1. TRIGONOMETRIC RATIOS

1. For
$$0 < \phi < xr2$$
, if $x = \sum_{n=0}^{\infty} \cos^{2n}$, $y = \sum_{n=0}^{\infty} \sin^{2n} \phi$, $z = \sum_{n=0}^{\infty} \cos^{2n} \phi \sin^{2n} \phi$, then
(a) $xyz = xz + y$ (bⁿ) $xyz = xy + z$ (c) $xyz = yz + x$ (d) None of these
2. If $K = \sin(\pi/18) \sin(7\pi/18)$, then the numerical value of K is
(a) 1 (bⁿ) 1/3 (c) $\sqrt{3}$ (d) 1/ $\sqrt{3}$
4. The expression
 $3 \left[\sin^4 \left(\frac{3\pi}{2} - \alpha \right) + \sin^4(3\pi - \alpha) \right] -2 \left[\sin^n \left(\frac{\pi}{2} + \alpha \right) + \sin^n(5\pi - \alpha) \right]$ is equal to
(a) 0 (bⁿ) 1 (c) 3 (d) $\sin 4\alpha + \cos 6\alpha$
5. $3(\sin x - \cos x)^4 + 6(\sin x + \cos x)^2 + 4(\sin^6 x + \cos^6 x) =$
(a) 11 (b) 12 (c) 3 (d) $\sin 4\alpha + \cos 6\alpha$
5. $3(\sin x - \cos x)^4 + 6(\sin x + \cos x)^2 + 4(\sin^6 x + \cos^6 x) =$
(a) 11 (b) 12 (c) $x = y$ (d) $x + 0, y \neq 0$
7. The number of values of x where the function f(x) = cos x + cos ($\sqrt{2}x$) attains its maximum is
(a) 0 (bⁿ) 1 (c) 2 (d) Infinite
8. Which of the following number(s) is rational -
(a) $\sin 5^{\alpha}$ (b) $\cos 15^{\alpha}$ (c) $\frac{3\pi}{8} < x < \frac{5\pi}{8}$ (d) $\frac{5\pi}{8} < x < \frac{3\pi}{4}$
10. The function f(x) = $\sin^5 \frac{\pi}{4} < x < \frac{3\pi}{8}$ (c) $\frac{3\pi}{8} < x < \frac{5\pi}{8}$ (d) $\frac{5\pi}{8} < x < \frac{3\pi}{4}$
11. In a triangle PQR, $zR = \frac{\pi}{2}$. If $\tan \left(\frac{P}{2} \right)$ and $\tan \left(\frac{Q}{2} \right)$ are the roots of the equation $Ax^2 = bx + c = 0 (a \neq 0)$, then
(aⁿ) $a + b = 0$ (b) $b + c = a$ (c) $a + c = b$ (d) $b = c$
12. For a positive integer n, Lot $f_4(0) = (\tan \frac{\theta}{2})(1 + \sec 2\theta)(1 + \sec 4\theta)... (1 + \sec 2^n)$. Then

Mathematics Online : It's all about Mathematics IIT JEE Screening Exam Questions

(a)
$$f_2\left(\frac{\pi}{16}\right) = 2$$
 (b*) $f_3\left(\frac{\pi}{32}\right) = 1$ (c) $f_4\left(\frac{\pi}{64}\right) = 0$ (d) None of these
13. Let $f(\theta) = \sin \theta (\sin \theta + \sin 3\theta)$. Then $f(\theta)$
(a) ≥ 0 only when $\theta \geq 0$ (b) ≤ 0 for all real θ
(c*) ≥ 0 for all real θ (d) ≤ 0 only when $\theta \leq 0$
14. If $\alpha + \beta = \frac{\pi}{2}$ and $\beta + \gamma = a$, then tan α equals-
(a) $2(\tan \beta + \tan \gamma)$ (b) $\tan \beta + \tan \gamma$
(c*) $\tan \beta + 2 \tan \gamma$ (d) $2 \tan \beta + \tan \gamma$
(c*) $\tan \beta + 2 \tan \gamma$ (d) $2 \tan \beta + \tan \gamma$
(c*) $\tan \beta + 2 \tan \gamma$ (d) $2 \tan \beta + \tan \gamma$
(c) $2 \tan \beta + 2 \tan \gamma$ (d) $2 \tan \beta + \tan \gamma$
(c) $2 \tan \beta + 2 \tan \gamma$ (d) $2 \tan \beta + \tan \gamma$
15. The maximum value of $(\cos \alpha_1)$. $(\cos \alpha_2)$ $(\cos \alpha_n)$,
Under the restrictions $0 \leq \alpha_1, \alpha_2, \ldots, \alpha_n \leq \frac{\pi}{2}$ and $(\cot \alpha_1)$. $(\cot \alpha_2)$. $(\cot \alpha_3)$ $(\cot \alpha_n) = 1$ is
(a*) $\frac{1}{2^{n/2}}$ (b) $\frac{1}{2^n}$ (c) $\frac{1}{2n}$ (d) 1
16. If $\theta \ll \phi$ are acute angles such that $\sin \theta = \frac{1}{2}$ and $\cos \phi = \frac{1}{3}$ then $\theta + \phi$ lies in-
(a) $\left(\frac{\pi}{3}, \frac{\pi}{2}\right)$ (b*) $\left(\frac{\pi}{2}, \frac{2\pi}{3}\right)$ (c) $\left(\frac{2\pi}{2}, \frac{5\pi}{3}\right)$ (d) $\left(\frac{\pi}{6}\pi\right)$
17. $\cos(\alpha + \beta) = \frac{1}{e}$, $\cos(\alpha - \beta) = 1$ find no. of ordered pair of $(\alpha, \beta), -\pi \geq \alpha, \beta \leq \pi$
(a) 0 (b) 1 (c) 2 (d) 4
Answer Ker

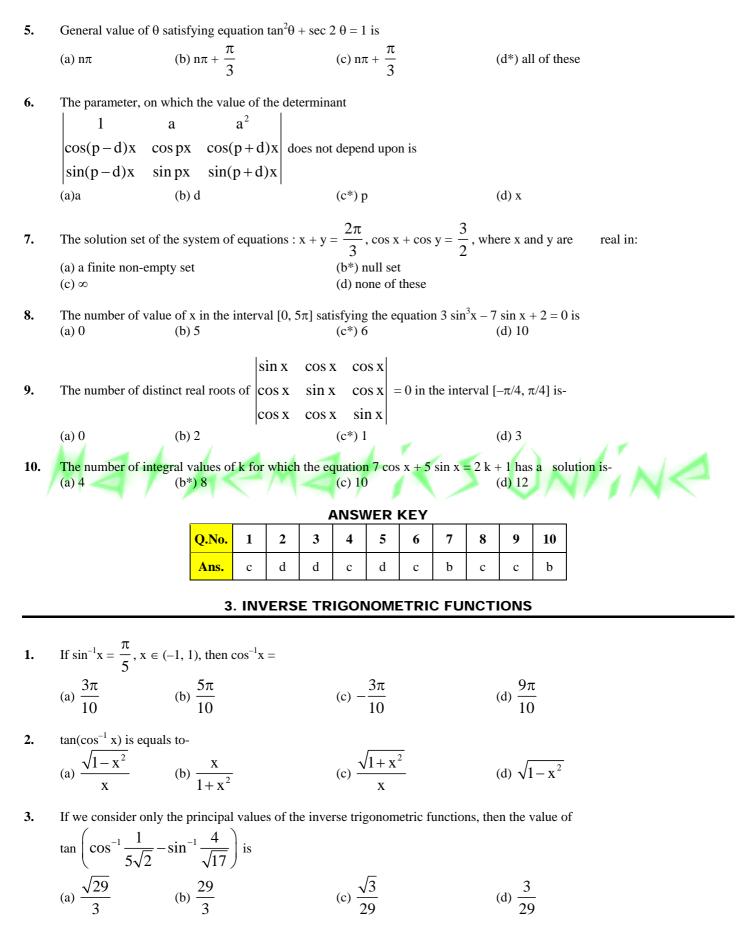
2. TRIGONOMETRIC EQUATION

1. The number of solutions of the equation $\tan x + \sec x = 2 \cos x$ lying in the interval [0, 2π] is (a) 0 (b) 1 (c*) 2 (d) 3

