{2} \implies \theta = \left\{\frac{\pi}{6}, \frac{5\pi}{6}\right\}$ • $\cos\theta = \frac{1}{2} \implies \theta = \left\{\frac{\pi}{3}, \frac{5\pi}{3}\right\}$ • $\tan\theta = \sqrt{3} \implies \theta = \left\{\frac{\pi}{3}, \frac{4\pi}{3}\right\}$ • $\sin \theta = -\frac{1}{2} \Rightarrow \theta = \left\{ \frac{7\pi}{6}, \frac{11\pi}{6} \right\}$ • $\cos \theta = -\frac{1}{2} \Rightarrow \theta = \left\{ \frac{2\pi}{3}, \frac{4\pi}{3} \right\}$ • $\tan \theta = -\sqrt{3} \Rightarrow \theta = \left\{ \frac{2\pi}{3}, \frac{5\pi}{3} \right\}$ • $\sin \theta = 1 \qquad \Rightarrow \theta = \frac{\pi}{2}$ • $\cos \theta = 1$ = $\theta = 0$ • $\sin \theta = -1 \implies \theta = \frac{3\pi}{2}$ • $\cos\theta = -1 = \theta = \pi$ • $\cos^2 \theta = \frac{1}{4}$ $\theta = \left\{\frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3}\right\}$ where $n \in I$ • $\sin^2 \theta = \frac{1}{4} \implies \theta = \left\{ \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6} \right\}$ • $\tan^2 \theta = 1 \qquad \Rightarrow \theta = \left\{ \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4} \right\}$ 3. General Solution of Some Important Equations $= \theta = n\pi$ • $\sin \theta = 0$ $= \theta = (2n+1)\pi/20^{n}$ where $n \in I$ • $\cos\theta = 0$ $= \theta = n\pi \sqrt{\theta}$ where $n \in I$ • $\tan \theta = 0$ $\Rightarrow \theta = \alpha \pi + (-1)^n \alpha$ where $n \in I$ • $\sin\theta = \sin\alpha$ $\theta = 2n\pi \pm \alpha$ $= \theta = n\pi + \alpha$ • $\cos\theta = \cos\alpha$ where $n \in I$ where $n \in I$ • $\tan \theta = \tan \alpha$ • $\sin^2 \theta = \sin^2 \alpha$ $= \theta = n\pi \pm \alpha$ where $n \in I$ • $\cos^2 \theta = \cos^2 \alpha$ $= \theta = n\pi \pm \alpha$ where $n \in I$ • $\tan^2 \theta = \tan^2 \alpha$ $= \theta = n\pi \pm \alpha$ where $n \in I$ $= \theta = 2n \pi + \pi/2$ • $\sin \theta = 1$ where $n \in I$ $= \theta = 2n \pi - \pi/2$ • $\sin \theta = -1$ where $n \in I$ $= \theta = 2n \pi$. where $n \in I$ • $\cos\theta = 1$ $= \theta = 2n \pi + \pi$, where $n \in I$ • $\cos \theta = -1$ where $|c| \leq \sqrt{a^2 + b^2}$ 4. <u>General solution</u> of $a\cos\theta + b\sin\theta = c$ where $r = \sqrt{a^2 + b^2}$ Put $a = r \cos \alpha$ and $b = r \sin \alpha$, Then the equation becomes $r(\cos \alpha \cos \theta + \sin \alpha \sin \theta) = c$ $\Rightarrow \cos (\theta - \alpha) = \frac{c}{\sqrt{\alpha^2 + b^2}} = \cos \beta \quad (say) = \theta - \alpha = 2n \ \pi \pm \beta$. $\theta = 2n\pi \pm \beta + \alpha$ (where $tan \alpha = b/a$) is the general solution.

• Alternatively, putting $a = r \sin \alpha$

 $b = r \cos \alpha$ where $r = \sqrt{a^2 + b^2}$, we get and

 $\Rightarrow \theta + \alpha = n\pi + (-1)^n \gamma$

$$\sin(\theta + \alpha) = \frac{c}{\sqrt{a^2 + b^2}} = \sin\gamma$$
 (say)

