VECTORS

VECTORS	
QNo1: If $\vec{a}, \vec{b}, \vec{c}$ are the position vectors of the vertices of an equilateral triangle whose orthocenter is at the origin, then :	
(a) $\vec{a} + \vec{b} + \vec{c} = \vec{0}$ (b) $\vec{a} = \vec{b} + \vec{c}$ (c) $\vec{a} + \vec{b} = \vec{c}$ (d) none of these	
QNo2: If \vec{a} , \vec{b} , \vec{c} are three vectors such that $\vec{a} + \vec{b} = \vec{c}$, then \vec{b} is called	
(a) a projection of \vec{c} (b) a component of \vec{c} (c) a complement \vec{c} (d) none of these definitions of the second	se
QNo3: If $\vec{a} + (1, -1)$ and $\vec{b} = (-2, m)$ are collinear vectors, then m =	
(a) 4 (b) 3 (c) 2 (d) 0	
QNo4: If \vec{c} is one unit vector \perp to \vec{a}, \vec{b} , then the second unit vector \perp to \vec{a}, \vec{b} will be	
(a) \vec{a} (b) $\vec{a} \times \vec{b}$ (c) - \vec{c} (d) none of these	
QNo5: The positive vectors of three consecutive vertices A, B and C of a parallelgram ABCD are $\vec{r_1}$, $\vec{r_2}$ and $\vec{r_3}$ respectively. Then the position vector of the formula vertex D is : (a) $\vec{r_1} + \vec{r_2} - \vec{r_3}$ (b) $\vec{r_2} + \vec{r_3} - \vec{r_1}$ (c) $\vec{r_3} + \vec{r_1} - \vec{r_2}$ (d) none of these	
QNo6: Projection of the vector $\vec{a} = 2\vec{i} + \vec{3}\vec{j} - \vec{2}\vec{k}$ on the vector $\vec{b} = \vec{i} + \vec{2}\vec{j} + \vec{3}\vec{k}$ is	
(a) $\frac{2}{\sqrt{14}}$ (b) $\frac{1}{\sqrt{14}}$ (c) $\frac{3}{\sqrt{14}}$ (d) none of these	
QNo7: The value of $ \vec{a} \times \vec{i} ^2 + \vec{a} \times \vec{j} ^2 + \vec{a} \times \vec{k} ^2$ is :	
(a) $ \vec{a} ^2$ (b) $2 \vec{a} ^2$ (c) $3 \vec{a} ^2$ (d) $4 \vec{a} ^2$	
QNo8: $\vec{i} \times (\vec{x} \times \vec{i}) + \vec{j} \times (\vec{x} \times \vec{j}) \times \vec{k} \times (\vec{x} \times \vec{k})$ is equal to	
(a) $\vec{0}$ (b) \vec{x} (c) $2\vec{x}$ (d) 0	
QNo9: $(\vec{a} \times \vec{b})^2$ is equal to	
(a) $\vec{a} \cdot \vec{b}^2 - (\vec{a} \cdot \vec{b})^2$ (b) $\vec{a} \cdot \vec{b}^2 + (\vec{a} \cdot \vec{b})^2$ (c) $(\vec{a} \cdot \vec{b})^2$ (d) $\vec{a} \cdot \vec{b}^2$	
QNo10: The vector $\frac{2}{7}\vec{i} + \frac{3}{7}\vec{j} - \frac{6}{7}\vec{k}$ is	
(a) a null vector (b) a unit vector (c) a vector whose components are (2, 3, -6) (d) a vector which is equally inclined to the axes	
QNo11: $\vec{a} \cdot (\vec{a} \times \vec{b}) =$	
(a) $\vec{a} \cdot \vec{b}$ (b) ab (c) 0 (d) $a^2 + ab$	
QNo12: $\vec{a} \times (\vec{b} \times \vec{c}) + \vec{b} \times (\vec{c} \times \vec{a}) + \vec{c} \times (\vec{a} \times \vec{b})$ is:	
(a) $2 (\overrightarrow{a} \overrightarrow{b} \overrightarrow{c})$ (b) $\overrightarrow{0}$ (c) $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$ (d) 0	
QNo13: If the vectors $3\vec{i} + \lambda\vec{j} + \vec{k}$ and $2\vec{i} + \vec{j} + 8\vec{k}$ are \perp , then λ is equal to :	
(a) -4 (b) 1 (c) 14 (d) 1/7	
QNo14: $\vec{e_1}, \vec{e_2}, \vec{e_3}$ are vectors reciprocals to the non- coplanar vectors $\vec{e_1}, \vec{e_2}, \vec{e_3}$, then $[\vec{e_1}, \vec{e_2}, \vec{e_3}]$ $[\vec{e_1}, \vec{e_2}, \vec{e_3}]$ = then	
$[\vec{e_1}, \vec{e_2}, \vec{e_3}], [\vec{e_1}, \vec{e_2}, \vec{e_3}] =$	
IIT \ PMT - JEEPAGE 1CATALYST EDUCATION	

(a)-(1/2)(b) 1 (c) 0(d) 4 $\begin{vmatrix} \overrightarrow{a} & \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{a} & \overrightarrow{c} \\ a. a & a.b & a.c \end{vmatrix}$ QNo15: $\begin{vmatrix} \vec{b} & \vec{a} & \vec{b} & \vec{b} & \vec{b} & \vec{c} \\ \vec{b} & \vec{a} & \vec{b} & \vec{b} & \vec{b} & \vec{c} \\ \vec{c} & \vec{a} & \vec{c} & \vec{b} & \vec{c} & \vec{c} \end{vmatrix}$ is equal to : (a) $[\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}]^2$ (c) $[\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}]^3$ (b) $[\vec{a}, \vec{b}, \vec{c}]$ (d) none of these QNo16: If $\vec{a}, \vec{b}, \vec{c}$ are vectors such that $\vec{c} = \vec{a} + \vec{b}$ and $\vec{a}, \vec{b} = 0$, then (d) $c^2 = \overrightarrow{a \times b}$ (b) $a^2 - b^2 = 0$ (c) $c^2 = a^2 + b^2$ (a) $a^2 + b^2 + c^2 = 0$ QNo17: If $|\overrightarrow{a}| = 6$, $|\overrightarrow{b}| = 8$, $|\overrightarrow{a} - \overrightarrow{b}| = 10$, then $|\overrightarrow{a} + \overrightarrow{b}|$ is equal to : (a) 10 (b) 24 (d) 36 QNo18: If $\vec{a}, \vec{b}, \vec{c}$ are coplanar, then $[\vec{a} + \vec{b}, \vec{b} + \vec{c}, \vec{c} + \vec{a}] =$ (b) 0 (d) a + bQNo19: If $\vec{a}, \vec{b}, \vec{c}$ are coplanar, then $[\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a}] =$ (a) abc (c) bc(d) 0QNo20: The value of $(\vec{a} - \vec{b})[(\vec{b} - \vec{c}) \times (\vec{c} \times \vec{a})]$ is (c) $3[\overrightarrow{a}\overrightarrow{b}\overrightarrow{c}]$ (b) $2[\overrightarrow{a}\overrightarrow{b}\overrightarrow{c}]$ (a) 0 (d) none of these QNo21: The value of $(\vec{r}, \vec{i})\vec{i} + (\vec{r}, \vec{j})\vec{j} + (\vec{r}, \vec{k})\vec{k}$ is equal to : (b) \overrightarrow{i} (c) $\stackrel{\rightarrow}{k}$ (a) \overrightarrow{i} (d) \vec{r} QNo22: Let \vec{A} and \vec{B} be two non- parallel unit vectors in a plane. If the vectors $(\alpha \vec{A} + \vec{B})$ bisects the internal angle between $\stackrel{\rightarrow}{A}$ and $\stackrel{\rightarrow}{B}$, then α is: (a) 1/2(b) 1 (c) 2 (d) 4QNo23: Let \overrightarrow{a} be a non-zero, vectors then \overrightarrow{a} is a (c) unit vector parallel to $\stackrel{\rightarrow}{a}$ (d) unit vector perpendicular to $\stackrel{\rightarrow}{a}$ (a) null vectors (b) scalar QNo24: If \overrightarrow{a} is a non – zero vector and K is a scalar such that $|K \overrightarrow{a}| = 1$, then K is equal to (a) $\begin{vmatrix} \overrightarrow{a} \end{vmatrix}$ (b) 1 (c) $\frac{1}{\overrightarrow{a}}$ (d) $+ \frac{1}{\overrightarrow{a}}$ QNo25: Let $\overrightarrow{a} = -\overrightarrow{i} + 2 \overrightarrow{j} = (-1, 2)$ $\vec{b} = 3\vec{i} - 2\vec{j} = (3, -2)$ $\overrightarrow{c} = 5\overrightarrow{i} = (0,5)$ Then $\overrightarrow{a} + \overrightarrow{b} = -2 \overrightarrow{c}$ is : (b) - $2\vec{i} + 10\vec{i}$ (c) $2\vec{i}-10\vec{j}$ (a) $2\vec{i}+10\vec{i}$ (d) $\vec{3}_{i+2}\vec{2}_{i}$ QNo26: If \vec{a} and \vec{b} are position vector of A and B respectively, then the position vector of a point C in AB produced

