VECTORS

QNo1: If $\vec{a}, \vec{b}, \vec{c}$ are the position vectors of the vertices of an equilateral triangle whose orthocenter is at the origin, then :
(a) $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$
(b) $\vec{a}_{a}=\vec{b}^{2}+\vec{c}_{2}$
(c) $\vec{a}+\vec{b}=\vec{c}$
(d) none of these

QNo2: If $\vec{a}, \vec{b}, \vec{c}$ are three vectors such that $\vec{a}+\vec{b}=\vec{c}$, then \vec{b} is called
(a) a projection of \vec{c}
(b) a component of \vec{c}
(c) a complement \vec{c}

QNo3: If $\vec{a}+(1,-1)$ and $\vec{b}=(-2, \mathrm{~m})$ are collinear vectors, then $\mathrm{m}=$
(a) 4
(b) 3
(c) 2
(d) 0

QNo4: If \vec{c} is one unit vector \perp to \vec{a}, \vec{b}, then the second unit vector \perp to \vec{a}, \vec{b} will be
(a) \vec{a}
(b) $\vec{a} \times \vec{b}$
(c) $-\vec{c}$
(d) none of these

QNo5: The positive vectors of three consecutive vertices A, B and C of a parallelgram ABCD are \vec{r}_{1}, \vec{r}_{2} and respectively. Then the position vector of the formula vertex D is :
(a) $\vec{r}_{1}+\overrightarrow{r_{2}}-\overrightarrow{r_{3}}$
(b) $\vec{r}_{2}+\overrightarrow{r_{3}}-\overrightarrow{r_{1}}$
(c) $\overrightarrow{r_{3}}+\vec{r}_{1}-\vec{r}_{2}$
(d) none of these

QNo6: Projection of the vector $\vec{a}=2 \vec{i}+3 \vec{j}-2 \vec{k}$ on the vector $\vec{b}=\vec{i}+2 \vec{j}+3 \vec{k}$ is
(a) $\frac{2}{\sqrt{14}}$
(b) $\frac{1}{\sqrt{14}}$
(c) $\frac{3}{\sqrt{14}}$
(d) none of these

QNo7: The value of $|\vec{a} \times \vec{i}|^{2}+|\vec{a} \times \vec{j}|^{2}+|\vec{a} \times \vec{k}|^{2}$ is :
(a) $|\vec{a}|^{2}$
(b) $2|\vec{a}|^{2}$
(c) $3|\vec{a}|^{2}$
(d) $4|\vec{a}|^{2}$

QNo8: $\vec{i} \times(\vec{x} \times \vec{i})+\vec{j} \times(\vec{x} \times \vec{j}) \times \vec{k} \times(\vec{x} \times \vec{k})$ is equal to
(a) $\overrightarrow{0}$
(b) \vec{x}
(c) $2 \vec{x}$
(d) 0

QNo9: $(\vec{a} \times \vec{b})^{2}$ is equal to
(a) $\vec{a}_{2} \vec{b}^{2}-(\vec{a} \cdot \vec{b})^{2}$
(b) $\vec{a}_{2} \vec{b}^{2}+(\vec{a} \cdot \vec{b})^{2}$
(c) $(\vec{a} \cdot \vec{b})^{2}$

QNo10: The vector $\frac{2}{7} \vec{i}+\frac{3}{7} \vec{j}-\frac{6}{7} \vec{k}$ is
(a) a null vector
(b) a unit vector
(c) a vector whose components are (2, 3, -6)
(d) a vector which is equally inclined to the axes

QNo11: $\vec{a} \cdot(\vec{a} \times \vec{b})=$
(a) $\vec{a} \cdot \vec{b}$
(b) ab
(c) 0
(d) $a^{2}+a b$

QNo12: $\vec{a} \times(\vec{b} \times \vec{c})+\vec{b} \times(\vec{c} \times \vec{a})+\vec{c} \times(\vec{a} \times \vec{b})$ is :
(a) $2(\vec{a} \vec{b} \vec{c})$
(b) $\overrightarrow{0}$
(c) $\vec{a}+\vec{b}+\vec{c}$
(d) 0

QNo13: If the vectors $3 \vec{i}+\lambda \vec{j}+\vec{k}$ and $2 \vec{i}+\vec{j}+8 \vec{k}$ are \perp, then λ is equal to :
(a) -4
(b) 1
(c) 14
(d) $1 / 7$

QNo14: $\overrightarrow{e_{1}^{\prime}}, \overrightarrow{e_{2}^{\prime}}, \overrightarrow{e_{3}^{\prime}}$ are vectors reciprocals to the non- coplanar vectors $\overrightarrow{e_{1}}, \overrightarrow{e_{2}}, \overrightarrow{e_{3}}$, then $\left[\overrightarrow{e_{1}^{\prime}}, \overrightarrow{e_{2}^{\prime}}, \overrightarrow{e_{3}^{\prime}}\right]\left[\overrightarrow{e_{1}}, \overrightarrow{e_{2}}, \overrightarrow{e_{3}}\right]=$ then

$$
\left[\overrightarrow{e_{1}^{\prime}}, \overrightarrow{e_{2}^{\prime}}, \overrightarrow{e_{3}^{\prime}}\right],\left[\overrightarrow{e_{1}}, \overrightarrow{e_{2}}, \overrightarrow{e_{3}}\right]=
$$

(a)-(1/2)
(b) 1
(c) 0
(d) 4

QNo15: $\left|\begin{array}{lll}\vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} & \vec{b} \cdot \vec{c} \\ \vec{c} \cdot \vec{a} & \vec{c} \cdot \vec{b} & \vec{c} \cdot \vec{c}\end{array}\right|$ is equal to :
(a) $[\vec{a}, \vec{b}, \vec{c}]^{2}$
(b) $[\vec{a}, \vec{b}, \vec{c}]$
(c) $[\vec{a}, \vec{b}, \vec{c}]^{3}$
(d) none of these
QNo16: If $\vec{a}, \vec{b}, \vec{c}$ are vectors such that $\vec{c}=\vec{a}+\vec{b}$ and $\vec{a} \cdot \vec{b}=0$, then
(a) $a^{2}+b^{2}+c^{2}=0$
(b) $\mathrm{a}^{2}-\mathrm{b}^{2}=0$
(c) $\mathrm{c}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}$
(d) $\mathrm{c}^{2}=\vec{a} \times \vec{b}$
(d) none of these

QNo17: If $|\vec{a}|=6,|\vec{b}|=8,|\vec{a}-\vec{b}|=10$, then $|\vec{a}+\vec{b}|$ is equal to :
(a) 10
(b) 24
(c) 40
(d) 36

QNo18: If $\vec{a}, \vec{b}, \vec{c}$ are coplanar, then $[\vec{a}+\vec{b}, \vec{b}+\vec{c}, \vec{c}+\vec{a}]=$
(a) a
(b) 0
(c) b
(d) $a+b$

QNo19: If $\vec{a}, \vec{b}, \vec{c}$ are coplanar, then $[\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a}]=$
(a) abc
(b) ab
(c) bc
(d) 0

QNo20: The value of $(\vec{a}-\vec{b})[(\vec{b}-\vec{c}) \times(\vec{c} \times \vec{a})]$ is
(a) 0
(b) $2[\vec{a} \vec{b} \vec{c}]$
(c) $3[\vec{a} \vec{b} \vec{c}]$
(d) none of these

QNo21: The value of $(\vec{r} \cdot \vec{i}) \vec{i}+(\vec{r} \cdot \vec{j}) \vec{j}+(\vec{r} \cdot \vec{k}) \vec{k}$ is equal to :
(a) \vec{i}
(b) \vec{j}
(c) \vec{k}
(d) \vec{r}

QNo22: Let \vec{A} and \vec{B} be two non- parallel unit vectors in a plane. If the vectors $(\alpha \vec{A}+\vec{B})$ bisects the internal angle between \vec{A} and \vec{B}, then α is:
(a) $1 / 2$
(b) 1
(c) 2
(d) 4

QNo23: Let \vec{a} be a non- zero, vectors then $\frac{\vec{a}}{|\vec{a}|}$ is a
(a) null vectors
(b) scalar
(c) unit vector parallel to \vec{a}
(d) unit vector perpendicular to \vec{a}