2. Let $2\sin^2 x + 3\sin x - 2 > 0$ and $x^2 - x - 2 < 0$ (x is measured in radians). Then x lies in the (a) $\left(\frac{\pi}{6}, \frac{5\pi}{6}\right)$ (b) $\left(-1, \frac{5\pi}{6}\right)$ (c) (-1, 2) (d*) $\left(\frac{\pi}{6}, 2\right)$

- 3. The number of all possible triplets (a_1, a_2, a_3) such that $a_1 + a_2 \cos 2x + a_3 \sin^2 x = 0$ for all x is (a) 0 (b) 1 (c) 2
- 4. The smallest positive root of the equation $\tan x x = 0$ lies on

(a)
$$\left(0,\frac{\pi}{2}\right)$$
 (b) $\left(\frac{\pi}{2},\pi\right)$ (c*) $\left(\pi,\frac{3\pi}{2}\right)$


- 3 -

pankaj.baluja@mathematicsonline.co.in Visit us at: <u>www.mathematicsonline.co.in</u>

interval

(d*) infinite

(d) $\left(\frac{3\pi}{2}, 2\pi\right)$

Mathematics Online : It's all about Mathematics IIT JEE Screening Exam Questions

- 4 -

4.	The number of real	solution of $\tan^{-1} \sqrt{x(x+1)}$ -	$+\sin^{-1}\sqrt{x^2+x+1}=\frac{\pi}{2}$ is-	
	(a) Zero	(b) One	(c) Two	(d) Infinite
5.	If $\sin^{-1}\left(x^2 - \frac{x^4}{2}\right)$	$+\frac{x^6}{4}-\dots$ $=\frac{\pi}{2}$ for 0	$ x < \sqrt{2}$, then x equals	
	(a) $\frac{1}{2}$	(b) 1	$(c) - \frac{1}{2}$	(d) –1
6.	For which value of	x, $\sin(\cos^{-1}(x+1)) = \cos(\tan^{-1}(x+1))$	i ⁻¹ x)	
	(a) 1/2	(b) 0	(c) 1	(d) - 1/2

ANSWER KEY

	-					
Q.No.	1	2	3	4	5	6
Ans.	а	а	d	с	b	d

4. PROPERTIES OF TRIANGLE

1. If in a triangle ABC
$$\frac{2\cos A}{a} + \frac{\cos B}{b} + \frac{2\cos C}{c} = \frac{a}{bc} + \frac{b}{ca}$$
 then the value of the angle A.
(a) $\pi/3$ (b) π (c*) $\pi/2$ (d) $\pi/6$
2. In a \triangle ABC, if $\frac{\cos A}{a} = \frac{\cos B}{b} = \frac{\cos C}{c}$ and the side $a = 2$, then are a of the triangle is
(a) 1 (b) 2 (c) $\frac{\sqrt{3}}{2}$ (d*) $\sqrt{3}$

3. In a \triangle ABC, AD is the altitude from A. Given $b > c, \angle C = 23^{\circ}$ and $AD = \frac{ADC}{b^2 - c^2}$, then $\angle B$. (a) 67° (b*) 113° (c) 157° (d) None of these

4. The sides of a triangle inscribed in a given circle subtend angles α , β , γ at the centre. The minimum value of the A.M. of $\cos\left(\alpha + \frac{\pi}{2}\right)$, $\cos\left(\beta + \frac{\pi}{2}\right)$ and $\cos\left(\gamma + \frac{\pi}{2}\right)$ is equal to (a) $\frac{\sqrt{3}}{2}$ (b*) $-\frac{\sqrt{3}}{2}$ (c) $-\frac{2}{\sqrt{3}}$ (d) $\sqrt{2}$

5. In a triangle ABC, $\angle B = \frac{\pi}{3}$ and $\angle C = \frac{\pi}{4}$, Let D divide BC internally in the ratio 1 : 3 Then $\frac{\sin \angle BAD}{\sin \angle CAD}$ equal to (a*) $\frac{1}{\sqrt{6}}$ (b) $\frac{1}{3}$ (c) $\frac{1}{\sqrt{3}}$ (d) $\sqrt{\frac{2}{3}}$

6. There exists at triangle ABC satisfying the conditions:

Mathematics Online : It's all about Mathematics IIT JEE Screening Exam Questions

- 5 -

(a*) b sin A = a, A <
$$\frac{\pi}{2}$$
 or b sin A < a, A < $\frac{\pi}{2}$, b > a
(b) b sin A > a, A < $\frac{\pi}{2}$
(c) b sin A > a, A < $\frac{\pi}{2}$
(d) None of these
7. If in a triangle PQR, sin P, sin Q and sin R are in A.P., then
(a) the attitudes are in A.P.
(c) the medians are in G.P.
(d) the medians are in A.P.
8. If the radius of circumcircle of an isosceles triangle PQR is equal to PQ (= PR), then the angle P is
(a) $\frac{\pi}{6}$
(b) $\frac{\pi}{2}$
(c) $\frac{\pi}{3}$
(d) the medians are in A.P.
8. If the vertices P, Q, R of a triangle PQR and rational points, then which of the following points of the triangle PQR is (are)
always rational point(s) ?
(a*) Centroid
(b) Incentre
(c) Circumecentre
(d) orthocentre
10. In a triangle PQR, $\angle R = \frac{\pi}{2}$. If tan $\left(\frac{P}{2}\right)$ and tan $\left(\frac{Q}{2}\right)$ are the roots of the equation as² + bx + c = 0 (a ≠ 0), then
(a*) a + b = c
(b) b + c = a
(c) a + c = b
(d) b = c
11. In a AABC, 2ac sin $\left(\frac{A - B + C}{2}\right) =$
(a) $a^2 + b^2 - c^2$
(b) $c^2 + a^2 - b^2$
(c) $b^2 - c^2 - a^2$
(d) $c^2 - a^2 0 - b^2$
12. If the angles of a triangle are in ratio 4: 1: 1 then the ratio of the longest side and perimeter of
(a) $\frac{1}{2 + \sqrt{3}}$
(b) $\frac{2}{\sqrt{3} - 2}$
(c) $1:3:2$
(d) none of these
13. Of the sides a, b, c of a triangle are such that a : b : c : 1: $\sqrt{3}$: 2, them A : B : C is.
(a) $3: 2: 1$
(b) $3: 1:2$
(c) $1:3:2$
(d) a sin $\frac{B - C}{2}$
(c) $a \cos \frac{A}{2} = (b + c) \cos \frac{A}{2}$
(d) a sin $\frac{B + C}{2} = (b + c) \cos \frac{A}{2}$

ANSWER KEY

Q.No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Ans.	с	d	b	b	а	а	b	d	а	А	b	с	d	а

5. RADII OF CIRCLE

1. A regular polygon of nine sides, each of length 2 is inscribed in a circle. The radius of the circle is:

 $\frac{\pi}{3}$

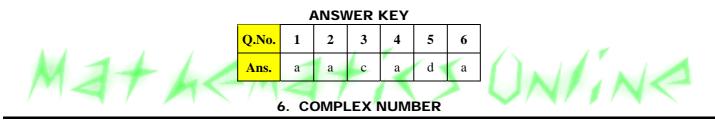
$$\left(\frac{\pi}{9}\right)$$
 (b) cosec

(a*) cosec

(c)
$$\cot\left(\frac{\pi}{9}\right)$$

(d)
$$\tan\left(\frac{\pi}{9}\right)$$

Mathematics Online : It's all about Mathematics IIT JEE Screening Exam Questions


IIT JEE SCREENING OUESTIONS CHAPTER

- 2. In a triangle ABC, a:b:c=4:5:6. The ratio of the radius of the circumcircle to that of the incircle is (a*) 16/7 (c) 16/3 (d) none of these (b) 7/16
- Let $A_0A_1A_2A_3A_4A_5$ be a regular hexagon inscribed in a circle of unit radius. Then the product of the lengths of the line 3. segments A0A1, A0A2, and A0A4 is-3.13/2 (a) 3/4