$IIT \setminus PMT - JEE$	PAGE 2	CATALYST EDUCATION
---------------------------	--------	--------------------

such that $AC = 3 AB$ is :			
(a) $3 \overrightarrow{a} - \overrightarrow{b}$		(c) $3\vec{a}-2\vec{b}$	3
QNo27: Let \vec{a} and \vec{b} be unit vectors in	clined at an angle α to eac	th other, then $\begin{vmatrix} \vec{a} + \vec{b} \end{vmatrix} < 1$ if	
(a) $\alpha = \frac{\pi}{2}$ (b) α	_	$\frac{2\pi}{3} \qquad (d) \ \frac{\pi}{3} < \alpha <$	
QNo28: $[\vec{i} \ \vec{j} \ \vec{k}]$ is equal to :	() 1		A
(a) 0 (b) 1	(c) -1	(d) 3 the projection of \vec{a}	onh A
QNo29: Given two vectors $\vec{a} = 2\vec{i} - 3\vec{j}$.	$+6\vec{k}, \vec{b} = -2\vec{i} + 2\vec{j} - \vec{k}$ at	and $\lambda = \frac{inc \text{ projection of } u}{interprojection of } \vec{b}$	$rac{\partial n \sigma}{\partial n a}$ then the value of
λ is: (a) 3/7 (b)	7 (c) 3	(d) 7 / 3	
QNo30: Let \vec{a} and \vec{b} proper vectors. T		angles iff $\vec{a} \cdot \vec{b}$ is equal to :	2
(a) 1 (b) 0 QNo31: $(1, 0, 0) \times (0, 1, 0)$ is equal to :	(c) - 1 (e)	d) none of these	<u>k</u>
(a) $(1, 1, 0)$ (b) 0 QNo32: If cross product of two non-zer	(c) $(0, 0, 1)$	(d) 2	4
(a) collinear (b)	co-directional	(c) co – initial	(d) co – terminus
QNo33: $\vec{i} . (\vec{j} \times \vec{k}) + \vec{j} . (\vec{k} \times \vec{i}) + \vec{k} . (\vec{i} \times \vec{j})$		(1) 2	A
(a) 0 (b) -3 QNo34: If $\vec{a} = \vec{i} - 3\vec{j} + \vec{k}$ and $\vec{b} = \vec{i} + \vec{j}$ -	(c) -1 \vec{a} then $\begin{vmatrix} \vec{a} & \vec{a} \\ \vec{a} & \vec{b} \end{vmatrix}$ is equal to	(d) 3	<u> A</u>
	1 1	_	
(a) $4\sqrt{2}$ (b)		$\begin{array}{c} 2 \sqrt{5} \\ \overrightarrow{d}, \overrightarrow{d} \end{array} \qquad (d) 2$	2 \3
QNo35: If $\vec{a}, \vec{b}, \vec{c}$ are any three mutuall	I.	•	
(a) 1 (b) $\sqrt{2}$	(c) $\sqrt{3}$	(d) 2	·
QNo36: A unit vector parallel to the sun $\vec{A} = \vec{A} = \vec{A}$			
(a) $3\vec{i} + 6\vec{j} - 2\vec{k}$ (b)	1	/	3
QNo37: If $\vec{a} = \vec{i} + \vec{j} - \vec{k}$, $\vec{b} = \vec{i} - \vec{j} + \vec{k}$ and			nd coplanar with $\frac{1}{a}$ and
\vec{b} , then a unit vector \vec{d} perpenditure			1 ->
(a) $\frac{1}{\sqrt{6}} (2\vec{i} - \vec{j} + \vec{k})$		•	
QNo38: The unit vector perpendicular to	b each of the vectors $\vec{i} + 2\vec{j}$	$\vec{j} + \vec{3k}$ and $-\vec{3i} - \vec{2j} + \vec{k}$ is	
(a) $\frac{1}{6\sqrt{5}} (8\vec{i} - 10\vec{j} + 4\vec{k})$	(b) $8\vec{i} - 10\vec{j} + 4\vec{k}$	(c) $\overrightarrow{8i+10j+4k}$	(d) none of these
QNo39: A unit vector perpendicular to e	each of the vectors $-6\vec{i}+8$	\vec{k} , $8\vec{i}+6\vec{k}$ forming a right	ht handed system is :
(a) $-\overrightarrow{j}$ (b) \overrightarrow{j}	(c) $\frac{1}{10} (6\vec{i} + 8\vec{k})$	(d) $\frac{1}{10}(-6)$	$5\vec{i}+8\vec{k}$
IIT \ PMT – JEE	PAGE 3	CATALY	YST EDUCATION