QNo24: If \vec{a} is a non - zero vector and K is a scalar such that $|\mathrm{K} \vec{a}|=1$, then K is equal to
(a) $|\vec{a}|$
(b) 1
(c) $\frac{1}{|\vec{a}|}$
(d) $+\frac{1}{|\vec{a}|}$

QNo25: Let $\vec{a}=-\vec{i}+2 \vec{j}=(-1,2)$

$$
\begin{aligned}
& \vec{b}=3 \vec{i}-2 \vec{j}=(3,-2) \\
& \vec{c}=5 \vec{j}=(0,5)
\end{aligned}
$$

Then $\vec{a}+\vec{b}=-2 \vec{c}$ is :
(a) $2 \vec{i}+10 \vec{j}$
(b) $-2 \vec{i}+10 \vec{j}$
(c) $2 \vec{i}-10 \vec{j}$
(d) $3 \vec{i}+2 \vec{j}$

QNo26: If \vec{a} and \vec{b} are position vector of A and B respectively, then the position vector of a point C in AB produced
such that $\stackrel{\sim}{A C}=3 \stackrel{\sim}{A M}$ is :
(a) $3 \vec{a}-\vec{b}$
(b) $3 \vec{b}-\vec{a}$
(c) $3 \vec{a}-2 \vec{b}$
(d) $3 \vec{b}-2 \vec{a}$

QNo27: Let \vec{a} and \vec{b} be unit vectors inclined at an angle α to each other, then $|\vec{a}+\vec{b}|<1$ if
(a) $\alpha=\frac{\pi}{2}$
(b) $\alpha<\frac{\pi}{3}$
(c) $\alpha>\frac{2 \pi}{3}$
(d) $\frac{\pi}{3}<\alpha<\frac{2 \pi}{3}$

QNo28: $[\vec{i} \vec{j} \vec{k}]$ is equal to :
(a) 0
(b) 1
(c) -1
(d) 3

QNo29: Given two vectors $\vec{a}=2 \vec{i}-3 \vec{j}+6 \vec{k}, \vec{b}=-2 \vec{i}+2 \vec{j}-\vec{k}$ and $\lambda=\frac{\text { the projection of } \vec{a} \text { on } \vec{b}}{\text { the projection of } \vec{b} \text { on } \vec{a}}$ then the value of λ is :
(a) $3 / 7$
(b) 7
(c) 3
(d) $7 / 3$

QNo30: Let \vec{a} and \vec{b} proper vectors. Then \vec{a} and \vec{b} are at right angles iff $\vec{a} \cdot \vec{b}$ is equal to :
(a) 1
(b) 0
(c) -1
(d) none of these

QNo31: $(1,0,0) \times(0,1,0)$ is equal to :
(a) $(1,1,0)$
(b) 0
(c) $(0,0,1)$
(d) 2

QNo32: If cross product of two non- zero vectors is zero, then the vectors are :
(a) collinear
(b) co - directional
(c) co - initial
(d) co - terminus

QNo33: $\vec{i} \cdot(\vec{j} \times \vec{k})+\vec{j} \cdot(\vec{k} \times \vec{i})+\vec{k} \cdot(\vec{i} \times \vec{j})$ is equal to :
(a) 0
(b) -3
(c) -1
(d) 3

QNo34: If $\vec{a}=\vec{i}-3 \vec{j}+\vec{k}$ and $\vec{b}=\vec{i}+\vec{j}+\vec{k}$, then $|\vec{a} \times \vec{b}|$ is equal to :
(a) $4 \sqrt{2}$
(b) $3 \sqrt{2}$
(c) $2 \sqrt{5}$
(d) $2 \sqrt{3}$

QNo35: If $\vec{a}, \vec{b}, \vec{c}$ are any three mutually \perp unit vectors, then $|\vec{a}+\vec{b}+\vec{c}|$ is equal to :
(a) 1
(b) $\sqrt{2}$
(c) $\sqrt{3}$
(d) 2

QNo36: A unit vector parallel to the sum of the vectors $\vec{a}=2 \vec{i}+4 \vec{j}-5 \vec{k}$ and $\vec{b}=\vec{i}+2 \vec{j}+3 \vec{k}$ is given by
(a) $3 \vec{i}+6 \vec{j}-2 \vec{k}$
(b) $-\frac{1}{7}(3 \vec{i}+6 \vec{j}-2 \vec{k})$
(c) $\frac{1}{7}(3 \vec{i}+6 \vec{j}-2 \vec{k})$
(d) none of these

QNo37: If $\vec{a}=\vec{i}+\vec{j}-\vec{k}, \vec{b}=\vec{i}-\vec{j}+\vec{k}$ and \vec{c} is a unit vector perpendicular to the vector \vec{a} and coplanar with \vec{a} and \vec{b}, then a unit vector \vec{d} perpendicular , to both \vec{a} and \vec{c} is :
(a) $\frac{1}{\sqrt{6}}(2 \vec{i}-\vec{j}+\vec{k})$
(b) $\frac{1}{\sqrt{2}}(\vec{i}+\vec{j})$
(c) $\frac{1}{\sqrt{2}}(\vec{j}+\vec{k})$
(d) $\frac{1}{\sqrt{2}}(\vec{i}+\vec{k})$

QNo38: The unit vector perpendicular to each of the vectors $\vec{i}+\overrightarrow{j j}+\overrightarrow{3 k}$ and $-3 \vec{i}-\overrightarrow{j j}+\vec{k}$ is
(a) $\frac{1}{6 \sqrt{5}}(8 \vec{i}-10 \vec{j}+4 \vec{k})$
(b) $8 \vec{i}-10 \vec{j}+4 \vec{k}$
(c) $8 \vec{i}+10 \vec{j}+4 \vec{k}$
(d) none of these

QNo39: A unit vector perpendicular to each of the vectors $-6 \vec{i}+8 \vec{k}, 8 \vec{i}+6 \vec{k}$ forming a right handed system
(a) $-\vec{j}$
(b) \vec{j}
(c) $\frac{1}{10}(6 \vec{i}+8 \vec{k})$
(d) $\frac{1}{10}(-6 \vec{i}+8 \vec{k})$

QNo40: If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$, then the value of $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}=$
(a) $2 / 3$
(b) $-2 / 3$
(c) $-(3 / 2)$
(d) $3 / 2$

QNo41: If \vec{x} and \vec{y} are two unit vectors and θ is the angle between them, then $\frac{1}{2}|\vec{x}-\vec{y}|$ is equal to :
(a) 0
(b) $x / 2$
(c) $\cos \frac{\theta}{2}$
(d) $\sin \frac{\theta}{2}$

QNo42: $[\vec{a} \vec{b} \vec{c}]$ is the scalar product of three vectors \vec{a}, \vec{b} and \vec{c}. Then $[\vec{a} \vec{b} \vec{c}]$ is equal to
(a) $[\vec{b} \vec{a} \vec{c}]$
(b) $[\vec{c} \vec{b} \vec{b} \vec{a}]$
(c) $[\vec{b} \vec{c} \vec{a}]$
(d) $[\vec{a} \vec{c} \vec{b}]$

QNo43: If θ is the angle between vectors \vec{a} and \vec{b}, then $\vec{a} \cdot \vec{b}>0$ only if
(a) $0 \leq \theta \leq \pi$
(b) $\frac{\pi}{2} \leq \theta \leq \pi$
(c) $0 \leq \theta \leq \frac{\pi}{2}$
(d) $0<\theta<\frac{\pi}{2}$

QNo44: If θ is the angle between vectors \vec{a}, \vec{b}, and $|\vec{a} \times \vec{b}|=\sqrt{3}|\vec{a} \cdot \vec{b}|$, then θ is equal to :
(a) $\pi / 6$
(b) $\pi / 4$
(c) $\pi / 2$
(d) $\pi / 3$

QNo45: If $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}=\vec{c} \cdot \vec{a}=0$, then $\vec{a} \cdot(\vec{b} \times \vec{c})$ is equal to :
(a) a non- zero vector
(b) 1
(c) -1
(d) $|\vec{a}||\vec{b}||\vec{c}|$

QNo46: Let $\vec{a}, \vec{b}, \vec{c}$ be the position vectors of three vertices $\mathrm{A}, \mathrm{B}, \mathrm{C}$ of a triangle respectively. Then the area of this triangle is given by :
(a) $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}$
(b) $\frac{1}{2}(\vec{a} \times \vec{b}) \cdot \vec{c}$
(c) $\frac{1}{2}|\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}|$
(d) none of these

QNo47: The sine of the angle between the vectors $\vec{i}-2 \vec{j}+3 \vec{k}$ and $2 \vec{i}+\vec{j}+\vec{k}$ is :
(a) $\frac{5}{2 \sqrt{7}}$
(b) $\frac{5}{\sqrt{7}}$
(c) $\frac{3}{\sqrt{14}}$
(d) $\frac{5}{21}$

QNo48: The value of $[\vec{a}-\vec{b}, \vec{b}-\vec{c}, \vec{c}-\vec{a}]$ where $|\vec{a}|=1,|\vec{b}|=2$ and $|\vec{c}|=3$ is
(a) 1
(b) 6
(c) 0
(d) 3 .