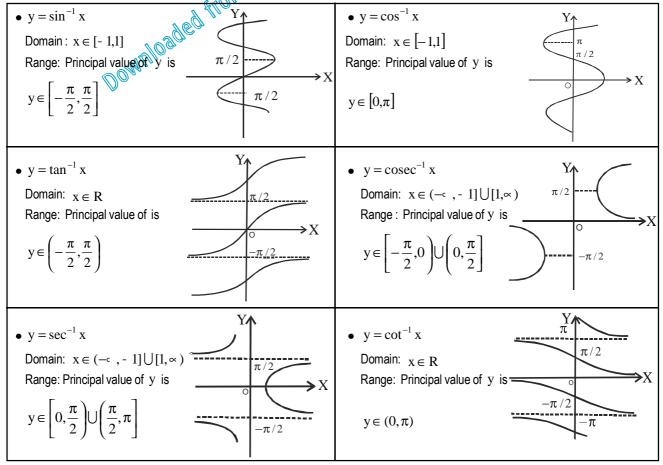
 $\Rightarrow \theta = n\pi + (-1)^n \gamma - \alpha$ (where $\tan \alpha = a/b$) is the general solution.

• Both the methods give the same set of values of A

5. Inverse Circular Functions:

- The mathematical definition of a function from set A to set B is that to each element $a \in A$ there exists a unique element $b \in B$.
- In direct trigonometric function, we are given the angle and we calculate the trigonometric ratio (sine, cosine, etc.)
- To many values of the angle, the value of trigonometric ratio is same. e.g. $\tan \theta = 1$ for $\theta = \frac{\pi}{4}$, $5\frac{\pi}{4}$, $9\frac{\pi}{4}$, etc.
- Direct trigonometric function quite obviously follow the definition of a function (they are many-one functions.)
- Inverse trigonometry deals with obtaining the angle, given the value of trigonometry ratio.
- In inverse trignometry, if we say that to a certain value of the trigonometric ratio, there corresponds many values of the angle, it violates the definition of function (it becomes a one -many relation).
- Hence, some restrictions have been imposed on the angles, and these are based on the principle values of the angles.
- The inverse of sine function is defined as $\sin^{-1} x = \theta$ where $-1 \le x \le 1$, $\sin^{-1} \frac{\pi}{2} \le \theta \le \frac{\pi}{2}$
- e.g., $\sin^{-1}\frac{1}{2} = \frac{\pi}{6}$ only although $\sin\frac{5\pi}{6}$, $\sin\frac{13\pi}{6}$, etc. are also equal to $\frac{1}{2}$ http://on
- Similarly, $\sin^{-1}\left(-\sqrt{3}/2\right) = -\frac{\pi}{3}$ only.

6. Graphs of Inverse Trignometric Functions



Downloaded from http://onlineteachers.co.in, portal for CBSE, ICSE, State Boards and Entrance Exams. Prepared by Alpha Education, Sec-4, Gurgaon, Haryana. sales@onlineteachers.co.in