QNo40: If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, then the value of $\vec{a}, \vec{b} + \vec{b}, \vec{c} + \vec{c}, \vec{a} =$	
(a) $2/3$ (b) $-2/3$ (c) $-(3/2)$ (d) $3/2$	
QNo41: If \vec{x} and \vec{y} are two unit vectors and θ is the angle between them, then $\frac{1}{2} \vec{x} - \vec{y} $ is equal to :	a l
(a) 0 (b) x / 2 (c) $\cos \frac{\theta}{2}$ (d) $\sin \frac{\theta}{2}$	
QNo42: $[\vec{a}\vec{b}\vec{c}]$ is the scalar product of three vectors \vec{a}, \vec{b} and \vec{c} . Then $[\vec{a}\vec{b}\vec{c}]$ is equal to	
(a) $[\vec{b} \vec{a} \vec{c}]$ (b) $[\vec{c} \vec{b} \vec{a}]$ (c) $[\vec{b} \vec{c} \vec{a}]$ (d) $[\vec{a} \vec{c} \vec{b}]$	6
QNo43: If θ is the angle between vectors \vec{a} and \vec{b} , then $\vec{a} \cdot \vec{b} > 0$ only if	
(a) $0 \le \theta \le \pi$ (b) $\frac{\pi}{2} \le \theta \le \pi$ (c) $0 \le \theta \le \frac{\pi}{2}$ (d) $0 < \theta < \frac{\pi}{2}$	-440
QNo44: If θ is the angle between vectors \vec{a}, \vec{b} , and $\left \vec{a} \times \vec{b}\right = \sqrt{3} \left \vec{a}, \vec{b}\right $, then θ is equal to :	
(a) $\pi/6$ (b) $\pi/4$ (c) $\pi/2$ (d) $\pi/3$	
QNo45: If $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 0$, then $\vec{a} \cdot (\vec{b} \times \vec{c})$ is equal to :	
(a) a non-zero vector (b) 1 (c) -1 (d) $\begin{vmatrix} \vec{a} \\ \vec{b} \end{vmatrix} \begin{vmatrix} \vec{c} \\ \vec{c} \end{vmatrix}$	A
QNo46: Let $\vec{a}, \vec{b}, \vec{c}$ be the position vectors of three vertices A, B, C of a triangle respectively. Then the area of	this
triangle is given by :	
(a) $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}$ (b) $\frac{1}{2} (\vec{a} \times \vec{b}) \cdot \vec{c}$ (c) $\frac{1}{2} \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} $ (d) none of	of these
QNo47: The sine of the angle between the vectors $\vec{i} - 2\vec{j} + 3\vec{k}$ and $2\vec{i} + \vec{j} + \vec{k}$ is :	
(a) $\frac{5}{2\sqrt{7}}$ (b) $\frac{5}{\sqrt{7}}$ (c) $\frac{3}{\sqrt{14}}$ (d) $\frac{5}{21}$	
QNo48: The value of $\begin{bmatrix} \vec{a} - \vec{b}, \vec{b} - \vec{c}, \vec{c} - \vec{a} \end{bmatrix}$ where $\begin{vmatrix} \vec{a} \\ \vec{a} \end{vmatrix} = 1$, $\begin{vmatrix} \vec{b} \\ \vec{b} \end{vmatrix} = 2$ and $\begin{vmatrix} \vec{c} \\ \vec{c} \end{vmatrix} = 3$ is	
(a) 1 (b) 6 (c) 0 (d) 3. QNo49: $[\vec{a}+\vec{b},\vec{b}+\vec{c},\vec{c}+\vec{a}]$ is equal to	T
(a) 0 (b) $\vec{a} \times \vec{b} \cdot \vec{c}$ (c) $2 \vec{a} \cdot \vec{b} \cdot \vec{c} $ (d) none of these	
QNo50: The sine of the angle between the vectors $\vec{a} = 3\vec{i} + \vec{j} + \vec{k}$, $\vec{b} = 2\vec{i} - 2\vec{j} + \vec{k}$ is :	
(a) $\sqrt{\frac{74}{99}}$ (b) $\sqrt{\frac{25}{99}}$ (c) $\sqrt{\frac{37}{99}}$ (d) $\frac{5}{\sqrt{41}}$	4
$\begin{vmatrix} \vec{a} \times \vec{b} \end{vmatrix}$	
QNo51: If θ is the angle between two vectors \vec{a} and \vec{b} , then $\frac{ \vec{a} \times \vec{b} }{ \vec{a} \cdot \vec{b} }$ equals :	S. S
	And The second se
(a) $\cot \theta$ (b) $- \cot \theta$ (c) $\tan \theta$ (d) $- \tan \theta$	
QNo52: The vector $\vec{a} \times (\vec{b} \times \vec{a})$ is :	
(a) a null vector (b) perpendicular to both \vec{a} and \vec{b} (c) perpendicular to \vec{a} (d) perpendicular	r to \vec{b}
IIT \ PMT - JEE PAGE 4 CATALYST EDUCATION	N

QNo53: If \overrightarrow{a} and \overrightarrow{b} are any two vectors, then (a) $|\vec{a} \times \vec{b}| \le |\vec{a}| |\vec{b}|$ (b) $|\vec{a} \times \vec{b}| \ge |\vec{a}| |\vec{b}|$ (c) $|\vec{a} \times \vec{b}| > |\vec{a}| |\vec{b}|$ (d) $|\vec{a} \times \vec{b}| < |\vec{a}| |\vec{b}|$ QNo54: If \overrightarrow{a} and \overrightarrow{b} are any two vectors, then (b) $\begin{vmatrix} \vec{a} & \vec{b} \end{vmatrix} < \begin{vmatrix} \vec{a} \\ \vec{a} \end{vmatrix} \begin{vmatrix} \vec{b} \\ \vec{b} \end{vmatrix}$ (c) $\begin{vmatrix} \vec{a} & \vec{b} \\ \vec{a} & \vec{b} \end{vmatrix} \ge \begin{vmatrix} \vec{a} \\ \vec{a} \end{vmatrix} \begin{vmatrix} \vec{b} \\ \vec{b} \end{vmatrix}$ (d) $\begin{vmatrix} \vec{a} & \vec{b} \\ \vec{a} & \vec{b} \end{vmatrix} \le \begin{vmatrix} \vec{a} \\ \vec{a} \end{vmatrix} \begin{vmatrix} \vec{b} \\ \vec{b} \end{vmatrix}$ (a) $\begin{vmatrix} \vec{a} & \vec{b} \\ \vec{a} & \vec{b} \end{vmatrix} > \begin{vmatrix} \vec{a} \\ \vec{a} \end{vmatrix} \begin{vmatrix} \vec{b} \\ \vec{b} \end{vmatrix}$ QNo55: Let the vectors \vec{u}, \vec{v} and \vec{w} be coplanar. Then $\vec{u} \cdot (\vec{v} \times \vec{w})$ is : (a) 0 (b) $\vec{0}$ (c) a unit vector (d) none of these QNo56: The vector $2\vec{i} + \vec{j} + \vec{k}$ is perpendicular to $\vec{i} - 4\vec{j} + \lambda\vec{k}$ if λ is equal to : (a) 0 (b) -1 (d) -3 QNo57: The angle between the vectors $2\vec{i}+3\vec{j}+\vec{k}$ and $2\vec{i}-\vec{j}-\vec{k}$ is : (a) $\frac{\pi}{2}$ (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{2}$ (d) 0QNo58: If $\vec{a} = 4\vec{i} + 6\vec{j}$ and $\vec{b} = 3\vec{j} + 4\vec{k}$, then the vector form of the component of \vec{a} along \vec{b} is : (a) $\frac{18}{10\sqrt{2}}(3\vec{j}+4\vec{k})$ (b) $\frac{18}{5}(3\vec{j}+4\vec{k})$ (c) $\frac{18}{\sqrt{13}}(3\vec{j}+4\vec{k})$ (d) $3\vec{j}+4\vec{k}$ QNo59: Area of the parallelogram whose diagonals are \vec{a} and \vec{b} is : (d) $\frac{1}{2} |\vec{a} + \vec{b}|$ (b) $\vec{a \times b}$ (c) $\vec{a} + \vec{b}$ (a) $\overrightarrow{a} \overrightarrow{b}$ QNo60: The area of the parallelogram whose diagonals are given by the vectors $3\vec{i}+\vec{j}-2\vec{k}$ and $\vec{i}-3\vec{j}+4\vec{k}$ is (a) $10\sqrt{3}$ (b) $5\sqrt{3}$ (d) 4(c) 8QNo61: Let G be the centroid of a triangle ABC. If $\overrightarrow{AB} = \overrightarrow{a}$, $\overrightarrow{AC} = \overrightarrow{b}$, then the bisector \overrightarrow{AB} , in terms of vectors $\stackrel{\rightarrow}{a}$ and $\stackrel{\rightarrow}{b}$ is : (d) $\frac{1}{2}(\vec{a}+\vec{b})$ (a) $\frac{2}{2}(\vec{a}+\vec{b})$ (b) $\frac{1}{6}(\vec{a}+\vec{b})$ (c) $\frac{1}{2}(\vec{a}+\vec{b})$ QNo62: If A, B, C, D, E are five coplanar points then DA + DB + DC + AE + BE + CE is equal to (a) DE (b) 3 DE (c) 2 DE (d) 4 EDQNo63: If three points A, B, C whose position vectors are respectively $\vec{i} - 2\vec{j} - 8\vec{k}$ and $5\vec{i} - 2\vec{k}$ and $11\vec{i} + 3\vec{j} + 7\vec{k}$ are collinear , then the ratios in which B, divides AC is : (a) 1 : 2 (b) 2 : 3 (c) 2 : 1 (d) none of these QNo64: In a || gm ABCD, |AB| = a, |AD| = b and |AC| = c, then $DB \cdot AB$ has the value (d) $\frac{a^2 + 3b^2 + c^2}{c^2}$ (b) $\frac{a^2 + 3b^2 - c^2}{2}$ (c) $\frac{a^2 - b^2 + 3c^2}{2}$ (a) $\frac{3a^2 + b^2 - c^2}{2}$ QNo65: The position vectors of four points P, Q, R, S are $2\vec{a}+4\vec{c}, 5\vec{a}+3\sqrt{3}\vec{b}+4\vec{c}, -2\sqrt{3}\vec{b}+\vec{c}$ and $2\vec{a}+\vec{c}$ respectively. Then (d) PQ || RS and PQ = RS(b) PQ is not parallel to RS (c) PQ = RS(a) $PQ \mid \mid RS$ QNo66: Let $\overrightarrow{OA} = \overrightarrow{i} + 3\overrightarrow{j} - 2\overrightarrow{k}$ and $\overrightarrow{OB} = 3\overrightarrow{i} + \overrightarrow{j} - 2\overrightarrow{k}$.