(b)
$$3\sqrt{3}$$
 (c*) 3 (d) $3\sqrt{3}/2$

- In a triangle ABC, let $\angle C = \frac{\pi}{2}$. If r is the in radius and R is the circumradius of the triangle, then 2(r + R) is equal to-4. (b) b + c(d) a + b + c $(a^*) a + b$ (c) c + a
- 5. Which of the following pieces of data does NOT uniquely determine an acute angled triangle ABC (R being the radius of the circumcircle)-(a) a, sin A, sin B (b) a, b, c (d*) a, sin A, R (c) a, sin B, R
- 6. In any equilateral Δ , three circles of radii one are touching to the sides given as in the figure then area of the Δ (a*) $6+4\sqrt{3}$ (b) $12 + 8\sqrt{3}$

(c)
$$7 + 4\sqrt{3}$$
 (d) $4 + \frac{7}{2}\sqrt{3}$

1. The equation not representing a circle is given by-

(a)
$$R_e \left(\frac{1+z}{1-z}\right)_{=0}$$

(b) $z\overline{z} + iz - i\overline{z} + 1 = 0$
(c) $\operatorname{are} \left(\frac{z-1}{z+1}\right) = \frac{\pi}{2}$
(d*) $\left|\frac{z-1}{z+1}\right| = 1$

- 2. If z is a complex number such that $z \neq 0$ and $R_e(z) = 0$, then-(c) $R_e(z^2) = I_m(z^2)$ (a) $R_e(z^2) = 0$ $(b^*) I_m (z^2) = 0$ (d) none of these
- If α and β are different complex numbers with $|\beta| = 1$, then $\left| \frac{\beta \alpha}{1 \alpha \beta} \right|$ is equal to-3. (b) 1/2 (d) 2 (a) 0 (c*) 1
- The smallest positive integer n for which $(1 + i)^{2n} = (1 i)^{2n}$ is (a) 4 (b) 9 (c*) 2 4. (d) 12

5. If β and β are two fixed non-zero complex numbers and 'z' a variable complex number. If the lines $\alpha \overline{z} + \overline{\alpha} z + 1 = 0$ and $\beta \overline{z} + \overline{\beta} z - 1 = 0$ are mutually perpendicular, then-(c) $\overline{\alpha}\beta - \alpha\overline{\beta} = 0$ (d*) $\alpha\overline{\beta} + \overline{\alpha}\beta = 0$ (a) $\alpha\beta + \overline{\alpha}\overline{\beta} = 0$ (b) $\alpha\beta - \overline{\alpha}\overline{\beta} = 0$

Mathematics Online : It's all about Mathematics **IIT JEE Screening Exam Questions**

- 7 -

12.

6. If
$$z_1 = 8 + 4i$$
, $z_2 = 6 + 4i$ and $\arg\left(\frac{z - z_1}{z - z_2}\right) = \frac{\pi}{4}$, then z satisfies-
(a) $|z - 7 - 4i| = 1$ (b*) $|z - 7 - 5i| = \sqrt{2}$
(c) $|z - 4i| = 8$ (d) $|z - 7i| = \sqrt{3}$

7. If ω is an imaginary cube root of unity, then the value of $\sin\left[(\omega^{10} + \omega 23)\pi - \frac{\pi}{4}\right]$ is-

(a)
$$-\frac{\sqrt{3}}{2}$$
 (b) $-\frac{1}{\sqrt{2}}$ (c*) $\frac{1}{\sqrt{2}}$ (d) $\frac{\sqrt{3}}{2}$

8. If z_1 , z_2 , z_3 are vertices of an equilateral triangle inscribed in the circle |z| = 2 and If $z_1 = 1 + I \sqrt{3}$, then-(a*) $z_2 = -2$, $z_3 = 1 - i \sqrt{3}$ (b) $z_2 = 2$, $z_3 = 1 - i \sqrt{3}$ (c) $z_2 = -2$, $z_3 = -i \sqrt{3}$ (d) $z_2 = -1 - i \sqrt{3}$, $z_3 = -1 - I \sqrt{3}$ +

9. If $\omega \neq 1$ is a cube root of unity and $(1 + \omega)^7 = A + B \omega$, then A & b are respectively the numbers (a) 0, 1 (b*) 1, 1 (c) 1. 0 (d) -1, 1

10. Let $z \& \omega$ be two non zero compelx numbers such that $|z| = |\omega|$ and $\operatorname{Arg} z + \operatorname{Arg} \omega = \pi$, then z equal: (a) ω (b) $-\omega$ (c) $\overline{\omega}$ (d*) $-\overline{\omega}$ equal: **11.** Let $z \& \omega$ be two complex numbers such that |z| < 1 $|\omega| < 1$ and $|z + i\omega| = |z - i\overline{\omega}| = 2$ then z equals:

11. Let $z \& \omega$ be two complex numbers such that $|z| \le 1$, $|\omega| \le 1$ and $|z + i\omega| = |z - i\overline{\omega}| = 2$, then z equals: (a) 1 or i (b) i or -i (c*) 1 or -1 (d) i or -1

If
$$(\omega \neq 1)$$
 is a cube root of unity then

$$\begin{vmatrix}
1 & 1+i+\omega^2 & \omega^2 \\
1-i & -1 & \omega^2-1 \\
-i & -i+\omega-1 & -1
\end{vmatrix} = (a^*) 0 \qquad (b) 1 \qquad (c) \qquad (d) \omega$$

13. The value of the expression $1.(2 - \omega)$. $(2 - \omega^2) + 2$. $(3 - \omega) (3 - \omega^2) + \dots + (n - 1) (n - \omega) (n - \omega^2)$, where ω is an imaginary cube root of unity is-

(a)
$$\left(\frac{n(n+1)}{2}\right)^2$$
 (b*) $\left(\frac{n(n+1)}{2}\right)^2 - n$
(c) $\left(\frac{n(n+1)}{2}\right)^2 + n$ (d) none of the above

14.
$$\begin{vmatrix} 6i & -3i & 1 \\ 4 & 3i & -1 \\ 20 & 3 & i \end{vmatrix} = x + iy$$
, then
(a) $x = 3, y = 1$ (b) $x = 1, y = 3$ (c) $x = 0, y = 3$ (d*) $x = 0, y$

15. If ω is an imaginary cube root of unity, then $(1 + \omega - \omega^2)^7$ equals (a) 128 ω (b) - 128 ω (c) 128 ω^2

Mathematics Online : It's all about Mathematics IIT JEE Screening Exam Questions

- 8 -

 $(d^*) - 128 \omega^2$ pankaj.baluja@mathematicsonline.co.in Visit us at: <u>www.mathematicsonline.co.in</u>

= 0

16. The value of the sum
$$\sum_{a=1}^{13} (i^a + i^{a+1})$$
, where $= \sqrt{-1}$ equals
(a) i (b^a) i - 1 (c) - i (d) = 0
17. If $I = \sqrt{-1}$, then $4 + 5 \left(-\frac{1}{2} + \frac{-\sqrt{3}}{2} \right)^{34} + 3 \left(-\frac{1}{2} + \frac{\sqrt{3}}{2} \right)^{36}$ is equal to
(a) $1 - i\sqrt{3}$ (b) $-1 + 1\sqrt{3}$ (c) $i\sqrt{3}$ (d) $-1\sqrt{3}$
18. If z_1, z_2, z_3 are complex numbers such that $|z_1| = |z_2| = |z_3| = \left| \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right| = 1$, then $|z_1 + z_2 + z_3|$ is-
(a^a) equal to 1 (b) less than 1 (c) greater than 3 (d) equal to 3
19. If arg (z) < 0, then arg (-z) - arg(z) =
(a^a) π (b) $-\pi$ (c) $-\frac{\pi}{2}$ (d) $\frac{\pi}{2}$
20. The complex numbers z_1, z_2 and z_3 satisfying $\frac{z_1 - z_3}{z_2 - z_3} = \frac{1 - i\sqrt{3}}{2}$ are the vertices of a triangles which is
(a) of area zero
(d) of area zero
(d) of area zero
(d) $d^a + x^{-1}$ (b) $4k + 2$ (c) 7 (d) 17
23. Let $\omega = -1/2 + i\sqrt{3}/2$. Then the value of the determinant $\left| \begin{array}{c} 1 & 1 & -\frac{1}{1} & 1 \\ 1 & -\omega^2 & \omega^2 \\ 1 & 0^3 & \omega^4 \right|$ is -
(a) 3ω (b^b) $3\omega(\omega - 1)$ (c) $3\omega^3$ (d) $3\omega(1 - \omega)$
24. If $|z| = 1, z \neq -1$ and $w = \frac{z - 1}{z + 1}$ then real part of $w = ?$
(a) $\frac{-1}{|z + 1|^2}$ (b) $\frac{1}{|z + 1|^2}$ (c) $\frac{2}{|z + 1|^2}$ (d^b) 0
25. If ω is cube root of unity ($\omega \neq 1$) then the least value of n, where n is positive integer such that
(1 $\omega^3 y^2 = (1 + \omega^3)^2$ is -
(a) $\frac{-1}{|z + 1|^2}$ (b) $\frac{1}{|z + 1|^2}$ (c) $\frac{2}{|z + 1|^2}$ (d^b) 0
26. If ω is cube root of unity ($\omega \neq 1$) then the least value of n, where n is positive integer such that
(1 $\omega^3 y^2 = (1 + \omega^3)^2$ is -
(a) $\frac{-1}{|z + 1|^2}$ (b) $\frac{1}{|z + 1|^2}$ (c) $\frac{2}{|z + 1|^2}$ (d^b) 3
(a) 2 (b^b) 1 (c) 2 (d) 3
(b^b) 1 (c) 2 (d) 3
(b^b) 1 (c) 2 (d) 3
(c) 2 (d) 3
(d) 3
(d) $\frac{1}{2}$