QNo49: $[\vec{a}+\vec{b}, \vec{b}+\vec{c}, \vec{c}+\vec{a}]$ is equal to
(a) 0
(b) $\vec{a} \times \vec{b} \cdot \vec{c}$
(c) $2|\vec{a} \vec{b} \vec{c}|$
(d) none of these

QNo50: The sine of the angle between the vectors $\vec{a}=3 \vec{i}+\vec{j}+\vec{k}, \vec{b}=2 \vec{i}-2 \vec{j}+\vec{k}$ is :
(a) $\sqrt{\frac{74}{99}}$
(b) $\sqrt{\frac{25}{99}}$
(c) $\sqrt{\frac{37}{99}}$
(d) $\frac{5}{\sqrt{41}}$

QNo51: If θ is the angle between two vectors \vec{a} and \vec{b}, then $\frac{|\vec{a} \times \vec{b}|}{|\vec{a} \cdot \vec{b}|}$ equals :
(a) $\cot \theta$
(b) $-\cot \theta$
(c) $\tan \theta$
(d) $-\tan \theta$

QNo52: The vector $\vec{a} \times(\vec{b} \times \vec{a})$ is :
(a) a null vector
(b) perpendicular to both \vec{a} and \vec{b}
(c) perpendicular to \vec{a}
(d) perpendicular to \vec{b}

QNo53: If \vec{a} and \vec{b} are any two vectors, then
(a) $|\vec{a} \times \vec{b}| \leq|\vec{a}||\vec{b}|$
(b) $|\vec{a} \times \vec{b}| \geq|\vec{a}||\vec{b}|$
(c) $|\vec{a} \times \vec{b}|>|\vec{a}||\vec{b}|$
(d) $|\vec{a} \times \vec{b}|<|\vec{a}| \cdot|\vec{b}|$

QNo54: If \vec{a} and \vec{b} are any two vectors, then
(a) $|\vec{a} \cdot \vec{b}|>|\vec{a}||\vec{b}|$
(b) $|\vec{a} \cdot \vec{b}|<|\vec{a}||\vec{b}|$
(c) $|\vec{a} \cdot \vec{b}| \geq|\vec{a}||\vec{b}|$
(d) $|\vec{a} \cdot \vec{b}| \leq|\vec{a}| \vec{b}|\vec{b}|$

QNo55: Let the vectors \vec{u}, \vec{v} and \vec{w} be coplanar. Then $\vec{u} \cdot \overrightarrow{(v \times r)}$ is :
(a) 0
(b) $\overrightarrow{0}$
(c) a unit vector
(d) none of these

QNo56: The vector $2 \vec{i}+\vec{j}+\vec{k}$ is perpendicular to $\vec{i}-4 \vec{j}+\lambda \vec{k}$ if λ is equal to :
(a) 0
(b) -1
(c) 2
(d) -3

QNo57: The angle between the vectors $2 \vec{i}+3 \vec{j}+\vec{k}$ and $2 \vec{i}-\vec{j}-\vec{k}$ is :
(a) $\frac{\pi}{2}$
(b) $\frac{\pi}{4}$
(c) $\frac{\pi}{3}$
(d) 0

QNo58: If $\vec{a}=4 \vec{i}+6 \vec{j}$ and $\vec{b}=3 \vec{j}+4 \vec{k}$, then the vector form of the component of \vec{a} along \vec{b} is :
(a) $\frac{18}{10 \sqrt{3}}(3 \vec{j}+4 \vec{k})$
(b) $\frac{18}{5}(3 \vec{j}+4 \vec{k})$
(c) $\frac{18}{\sqrt{13}}(3 \vec{j}+4 \vec{k})$
(d) $3 \vec{j}+4 \vec{k}$

QNo59: Area of the parallelogram whose diagonals are \vec{a} and \vec{b} is:
(a) $\vec{a} \cdot \vec{b}$
(b) $|\vec{a} \times \vec{b}|$
(c) $\vec{a}+\vec{b}$
(d) $\frac{1}{2}|\vec{a}+\vec{b}|$

QNo60: The area of the parallelogram whose diagonals are given by the vectors

$$
3 \vec{i}+\vec{j}-2 \vec{k} \text { and } \vec{i}-3 \vec{j}+4 \vec{k} \text { is }
$$

(a) $10 \sqrt{3}$
(b) $5 \sqrt{3}$
(c) 8
(d) 4

QNo61: Let G be the centroid of a triangle ABC . If $\widetilde{A M}=\vec{a}, \stackrel{\mu}{A C}=\vec{b}$, then the bisector $\underset{A B}{ }$, in terms of vectors \vec{a} and \vec{b} is :
(a) $\frac{2}{3}(\vec{a}+\vec{b})$
(b) $\frac{1}{6}(\vec{a}+\vec{b})$
(c) $\frac{1}{3}(\vec{a}+\vec{b})$
(d) $\frac{1}{2}(\vec{a}+\vec{b})$

(a) $\stackrel{\mu}{D E}$
(b) $3 \underset{D E}{ }$
(c) $2 D E$
(d) $4 E D$

QNo63: If three points A, B, C whose position vectors are respectively $\vec{i}-2 \vec{j}-8 \vec{k}$ and $5 \vec{i}-2 \vec{k}$ and $11 \vec{i}+3 \vec{j}+7 \vec{k}$ are collinear , then the ratios in which B , divides AC is :
(a) $1: 2$
(b) $2: 3$
(c) $2: 1$
(d) none of these

(a) $\frac{3 a^{2}+b^{2}-c^{2}}{2}$
(b) $\frac{a^{2}+3 b^{2}-c^{2}}{2}$
(c) $\frac{a^{2}-b^{2}+3 c^{2}}{2}$
(d) $\frac{a^{2}+3 b^{2}+c^{2}}{2}$

QNo65: The position vectors of four points $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}$ are $2 \vec{a}+4 \vec{c}, 5 \vec{a}+3 \sqrt{3} \vec{b}+4 \vec{c},-2 \sqrt{3} \vec{b}+\vec{c}$ and $2 \vec{a}+\vec{c}$ respectively. Then
(a) $P Q \| R S$
(b) PQ is not parallel to RS
(c) $P Q=R S$
(d) $P Q \| R S$ and $P Q=R S$

QNo66: Let $\underset{O A}{\text { Un }}=\vec{i}+3 \vec{j}-2 \vec{k}$ and $\underset{O B=3}{ } \vec{i}+\vec{j}-2 \vec{k}$.