CATALYST EDUCATION

The vector \overrightarrow{OC} bisecting the angle AOB and C being a point on the line AB is

(a)
$$4(\vec{i}+\vec{j}-\vec{k})$$
 (b) $2(\vec{i}+\vec{j}-\vec{k})$ (c) $(\vec{i}+\vec{j}-\vec{k})$ (d) none of these

QNo67: Let α , β , λ be three distinct real numbers. The points with position vectors $\alpha \vec{i} + \beta \vec{j} - \lambda \vec{k}$,

$$\vec{\beta}\vec{i} + \lambda\vec{j} + \alpha\vec{k}, \ \lambda\vec{i} + \alpha\vec{j} + \beta\vec{k}$$

(a) are collinear (b) form a equilateral triangle (c) form a scalene triangle (d) form a right angled triangle QNo68: Let \vec{p} and \vec{q} be the position vectors of P and Q respectively, with respect to O and $|\vec{p}| = p$, $|\vec{q}| = q$. The points R and S divide PQ internally and externally in the ratio 2 : 3 respectively . If OR and OS are perpendicular, then : (a) $9p^2 = 4q^2$ (b) $4p^2 = 9q^2$ (c) 9p = 4qQNo69: A unit vector perpendicular to the vectors $4\vec{i} - \vec{j} + 3\vec{k}$ and $-2\vec{i} + \vec{j} - 2\vec{k}$ is (d) 4p = 9q

(a)
$$\frac{1}{3}(\vec{i}-2\vec{j}+2\vec{k})$$
 (b) $\frac{1}{3}(-\vec{i}+2\vec{j}+2\vec{k})$ (c) $\frac{1}{3}(2\vec{i}+\vec{j}+2\vec{k})$ (d) $\frac{1}{3}(2\vec{i}-2\vec{j}+2\vec{k})$

QNo70: Given $\vec{a} = \vec{i} + \vec{j} - \vec{k}$, $\vec{b} = -\vec{i} + \vec{j} + \vec{k}$ and $\vec{c} = -\vec{i} + 2\vec{j} - \vec{k}$. A unit vector perpendicular to both $\vec{a} + \vec{b}$ and $\vec{b} + \vec{c}$ is:

(a)
$$\vec{i}$$
 (b) \vec{k} (c) \vec{j} (d) $\frac{i+j+k}{\sqrt{3}}$

QNo71: For a non-zero vector \overrightarrow{a} , which of the following statement is true :

(b) $\overrightarrow{a} \cdot \overrightarrow{a} > 0$ (c) $\overrightarrow{a} \cdot \overrightarrow{a} = 0$ (d) $\overrightarrow{a} \cdot \overrightarrow{a} \leq 0$ (a) $\overrightarrow{a}, \overrightarrow{a} \ge 0$

QNo72: For a non-zero vector \vec{a} , the set of real numbers satisfying the inequality $\left|(5-x)\vec{a}\right| < \left|2\vec{a}\right|$ consists of all x such that :

(a)
$$0 < x < 3$$
 (b) $3 < x < 7$ (c) $-7 < x < -3$ (d) $-7 < x < 3$

QNo73: A vector \vec{a} has magnitudes 5 units and points north east and another vector \vec{b} has magnitude 5 units and point

north west. Then the magnitude of the vector
$$(\vec{a} - \vec{b} + \vec{j})$$
 is :
(a) 0 (b) $5\sqrt{2}$ (c) 10

QNo74: The position vectors of three consecutive vertices A, B and C of a parallelogram ABCD are

 $\vec{r_1}, \vec{r_2}$ and $\vec{r_3}$ respectively. Then the position vector of the fourth vertex D is :

(a)
$$\vec{r_1} + \vec{r_2} - \vec{r_3}$$
 (b) $\vec{r_2} + \vec{r_3} - \vec{r_1}$ (c) $\vec{r_3} + \vec{r_1} - \vec{r_2}$ (d) none of these

(d) 25

QNo75: If vectors $\overrightarrow{AB} = 3\overrightarrow{i} - 3\overrightarrow{k}$ and $\overrightarrow{AC} = \overrightarrow{i} - 2\overrightarrow{j} + \overrightarrow{k}$ are the sides of a triangle ABC, then the length of the median AM, is

(a)
$$\sqrt{3}$$
 (b) $\sqrt{6}$ (c) $2\sqrt{3}$ (d) $3\sqrt{2}$

QNo76: If the points A, B, C and D have position vectors \vec{a} , $2\vec{a}+\vec{b}$, $4\vec{a}+2\vec{b}$ and $5\vec{a}+4\vec{b}$ respectively. Then the three collinear points are :

(b) A, C and D (a) A, B and C (c) A, B and D (d) B, C and D QNo77: For non-zero vectors \vec{a} and \vec{b} , if $|\vec{a} + \vec{b}| < |\vec{a} - \vec{b}|$, then \vec{a} and \vec{b} are

(a) collinear (b) perpendicular to each other (c) inclined at an acute angle (d) inclined at an obtuse angle