Mathematics Online : It's all about Mathematics		pankaj.baluja@mathematicsonline.co.in
IIT JEE Screening Exam Questions	- 9 -	Visit us at: <u>www.mathematicsonline.co.in</u>

- 27. Four points P(-1, 0) Q (1, 0), R ($\sqrt{2}$ 1, $\sqrt{2}$), S ($\sqrt{2}$ 1, $\sqrt{2}$) are given on a complex plane then equation of the locus of the shaded region excluding the boundaries

								121	VE	ĸĸ	EY										
Q.No.	1	2		3	4	5	6	7	7	8		9	10	1	1	12	1	3	14	15	
Ans.	d	b	(c	c	d	b	C	2	a		b	d		с	а	ł)	d	d	
	Q.N	lo.	16	17	18	1	9	20	2	1	22	2	3	24	25	2	26	2'	7		_
	An	s.	b	c	а	а	ι	c	d	l	b	ł)	d	b		b	a	L		

7. PROGRESSIONS

1. Let a_n be n^{th} term of the G.P. of positive numbers. Let $\sum_{n=1}^{100} a_{2n} = \alpha$ and $\sum_{n=1}^{100} a_{2n-1} = \beta$, such that $\alpha \neq \beta$ then the common ratio is-(a*) α/β (b) β/α (c*) $\sqrt{(\alpha/\beta)}$ (d) $\sqrt{(\beta/\alpha)}$

2. If the sum of first n natural numbers is 1/5 times the sum of their squares, then the value of n is-(a) 5 (b) 6 (c*) 7 (d) 8

3. If ratio of H.M. and G.M. between two positive numbers a and b (a > b) is 4 : 5, then a : 5, then a : b is -(a) 1 : 1 (b) 2 : 1 (c*) 4 : 1 (d) 3 : 1

4. If f(x) is a function satisfying f(x + y) = f(x) f(y) for all $x, y \in N$ such that f(1) = 3 and $\sum_{x=1}^{n} f(x) = 120$, Then the value of n is-

- (a*) 4 (b) 5 (c) 6 (d) None of these
- 5. $\log_3 2$, $\log_6 2$ and $\log_{12} 2$ are in-(a) A.P. (b) G.P. (c*) H.P. (d) None of these
- 6. For $0 < \phi < \pi/2$ if $x = \sum_{n=0}^{\infty} \cos^{2n} \phi$, $y = \sum_{n=0}^{\infty} \sin^{2n} \phi$; $z = \sum_{n=0}^{\infty} \cos^{2n} \phi \sin^{2n} \phi$, the-(a) xyz = xz + y (b*) zyz = xy + z (c) xyz = yz + x (d) None of these
- 7. If ln (a + c), ln(c a), ln(a 2b + c) are in A.P., then-(a) a, b, c are in A.P. (b) a^2 , b^2 , c^2 are in A.P. (c) a, b, c are in G.P. (d*) a, b, c are in H.P.
- 8. For a real number x,[x], denotes the integral part of x. The value of $\begin{bmatrix} 1\\2 \end{bmatrix} + \begin{bmatrix} 1\\2 + \frac{1}{100} \end{bmatrix} + \begin{bmatrix} 1\\2 + \frac{2}{100} \end{bmatrix} + \dots + \begin{bmatrix} 1\\2 + \frac{99}{100} \end{bmatrix}$ is (a) 49 (b*) 50 (c) 48 (d) 51

- 10 -

9. If the sum of n terms of an AIP. Is
$$nP + \frac{1}{2}n(n-1)Q$$
 then its common difference is:
(a) $P + Q$ (b) $2P + 3Q$ (c) $2Q$ (d⁴) Q
10. If p_{α} , $rin A.P.$ and are positive, the roots of the quadratic equation $px^{3} + qx + r = 0$ are all real for-
(a³) $\left|\frac{r}{p} - 7\right| \ge \sqrt{3}$ (b) $\left|\frac{P}{r} - 7\right| < 4\sqrt{3}$
(c) all p and r (d) No. p and r
11. If $ros (x - y)$, $ros x$ and $ros (x + y)$ are in H.P., then $ros x \sec (y/2)$ equals-
(a) 1 (b) 2 (c³) $\sqrt{2}$ (d) None of these
12. If x be the AM and $y.z$ be two GM's between two positive numbers, then $\frac{y^{3} + z^{3}}{xyz}$ is equal to-
(a) 1 (b³) 2 (c) 3 (d) 4
13. Let T , be the rh term of an A.P., for $r = 1, 2, 3, ...,$ if for some positive integers m , n we have
 $T_{n} = \frac{1}{n}$ and $T_{n} = \frac{1}{m}$, then T_{m} equals-
(a) $\frac{1}{mn}$ (b) $\frac{1}{m} + \frac{1}{n}$ (cⁿ) 1 (d) 0
14. If $x > 1, y > 1, z > 1$ are in (i.P., then $\frac{1}{1 + (nr)}, \frac{1}{1 + (nr)}, \frac{1}{1 + (nr)}, \frac{1}{2}$ are in-
(b) A.P. (b) H.P. (c³) G.P. (d) Note of these
15. Let $a_{1}, a_{2},...,a_{R}$ be in A.P. and $b_{1}, b_{2},...,b_{R}$ be in H.P. If $a_{1} = b_{1} = 2$ and $a_{10} = b_{10} = 3$, then $a_{1} b_{1}$ is-
(a) 2 (b³) 4 (c) 6 (d) 8
17. If x_{1}, x_{2}, x_{2} as well as y_{2}, y_{2} y and in G.P. with the same common ratio, then the points (x_{1}, y_{1}) , (x_{2}, y_{2}) and (x_{2}, y_{2})
(d) $a = 2, r = \frac{3}{8}$
(e) $a = \frac{3}{2}, r = \frac{1}{2}$ (b) $a = 2, r = \frac{3}{8}$
(c) $a = \frac{3}{2}, r = \frac{1}{2}$ (d) $a = 3, r = \frac{1}{4}$
20. Let a_{1} be the roots of $x^{2} - x + p = 0$ and y_{1} be the roots of $x^{2} - x + q = 0$. If a_{2} (h, γ , δ are in
(a) $a_{2} = \frac{3}{4}, r = \frac{3}{7}$ (b) $a = 2, r = \frac{3}{8}$
(c) $a = \frac{3}{2}, r = \frac{1}{2}$ (d⁴) $a = 3, r = \frac{1}{4}$
20. Let a_{2} be the roots of $x^{2} - x + p = 0$ and γ_{1} be the roots of $x^{2} - 4x + q = 0$. If a_{1} (f, γ , δ are in
(a) $a_{2} = \frac{3}{4}, r = \frac{3}{7}$ (b) $a = 2, r = \frac{3}{8}$
(c) $a = \frac{3}{2}, r = \frac{1}{2}$ (d⁴) $a = 3, r = \frac{1}{4}$
20