The vector $\stackrel{\sim}{O} \underset{C}{ }$ bisecting the angle AOB and C being a point on the line AB is
(a) $4(\vec{i}+\vec{j}-\vec{k})$
(b) $2(\vec{i}+\vec{j}-\vec{k})$
(c) $(\vec{i}+\vec{j}-\vec{k})$
(d) none of these

QNo67: Let α, β, λ be three distinct real numbers. The points with position vectors $\alpha \vec{i}+\beta \vec{j}-\lambda \vec{k}$, $\beta \vec{i}+\lambda \vec{j}+\alpha \vec{k}, \lambda \vec{i}+\alpha \vec{j}+\beta \vec{k}$
(a) are collinear
(b) form a equilateral triangle
(c) form a scalene triangle
(d) form a right angled triangle

QNo68: Let \vec{p} and \vec{q} be the position vectors of P and Q respectively, with respect to O and $|\vec{p}|=\mathrm{p},|\vec{q}|=\mathrm{q}$. The points R and S divide PQ internally and externally in the ratio $2: 3$ respectively. If $\underset{O R}{\sim}$ and $\underset{O S}{\sim}$ are perpendicular, then :
(a) $9 \mathrm{p}^{2}=4 \mathrm{q}^{2}$
(b) $4 p^{2}=9 q^{2}$
(c) $9 \mathrm{p}=4 \mathrm{q}$
(d) $4 \mathrm{p}=9 \mathrm{q}$

QNo69: A unit vector perpendicular to the vectors $4 \vec{i}-\vec{j}+3 \vec{k}$ and $-2 \vec{i}+\vec{j}-2 \vec{k}$ is
(a) $\frac{1}{3}(\vec{i}-2 \vec{j}+2 \vec{k})$
(b) $\frac{1}{3}(-\vec{i}+2 \vec{j}+2 \vec{k})$
(c) $\frac{1}{3}(2 \vec{i}+\vec{j}+2 \vec{k})$
(d) $\frac{1}{3}(2 \vec{i}-2 \vec{j}+2 \vec{k})$

QNo70: Given $\vec{a}=\vec{i}+\vec{j}-\vec{k}, \vec{b}=-\vec{i}+\vec{j}+\vec{k}$ and $\vec{c}=-\vec{i}+2 \vec{j}-\vec{k}$. A unit vector perpendicular to both $\vec{a}+\vec{b}$ and $\vec{b}+\vec{c}$ is :
(a) \vec{i}
(b) \vec{k}
(c) \vec{j}
(d) $\frac{\vec{i}+\vec{j}+\vec{k}}{\sqrt{3}}$

QNo71: For a non- zero vector \vec{a}, which of the following statement is true :
(a) $\vec{a} \cdot \vec{a} \geq 0$
(b) $\vec{a} \cdot \vec{a}>0$
(c) $\vec{a} \cdot \vec{a}=0$
(d) $\vec{a} \cdot \vec{a} \leq 0$

QNo72: For a non- zero vector \vec{a}, the set of real numbers satisfying the inequality $|(5-x) \vec{a}|<|2 \vec{a}|$ consists of all x such that :
(a) $0<x<3$
(b) $3<x<7$
(c) $-7<x<-3$
(d) $-7<x<3$

QNo73: A vector \vec{a} has magnitudes 5 units and points north east and another vector \vec{b} has magnitude 5 units iand point north west. Then the magnitude of the vector $\left(\vec{a}-\vec{b} \cdot \frac{.}{\cdot}\right)$ is :
(a) 0
(b) $5 \sqrt{2}$
(c) 10
(d) 25

QNo74: The position vectors of three consecutive vertices A, B and C of a parallelogram $A B C D$ are $\overrightarrow{r_{1}}, \overrightarrow{r_{2}}$ and $\overrightarrow{r_{3}}$ respectively. Then the position vector of the fourth vertex D is :
(a) $\overrightarrow{r_{1}}+\overrightarrow{r_{2}}-\overrightarrow{r_{3}}$
(b) $\vec{r}_{2}+\vec{r}_{3}-\overrightarrow{r_{1}}$
(c) $\vec{r}_{3}+\vec{r}_{1}-\vec{r}_{2}$
(d) none of these

QNo75: If vectors $\stackrel{\sim}{A B}=3 \vec{i}-3 \vec{k}$ and $\underset{A C}{ }=\vec{i}-2 \vec{j}+\vec{k}$ are the sides of a triangle ABC , then the length of the median AM , is
(a) $\sqrt{3}$
(b) $\sqrt{6}$
(c) $2 \sqrt{3}$
(d) $3 \sqrt{2}$

QNo76: If the points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D have position vectors $\vec{a}, 2 \vec{a}+\vec{b}, 4 \vec{a}+2 \vec{b}$ and $5 \vec{a}+4 \vec{b}$ respectively. Then the three collinear points are :
(a) A, B and C
(b) A, C and D
(c) A, B and D
(d) B, C and D

QNo77: For non- zero vectors \vec{a} and \vec{b}, if $|\vec{a}+\vec{b}|<|\vec{a}-\vec{b}|$, then \vec{a} and \vec{b} are
(a) collinear
(b) perpendicular to each other
(c) inclined at an acute angle
(d) inclined at an obtuse angle

QNo78: For the vectors $\vec{a}=\vec{i}+2 \vec{j}+\vec{k}, \vec{b}=2 \vec{i}+\vec{j}, \vec{c}=3 \vec{i}-4 \vec{j}-5 \vec{k}$, If $\vec{a}+t \vec{b}$ is perpendicular to \vec{c}, the valuepf t , is :
(a) 1
(b) -4
(c) 4
(d) 5

QNo79: If the difference of two unit vectors is again a unit vector, then the angle between them is :
(a) 30°
(b) 45°
(c) 60°
(d) 90°

QNo80: If $\vec{x} \times \vec{b}=\vec{c} \times \vec{b}$ and $\vec{x} \perp \vec{a}$, then \vec{x} is equal to
(a) $\frac{(\vec{b} \times \vec{c}) \times \vec{a}}{\vec{b} \cdot \vec{a}}$
(b) $\frac{\vec{b} \times(\vec{a} \times \vec{c})}{\vec{b} \cdot \vec{c}}$
(c) $\frac{\overrightarrow{(c \times \vec{b}) \times \vec{a}}}{\vec{a} \cdot \vec{b}}$
(d) none of these

QNo81: The adjacent sides of a parallelogram are $\vec{a}=\vec{i}+2 \vec{j}$ and $\vec{b}=2 \vec{i}+\vec{j}$, where \vec{i} and \vec{j} are the usual unit
vectors along the positive directions of x and y axes respectively. Then the angle between the diagonals is :
(a) 30° and 150°
(b) 45° and 135°
(c) 60° and 120°
(d) 90° and -90°

QNo82: If \vec{a} and \vec{b} are two vectors such that $\vec{a} \cdot \vec{b}=0$ and $\vec{a} \times \vec{b}=\overrightarrow{0}$, then the correct statement is ;
(a) \vec{a} is parallel to \vec{b}
(b) \vec{a} is perpendicular to \vec{b}
(c) either $\vec{a}=\overrightarrow{0}$ or $\vec{b}=\overrightarrow{0}$
(d) none of these

QNo83: If $\vec{c}=\vec{a} \times \vec{b}$ and $\vec{b}=\vec{c} \times \vec{a}$, then
(a) $\vec{a} \cdot \vec{b}=\vec{c}$
(b) $\vec{c} \cdot \vec{a}=\vec{b}^{2}$
(c) $\vec{b} \cdot \vec{c}=\vec{a}$
(d) $\vec{a} \perp \vec{b}$ or $\vec{a}||\vec{b}| \vec{c}$

QNo84: If \vec{v} and \vec{w} are two mutually perpendicular unit vector and $\vec{u}=\mathrm{a} \vec{v}+\mathrm{b} \vec{w}$, where a and b are non- zero real numbers, then the angle between \vec{u} and \vec{w} is :
(a) $\cos ^{-1}(a)$
(b) $\cos ^{-1}(b)$
(c) $\cos ^{-1}\left(\frac{a}{\sqrt{a^{2}+b^{2}}} \frac{\stackrel{1}{\dot{G}}}{\dot{\circ}}\right.$
(d) $\cos ^{-1}\left(\frac{b}{\sqrt{a^{2}+b^{2}}} \frac{\dot{\vdots}}{\frac{1}{j}}\right.$

QNo85: If \vec{a} and \vec{b} are two non- zero vectors, then a vector perpendicular to the vector $(\vec{b} \cdot \vec{b}) \vec{a}-(\vec{a} \cdot \vec{b}) \vec{b}$
(a) \vec{a}
(b) \vec{b}
(c) $\vec{a}-\vec{b}$
(d) $\vec{a}+\vec{b}$

QNo86: The vector $\frac{1}{3}(2 \vec{i}-2 \vec{j}+\vec{k})$. is
(a) a unit vector
(b) makes an angle $\frac{\pi}{3}$ with the vector $2 \vec{i}-4 \vec{j}+3 \vec{k}$
(c) parallel to the vector $-\vec{i}+\vec{j}+\frac{1}{3} \vec{k}$
(d) \perp to the vector $3 \vec{i}+2 \vec{j}+2 \vec{k}$