7

www.onlineteachers.co.in

Important Results • $\sin(\sin^{-1}x) = x$ • $\cos(\cos^{-1} x) = x$ • $tan(tan^{-1}x) = x$ • $\sin^{-1}(\sin\theta) = \beta$ where β lies in principal range. e.g. $\sin^{-1}\left(\sin\frac{\pi}{3}\right) = \frac{\pi}{3}$ whereas $\sin^{-1}\left(\sin\frac{2\pi}{3}\right) \neq \frac{2\pi}{3}$ • $\sin^{-1}(-x) = -\sin^{-1}x$ • $\cos^{-1}(-x) = \pi - \cos^{-1} x$ • $\tan^{-1}(-x) = -\tan^{-1}x$ • $\sec^{-1}(-x) = \pi - \sec^{-1} x$ • $\operatorname{cosec}^{-1}(-x) = -\operatorname{cosec}^{-1} x$ • $\cot^{-1}(-x) = \pi - \cot^{-1} x$ • $\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x+y}{1-xy} \right)$ if xy<1 $=\pi+\tan^{-1}\left(\frac{x+y}{1-xy}\right)$ if xy > 1• $\tan^{-1} x - \tan^{-1} y = \tan^{-1} \left(\frac{x - y}{1 + xy} \right)$ • $\sin^{-1} x = \cos^{-1} \sqrt{1 - x^2}$ • $\cos^{-1} x = \sin^{-1} \sqrt{1 - x^2}$ • $\cos^{-1} x = \tan^{-1} \frac{\sqrt{1-x^2}}{x}$ • $\sec^{-1} x = \cos^{-1} \frac{1}{x}$ • $\csc^{-1} x = \sin^{-1} \frac{1}{x}$ • $\csc^{-1} x = \sin^{-1} \frac{1}{x}$ • $\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}$ • $\sin^{-1} x = \tan^{-1} \frac{x}{\sqrt{1-x^2}}$ • $\cot^{-1} x = \tan^{-1} \frac{1}{x}$ • $\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$ • $2 \tan^{-1} x = \tan^{-1} \frac{2x}{1 - x^2}$, |x| < 1 and x = 2• $2 \tan^{-1} x = \sin^{-1} \frac{2x}{1+x^2}$, $|x| \le 1$ • $2 \tan^{-1} x = \cos^{-1} \frac{1-x^2}{1+x^2}$, $x \ge 0$ • $\sin^{-1} x + \sin^{-1} y = \sin^{-1} \left[x \sqrt{1 - y^2} + y \sqrt{1 - x^2} \right]$, $-\frac{\pi}{2} \le \sin^{-1} x - \sin^{-1} y \le \frac{\pi}{2}$ • $\sin^{-1} x - \sin^{-1} y = \sin^{-1} \left[x \sqrt{1 - y^2} - y \sqrt{1 - x^2} \right]$, $-\frac{\pi}{2} \le \sin^{-1} x - \sin^{-1} y \le \frac{\pi}{2}$ • $\cos^{-1} x + \cos^{-1} y = \cos^{-1} \left[xy - \sqrt{1 - x^2} \sqrt{1 - y^2} \right]$, $0 \le \cos^{-1} x + \cos^{-1} y \le \pi$ • $\cos^{-1} x - \cos^{-1} y = \cos^{-1} \left[xy + \sqrt{1 - x^2} \sqrt{1 - y^2} \right]$, $0 \le \cos^{-1} x - \cos^{-1} y \le \pi$

AIEEE and other Entrance Exams MATHEMATICS Notes & Key Point

www.onlineteachers.co.in

Line of sight

Horizontal line

04

HEIGHTS AND DISTANCES

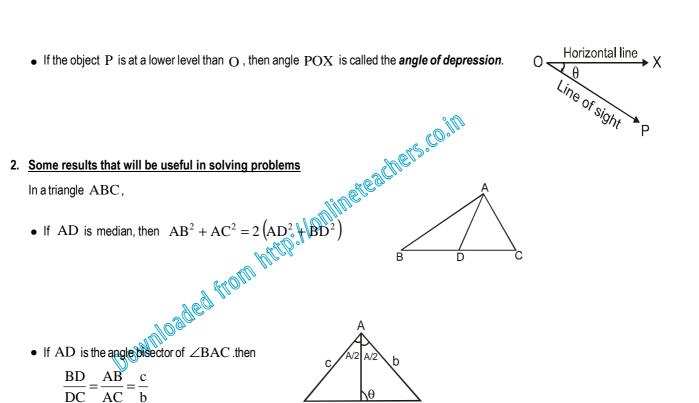
Chapter - 3

- P

Х

1. Introduction

- Let 'O' be the observer's eye and OX be the horizontal line through O.
- If the object P is at a higher level than O, then angle $POX(=\theta)$ is called the *angle of elevation*.



D

• If a line is perpendicular to a plane, then it is perpendicular to every line lying in that plane .

R

AIEEE and other Entrance Exams MATHEMATICS Notes & Kev Point

www.onlineteachers.co.in

SEQUENCE AND PROGRESSIONS

Chapter - 4

- 1. <u>Arithmetic Progression</u> (AP)
 - In an Arithmetic Progression (AP), the consecutive terms increase/decrease by a fixed quantity.
 - n^{th} term, $T_n = a + (n-1)d$ where, a = first term, d = common difference, n = number of terms
 - $S_n = \frac{n}{2}(a+\ell) = \frac{n}{2}[2a+(n-1)d]$ where, $\ell = last term$ • Sum of n terms,
 - Sum of first and last terms of an AP is equal to the sum of two terms which are equidistant from the first and the last terms.
 - AM between two numbers a and b, $A = \frac{a+b}{2}$
 - n AMs between two numbers a and b denoted by A1, A2, A3.....An form an AP given by a, $A_1, A_2, A_3, \dots, A_n, b$
 - The sum of n AM's between a and b is equal to $n\left(\frac{a+b}{2}\right) = nA$