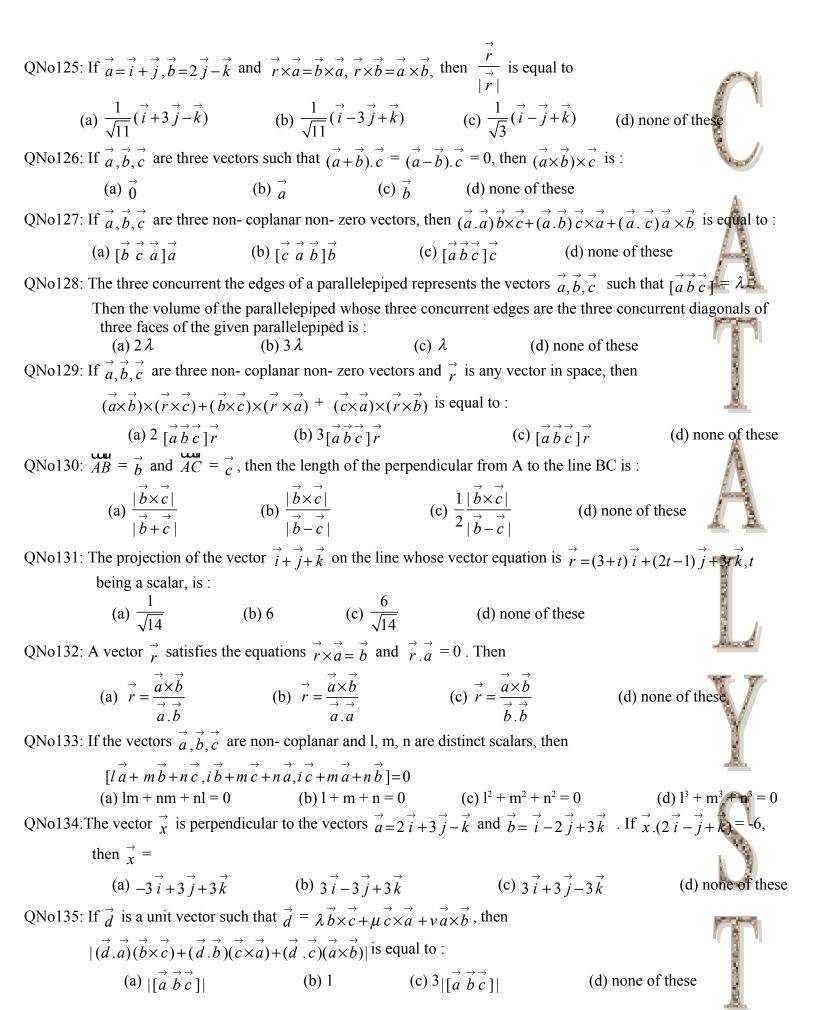
IIT \	PMT –	JEE
-------	-------	-----

QNo78: For the vectors $\vec{a} = \vec{i} + 2\vec{j}$ is: (a) 1	$\vec{k} \cdot \vec{b} = 2\vec{i} + \vec{j} \cdot \vec{c} = 3\vec{i} \cdot \vec{c}$ (b) -4 (c) 4		pendicular to \vec{c} , the value of t,
	45° (c) 6		en them is :
QNo80: If $\vec{x} \times \vec{b} = \vec{c} \times \vec{b}$ and $\vec{x} \perp \vec{a}$,	then $\stackrel{\rightarrow}{x}$ is equal to		8
(a) $\frac{(\vec{b} \times \vec{c}) \times \vec{a}}{\vec{b} \cdot \vec{a}}$	(b) $\frac{\overrightarrow{b} \times (\overrightarrow{a} \times \overrightarrow{c})}{\overrightarrow{b} \cdot \overrightarrow{c}}$	(c) $\frac{\vec{(c \times b)} \times \vec{a}}{\vec{a} \cdot \vec{b}}$	(d) none of these
QNo81: The adjacent sides of a para	llelogram are $\vec{a} = \vec{i} + 2\vec{j}$	\vec{b} and $\vec{b} = 2\vec{i} + \vec{j}$, where \vec{i}	and \vec{j} are the usual unit
vectors along the positive $(a)30^{\circ}$ and 150°		es respectively . Then the an 5^0 (c) 60^0 and 12	ngle between the diagonals is : $(d) 90^{\circ}$ and 90°
QNo82: If \overrightarrow{a} and \overrightarrow{b} are two vectors	such that $\overrightarrow{a}, \overrightarrow{b} = 0$ and \overrightarrow{a}	$\vec{a} \times \vec{b} = \vec{0}$, then the correct s	tatement is;
(a) \vec{a} is parallel to \vec{b} (b)	b) $\stackrel{\rightarrow}{a}$ is perpendicular to	\vec{b} (c) either $\vec{a} = \vec{0}$ or	$\vec{b} = \vec{0}$ (d) none of these
QNo83: If $\vec{c} = \vec{a} \times \vec{b}$ and $\vec{b} = \vec{c} \times \vec{a}$, then		<u>.</u>
(a) $\vec{a} \cdot \vec{b} = \vec{c}$	(b) $\overrightarrow{c} \cdot \overrightarrow{a} = \overrightarrow{b}^2$	(c) $\vec{b} \cdot \vec{c} = \vec{a}$	(d) $\vec{a} \perp \vec{b} \text{ or } \vec{a} \mid \mid \vec{b} \times \vec{c}$
QNo84: If \overrightarrow{v} and \overrightarrow{w} are two mutual	ly perpendicular unit ve	ctor and $\overrightarrow{u} = a_{V}^{\rightarrow} + b_{W}^{\rightarrow}$, w	here a and b are non- zero real
numbers, then the angle be	etween $\stackrel{\rightarrow}{u}$ and $\stackrel{\rightarrow}{w}$ is :		A
(a) $\cos^{-1}(a)$ (b)	$(a) \cos^{-1}(b)$ (a)	c) $\cos^{-1}\left(\frac{a}{\sqrt{a^2+b^2}}\frac{1}{\dot{y}}\right)$	(d) $\cos^{-1}\left(\frac{b}{\sqrt{a^2+b^2}}; \frac{b}{\sqrt{a^2+b^2}}\right)$
QNo85: If \overrightarrow{a} and \overrightarrow{b} are two non-zero	ero vectors, then a vector	r perpendicular to the vecto	or $(\vec{b}.\vec{b})\vec{a} - (\vec{a}.\vec{b})\vec{b}$ is
(a) $\stackrel{\rightarrow}{a}$ (b)	\vec{b} (c) $\vec{a} - \vec{b}$	$\vec{d} = \vec{d} + \vec{b}$	
QNo86: The vector $\frac{1}{3}(2\vec{i}-2\vec{j}+\vec{k})$. is		The second
(a) a unit vector		(b) makes an angle $\frac{\pi}{3}$ v	with the vector $2\vec{i} - 4\vec{j} + 3\vec{k}$
(c) parallel to the vector	$-\overrightarrow{i}+\overrightarrow{j}+\frac{1}{3}\overrightarrow{k}$	(d) \perp to the vector $3\vec{i}$.	$+2\vec{j}+2\vec{k}$
QNo87: Given that $(\vec{a} + \vec{b})$ is perpe	ndicular to \vec{b} and \vec{a} is	perpendicular to $2\vec{b} + \vec{a}$.	This implies
(a) $a = \sqrt{2} b$ (c) $a = b$ (d) $2a = b$	$\left(\bigcap\right)$
QNo88: Let $\begin{vmatrix} \vec{a} \\ \vec{a} \end{vmatrix} = 3$ and $\begin{vmatrix} \vec{b} \\ \vec{b} \end{vmatrix} = 4$. The	e value of λ for which $\frac{1}{\alpha}$	$\vec{a} + \lambda \vec{b}$ and $\vec{a} - \lambda \vec{b}$ are per	pendicular is given by
(a) $\pm \frac{3}{4}$ (b) $-\frac{2}{3}$	(c) $\frac{2}{3}$	(d) $-\frac{3}{5}$	
QNo89: The vectors $\vec{a} = \vec{i} + \vec{j}, \vec{b} = \vec{j}$	$\vec{j} + \vec{k}$ and \vec{c} are of same	e length and taken pairwise,	form equal angles . Then \overrightarrow{c} is
equal to :			
(a) $\vec{i} + 2\vec{j} + \vec{k}$	(b) $-\frac{1}{3}i + \frac{4}{3}j - \frac{1}{3}k$	(c) $\vec{i} - \vec{j} + \vec{k}$	(d) none of these
IIT \ PMT – JEE	PAGE 7	CA	ATALYST EDUCATION