Mathematics Online : It's all about Mathematics IIT JEE Screening Exam Questions

- 11 -

IIT JEE SCREENING QUESTIONS CHAPTER WISE

(d) - 10 < c < 0

- 21. Let the positive numbers a, b, c, d be in A.P. Then abc, abd, acd, bcd are-(a) Not in A.P./G.P./H.P.
 (b) in A.P.
 (c) in G.P.
 (d*) in H.P.
- If the sum of the first 2n terms of the A.P. 2, 5, 8,.... is equal to the sum of the first n terms of the A.P. 57, 59, 61,.... then n equals(a) 10
 (b) 12
 (c*) 11
 (d) 13

23. If a_1, a_2, \ldots, a_n are positive real numbers whose product is a fixed number c, then the minimum value of $a_1 + a_2 + \ldots + a_{n-1} + a_n$ is-(a*) n (c)^{1/n} (b) (n + 1)c^{1/n} (c) 2nc^{1/n} (d) (n + 1) (2n)^{1/n}

24. An infinite G.P., with first term x & sum of the series is 5 then-(a) $x \ge 10$ (b*) 0 < x < 10 (c) x < -10

						AN	SWE	R KE	Y						
Q.No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	а	c	с	а	с	b	d	b	d	а	с	b	с	b	d
			Q.No.	16	17	18	19	20	21	22	23	24			
			Ans.	b	а	d	d	a	d	c	a	b			

8. PERMUTATION & COMBINATION

If n is an integer between 0 an d21; then the minimum value of n! (21 - n)! is-1. (a) 9! 12! (b) 10! 11! (c) 20! (d) 2! The number of divisors of 9600 including 1 and 9600 are-2. (a) 60(b) 58 (c) 48 (d) 46 A polygon has 44 diagonals, then the number of its sides are-3. (a) 11 (b) 7 (d) none of these (c) 8An n-digit number is a positive number with exactly n digits. Nine hundred distinct n-digit numbers are to be formed using 4. only the three digits 2, 5, and 7. The smallest value of n for which this is possible is-(a) 6 (b) 7 (c) 8 (d) 9 5. How many different nine digit numbers can be formed from the number 223355888 by rearranging its digits so that odd digits occupy even position ? (a) 60 (b) 36 (c) 160 (d) 180 ${}^{n}C_{1} + 2{}^{n}C_{r+1} + {}^{n}C_{r+2}$ is equal to $(2 \le r \le n)$ 6. (c) $^{n+2}C_{r+2}$ (b) $^{n+1}C_{r+1}$ (a) 2. ${}^{n}C_{r+2}$ (d) none of these The number of arrangement of the letters of the word BANANA in which the two N's do nto 7. appear adjacently is-(b) 60 (d) 100 (a) 40 (c) 80No. of points with integer coordinates lie inside the triangle whose vertices are (0, 0), (0, 21), (21, 0) is : 8. (a) 190 (b) 185 (d) 230 (c) 210 9. A rectangle has sides of (2m - 1) & (2n - 1) units as shown in the figure composed of squares having edge length one unit then no. of rectangles which have odd unit length (c) 4^{m+n-2} (a) $m^2 - n^2$ (d) $m^2 n^2$ (b) m(m + 1) n(n + 1)

Mathematics Online : It's all about Mathematics IIT JEE Screening Exam Questions

9

8

											-		
			Ans.	b	c	а	b	а	c	а	a	d	
					9 .	BINC	MIA		EORE	EM			
1.	If the sum of the coef (a) 0	fficients (b) –1		xpansi	on of (2αx + *) 1	1) ⁵¹ va	nishes	, then t	the valu (d)		t is-
2.	The expansion [x + (a) 5	$(x^3 - 1)$ (b) 6	$[1/2]^5 = [x]^{5/2}$	$x - (x^3)$	- 1) ^{1/2}	²] ⁵ is a (c	polyn *) 7	omial	of deg	ree-	(d)	8	
3.	If the rth term in the (a) 2	(b*) 3	5			(c) 4		-	al to-	(d)	5	
4.	The coefficient of x	⁵³ in the	e expansi	ion \sum_{m}^{10}	\sum_{0}^{100}	$C_m(x -$	$(-3)^{100}$	^{)-m} 2 ^m	is -				
	(a) ${}^{100}C_{47}$	(b) ¹⁰⁰	⁰ C ₅₃			(c	*) - 10	${}^{0}C_{53}$			(d)	$- {}^{100}C$	100
5.	The value of $C_0 + 30$ (a) 2^n	$C_1 + 5C_1 + 5C_2$ (b) 2^n	$C_2 + 7C_3 + n.2^{n-1}$	$_{1}^{+}$	+ (21	n + 1) (c	$c_n \text{ is e}^{(n)}$	qual to $(n+1)$)-		(d)	None	of these
6.	The largest term in t (a) 5 th	(b) 51	th			(c	*) 6 th a	and 7 th			(d)	8^{th}	
7.	$C_0^2 - C_1^2 + C_2^2$ (a) ²ⁿ C _n	(-1) (b) (-	(C_n^2, w) $(1)^{n 2n} C_n$	nere n	is an e	even ir (c	nteger :) (-1) ⁿ	is ${}^{2n}C_{n-2}$		5	(d*) None	e of these
8.	The co-efficient of t	he term	n indeper	ndent	of x in	the ex	pansio	on of ($\left(\sqrt{\frac{x}{3}}\right)$	$+\frac{3}{2x^2}$	-) ¹⁰ is		
	(a) 9/4	(b) 3/4	4			(c	*) 5/4				(d)	7/4	
9.	The sum of the ratio	onal terr	ns in the	e expa	nsion o	of (√	$(2^{-}+3^{-})$	$1/5$ 10^{10}	is-				
	(a*) 41	(b) 42	2			(c) 40				(d)	43	
10.	If $a_n = \sum_{r=0}^n \frac{1}{{}^nC_1}$ the (a) (n - 1) a_n	n $\sum_{r=0}^{n} - \frac{1}{n}$ (b) na		als-		(c	*) 1/2	na.			(b)	None	of these
	.,.,	. ,	-	<u>n</u> (-	-1) ^r) 1/2	mun			(u)		
11.	If n is an odd natura	l numbe	er, then	$\sum_{r=0}^{n} \frac{\zeta}{n}$	$\frac{1}{C_r}$ e	qual							
	(a*) 0	(b) 1/1	n			(c) n/2n				(d)	none o	of these
12.	If in the expansion of (a) 6	of $(1 + 3)$ (b) 9	$(1 - 2)^{m}$	x) ⁿ , th	e coef		s of x *) 12	and x^2	are 3	and -6	respec (d)		, then m is-
13.	For $2 \le r \le n$, $\binom{n}{r}$ +												
	(a) $\binom{n+1}{1-1}$	(b*) 2	$2\binom{n+1}{r+1}$			(c	$2\binom{n+r}{r}$	(2^{2})			(d)	$\binom{n+2}{r}$	
Mot	homatics Online : k	vo ella		lothe	motic							بالم الم	aluia@mathamatiacanlina aa i

ANSWER KEY

5

4

3

Q.No.

1

2

7

6

Mathematics Online : It's all about Mathematics **IIT JEE Screening Exam Questions**

IIT JEE SCREENIN<u>G QUESTIONS CHAPTER WISE</u>

(d) ${}^{12}C_6$

14. In the binomial expansion of $(a - b)^n$, $n \ge 5$, the sum of the 5th and 6th terms is zero. Then $\frac{a}{b}$

(a)
$$\frac{n-5}{6}$$
 (b*) $\frac{n-4}{5}$ (c) $\frac{5}{n-4}$ (d) $\frac{6}{n-5}$

15. Find coefficient of t^{24} in the expansion of $(1 + t^2)^{12} (1 + t^{12}) (1 + t^{24})$ is (a*) ${}^{12}C_6 + 2$ (b) ${}^{12}C_6 + 1$ (c) ${}^{12}C_6 + 3$

16. If
$${}^{n-1}C_r = (k^2 - 3) {}^{n}C_{r+1}$$
, then k lies between
(a) $(-\infty, -2)$ (b) $(2, \infty)$ (c) $\left[-\sqrt{3}, \sqrt{3}\right]$ (d*) $\left(\sqrt{3}, 2\right]$