 - Arithmetic mean of n positive numbers $a_1, a_2, a_3 \dots a_n$ is $A = \frac{a_1 + a_2 + \dots a_n}{n}$ $\frac{a}{k}, \frac{b}{k}, \frac{c}{k}$ $a \pm k, b \pm k, c \pm k$ are also in AP
 - a d, a, a + d • For solving problems, 3 terms in AP are taken as 4 terms in Arrare taken as a - 3d, a - d, a + d, a + 3d
 - Common difference when general term is given, $d = T_n T_{n-1}$
 - n^{th} term when general sum of n terms is given, $T_n = S_n S_{n-1}$
- 2. Geometric Progression (GP)
 - In a Geometric Progression (GP), the consecutive terms increase / decrease by a fixed ratio.
 - n^{th} term, $T_n = ar^{n-1}$ where, a = first term, r = common ratio, n = number of terms
 - Sum of n terms, $S_n = \frac{a(r^n 1)}{r 1} = \frac{a(1 r^n)}{1 r}$
 - $S_{\infty} = \frac{a}{1 r}$ • If |r| < 1, the sum of infinite terms,
 - Product of first and last terms of a GP is equal to the product of two terms which are equidistant from the first and the last terms.
 - $G = \sqrt{ab}$ • GM between two numbers a and b,
 - $n \ GMs$ between numbers a and b denoted by $G_1, G_2, G_3, \dots, G_n$ form a GP given by $a, G_1, G_2, G_3, \dots, G_n, b$
 - The product of GM's between a and b is equal to $\left(\sqrt{ab}\right)^{l/n} = (ab)^{n/2}$

- Geometric mean of n positive numbers $a_1, a_2, \dots a_n$ is $G = (a_1, a_2, \dots a_n)^{1/n}$
- If a, b, c are in GP, then ak, bk, ck are also in GP $(k \neq 0)$

$$\frac{a}{k}, \frac{b}{k}, \frac{c}{k},$$
 are also in GP $(k \neq 0)$

• For solving problems, 3 terms are taken as

$$ar, a, \frac{a}{r}$$

 ar^3 , $\operatorname{ar}, \frac{a}{r}, \frac{a}{r^3}$

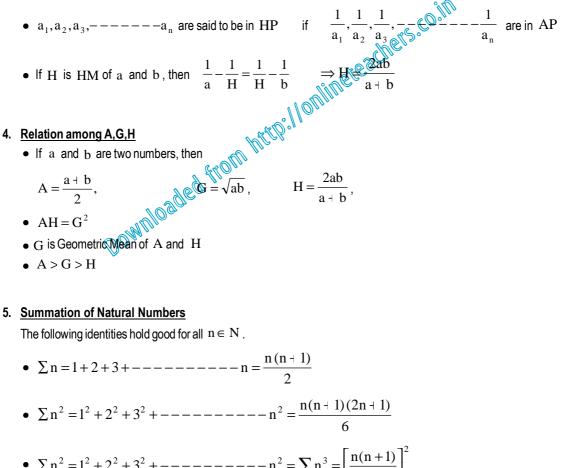
4 terms are taken as

• If a_1, a_2, \dots, a_n is a G.P. with common ratio r , then

 $\log a_1, \log a_2, \dots, \log a_n$ is an A.P. with common difference equal to $\log r$

3. <u>Harmonic Progression</u> (HP)

• In a Harmonic Progression (HP), the reciprocals of two consecutive terms increase /decrease by a fixed quantity.



- $\sum n^2 = 1^2 + 2^2 + 3^2 + \dots + n^2 = \sum n^3 = \left[\frac{n(n+1)}{2}\right]^2$
- If n^{th} term is given by $T_n = an^3 + bn^2 + cn + d$, then the sum of n terms is given by

$$S_{n} = \Sigma T_{n} = \Sigma (an^{3} + bn^{2} + cn + d) = a\Sigma n^{3} + b\Sigma n^{2} + c\Sigma n + d\Sigma n^{2}$$
$$= a \left[\frac{n(n+1)}{2} \right]^{2} + \frac{bn(n+1)(2n+1)}{6} + \frac{cn(n+1)}{2} + dn$$

Arithmetico - Geometric Series 6.