QNo90: Let \vec{a} be a vector of magnitude $\sqrt{75}$ which is perpendicular to both $2\vec{i}-\vec{j}+\vec{k}$ and $3\vec{i}+2\vec{j}-\vec{k}$ Then \vec{a} is equal to : (b) $7\vec{i}+5\vec{j}+\vec{k}$ (c) $\vec{i}+5\vec{j}-7\vec{k}$ (d) $-7\vec{i}-5\vec{j}-\vec{k}$ (a) $-\vec{i}+5\vec{j}+7\vec{k}$ QNo91: A tetrahedron has vertices at O (0, 0,0), A (1, 2, 1), B (2, 1, 3) and C (-1, 1, 2). Then the angle between the faces OAB and ABC will be : (a) $\cos^{-1}\left(\frac{19}{35}\right)$ (b) $\cos^{-1}\left(\frac{71}{31}\right)$ (c) 30° (d) 90° QN092: Given the vectors $\vec{a} = (3, -1, 5)$ and $\vec{b} = (1, 2, -3)$. A vector \vec{c} is such that it is perpendicular to the z-axis and satisfies the conditions $\vec{c} \cdot \vec{a}$ 9 and $\vec{c} \cdot \vec{b} = -4$. Then \vec{c} is equal to : (a) (-2, 3, 0) (b) (2, -3, 1) (c) (2, -3, 0)(d) none of these QNo93: Projection of the vector $2\vec{i}+3\vec{j}-2\vec{k}$ on the vector $\vec{i}+2\vec{j}+3\vec{k}$ is : (a) $\frac{2}{\sqrt{14}}$ (b) $\frac{1}{\sqrt{14}}$ (c) $\frac{3}{\sqrt{14}}$ (d) none of these QNo94: Direction of zero vector (b) is towards origin (a) does not exist (c) is indeterminate (d) none of these QNo95: If $\vec{a} \neq \vec{i} \neq \vec{j} \neq \vec{k}$, $\vec{i} = \vec{b} \neq \vec{i} \neq \vec{k}$, $\vec{i} \neq \vec{j} = c\vec{k}$ are coplanar, then abc + 2 is equal to (c) a + b + c(b) a - b - c(d) a - b + c(a) a + b + cQNo96: The Points D, E, F divide BC, CA, AB of triangle ABC in the ratio 1:4, 3:2 and 3:7 respectively and the point K divides AB in the ratio 1 : 3. Let $\vec{R_1}$ be the resultant of the vectors \vec{AD} , \vec{BE} , \vec{CF} and let the vector CK be denoted by $\vec{R_2}$. Then (b) $5\vec{R_1} = 2\vec{R_2}$ (c) $2\vec{R_1} = 5\vec{R_2}$ (a) $\vec{R_1} = \vec{R_2}$ (d) none of these QNo97: If $\overrightarrow{AB} = 3\overrightarrow{i} + \overrightarrow{j} - \overrightarrow{k}$ and $\overrightarrow{AC} = \overrightarrow{i} - \overrightarrow{j} + 3\overrightarrow{k}$. If the point P on the line segment BC is equidistant from AB and AC, then \overrightarrow{AP} is : (a) $2\vec{i}-\vec{k}$ (b) $\vec{i}-2\vec{k}$ (c) $2\vec{i}+\vec{k}$ (d) none of these QNo98: P is a point on the line through the point A whose position vector is \vec{a} and the line is parallel to the vector \vec{b} If PA = 6, then the position vector of P is : (b) $\vec{a} \pm \frac{6}{|\vec{b}|} \vec{b}$ (c) $\vec{a} - 6\vec{b}$ (d) $\vec{b} + \frac{6}{|\vec{a}|}\vec{a}$ (a) $\vec{a} + 6\vec{b}$ QNo99: The position vectors of the vertices A, B, C of a triangle are $\vec{i} - \vec{j} - 3\vec{k}$, $2\vec{i} + \vec{j} - 2\vec{k}$ and $-5\vec{i} + 2\vec{j} - 6\vec{k}$ respectively. The length of the bisector AD of the angle BAC where D is on the line segment is : (a) 15 / 2 (b) 1/4(c) 11/2(d) none of these QNo100: If the positive vectors of points A, B, C are respectively $\vec{r}, \vec{j}, \vec{k}$ and $\vec{AB} = \vec{CX}$, then the position vector of point X is : (b) $\vec{i} - \vec{j} + \vec{k}$ (c) $\vec{i} + \vec{j} - \vec{k}$ (d) $\vec{i} + \vec{j} + \vec{k}$ (a) $\overrightarrow{i+i+k}$ QNo101: A and B are two points. The position vector of A is $6\vec{b}-2\vec{a}$ A point P divides the line AB in the ratio 1 : 2. If

 $\vec{a} - \vec{b}$ is the position vector of B is given by :

 $IIT \setminus PMT - JEE$


PAGE 8

(a)
$$7a - 15b$$
 (b) $7a + 15b$ (c) $15a - 7b$ (d) $15a + 7b$
QN0102: The perimeter of the triangle whose vertices have the position vectors $(\vec{i} + \vec{j} + \vec{k}) \cdot (5\vec{i} + 3\vec{j} - 3\vec{k})$ and
 $(2\vec{i} + 5\vec{j} + 9\vec{k})$, is given by:
(a) $15 + \sqrt{157}$ (b) $15 - \sqrt{157}$ (c) $\sqrt{15} - \sqrt{157}$ (d) $\sqrt{15} + \sqrt{157}$
QN0103: If $\vec{a} = 2\vec{i} - \vec{j} + 3\vec{k}$, $\vec{b} = \vec{i} + 2\vec{j} + \vec{k}$, $\vec{c} = 3\vec{i} + \vec{j} + 2\vec{k}$, then the value of $\vec{a} \cdot (\vec{b} \times \vec{c})$ is :
(a) $(0 - 10)$ (b) -10 (c) 11
QN0104: ABCDEF is a regular breagon and $\vec{AB} = \vec{a}$, $\vec{BC} = \vec{b}$ and $\vec{CD} = \vec{c}$, then \vec{AE} is :
(a) $\vec{a} + \vec{b} + \vec{c}$ (b) $\vec{a} + \vec{b}$ (c) $\vec{b} + \vec{c}$ (d) $\vec{c} + \vec{a}$
QN0105: Let $\vec{a}, \vec{b}, \vec{c}$ be three non-coplanar vectors and $\vec{p}, \vec{q}, \vec{r}$ are vectors defined by the relation
 $\vec{p} = \frac{\vec{b} \times \vec{c}}{(\vec{a} \cdot \vec{b} \cdot)}$; $\vec{q} = \frac{\vec{c} \times \vec{a}}{(\vec{a} \cdot \vec{b} \cdot)}$; $\vec{r} = \frac{\vec{a} \times \vec{b}}{(\vec{a} \cdot \vec{b} \cdot)}$ then the value of the expression
 $\vec{a} + \vec{b} \cdot \vec{p} + (\vec{b} + \vec{c}), \vec{q} + (\vec{c} + \vec{a}), \vec{r}$ is equal to :
(a) 0 (b) 1 (c) 2 (d) 3
QN0106: The unit vector perpendicular to each of the vectors $2\vec{i} - \vec{j} + \vec{k}$ and $3\vec{i} + 4\vec{j}$ is :
(a) $\frac{1}{\sqrt{146}}(4\vec{i} + 3\vec{j} + 11\vec{k})$ (d) $\frac{1}{\sqrt{146}}(-4\vec{i} + 3\vec{j} + 11\vec{k})$
(e) $\frac{1}{\sqrt{146}}(-4\vec{i} + 3\vec{j} + 11\vec{k})$ (d) $\frac{1}{\sqrt{146}}(-4\vec{i} + 3\vec{j} + 11\vec{k})$
(g) 12 (b) $\sqrt{3}$ (c) $\sqrt{2}$ (d) 1
QN0107: Let $\vec{a}, \vec{b}, \vec{c}$ be three vectors such that $\vec{a}.(\vec{b} + \vec{c}) + \vec{b}.(\vec{c} + \vec{a}) + \vec{c}.(\vec{a} + \vec{b}) = 0$ and $|\vec{a}| = 1$, $|\vec{b}| = 4$, $|\vec{c}| = 8$,
then $|\vec{a} + \vec{b} - \vec{c}|$ equals :
(a) 2 (b) $\sqrt{3}$ (c) $\sqrt{2}$ (d) 1
QN0109: If $\vec{a}, \vec{b}, \vec{c}$ and \vec{a} are the position vectors of points A, B, C and D such that no three of them are easilineer and
 $\vec{a} + \vec{c} = \vec{b} + \vec{d}$, then ABCD is :
(a) 2 a parallelogram (b) $\vec{a} + \vec{b} + \vec{d}$ include an acute angle for
(a) all values of m (b) $\vec{n} < -2 \text{ or } n > -\frac{1}{2}$ (c) $\vec{m} = -\frac{1}{2}$ (d) $\vec{m} \in [-2, -\frac{1}{2}]$]
QN0111: If for vector \vec{a} a