17. $\begin{pmatrix} 30 \\ 0 \end{pmatrix} \begin{pmatrix} 30 \\ 10 \end{pmatrix} - \begin{pmatrix} 30 \\ 1 \end{pmatrix} \begin{pmatrix} 30 \\ 11 \end{pmatrix} + \dots + \begin{pmatrix} 30 \\ 20 \end{pmatrix} \begin{pmatrix} 30 \\ 30 \end{pmatrix} = (a^*) \begin{pmatrix} 30 \\ 10 \end{pmatrix} (b) \begin{pmatrix} 60 \\ 20 \end{pmatrix} (c) \begin{pmatrix} 31 \\ 10 \end{pmatrix} (d) \begin{pmatrix} 31 \\ 11 \end{pmatrix}$

_																		
	Q.No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
	Ans.	c	c	b	c	c	c	d	c	а	с	а	с	b	b	а	d	a

10. QUADRATIC EQUATION

1. If
$$e^{\{(\sin^2 x + \sin^4 x + \sin^6 x \dots, \infty) \ell n^{-2}\}}$$
 satisfies the equation $x^2 - 9x + 8 = 0$, find the value of
 $\frac{\cos x}{\cos x + \sin x}$, $0 < x < \frac{\pi}{2}$
(a*) $\frac{1}{1 + \sqrt{3}}$ (b) $\frac{1}{1 - \sqrt{3}}$ (c) $\frac{2}{1 - \sqrt{2}}$ (d) None of these

- 2. If the roots of the equation (x a) (x b) k = 0 be c & d then find the equation whose roots are a & b. (a*) (x - c) (x - d) + k = 0(b) (x + c) (x - a) + k = 0(c) (x - c) + (x - a) = 0 (d) None of these
- 3. The set of values of p for which the roots of the equation $3x^2 = 2x + p(p-1) = 0$ are of opposite sign is-(a) $(-\infty, 0)$ (b*) (0, 1) (c) $(1, \infty)$ (d) $(0, \infty)$
- 4. Let $p,q \in \{1, 2, 3, 4\}$. The number of equations of the form $px^2 + qx + 1 = 0$ having real roots is-(a) 15 (b) 9 (c*) 7 (d) 8
- 5. Let α and β be the roots of the equation $x^2 + x + 1 = 0$. The equation whose roots are α^{19} , β^7 is (a) $x^2 - x - 1$ (b) $x^2 - x + 1 = 0$ (c) $x^2 + x - 1 = 0$ (d*) $x^2 + x + 1 = 0$
- 6. If p,q are roots of the equation $x^2 + px + q = 0$, then-(a) p = 1 (b) p = -2 (c*) p = 1 or 0 (d) p = -2 or 0
- 7. Let p and q are roots of the equation $x^2 2x + A = 0$ and r, s are roots of $x^2 18x + B = 0$ if p < q < r < s are in A.P. then the value of A and B are-(a) -7, -33 (b) -7, -37 (c*) -3, 77 (d) None of these

8. The equation
$$\sqrt{(x+1)} - \sqrt{(x-1)} = \sqrt{(4x-1)}$$
 has-
(a*) No solution (b) One solution (c) Two solutions

Mathematics Online : It's all about Mathematics IIT JEE Screening Exam Questions

- 14 -

(d) More than 2 solutions

pankaj.baluja@mathematicsonline.co.in Visit us at: <u>www.mathematicsonline.co.in</u>

equals-

9.	The sum of all real (a) 2	roots of the equation $ x - 2 ^2 + (b^*) 4$	x-2 -2=0 is (c) 1	(d) None of these
10	The number of valu (a) 0	ues of x in the interval [0, 5π] (b) 5	satisfying the equation $3\sin^2 x + (c^*) 6$	$-7 \sin x + 2 = 0$ is- (d) 10
11.	If the roots of the e $(a^*) a < 2$	equation $x^2 - 2ax + a^2 + a - 3 =$ (b) $2 \le a \le 3$	= 0 are real and less than 3, the (c) $3 < a \le 4$	(d) a > 4
12.	The harmonic mean (a) 2	n of the roots of the equation (b*) 4	$(5+\sqrt{2}) x^2 - (4+\sqrt{5}) x + 3$ (c) 6	$8 + 2 \sqrt{5} = 0$ is- (d) 8
13.	In a $\triangle PQR$, $\angle R = \frac{2}{2}$	$\frac{\pi}{2}$. If $\tan \frac{P}{2}$ and $\tan \frac{Q}{2}$ are the	the roots of the equation $ax^2 + b$	$ax + c = 0 (a \neq 0),$ then-
	$(a^*) a + b = c$	(b) $b + c = a$	(c) $c + a = b$	(d) $\mathbf{b} = \mathbf{c}$
14.	For the equation $3x^2$ (a) $1/3$	+ px + 3 = 0, p > 0, if one of the (b) 1	roots is square of the other, then (c*) 3	p is equal to- (d) 2/3
15.	If α and β ($\alpha < \beta$), (a) $0 < \alpha < \beta$	are the roots of the equation x (b*) $\alpha < 0 < \beta < \alpha $	$a^{2} + bx + c = 0$, where $c < 0 < b^{2}$ (c) $\alpha < \beta < 0$	b, then (d) $\alpha < 0 < \alpha < \beta$
16.	If b > a, then the ec (a) both roots in [a, (c) both roots in (b		has- (b) both roots in $(-\infty, a)$ (d*) one root in $(-\infty, a)$ and	l other in (b, $+\infty$)
16. 17.	(a) both roots in [a,(c) both roots in (b.	, b] , + ∞) ts of x ² - x + p = 0 and γ , δ be	(b) both roots in $(-\infty, a)$ (d*) one root in $(-\infty, a)$ and	d other in (b, + ∞) F α,β,γ,δ are in G.P., then the integral values of (d) -6, -32
	(a) both roots in [a, (c) both roots in (b) Let α , β be the roo p and q respectivel (a*) -2, - 32	, b] , + ∞) ts of x ² - x + p = 0 and γ , δ be y, are-	(b) both roots in $(-\infty, a)$ (d*) one root in $(-\infty, a)$ and the roots of $x^2 - 4x + q = 0$. If (c) -6, 3	cα, β, γ, δ are in G.P., then the integral values of
17.	(a) both roots in [a, (c) both roots in (b) Let α , β be the roo p and q respectivel (a*) -2, - 32	b] $(x + \infty)$ ts of $x^2 - x + p = 0$ and γ , δ be y, are- (b) -2, 3 numbers x for which $x^2 - x + 2 $	(b) both roots in $(-\infty, a)$ (d*) one root in $(-\infty, a)$ and the roots of $x^2 - 4x + q = 0$. If (c) -6, 3 2 +x > 0, is- (b*) $(-\infty, -\sqrt{2}) \cup (\sqrt{2}, \infty)$	c α,β,γ,δ are in G.P., then the integral values of (d) -6, -32
17.	(a) both roots in [a, (c) both roots in (b) Let α , β be the roo p and q respectivel (a*) -2, - 32 The set of all real r	b] $(x + \infty)$ ts of $x^2 - x + p = 0$ and γ , δ be $(x + \infty)$ (b) -2, 3 numbers x for which $x^2 - x + 2 - \infty $	(b) both roots in $(-\infty, a)$ (d*) one root in $(-\infty, a)$ and the roots of $x^2 - 4x + q = 0$. If (c) -6, 3 2 + x > 0, is-	c α,β,γ,δ are in G.P., then the integral values of (d) -6, -32
17.	(a) both roots in [a, (c) both roots in (b) Let α , β be the roo p and q respectivel (a*) -2, - 32 The set of all real r (a) (- ∞ , -2) \cup (2, (c) (- ∞ , -1) \cup (1,	(b) (c) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	(b) both roots in $(-\infty, a)$ (d*) one root in $(-\infty, a)$ and the roots of $x^2 - 4x + q = 0$. If (c) -6, 3 2 +x > 0, is- (b*) $(-\infty, -\sqrt{2}) \cup (\sqrt{2}, \infty)$	 c α,β,γ,δ are in G.P., then the integral values of (d) -6, -32 (d) -6, -32
17. 18.	(a) both roots in [a, (c) both roots in (b) Let α , β be the roop p and q respectivel (a*) -2, -32 The set of all real r (a) (- ∞ , -2) \cup (2, (c) (- ∞ , -1) \cup (1, If one root of the ex (a*) p ³ - q (3p - 1) (c) p ³ + q (3p - 1) -	(b) (c) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	(b) both roots in $(-\infty, a)$ (d*) one root in $(-\infty, a)$ and the roots of $x^2 - 4x + q = 0$. If (c) -6, 3 (2] + x > 0, is- (b*) $(-\infty, -\sqrt{2}) \cup (\sqrt{2}, \infty)$ (d) $(\sqrt{2}, \infty)$ are of the other then for any p a (b) $p^3 - q (3p + 1) + q^2 = 0$ (d) $p^3 + q (3p + 1) + q^2 = 0$	 c α,β,γ,δ are in G.P., then the integral values of (d) -6, -32 (d) -6, -32