- This series is a combination of AP and GP in the manner $a, (a + d)r, (a + 2d)r^2, (a + 3d)r^3, \dots$
- (where, a = first term, d = common difference, r = common ratio)
- nth term, $T_n = [a + (n-1)d]r^{n-1}$
- $S_{n} = \frac{a}{(1-r)} + \frac{dr(1-r^{n-1})}{(1-r)^{2}} \frac{[a+(n-1)d]r^{n}}{(1-r)}$ • Sum of n terms,
- If |r| < 1, then the sum of infinite terms, $S_{\infty} = \frac{a}{1-r} + \frac{dr}{(1-r)^2}$ if |r| < 1

7. Method of difference in summation of series

- If n^{th} term of a series can be written as $t_n = f(n) f(n+1)$, $S_n = t_1 + t_2 + \dots + t_n$ then, $= [f(1) - f(2)] + [f(2) - f(3)] + [f(3) - f(4)] + \dots [f(n) - f(n+1)]$ = f(1) - f(n+1)
- n.(n+1) n.(n+1) n.(n+1) n.(n+1) $\therefore S_n = \left(\frac{1}{1} \frac{1}{2}\right) + \left(\frac{1}{2} \frac{1}{3}\right) + \left(\frac{1}{3} \frac{1}{4}\right) + \dots \left(\frac{1}{n} \frac{1}{n+1}\right) + \frac{1}{n+1} = \frac{n}{n+1}$ $\frac{n \text{mation of Trigonometric Series}}{1, a_2, \dots, a_n \text{ are in } A^{\mathbf{P}} \cdots^{n}}$ • e.g. consider the series $\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \dots - \frac{1}{n.(n+1)}$

8. Summation of Trigonometric Series

If a_1, a_2, \dots, a_n are in AP with common difference 'd', then

•
$$\sin a_1 + \sin a_2 + \dots + \sin a_n = \frac{\sin\left(\frac{a_1 + a_n}{2}\right)\sin\left(\frac{nd}{2}\right)}{\sin\left(\frac{d}{2}\right)}$$

•
$$\cos a_1 + \cos a_2 + \dots + \cos a = \frac{\cos\left(\frac{a_1 + a_n}{2}\right)\sin\left(\frac{nd}{2}\right)}{\sin\left(\frac{d}{2}\right)}$$

AIEEE and other Entrance Exams

www.onlineteachers.co.i

Chapter - 5

MATHEMATICS Notes & Key Point QUADRATIC EQUATIONS AND INEQUATIONS

1. Standard Form

A quadratic equation in standard form is $ax^2 + bx + c = 0$ where, $a, b, c \in R$ and a ≠ 0

- Roots of the equation are given by $\alpha, \beta = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$
- Sum of the roots, $\alpha + \beta = -b/a$

 $\alpha\beta = c/a$ Product of the roots,

• The equation $ax^2 + bx + c = 0$ can be expressed as $ax^2 + bx + c = a(x - \alpha) (x - \beta)$

$$= ax^{2} + bx + c = a[x^{2} - (\alpha + \beta)x + \alpha\beta] = ax^{2} - a(\alpha + \beta)x + a\alpha\beta$$

Equating coeff. of x and constant terms on both sides, we have $b = -a(\alpha + \beta)$ $c = a \alpha \beta$ and

$$\alpha + \beta = -b/a$$
 and $\alpha\beta = c/a$

• Difference of roots,
$$|\alpha - \beta| = \sqrt{(\alpha + \beta)^2 - 4\alpha\beta} = \sqrt{\left(\frac{-b}{a}\right)^2 - 4\frac{c}{a}} = \frac{\sqrt{b^2 - 4ac}}{\sqrt{a}}$$

• $D = b^2 - 4ac$ is called the discriminant.
• If $D > 0$, roots are real and unequal $D = 0$, roots are real and equal $D < 0$, roots are complex and unequal $D < 0$, roots are complex and unequal $D < 0$, roots are complex and unequal $D < 0$.

2. Nature of Roots

- $D = b^2 4ac$ is called the discriminant.
- If D > 0, roots are real and unequal
 - D = 0, roots are real and equal
 - roots are complex and unequal D < 0,
- If the roots are complex, they always occur as conjugate pairs.

3. Graphs of Quardratic Polynomial &

Let $f(x) = ax^2 + bx + c$, $a \neq 0$ be a quadratic polynomial.