QNo87: Given that $(\vec{a}+\vec{b})$ is perpendicular to \vec{b} and \vec{a} is perpendicular to $2 \vec{b}+\vec{a}$. This implies
(a) $a=\sqrt{2} b$
(b) $a=2 b$
(c) $a=b$
(d) $2 \mathrm{a}=\mathrm{b}$

QNo88: Let $|\vec{a}|=3$ and $|\vec{b}|=4$. The value of λ for which $\vec{a}+\lambda \vec{b}$ and $\vec{a}-\lambda \vec{b}$ are perpendicular is given by :t
(a) $\pm \frac{3}{4}$
(b) $-\frac{2}{3}$
(c) $\frac{2}{3}$
(d) $-\frac{3}{5}$

QNo89: The vectors $\vec{a}=\vec{i}+\vec{j}, \vec{b}=\vec{j}+\vec{k}$ and \vec{c} are of same length and taken pairwise, form equal angles. Fhen \vec{c} is equal to :
(a) $\vec{i}+2 \vec{j}+\vec{k}$
(b) $-\frac{1}{3} \vec{i}+\frac{4}{3} \vec{j}-\frac{1}{3} \vec{k}$
(c) $\vec{i}-\vec{j}+\vec{k}$
(d) none of these

QNo90: Let \vec{a} be a vector of magnitude $\sqrt{75}$ which is perpendicular to both $2 \vec{i}-\vec{j}+\vec{k}$ and $3 \vec{i}+2 \vec{j}-\vec{k}$ Then \vec{a} is equal to :
(a) $-\vec{i}+5 \vec{j}+7 \vec{k}$
(b) $7 \vec{i}+5 \vec{j}+\vec{k}$
(c) $\vec{i}+5 \vec{j}-7 \vec{k}$
(d) $-7 \vec{i}-5 \cdot \vec{j}-\vec{k}$

QNo91: A tetrahedron has vertices at $\mathrm{O}(0,0,0), \mathrm{A}(1,2,1), \mathrm{B}(2,1,3)$ and $\mathrm{C}(-1,1,2)$. Then the angle between the faces OAB and ABC will be :
(a) $\cos ^{-1}\left(\frac{19}{35}\right)$
(b) $\cos ^{-1}\left(\frac{71}{31}\right)$
(c) 30°
(d) 90°

QNo92: Given the vectors $\vec{a}=(3,-1,5)$ and $\vec{b}=(1,2,-3)$. A vector \vec{c} is such that it is perpendicular to the z-axis and satisfies the conditions $\vec{c} \cdot \vec{a} 9$ and $\vec{c} \cdot \vec{b}=-4$. Then \vec{c} is equal to :
(a) $(-2,3,0)$
(b) $(2,-3,1)$
(c) $(2,-3,0)$
(d) none of these

QNo93: Projection of the vector $2 \vec{i}+3 \vec{j}-2 \vec{k}$ on the vector $\vec{i}+2 \vec{j}+3 \vec{k}$ is :
(a) $\frac{2}{\sqrt{14}}$
(b) $\frac{1}{\sqrt{14}}$
(c) $\frac{3}{\sqrt{14}}$
(d) none of these

QNo94: Direction of zero vector
(a) does not exist
(b) is towards origin
(c) is indeterminate
(d) none of these

QNo95: If $a \vec{i}+\vec{j}+\vec{k}, \vec{i}-b \vec{j}+\vec{k}, \vec{i}+\vec{j}-c \vec{k}$ are coplanar, then abc +2 is equal to
(a) $a+b+c$
(b) $a-b-c$
(c) $a+b+c$
(d) $a-b+c$

QNo96: The Points D, E, F divide BC, CA, AB of triangle ABC in the ratio 1:4, 3:2 and 3:7 respectively and the point K divides AB in the ratio $1: 3$. Let \vec{R}_{1} be the resultant of the vectors $\underset{A D}{\sim}, \overrightarrow{B E}, \underset{C}{u}$ and let the vector CK be denoted by \vec{R}_{2}. Then
(a) $\vec{R}_{1}=\vec{R}_{2}$
(b) $5 \vec{R}_{1}=2 \vec{R}_{2}$
(c) $2 \vec{R}_{1}=5 \vec{R}_{2}$
(d) none of these

QNo97: If $\stackrel{\sim}{A M}=3 \vec{i}+\vec{j}-\vec{k}$ and $\stackrel{\sim}{A M}=\vec{i}-\vec{j}+3 \vec{k}$. If the point P on the line segment BC is equidistant fron AB and AC , then $\stackrel{\sim}{A} P$ is :
(a) $2 \vec{i}-\vec{k}$
(b) $\vec{i}-2 \vec{k}$
(c) $2 \vec{i}+\vec{k}$
(d) none of these

QNo98: P is a point on the line through the point A whose position vector is \vec{a} and the line is parallel to thector \vec{b}. If $\mathrm{PA}=6$, then the position vector of P is :
(a) $\vec{a}+6 \vec{b}$
(b) $\vec{a} \pm \frac{6}{|\vec{b}|} \vec{b}$
(c) $\vec{a}-6 \vec{b}$
(d)
$\vec{b}+\frac{6}{|\vec{a}|} \vec{a}$

QNo99: The position vectors of the vertices $\mathrm{A}, \mathrm{B}, \mathrm{C}$ of a triangle are $\vec{i}-\vec{j}-3 \vec{k}, 2 \vec{i}+\vec{j}-2 \vec{k}$ and $-5 \vec{i}+2 \vec{i}-6 \vec{k}$ respectively. The length of the bisector AD of the angle BAC where D is on the line segment is :
(a) $15 / 2$
(b) $1 / 4$
(c) $11 / 2$
(d) none of these

QNo100: If the positive vectors of points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are respectively $\vec{r}, \vec{j}, \vec{k}$ and $\overrightarrow{A B}=\stackrel{\sim}{C} X$, then the position vectof of point X is :
(a) $-\vec{i}+\vec{j}+\vec{k}$
(b) $\vec{i}-\vec{j}+\vec{k}$
(c) $\vec{i}+\vec{j}-\vec{k}$
(d) $\vec{i}+\vec{j}+\vec{k}$
$\mathrm{QNo101:} \mathrm{~A}$ and B are two points. The position vector of A is $6 \vec{b}-2 \vec{a} \mathrm{~A}$ point P divides the line AB in the ratio $1: 2$. If $\vec{a}-\vec{b}$ is the position vector of B is given by :

IIT \backslash PMT - JEE
PAGE 8
CATALYST EDUCATION
(a) $7 \vec{a}-15 \vec{b}$
(b) $7 \vec{a}+15 \vec{b}$
(c) $15 \vec{a}-7 \vec{b}$
(d) $15 \vec{a}+7 \vec{b}$

QNo102: The perimeter of the triangle whose vertices have the position vectors $(\vec{i}+\vec{j}+\vec{k}),(5 \vec{i}+3 \vec{j}-3 \vec{k})$ and $(2 \vec{i}+5 \vec{j}+9 \vec{k})$, is given by :
(a) $15+\sqrt{157}$
(b) $15-\sqrt{157}$
(c) $\sqrt{15}-\sqrt{157}$
(d) $\sqrt{15}+\sqrt{157}$

QNo103: If $\vec{a}=2 \vec{i}-\vec{j}+3 \vec{k}, \vec{b}=\vec{i}+2 \vec{j}+\vec{k}, \vec{c}=3 \vec{i}+\vec{j}+2 \vec{k}$, then the value of $\vec{a} \cdot(\vec{b} \times \vec{c})$ is :
(a) 0
(b) -10
(c) 1
(d) 10

QNo104: ABCDEF is a regular hexagon and $\underset{A B}{\stackrel{\sim}{u}}=\vec{a}, \stackrel{\sim}{B C}=\vec{b}$ and $\stackrel{\sim}{C D}=\vec{c}$, then $\overrightarrow{A E}$ is :
(a) $\vec{a}+\vec{b}+\vec{c}$
(b) $\vec{a}+\vec{b}$
(c) $\vec{b}+\vec{c}$
(d) $\vec{c}+\vec{a}$