(c) triangle ABC is a scalene triangle

(d) perpendicular from the origin to the plane of the triangle does not meet it at the centroid QNo113: If \vec{a} and \vec{b} are two perpendicular vectors, then out of the following three statements (i) $(\vec{a}+\vec{b})^2 = (\vec{a})^2 + (\vec{b})^2$ (b) $(\vec{a}-\vec{b})^2 (\vec{a})^2 - (\vec{b})^2$ (c) $(\vec{a}-\vec{b})^2 (\vec{a})^2 + (\vec{b})^2$ (d) $(\vec{a}+\vec{b})^2 = (\vec{a}-\vec{b})^2$ (a) only one is correct (b) only two are correct (c) only three are correct (d) all the four are correct QNo114: Any line passing thro' two points whose position vectors are $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$ is $\vec{r} =$ (b) $\vec{a} - (1-2t)\vec{b}$ (c) $\vec{a} + (1+2t)\vec{b}$ (d) $\vec{a} + (2t-1)\vec{b}$ (a) $\vec{a} + (1-2t)\vec{b}$ QNo115: If $\vec{x}, \vec{a} = 0$, $\vec{x}, \vec{b} = 0$, $\vec{x}, \vec{c} = 0$ for some non-zero vectors \vec{x} , then $[\vec{a} + \vec{b} + \vec{c}] = 0$, is (c) cannot say anything (d) none of these (a) true (b) false QNo116: Let $\vec{A}, \vec{B}, \vec{C}$ be unit vectors. Suppose $\vec{A}, \vec{B} = \vec{A}, \vec{C} = 0$ and the angle between \vec{B} and \vec{C} is $\frac{\pi}{6}$. Then \vec{A} Equals: (d) $\pm 2 (\vec{B} \times \vec{C})$ (a) $\overrightarrow{B} \times \overrightarrow{C}$ (c) $-2(\overrightarrow{B}\times\overrightarrow{C})$ (b) $2(\overrightarrow{B} \times \overrightarrow{C})$ QNo117: If $\vec{A}, \vec{B}, \vec{C}$ are three non- coplanar vectors, then $\frac{\vec{A} \cdot \vec{B} \times \vec{C}}{\vec{C} \cdot \vec{A} \cdot \vec{D}} + \frac{\vec{B} \cdot \vec{A} \times \vec{C}}{\vec{C} \cdot \vec{A} \cdot \vec{D}}$ is equal to (b) 0(d) none of these (c) 1 QNo118: $(\vec{a} \times \vec{b}) \times \vec{c} = \vec{a} \times (\vec{b} \times \vec{c})$ iff (a) $(\vec{a} \times \vec{b}) \times \vec{c} = \vec{0}$ (b) $\vec{c} \times \vec{a} = \vec{b}$ (c) $\vec{a} \times \vec{c} \times \vec{b} = \vec{0}$ (d) none of these QNo119: If $\vec{a} = 2\vec{i} - 3\vec{j} - \vec{k}$ and $\vec{b} = \vec{i} + 4\vec{j} - 2\vec{k}$, then $(\vec{a} + \vec{b}) \times (\vec{a} - \vec{b})$ is given by (b) $-(20\vec{i}+6\vec{j}-22\vec{k})$ (c) $6\vec{i}+20\vec{j}+22\vec{k}$ (d) $20\vec{i}+22\vec{j}+6\vec{k}$ (a) $20\vec{i} + 6\vec{j} - 22\vec{k}$ QNo120: If $\vec{a} + \vec{b} + \vec{c} = \vec{0}$ and $|\vec{a}| = 3$, $|\vec{b}| = 5$, $|\vec{c}| = 7$, then the angle between \vec{a} and \vec{b} is : (a) $\frac{\pi}{2}$ (b) $\frac{\pi}{2}$ (c) $\frac{\pi}{4}$ (d) $\frac{\pi}{6}$ QNo121: If P and Q be two given points on the curve $y = x + \frac{1}{r}$ such that $\overrightarrow{OP} = 1$ and $\overrightarrow{OQ} = 1$ where \overrightarrow{i} is a unit vector along the x- axis, then the length of vector 2 \overrightarrow{OP} + 3 \overrightarrow{OQ} is : (b) $3\sqrt{5}$ (a) $5\sqrt{5}$ (c) $2\sqrt{5}$ (d) √5 QNo122: a, b, c are the pth, qth, rth terms of an H.P. and $\vec{u} = (q-r)\vec{i} + (r-p)\vec{j} + (p-q)\vec{k}$ $\vec{v} = \frac{i}{v} + \frac{j}{k} + \frac{k}{k}$, then (a) \vec{u}, \vec{v} are parallel vectors (b) \vec{u}, \vec{v} are orthogonal vectors (c) $\vec{u}, \vec{v} = 1$ (d) $\vec{u} \times \vec{v} = \vec{i} + \vec{i}$ QNo123: If $\vec{a} + \vec{b} \perp \vec{a}$ and $|\vec{b}| = \sqrt{2} |\vec{a}|$, then (a) $(2\vec{a}+\vec{b})$ is parallel to \vec{b} (b) $(2\vec{a}+\vec{b})\perp\vec{b}$ (c) $(2\vec{a}-\vec{b})\perp\vec{b}$ (d) $(2\vec{a}-b)\perp\vec{a}$ QNo124: Let $\vec{\lambda} = \vec{a} \times (\vec{b} + \vec{c}), \vec{\mu} = \vec{b} \times (\vec{c} + \vec{a}), \vec{v} = \vec{c} \times (\vec{a} + \vec{b})$. Then (a) $\vec{\lambda} + \vec{u} = \vec{v}$ (b) $\vec{\lambda}, \vec{u}, \vec{v}$ are coplanar (c) $\vec{\lambda} + \vec{v} = 2\vec{u}$ (d) none of these