- Shape : The shape of guadratic polynomial is always a parabola.
- **Opening:** If a , parabola opens upwards.
 - If a < 0, parabola opens downwards.
- Intersection with X-axis

Condition	D > 0	D = 0	D < 0		
Result	parabola intersects X -axis at two distinct points	parabola touches X -axis	parabola does not intersect X -axis		
Graph	$\begin{array}{c c} a > 0 \\ \hline \\ a < 0 \\ \hline \\ a < 0 \\ \hline \\ x - axis \\ \end{array}$	$\begin{array}{c c} \hline & & \\ \hline \\ \hline$	$\begin{array}{c} x > 0 \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		

• Maximum and Minimum values of f(x)

V is called the vertex of parabola.

The coordinates of V are
$$\left(\frac{-b}{2a}, \frac{-D}{4a}\right)$$

• If a > 0 and D < 0, parabola opens upwards and does not intersect X -axis.

Hence, f(x) > 0 for all real x.

If a < 0 and D < 0, parabola opens downwards and does not intersect X -axis.

Hence, f(x) < 0 for all real x.

4. Roots of a cubic equation

If α, β, γ are the roots of $ax^3 + bx^2 + cx + d = 0$, then, $\alpha + \beta + \gamma = -b/a$, $\alpha\beta + \alpha\gamma + \beta\gamma = c/a$, $\alpha\beta\gamma = -d/a$

5. Condition for Common Roots

Let there be two quadratic equations $ax^2 + bx + c = 0$ and $dx^2 + ex + f = 0$

- If **both roots are common**, the two equations must essentially be the same. Hence, $\frac{a}{d} = \frac{b}{e} = \frac{c}{f}$
- If only one root is common, and the common root is α , then $a\alpha^2 + b\alpha + c = 0$ and $d\alpha^2 + e\alpha + f = 0$

Solving the two equations by Cramer's rule, we get $\frac{\alpha^2}{bf - ce} = \frac{-\alpha}{af - cd} = \frac{1}{ae - bd}$

Hence, $\alpha = \frac{bf - ce}{cd - af} = \frac{cd - af}{ae - bd}$ or $(cd - af)^2 = (bf - ce)(ae - bd)$ which is the condition for one common root.

6. Roots when sum of coefficients is zero

- If the sum of coefficients of a polynomial equation f(x) = 0 is zero then 1 is a root of the equation f(x) = 0
- In the equation $ax^2 + bx + c = 0$, if a + b + c = 0, then the roots are 1 and 6/a and if a b + c = 0, then the roots are -1 and -c/a.

7. Condition for roots in a given ratio

If the roots of the equation $ax^2 + bx + c = 0$ are in the ratio m:n, then the roots can be taken as mr and nr. Then, mr + nr = -b/a and $mr \times nr = c/a$

$$= r = \frac{-b}{a(m+n)} \qquad \text{and} \quad r^2 = \frac{c}{a \operatorname{prip}} \left[\frac{b}{a(m+n)} \right]^2 = \frac{c}{m n a}$$

. $b^2mn = ac(m+n)^2$ which is the condition if the roots of the equation are in a given ratio m:n

8. Equation whose both roots bear a fixed pattern

- If α , β are roots of $ax \beta bx + c = 0$, then
- the equation whose roots are $-\alpha, -\beta$ is $a(-x)^2 + b(-x) + c = 0$ • the equation whose roots are $\frac{1}{\alpha}, \frac{1}{\beta}$ is $a\left(\frac{1}{x}\right)^2 + b\left(\frac{1}{x}\right) + c = 0$
- the equation whose roots are $k\alpha$ and $k\beta$ is $a\left(\frac{x}{k}\right)^2 + b\left(\frac{x}{k}\right) + c = 0$
- the equation whose roots are $\alpha + k$ and $\beta + k$ is $a(x-k)^2 + b(x-k) + c = 0$

9. Remainder Theorem

If a polynomial f(x) is divided by $x - \alpha$, the remainder obtained is $f(\alpha)$