QNo105: Let $\vec{a}, \vec{b}, \vec{c}$ be three non- coplanar vectors and $\vec{p}, \vec{q}, \vec{r}$ are vectors defined by the relation $\vec{p}=\frac{\vec{b} \times \vec{c}}{(\vec{a} \vec{b} \vec{c})} ; \vec{q}=\frac{\vec{c} \times \vec{a}}{(\vec{a} \vec{b} \vec{c})} ; \vec{r}=\frac{\vec{a} \times \vec{b}}{(\vec{a} \vec{b} \vec{c})}$ then the value of the expression $\vec{a}+\vec{b} \cdot \vec{p}+(\vec{b}+\vec{c}) \cdot \vec{q}+(\vec{c}+\vec{a}) \cdot \vec{r}$ is equal to :
(a) 0
(b) 1
(c) 2
(d) 3

QNo106: The unit vector perpendicular to each of the vectors $2 \vec{i}-\vec{j}+\vec{k}$ and $3 \vec{i}+4 \vec{j}$ is :
(a) $\frac{1}{\sqrt{146}}(4 \vec{i}-3 \vec{j}+11 \vec{k})$
(b) $\frac{1}{\sqrt{146}}(-4 \vec{i}+3 \vec{j}+11 \vec{k})$
(c) $\frac{1}{\sqrt{146}}(4 \vec{i}+3 \vec{j}+11 \vec{k})$
(d) $\frac{1}{146}(-4 \vec{i}+3 \vec{j}+11 \vec{k})$

QNo107: Let $\vec{a}, \vec{b}, \vec{c}$ be three vectors such that $\vec{a} \cdot(\vec{b}+\vec{c})+\vec{b} \cdot(\vec{c}+\vec{a})+\vec{c} \cdot(\vec{a}+\vec{b})=0$ and $|\vec{a}|=1,|\vec{b}|=4,|\vec{c}|=8$, then $|\vec{a}+\vec{b}+\vec{c}|$ equals :
(a) 13
(b) 81
(c) 9
(d) 5

QNo108: The sum of two unit vector is a unit vector. The magnitude of their difference is :
(a) 2
(b) $\sqrt{3}$
(c) $\sqrt{2}$
(d) 1

QNo109: If $\vec{a}, \vec{b}, \vec{c}$ and \vec{a} are the position vectors of points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D such that no three of them are collinear and $\vec{a}+\vec{c}=\vec{b}+\vec{d}$, then ABCD is :
(a) a parallelogram
(b) a rhombus
(c) a rectangle
(d) a square

QNo110: The vector $2 \vec{i}-m \vec{j}+m \vec{k}$ and $(1+\mathrm{m}) \vec{i}-2 m \vec{j}+\vec{k}$ include an ande angle for
(a) all values of m
(b) $\mathrm{m}<-2$ or $\mathrm{m}>-\frac{1}{2}$
(c) $\mathrm{m}=-\frac{1}{2}$
(d) $m \in\left[-2,-\frac{1}{2}\right]$

QNo111: If for vector \vec{a} and $\vec{b}, \vec{a}+\vec{b} \neq \overrightarrow{0}$ and \vec{c} is a non- zero vector, then $(\vec{a}+\vec{b}) \times[\vec{c}-(\vec{a}+\vec{b})]$ is :
(a) $\vec{a}+\vec{b}$
(b) $(\vec{a}+\vec{b}) \times \vec{c}$
(c) $\lambda \vec{c}$, where λ is a non- zero scalar
(d) $\lambda(\vec{a}+\vec{b}), \lambda \neq 0,1$, a scalar

QNo112: If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are different real numbers, $a \vec{i}+b \vec{j}+c \vec{k}, \quad b \vec{i}+c \vec{j}+a \vec{k}$ and $c \vec{i}+a \vec{j}+b \vec{k}$ are position vectors of three non- collinear points $\mathrm{A}, \mathrm{B}, \mathrm{C}$, then
(a) centroid of $\triangle A B C$ is $\frac{a+b+c}{3}(\vec{i}+\vec{j}+\vec{k})$
(b) $(\vec{i}+\vec{j}+\vec{k})$ is not equally inclined to three vectors
(c) triangle ABC is a scalene triangle
(d) perpendicular from the origin to the plane of the triangle does not meet it at the centroid

QNo113: If \vec{a} and \vec{b} are two perpendicular vectors, then out of the following three statements
(i) $(\vec{a}+\vec{b})^{2}=(\vec{a})^{2}+(\vec{b})^{2}$
(b) $(\vec{a}-\vec{b})^{2}(\vec{a})^{2}-(\vec{b})^{2}$
(c) $(\vec{a}-\vec{b})^{2} \quad(\vec{a})^{2}+(\vec{b})^{2}$
(d) $(\vec{a}+\vec{b})_{\overrightarrow{2}}^{2}=(\vec{a}-\vec{b})^{2}$
(a) only one is correct
(b) only two are correct
(c) only three are correct
(d) all the four are correct

QNo114: Any line passing thro' two points whose position vectors are $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$ is $\vec{r}=$
(a) $\vec{a}+(1-2 t) \vec{b}$
(b) $\vec{a}-(1-2 t) \vec{b}$
(c) $\vec{a}+(1+2 t) \vec{b}$
(d) $\vec{a}+(2 t-1) \vec{b}$

QNo115: If $\vec{x} \cdot \vec{a}=0, \vec{x} \cdot \vec{b}=0, \vec{x} \cdot \vec{c}=0$ for some non- zero vectors \vec{x}, then $[\vec{a}+\vec{b}+\vec{c}]=0$, is
(a) true
(b) false
(c) cannot say anything
(d) none of these

QNo116: Let $\vec{A}, \vec{B}, \vec{C}$ be unit vectors. Suppose $\vec{A} \cdot \vec{B}=\vec{A} \cdot \vec{C}=0$ and the angle between \vec{B} and \vec{C} is $\frac{\pi}{6}$. Then Equals:
(a) $\vec{B} \times \vec{C}$
(b) $2(\vec{B} \times \vec{C})$
(c) $-2(\vec{B} \times \vec{C})$
(d) $\pm 2(\vec{B} \times \vec{C})$

QNo117: If $\vec{A}, \vec{B}, \vec{C}$ are three non- coplanar vectors, then $\frac{\vec{A} \cdot \vec{B} \times \vec{C}}{\vec{C} \times \vec{A} \cdot \vec{B}}+\frac{\vec{B} \cdot \vec{A} \times \vec{C}}{\vec{C} \cdot \vec{A} \times \vec{B}}$ is equal to
(a) -1
(b) 0
(c) 1
(d) none of these

QNo118: $(\vec{a} \times \vec{b}) \times \vec{c}=\vec{a} \times(\vec{b} \times \vec{c})$ iff
(a) $(\vec{a} \times \vec{b}) \times \vec{c}=\overrightarrow{0}$
(b) $\vec{c} \times \vec{a}=\vec{b}$
(c) $\vec{a} \times \vec{c} \times \vec{b}=\overrightarrow{0}$
(d) none of these

QNo119: If $\vec{a}=2 \vec{i}-3 \vec{j}-\vec{k}$ and $\vec{b}=\vec{i}+4 \vec{j}-2 \vec{k}$, then $(\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})$ is given by
(a) $20 \vec{i}+6 \vec{j}-22 \vec{k}$
(b) $-(20 \vec{i}+6 \vec{j}-22 \vec{k})$
(c) $6 \vec{i}+20 \vec{j}+22 \vec{k}$
(d) $20 \vec{i}+22 \vec{j}+6 \vec{k}$

QNo120: If $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$ and $|\vec{a}|=3,|\vec{b}|=5,|\vec{c}|=7$, then the angle between \vec{a} and \vec{b} is :
(a) $\frac{\pi}{3}$
(b) $\frac{\pi}{2}$
(c) $\frac{\pi}{4}$
(d) $\frac{\pi}{6}$
 vector along the x - axis, then the length of vector $2 \stackrel{\mathrm{U}_{\mathrm{M}}}{O P}+3 \stackrel{\sim}{O} \mathrm{U}$ is :
(a) $5 \sqrt{5}$
(b) $3 \sqrt{5}$
(c) $2 \sqrt{5}$
(d) $\sqrt{5}$

QNo122: a, b, c are the pth, qth, rth terms of an H.P. and $\vec{u}=(\mathrm{q}-\mathrm{r}) \vec{i}+(\mathrm{r}-\mathrm{p}) \vec{j}+(\mathrm{p}-\mathrm{q}) \vec{k}$
$\vec{v}=\frac{\vec{i}}{a}+\frac{\vec{j}}{b}+\frac{\vec{k}}{c}$, then
(a) \vec{u}, \vec{v} are parallel vectors
(b) \vec{u}, \vec{v} are orthogonal vectors
(c) $\vec{u}, \vec{v}=1$
(d)