ANSWER	KEY
--------	-----

<mark>Q.No.</mark>	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
Ans.	а	a	b	с	d	с	с	а	b	с	а	b	а	c	b	d	а	b	а	с	d

11. LOGARITHMS & MODULUS FUNCTION

1. The domain of the function $\sqrt{(\log_{0.5} x)}$ is-

Mathematics Online : It's all about Mathematics **IIT JEE Screening Exam Questions**

$$(a^*)(1,\infty)$$
 (b) $(0,\infty)$ (c) $(0,1)$ (d) $(0.5,1)$

- 2. The number $\log_2 7$ is-(a) an integer (b) a rational number (c*) an irrational number (d) a prime number 3. Find the no. of solution $\log_4 (x - 1) = \log_2 (x - 3)$ (a) 3 (b*) 1 (d) 0(c) 2 For all $x \in (0, 1)$ 4. (a) $e^x < 1 + x$ $(b^*) \log_e (1 + x) < x$ (c) $\sin x > x$ (d) $\log_e x > x$
- 5. The set of all real numbers x for which $x^2 |x + 2| + x > 0$, is-(a) $(-\infty, -1) \cup (2, \infty)$ (b*) $(-\infty, -\sqrt{2}) \cup (\sqrt{2}, \infty)$

(c)
$$(-\infty, -1) \cup (1, \infty)$$
 (d) $(\sqrt{2}, \infty)$

	ANS	WE	R K	EY	
Q.No.	1	2	3	4	5
Ans.	с	с	b	b	b

12. POINT

- 1. If the sum of the distances of a point from two perpendicular lines in a plane is 1, then its locus is (a*) square (b) circle (c) straight line (d) two intersecting lines $SO^2 + SR^2 = 2SP^2$ is If P (1, 0), Q (-1, 0) and R (2, 0) are three given points, then the locus of S satisfying the relation 2. (a) a st. line || to x-axis (b*) a circle thro' the origin (d) a st. line || to y-axis (c) a circle with centre at the origin The orthocenter of the triangle with vertices $\left[2, \frac{(\sqrt{3}-1)}{2}\right], \left(\frac{1}{2}, -\frac{1}{2}\right)$ and $\left(2-\frac{1}{2}\right)$ is-3. (a) $\left[\frac{3}{2}, \frac{\sqrt{3}-3}{6}\right]$ (b*) $\left[2, -\frac{1}{2}\right]$ (c) $\left[\frac{5}{4}, -\frac{\sqrt{3}-2}{4}\right]$ (d) $\left[\frac{1}{2}, -\frac{1}{2}\right]$ 4. The orthocenter of the triangle formed by the lines xy = 0 and x + y = 1 is (a) $\left(\frac{1}{2}, \frac{1}{2}\right)$ (b) $\left(\frac{1}{3}, \frac{1}{3}\right)$ $(d)\left(\frac{1}{4},\frac{1}{4}\right)$ $(c^*)(0,0)$
- 5. The diagonals of parallelogram PQRS are along the lines x + 3y = 4 and 6x 2y = 7. Then PQRS must be a (a) rectangle (b) square (c) cyclic quadrilateral (d*) rhombus
- 6. If the vertices P, Q, R of a triangle PQR are rational points, which of the following points of the triangle PQR is (are) not always rational points (s) ?
 (a) Centroid (b*) Incentre (c) Circumcentre (d) Orthocentre
- 7. If P (1, 2), Q (4, 6) R (5, 7) and S(a, b) are the vertices of a parallelogram PQRS, then (a) a = b, b = 4 (b) a = 3, b = 4 (c*) a = 2, b = 3 (d) a = 3, b = 5
- 8. If x_1, x_2, x_3 as well as y_1, y_2, y_3 are in G.P. wih the same common ratio, then the points $(x_1, y_1), (x_2, y_2)$ and (x_3, y_3)

Mathematics Online : It's all about Mathematics IIT JEE Screening Exam Questions

(a*) lie on straight line (b) lie on an ellipse (c) lie on a circle

(d) are vertices of a triangle

The incentre of the triangle with vertices $(1, \sqrt{3})$, (0, 0) and (2, 0) is 9.

(a)
$$\left(1, \frac{\sqrt{3}}{2}\right)$$
 (b) $\left(\frac{2}{3}, \frac{1}{\sqrt{3}}\right)$ (c) $\left(\frac{2}{3}, \frac{\sqrt{3}}{2}\right)$ (d*) $\left(1, \frac{1}{\sqrt{3}}\right)$

10. Orthocentre of the triangle whose vertices are A (0, 0), B (3, 4) &C (4, 0) is:

(a*)
$$\left(3, \frac{3}{4}\right)$$
 (b) $\left(3, \frac{5}{4}\right)$ (c) (3, 12) (d) (2, 0)

			A	NSN	/ER	KE)	(
Q.No	1	2	3	4	5	6	7	8	9	10
Ans.	а	d	b	с	d	b	с	а	d	а

13. STRAIGHT LINE

- 1. The equation of the lines through the points (2, 3) and making an intercept of length 2 units between the lines y + 2x = 3 and y + 2x + 5 are
 - (a) x + 3 = 0(b) y - 2 = 0 $(c^*) x - 2 = 0$ (d) None of these 3x + 4y = 124x - 3y = 63x + 4y = 18
- let the algebraic sum of the perpendicular distances from the points A (2, 0) (0, 2) C(1, 1) to a variable line be zero. Then all 2. such lines: (a) passes through the point (-1, 1) (b^*) passes through the fixed point (1, 1)(c) touches some fixed circle (d) None of these
- If one of the diagonals of a square is along the line x = 2y and one of its vertices is (3, 0) then its sides through this vertex are 3. given by the equations (b) y + 3x + 9 = 0, 3y + x - 3 = 0(d) $3x^2 - 3y^2 - 8xy - 10x - 15y - 20 = 0$ $(a^*) y - 3x + 9 = 0, 3y + x - 3 = 0$
 - (c) $3x^2 3y^2 + 8xy + 10x + 15y + 20 = 0$
- All points lying inside the triangle formed by the points (1, 3), (5, 0), (-1, 2) satisfy: 4. (b) $2x + y - 13 \ge 0$ $(c) -2x + y \ge 0$ $(a^*) 3x + 2y \ge 0$ (d) None of these
- 5. Let PQR be a right angled isosceles triangle, right angled at P(2, 1). If the equation of the line QR is 2x + y = 3, then the equation representing the pair of lines PQ and PR is-(a) $3x^2 - 3y^2 + 8xy + 20x + 10y + 25 = 0$ (c) $3x^2 - 3y^2 + 8xy + 10x + 15y + 29 = 0$ (b*) $3x^2 - 3y^2 + 8xy - 20x - 10y + 25 = 0$ (d) $3x^2 - 3y^2 - 8xy - 10x - 15y - 20 = 0$

Let PS be the median of the triangle with vertices P(2, 2), Q(6, -1) and R(7, 3). The equation of the line passing through 6. (1, -1) and parallel to PS is-(a) 2x - 9y - 7 = 0 (b) 2x - 9y - 11 = 0(c)2x + 9y - 11 = 0 $(d^*) 2x + 9y + 7 = 0$

(a*) 2 (b) 0(c) 4(d) 1

8. Area of the parallelogram formed by the linen y = mx, y = mx + 1, y = nx, y = nx + 1 is (a) $|m + n|/(m - n)^2$ (b) 2/|m + n|(c) 1/|m + n| $(d^*) 1/|m-n|$


^{7.} Find the number of integer value of m which makes the x coordinates of point of intersection of lines. 3x + 4y = 9 and y = mx+ 1 integer.