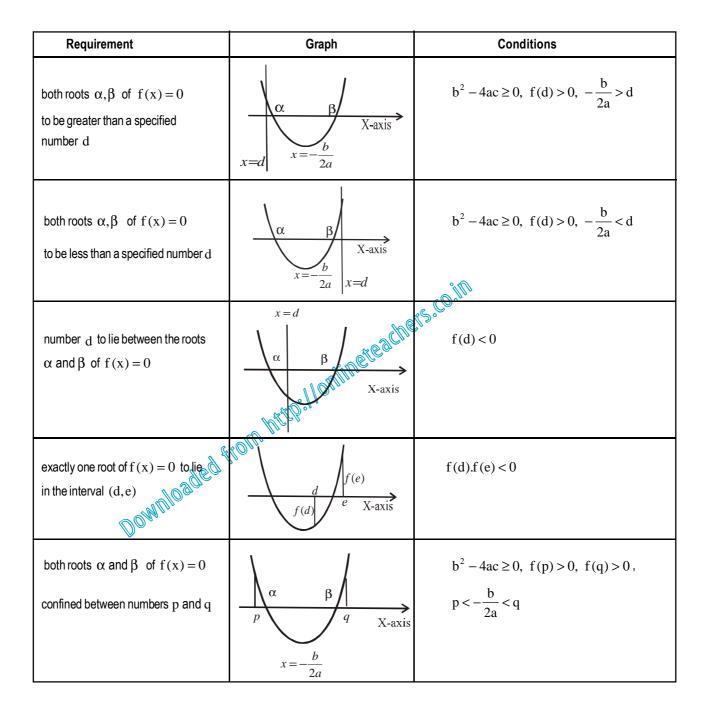
10. Factor Theorem

A polynomial f(x) is divisible by $x - \alpha$ if $f(\alpha) = 0$

If $f(\alpha) = 0$ and $f'(\alpha) = 0$, then $(x - \alpha)^2$ is the factor of f(x) = 0 and α is known as repeated root of f(x) = 0. Also, $f(x) = ax^2 + bx + c = a(x - \alpha)^2$ where, $\alpha = -b/2a$

11. Conditions for location of roots

Let $f(x) = ax^2 + bx + c$ where, a > 0. Then, the conditions for various requirements of the roots are given in the table below.



12. Descarte's rule of signs

The maximum number of positive real roots of a polynomial f(x) is the number of changes of signs in f(x) and the maximum number of negative real roots of f(x) is the number of changes of signs in f(-x).

13. Polynomial and Algebraic Inequations

• Here, we solve the inequations of the type f(x) < 0, $f(x) \le 0$, f(x) > 0, $f(x) \ge 0$, $P(x) Q(x) \le 0$,

 $\frac{P(x)}{Q(x)} > 0$, $\frac{P(x)}{Q(x)} < 0$, etc. where, f(x), P(x) and Q(x) are polynomials in x.

- To solve the above inequations, we follow the following steps also known as sign method.
 - (1) Factorise P(x) and Q(x) into linear factors
 - (2) Make coefficient of x positive in all factors
 - (3) Plot the critical points on a number line n critical points will divide the number line in n + 1 regions.
 - (4) In the rightmost region, the expression bears positive sign and in other regions, the expression bears alternate negative and positive signs.

 $\Rightarrow \frac{(x+1)(x-1)(x-2)}{(x-3)(4-x)} \le 0$

 $\Rightarrow \frac{(x+1)(x-1)(x-2)}{(x-3)(x-4)} \ge 0$

(5) The region with appropriate sign matching with the expression is the desired domain.

Example: Solve for x in
$$\frac{(x+1)(x^2-3x+2)}{-x^2+7x-12} \le 0$$

Step- 1: Factorise expression into linear factors

Step-2: Make coefficient of x positive in all factors

Step-3: Plot critical points, i.e., -1, 1, 2, 3, 4, on a number line

Step-4: Assign + ve and -ve values to the regions.

<u>Step-5:</u> Since, the expression at step $2 \ge 0$, the desired domain is f(x) = 1,1 U [2,3) U (4, \propto) <u>Laws of inequality</u>

14. Laws of inequality

• If	a > b ,	then	a + c > b + c		
			ac > bc	provided	c > 0
		501	ac < bc	provided	c < 0
• If	$a^x > a^y$,	then	ac > bc ac < bc x > y	provided	a > 1
	Ø	24.	x < y	provided	0 < a < 1
● If	$\log_a x > \log_a y$,	then	x > y	provided	a > 1
			x < y	provided	0 < a < 1

• $a^2 + b^2 + c^2 \ge ab + bc + ac$

• If
$$x > 0$$
, then $x + \frac{1}{x} \ge 2$
 $x < 0$, then $x + \frac{1}{x} \le -2$

• If a_1, a_2, \dots, a_n are positive real numbers,

then,
$$(a_1 + a_2 + \dots a_n) \left(\frac{1}{a_1} + \frac{1}{a_2} + \dots \frac{1}{a_n} \right) \ge n^2$$

e.g., $(a_1 + a_2 + a_3) \left(\frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3} \right) \ge 3^2 = 9$