QNo123: If $\vec{a}+\vec{b} \perp \vec{a}$ and $|\vec{b}|=\sqrt{2}|\vec{a}|$, then
(a) $(2 \vec{a}+\vec{b})$ is parallel to \vec{b}
(b) $(2 \vec{a}+\vec{b}) \perp \vec{b}$
(c) $(2 \vec{a}-\vec{b}) \perp \vec{b}$
(d) $(2 \vec{a}-\vec{b}) \perp \vec{a}$

QNo124: Let $\vec{\lambda}=\vec{a} \times(\vec{b}+\vec{c}), \vec{\mu}=\vec{b} \times(\vec{c}+\vec{a}) \vec{v}=\vec{c} \times(\vec{a}+\vec{b})$. Then
(a) $\vec{\lambda}+\vec{u}=\vec{v}$
(b) $\vec{\lambda}, \vec{u}, \vec{v}$ are coplanar
(c) $\vec{\lambda}+\vec{v}=2 \vec{u}$
(d) none of these

QNo125: If $\vec{a}=\vec{i}+\vec{j}, \vec{b}=2 \vec{j}-\vec{k}$ and $\vec{r} \times \vec{a}=\vec{b} \times \vec{a}, \vec{r} \times \vec{b}=\vec{a} \times \vec{b}$, then $\frac{\vec{r}}{\vec{r}}$ is equal to
(a) $\frac{1}{\sqrt{11}}(\vec{i}+3 \vec{j}-\vec{k})$
(b) $\frac{1}{\sqrt{11}}(\vec{i}-3 \vec{j}+\vec{k})$
(c) $\frac{1}{\sqrt{3}}(\vec{i}-\vec{j}+\vec{k})$
(d) none of these

QNo126: If $\vec{a}, \vec{b}, \vec{c}$ are three vectors such that $(\vec{a}+\vec{b}) \cdot \vec{c}=(\vec{a}-\vec{b}) \cdot \vec{c}=0$, then $(\vec{a} \times \vec{b}) \times \vec{c}$ is :
(a) $\overrightarrow{0}$
(b) \vec{a}
(c) \vec{b}
(d) none of these

QNo127: If $\vec{a}, \vec{b}, \vec{c}$ are three non- coplanar non- zero vectors, then $(\vec{a} \cdot \vec{a}) \vec{b} \times \vec{c}+(\vec{a} \cdot \vec{b}) \vec{c} \times \vec{a}+(\vec{a} \cdot \vec{c}) \vec{a} \times \vec{b}$ is equal to :
(a) $\left[\begin{array}{lll}\vec{b} & \vec{c} & \vec{a}\end{array}\right] \vec{a}$
(b) $\left[\begin{array}{lll}\vec{c} & \vec{a} & \vec{b}\end{array}\right] \vec{b}$
(c) $[\vec{a} \vec{b} \vec{c}] \vec{c}$
(d) none of these

QNo128: The three concurrent the edges of a parallelepiped represents the vectors $\vec{a}, \vec{b}, \vec{c}$ such that $[\vec{a} \vec{b} \vec{c}\}=\lambda E$
Then the volume of the parallelepiped whose three concurrent edges are the three concurrent diagonals of three faces of the given parallelepiped is :
(a) 2λ
(b) 3λ
(c) λ
(d) none of these

QNo129: If $\vec{a}, \vec{b}, \vec{c}$ are three non- coplanar non- zero vectors and \vec{r} is any vector in space, then $(\vec{a} \times \vec{b}) \times(\vec{r} \times \vec{c})+(\vec{b} \times \vec{c}) \times(\vec{r} \times \vec{a})+(\vec{c} \times \vec{a}) \times(\vec{r} \times \vec{b})$ is equal to :
(a) $2[\vec{a} \vec{b} \vec{c}] \vec{r}$
(b) $3[\vec{a} \vec{b} \vec{c}] \vec{r}$
(c) $[\vec{a} \vec{b} \vec{c}] \vec{r}$
(d) none of these

QNo130: $\underset{A M}{ }=\vec{b}$ and $\stackrel{\sim}{A C}=\vec{c}$, then the length of the perpendicular from A to the line BC is :
(a) $\frac{|\vec{b} \times \vec{c}|}{|\vec{b}+\vec{c}|}$
(b) $\frac{|\vec{b} \times \vec{c}|}{|\vec{b}-\vec{c}|}$
(c) $\frac{1}{2} \frac{|\vec{b} \times \vec{c}|}{|\vec{b}-\vec{c}|}$
(d) none of these

QNo131: The projection of the vector $\vec{i}+\vec{j}+\vec{k}$ on the line whose vector equation is $\vec{r}=(3+t) \vec{i}+(2 t-1) \vec{j}+3 \vec{k}, t$ being a scalar, is :
(a) $\frac{1}{\sqrt{14}}$
(b) 6
(c) $\frac{6}{\sqrt{14}}$
(d) none of these

QNo132: A vector \vec{r} satisfies the equations $\vec{r} \times \vec{a}=\vec{b}$ and $\vec{r} \cdot \vec{a}=0$. Then
(a) $\vec{r}=\frac{\vec{a} \times \vec{b}}{\vec{a} \cdot \vec{b}}$
(b) $\vec{r}=\frac{\vec{a} \times \vec{b}}{\vec{a} \cdot \vec{a}}$
(c) $\vec{r}=\frac{\vec{a} \times \vec{b}}{\vec{b} \cdot \vec{b}}$
(d) none of these

QNo133: If the vectors $\vec{a}, \vec{b}, \vec{c}$ are non- coplanar and $1, \mathrm{~m}, \mathrm{n}$ are distinct scalars, then

$$
[l \vec{a}+m \vec{b}+n \vec{c}, i \vec{b}+m \vec{c}+n \vec{a}, i \vec{c}+m \vec{a}+n \vec{b}]=0
$$

(a) $\mathrm{lm}+\mathrm{nm}+\mathrm{nl}=0$
(b) $1+\mathrm{m}+\mathrm{n}=0$
(c) $\mathrm{l}^{2}+\mathrm{m}^{2}+\mathrm{n}^{2}=0$
(d) $l^{3}+m^{3}+n^{3}=0$

QNo134:The vector \vec{x} is perpendicular to the vectors $\vec{a}=2 \vec{i}+3 \vec{j}-\vec{k}$ and $\vec{b}=\vec{i}-2 \vec{j}+3 \vec{k} \cdot$ If $\vec{x} \cdot(2 \vec{i}-\vec{j}+\vec{k})=-6$, then $\vec{x}=$
(a) $-3 \vec{i}+3 \vec{j}+3 \vec{k}$
(b) $3 \vec{i}-3 \vec{j}+3 \vec{k}$
(c) $3 \vec{i}+3 \vec{j}-3 \vec{k}$
(d) none of these

QNo135: If \vec{d} is a unit vector such that $\vec{d}=\lambda \vec{b} \times \vec{c}+\mu \vec{c} \times \vec{a}+v \vec{a} \times \vec{b}$, then $|(\vec{d} \cdot \vec{a})(\vec{b} \times \vec{c})+(\vec{d} \cdot \vec{b})(\vec{c} \times \vec{a})+(\vec{d} \cdot \vec{c})(\vec{a} \times \vec{b})|$ is equal to :
(a) $|[\vec{a} \vec{b} \vec{c}]|$
(b) 1
(c) $3|[\vec{a} \vec{b} \vec{c}]|$
(d) none of these

QNo136: If \vec{a}, \vec{b} and \vec{c} be three non- zero and non- coplanar vectors and \vec{p}, \vec{q} and \vec{r} be three vectors given by $\vec{p}=\vec{a}+\vec{b}-2 \vec{c}, \quad \vec{q}=3 \vec{a}-2 \vec{b}+\vec{c}$ and $\vec{r}=\vec{a}-4 \vec{b}+2 \vec{c}$. If the volume of the parallelopiped determined by \vec{a}, \vec{b} and \vec{c} is V_{1} and that of the parallelopiped determined by \vec{p}, \vec{q} and \vec{r} is V_{2} then $\mathrm{V}_{2}: \mathrm{V}_{1} \overrightarrow{{ }_{l}^{s}} \mathrm{~s}$:
(a) $1: 15$
(b) $15: 1$
(c) $4: 5$
(d) $5: 4$