CATALYST EDUCATION

IIT \ PMT – JEE PAGE 11 CATALYST EDUCATION

QNo136: If \vec{a}, \vec{b} and \vec{c} be three non-zero and non-coplanar vectors and \vec{p}, \vec{q} and \vec{r} be three vectors given by $\vec{p} = \vec{a} + \vec{b} - 2\vec{c}$, $\vec{q} = 3\vec{a} - 2\vec{b} + \vec{c}$ and $\vec{r} = \vec{a} - 4\vec{b} + 2\vec{c}$. If the volume of the parallelopiped determined by \vec{a}, \vec{b} and \vec{c} is V₁ and that of the parallelopiped determined by \vec{p}, \vec{q} and \vec{r} is V₂ then V₂: V₁ is: (a) 1 : 15 (b) 15 : 1 (c) 4 : 5 (d) 5 : 4 QNo137: If $\vec{a}, \vec{b}, \vec{c}$ are three vectors of which every pair is non- collinear. If the vector $\vec{a} + \vec{b}$ and $\vec{b} + \vec{c}$ are collinear with \overrightarrow{c} and \overrightarrow{a} respectively, then $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$ is: (c) equally inclined to $\vec{a}, \vec{b}, \vec{c}$ (d) none of these (a) a unit vector (b) the null vector QNo138: If $\vec{r} = 3\vec{i} + 2\vec{j} - 5\vec{k}$, $\vec{a} = 2\vec{i} - \vec{j} + \vec{k}$, $\vec{b} = \vec{i} + 3\vec{j} - 2\vec{k}$ and $\vec{c} = -2\vec{i} + \vec{j} - 3\vec{k}$ such that $\vec{r} = \lambda\vec{a} + u\vec{b} + v\vec{c}$ then (a) $\mu, \frac{\lambda}{2}, \nu$ are in A.P. (b) λ, μ, ν are in A.P. (c) λ, μ, ν are in H.P. (d) μ, λ, ν are in G.P. QNo139: If \vec{a} is perpendicular to \vec{b} and \vec{p} is a non-zero vector such that $\vec{p r + (r \cdot \vec{b}) a = + c}$, then $\vec{r} =$ (a) $\frac{\vec{c}}{n} - \frac{(\vec{b} \cdot \vec{c})\vec{a}}{n^2}$ (b) $\frac{\vec{a}}{n} - \frac{(\vec{c} \cdot \vec{a})\vec{b}}{n^2}$ (c) $\frac{\vec{b}}{n} - \frac{(\vec{a} \cdot \vec{b})\vec{c}}{n^2}$ (d) $\frac{\vec{c}}{n^2} - \frac{(\vec{b} \cdot \vec{c})\vec{a}}{n^2}$ QNo140: A particle is acted upon by the focus $\vec{F_1} = 3\vec{i}+2\vec{j}+5\vec{k}$ and $\vec{F_2} = 2\vec{i}+\vec{j}-3\vec{k}$ and is displaced from the point P $(2\vec{i}-\vec{j}-3\vec{k})$ to the point Q $(4\vec{i}-3\vec{j}+7\vec{k})$. The work done by the force is : (a) 17 units (b) 24 units (c) 32 units (d) none of these QNo141: Vector moment of the force $\vec{F} = 3\vec{i} + 2\vec{j} - 4\vec{k}$ acting at the point (1, -1, 2) about the point (2, -1, 3) is : (a) $2\vec{i} - 7\vec{j} - 2\vec{k}$ (b) $-2\vec{i} - \vec{j} + 2\vec{k}$ (c) $2\vec{i} + 7\vec{j} - 2\vec{k}$ (d) $-2\vec{i} - 7\vec{j} + 2\vec{k}$ QNo142: Angle between vectors $\vec{i} - \vec{j} + \vec{k}$ and $\vec{i} + 2\vec{j} + \vec{k}$ is : (a) $\cos^{-1} \frac{1}{\sqrt{15}}$ (b) $\cos^{-1}\frac{4}{\sqrt{15}}$ (c) $\cos^{-1}\frac{4}{15}$ (d) $\frac{\pi}{2}$ QNo143: The area of the parallelogram of which \vec{i} and $\vec{i} + \vec{j}$ are adjacent is : (b) $\frac{1}{2}$ (a) 2 (c) 1 (d) $\sqrt{2}$ QNo144: The unit vector perpendicular to vectors $\vec{i} - \vec{j}$ and $\vec{i} + \vec{j}$ forming a right handed system is : (c) $\frac{1}{\sqrt{2}}(\vec{i}-\vec{j})$ (d) $\frac{1}{2}(\vec{i}+\vec{j})$ (b) $-\vec{k}$ (a) \vec{k} QNo145: Value of a for which $2\vec{i} - \vec{j} + \vec{k}$, $\vec{i} + 2\vec{j} - 3\vec{k}$ and $3\vec{i} + a\vec{j} + 5\vec{k}$ are coplanar is : (c) -4(b) 4 (d0.3)QNo146: If $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ are the vertices of a square, then (b) $\vec{a} + \vec{b} + \vec{c} = \vec{0}$ (c) $(\vec{c} - \vec{a}) \cdot (\vec{d} - \vec{b}) = 0$ (a) $(\vec{b} - \vec{a}) = (\vec{c} - \vec{b})$ (d) none of these QNo147: The vectors $2\vec{i}+3\vec{j},5\vec{i}+6\vec{j}$ and $8\vec{i}+\lambda\vec{j}$ have their initial points at (1, 1). The value of λ so that the vectors terminate on one straight line is : (d) 9 (a) 0(b) 3 (c) 6

QNo148: If $|\vec{a}| = \sqrt{5}$ and $|\vec{b}| = \sqrt{6}$, then $[(\vec{a} \times \vec{b}) \times \vec{b}] \times \vec{b}$ is

	(a) 6	$(\vec{b} \times \vec{a})$)		(b) 6 ($\vec{a} \times \vec{b}$)		(0	(a) 5 (a)	$\times \vec{b})$		(d) 5	$(\vec{b}\times\vec{a})$)	\sim
QNo1					•		\vec{b} is or								
	(8	a) $ \vec{a} =$	$=\sqrt{2} \vec{b} $	1	(b) $ \stackrel{\rightarrow}{a} $	$=2 \overrightarrow{b} $		(c	$ \vec{a} =$	$ \overrightarrow{b} $		(d)	$\overrightarrow{b} = 2$	\vec{a}
QNo1							$\vec{i} + 5\vec{j} +$								
-							sition v								
	(8	•													$\frac{1}{3}(5\vec{j}+12\vec{k})$
ANSV		11	21	21	41	<i>5</i> 1	(1	71	01	01	101	111	101	121	
	1 A	11 C	21 D	31 C	41 D	51 C	61 C	71 B	81 D	91 A	101 A	111 B	121 D	131 C	141 A
	2 B	12	22	32	42	52	62	72	82	92	102	112	122	132	142
		В	B	A	C	C	B	B	C	C	A	A	В	B	D
	3 C	13	23	33	43	53	63	73	83	93	102	113	123	133	143
		C	C	D	D	A	В	В	D	A	B	C	В	В	C
	4 C	14	24	34	44	54	64	74	84	94	104	114	124	134	144
		B	D	A	D	D	A	C	D	C	C	A	В	A	A
	5 C	15	25	35	45	55	65	75	85	95	105	115	125	135	145
		A	C	C	D	A	A	B	B	B	D	A	A	A	C
	6 A	16	26	36	46	56	66	76	86	96	106	116	126	136	146
	7 B	C 17	D 27	C 37	C 47	C 57	B	C 77	A 87	B 97	D	D	A	B	C
	/ B	A A	$\begin{vmatrix} 2 \\ D \end{vmatrix}$	$\begin{vmatrix} 3 \\ C \end{vmatrix}$	A A	A A	67 B		A A	97 C	107 C	117 B	127 A	137 B	147 D
	8 C	A 18	28	38	48	58	68	78	88	98	108	118	A 128	138	
	00	B	B	A	C	B	A	D	A	B	B	C	A	A	148 A
	9 A	19	29	39	49	59	69	79	89	99	109	119	129	139	149
		D	D	B	C	B	B	C	B	A	A	B	A	A	A
	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150
	В	A	B	C	A	B	В	A	A	A	A	A	В	В	C

CONTRACT

$IIT \setminus PMT - JEE$	PAGE 13	CATALYST EDUCATION