QNo137: If $\vec{a}, \vec{b}, \vec{c}$ are three vectors of which every pair is non- collinear. If the vector $\vec{a}+\vec{b}$ and $\vec{b}+\vec{c}$ are collinear with \vec{c} and \vec{a} respectively, then $\vec{a}+\vec{b}+\vec{c}$ is :
(a) a unit vector
(b) the null vector
(c) equally inclined to $\vec{a}, \vec{b}, \vec{c}$
(d) none of these

QNo138: If $\vec{r}=3 \vec{i}+2 \vec{j}-5 \vec{k}, \vec{a}=2 \vec{i}-\vec{j}+\vec{k}, \vec{b}=\vec{i}+3 \vec{j}-2 \vec{k}$ and $\vec{c}=-2 \vec{i}+\vec{j}-3 \vec{k}$ such that $\vec{r}=\lambda \vec{a}+u \vec{b}+v \vec{c}$ then
(a) $\mu, \frac{\lambda}{2}, v$ are in A.P.
(b) λ, μ, v are in A.P.
(c) λ, μ, ν are in H.P.
(d) μ, λ, v are in G.P.

QNo139: If \vec{a} is perpendicular to \vec{b} and \vec{p} is a non- zero vector such that $\vec{p}+(\vec{r} \cdot \vec{b}) \vec{a}=+\vec{c}$, then $\vec{r}=$
(a) $\frac{\vec{c}}{p}-\frac{(\vec{b} \cdot \vec{c}) \vec{a}}{p^{2}}$
(b) $\frac{\vec{a}}{p}-\frac{(\vec{c} \cdot \vec{a}) \vec{b}}{p^{2}}$
(c) $\frac{\vec{b}}{p}-\frac{(\vec{a} \cdot \vec{b}) \vec{c}}{p^{2}}$
(d) $\frac{\vec{c}}{p^{2}}-\frac{(\vec{b} \cdot \vec{c}) \vec{a}}{\vec{p}}$

QNo140: A particle is acted upon by the focus $\vec{F}_{1}=3 \vec{i}+2 \vec{j}+5 \vec{k}$ and $\vec{F}_{2}=2 \vec{i}+\vec{j}-3 \vec{k}$ and is displaced from, the point $\mathrm{P}(2 \vec{i}-\vec{j}-3 \vec{k})$ to the point $\mathrm{Q}(4 \vec{i}-3 \vec{j}+7 \vec{k})$. The work done by the force is :
(a) 17 units
(b) 24 units
(c) 32 units
(d) none of these

QNo141: Vector moment of the force $\vec{F}=3 \vec{i}+2 \vec{j}-4 \vec{k}$ acting at the point $(1,-1,2)$ about the point $(2,-1,3)$ is
(a) $2 \vec{i}-7 \vec{j}-2 \vec{k}$
(b) $-2 \vec{i}-\vec{j}+2 \vec{k}$
(c) $2 \vec{i}+7 \vec{j}-2 \vec{k}$
(d) $-2 \vec{i}-7 \vec{j}+2 \vec{k}$

QNo142: Angle between vectors $\vec{i}-\vec{j}+\vec{k}$ and $\vec{i}+2 \vec{j}+\vec{k}$ is:
(a) $\cos ^{-1} \frac{1}{\sqrt{15}}$
(b) $\cos ^{-1} \frac{4}{\sqrt{15}}$
(c) $\cos ^{-1} \frac{4}{15}$
(d) $\frac{\pi}{2}$

QNo143: The area of the parallelogram of which \vec{i} and $\vec{i}+\vec{j}$ are adjacent is :
(a) 2
(b) $\frac{1}{2}$
(c) 1
(d) $\sqrt{2}$

QNo144: The unit vector perpendicular to vectors $\vec{i}-\vec{j}$ and $\vec{i}+\vec{j}$ forming a right handed system is:
(a) \vec{k}
(b) $-\vec{k}$
(c) $\frac{1}{\sqrt{2}}(\vec{i}-\vec{j})$
(d) $\frac{1}{2}(\vec{i}+\vec{j})$

QNo145: Value of a for which $2 \vec{i}-\vec{j}+\vec{k}, \vec{i}+2 \vec{j}-3 \vec{k}$ and $3 \vec{i}+a \vec{j}+5 \vec{k}$ are coplanar is :
(a) 2
(b) 4
(c) -4
(d0 3

QNo146: If $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ are the vertices of a square, then
(a) $(\vec{b}-\vec{a})=(\vec{c}-\vec{b})$
(b) $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$
(c) $(\vec{c}-\vec{a}) \cdot(\vec{d}-\vec{b})=0$
(d) none of these

QNo147: The vectors $2 \vec{i}+3 \vec{j}, 5 \vec{i}+6 \vec{j}$ and $8 \vec{i}+\lambda \vec{j}$ have their initial points at $(1,1)$. The value of λ so thatthe vectors terminate on one straight line is :
(a) 0
(b) 3
(c) 6
(d) 9

QNo148: If $|\vec{a}|=\sqrt{5}$ and $|\vec{b}|=\sqrt{6}$, then $[(\vec{a} \times \vec{b}) \times \vec{b}] \times \vec{b}$ is
(a) $6(\vec{b} \times \vec{a})$
(b) $6(\vec{a} \times \vec{b})$
(c) $5(\vec{a} \times \vec{b})$
(d) $5(\vec{b} \times \vec{a})$

QNo149: If $\vec{a}+\vec{b}$ is orthogonal to \vec{b} and $\vec{a}+2 \vec{b}$ is orthogonal to \vec{a}, then
(a) $|\vec{a}|=\sqrt{2}|\vec{b}|$
(b) $|\vec{a}|=2|\vec{b}|$
(c) $|\vec{a}|=|\vec{b}|$
(d) $|\vec{b}|=2|\vec{a}|$

QNo150: If $4 \vec{i}+7 \vec{j}+8 \vec{k}, 2 \vec{i}+3 \vec{j}+4 \vec{k}$ and $2 \vec{i}+5 \vec{j}+7 \vec{k}$ are the position vectors of the vertices A, B and C respectively of triangle ABC . The position vector of the point where the bisector of angle A meets:
(a) $\frac{2}{3}(-6 \vec{i}-8 \vec{j}-6 \vec{k})$
(b) $\frac{2}{3}(6 \vec{i}+8 \vec{j}+6 \vec{k})$
(c) $\frac{1}{3}(6 \vec{i}+13 \vec{j}+18 \vec{k})$
(d) $\frac{1}{3}(\overrightarrow{5} \vec{j}+12 \vec{k})$

ANSWERS:

1	A	11	21	31	41	51	61	71	81	91	101	111	121	131
	C	D	C	D	C	C	B	D	A	A	B	D	C	A
2	B	12	22	32	42	52	62	72	82	92	102	112	122	132
	B	B	A	C	C	B	B	C	C	A	A	B	B	D
3	C	13	23	33	43	53	63	73	83	93	102	113	123	133
	C	C	D	D	A	B	B	D	A	B	C	B	B	C
4	C	14	24	34	44	54	64	74	84	94	104	114	124	134
	B	D	A	D	D	A	C	D	C	C	A	B	A	A
5	C	15	25	35	45	55	65	75	85	95	105	115	125	135
		A	C	C	D	A	A	B	B	B	D	A	A	A
C														
6	A	16	26	36	46	56	66	76	86	96	106	116	126	136
	C	D	C	C	C	B	C	A	B	D	D	A	B	C
7	B	17	27	37	47	57	67	77	87	97	107	117	127	137
	A	D	C	A	A	B	D	A	C	C	B	A	B	D
8	C	18	28	38	48	58	68	78	88	98	108	118	128	138
	B	B	A	C	B	A	D	A	B	B	C	A	A	A
9	A	19	29	39	49	59	69	79	89	99	109	119	129	139
	D	D	B	C	B	B	C	B	A	A	B	A	A	A
10	20	30	40	50	60	70	80	90	100	110	120	130	140	150
	B	A	B	C	A	B	B	A	A	A	A	A	B	B
C														