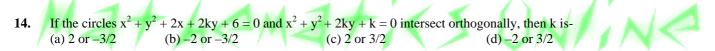
IIT JEE SCREENING QUE<u>STIONS CHAPTER WISE</u>

- 9. A straight line through the origin O meets the parallel lines 4x + 2y = 9 and 2x + y + 6 = 0 at the points P and Q respectively. Then the point O divides the segment PQ in the ratio-(a) 1:2 (b*) 3:4 (c) 2:1 (d) 4:3
- 10. Let P = (-1, 0), Q = (0, 0) and $R = (3, 3\sqrt{3})$ be three points. Then the equation of the bisector of the angle PQR is-

(a)
$$(\sqrt{3}/2)x + y = 0$$

(b) $x + \sqrt{3}x = 0$
(c*) $\sqrt{3}x + y = 0$
(d) $x + (\sqrt{3}/2)y = 0$

- 11. Let 0 α < π/2 be a fixed angle. If P = (cos θ, sin θ) and Q = (cos (α θ)), sin (α θ)) then Q is obtained from P by-(a) clockwise rotation around origin through an angle α
 (b) anticlockwise rotation around origin through an angle α
 (c) reflection in the line through origin with slope tan α
 (d*) reflection in the line through origin with slope tan α/2
- 12. A pair of st. linen $x^2 8x + 12 = 0$ & $y^2 14y + 45 = 0$ are forming a square. What is the centre of circle inscribed in the square: (a) (3, 2) (b) (7, 4) (c*) (4, 7) (d) (0, 1)
- 13. Area of the triangle formed by the line x + y = 3 and the angle bisector of the pair of lines $x^2 y^2 + 2y = 1$, is-(a) 1 (b) 3 (c*) 2 (d) 4



- 1. The centre of the circle passing through points (0, 0), (1,0) and touching the circle $x^2 + y^2 = 9$ is (a) (3/2, 1/2) (b) (1/2, 3/2) (c) (1/2, 1/2) (d) (1/2, -2^{1/2})
- 2. The equation of the circle which touches both the axes and the straight line 4x + 3y = 6 in the first quadrant and lies below it is (a) $4x^2 + 4x^2 - 4x + 1 = 0$ (b) $x^2 + x^2 - 6x - 6x + 0 = 0$
 - (a) $4x^2 + 4y^2 4x 4y + 1 = 0$ (b) $x^2 + y^2 - 6x - 6y + 9 = 0$ (c) $x^2 + y^2 - 6x - y + 9 = 0$ (d) $4(x^2 + y^2 - x - 6y) + 1 = 0$
- 3. The slope of the tangent at the point (h, h) of the circle x² + y² = a₂ is-(a) 0 (b) 1 (c) -1 (d) depends on h
 4. The co-ordinates of the point at which the circles x² + y² 4x 2y 4 = 0 and
- 4. The co-ordinates of the point at which the circles $x^2 + y^2 4x 2y 4 = 0$ and $x^2 + y^2 - 12x - 8y - 36 = 0$ touch each other are-(a) (3, -2) (b) (-2, 3) (c) (3, 2) (d) None of these
- 5. Given that two circles $x^2 + y^2 = r^2$ and $x^2 + y^2 10x + 16 = 0$, the value of r such that they intersect in real and distinct points is given by-(a) 2 < r < 8 (b) r = 2 ro r = 8 (c) (3, 2) (d) None of these
- 6. The distance from the centre of the circle $x^2 + y^2 = 2x$ to the straight line passing through the points of intersection of the two circles. (a) 1 (b) 3 (c) 2 (d) 1/3

7. The intercept on the line y = x by the circle $x^2 + y^2 - 2x = 0$ is AB. Equation of the circle with AB as a diameter is-(a) $x^2 + y^2 + x + y = 0$ (b) $-x^2 + y^2 = x - y = 0$ (c) $x^2 + y^2 - x - y = 0$ (d) None of these

Mathematics Online : It's all about Mathematics IIT JEE Screening Exam Questions

- The angle between a pair of tangents from a point P to the circle $x^2 + y^2 + 4x 6y + 9 \sin^2 \alpha + 13 \cos^2 \alpha = 0$ is 2α . The 8. equation of the locus of P is-
 - (b) $x^2 + y^2 + 4x 6y 9 = 0$ (d) $x^2 + y^2 + 4x 6y + 9 = 0$ (a) $x^2 + y^2 + 4x - 6y + 4 = 0$ (c) $x^2 + y^2 + 4x - 6y - 4 = 0$
- 9. Two vertices of an equilateral triangle are (-1, 0) and (1, 0) and its circumcircle is-
 - (a) $x^{2} + \left(y \frac{1}{\sqrt{2}}\right)^{2} = \frac{4}{2}$ (b) $x^2 - \left(y + \frac{1}{\sqrt{3}}\right) = \frac{4}{3}$ (c) $x^{2} + \left(y - \frac{1}{\sqrt{3}}\right)^{2} = \frac{4}{3}$ (d) None of these
- 10. If a circle passes thro' the points of intersection of the co-ordinate axes with the lines $\lambda x - y + 1 = 0$ and x - 2y + 3 = 0, then the value of λ is-(a) 2
 - (b) 4 (c) 6(d) 3
- The number of common tangents to the circles $x^2 + y^2 = 4$ and $x^2 + y^2 6x 8y = 24$ is 11. (c) 3 (a) 0
- If two distinct chords drawn from the point (p,q) on the circle $x^2 + y^2 = px + qy$ (where $pq \neq 0$) are bisected by the x-axis 12. then
 - (a) $p^2 = q^2$ (b) $p^2 = 8q^2$ (c) $p^2 < 8q^2$ (d) $p^2 > 8q^2$
- Let L_1 be a straight line passing through the origin and L_2 be the straight line x + y = 1. If the intercepts made by the 13. circle $x^2 + y^2 - x + 3y = 0$ on L_1 and L_2 are equal, then which of the following equations can represent L_1 (b) x - y = 0(c) x + 7y = 0(d) None of these (a) x + y = 0

- The triangle PQR is inscribed in the circle $x^2 + y^2 = 25$. If Q and R have co-ordinates (3, 4) and (-4, 3) respectively, then angle QPR is 15. equal to-(a) $\pi/2$ (b) $\pi/3$ (c) $\pi/4$ (d) $\pi/6$
- Let PQ and RS be tangents at the extremities of the diameter PR of a circle of radius r. if PS and 16. RQ intersect at a point
 - X on the circumference of the circle, then 2r equals

(a)
$$\sqrt{PQ.RS}$$
 (b) $\frac{PQ+RS}{2}$ (c) $\frac{2PQ.RS}{PQ+RS}$ (d) $\sqrt{\frac{PQ^2+RS^2}{2}}$

If the tangent at the point P on the circle $x^2 + y^2 + 6x + 6y = 2$ meets the straight line 5x - 2y + 6 = 0 at a point Q on the y-axis, 17. then the length of PQ is-

(a) 4 (b)
$$2\sqrt{5}$$
 (c) 5 (d) 3

If a > 2b > 0 then the positive value of m for which $y = mx - b \sqrt{1 + m^2}$ is a common tangent to $x^2 + y^2 = b^2$ and $(x - a) + y^2 = b^2$ is-18.

(a)
$$\frac{2b}{\sqrt{a^2 - 4b^2}}$$
 (b) $\frac{\sqrt{a^2 - 4b^2}}{2b}$ (c) $\frac{2b}{a - 2b}$ (d) $\frac{b}{a - 2b}$

Diameter of the given circle $x^2 + y^2 - 2x - 6y + 6 = 0$ is the chord of another circle C having 19. centre (2, 1), the radius of the circle C is-

Mathematics Online : It's all about Mathematics **IIT JEE Screening Exam Questions**

(a)
$$\sqrt{3}$$
 (b) 2 (c) 3 (d) 1

Locus of the centre of circle touching to the x-axis & the circle $x^2 + (y - 1)^2 = 1$ externally is 20. (b) {(0, y); ≤ 0 } \cup (x² = y) (d) {(0, y); y ≥ 0 } \cup (x² + (x² + (y - 1)² = 4 (a) $\{(0, y); y \le 0\} \cup (x^2 = 4y)$ (c) {(x, y); $y \le y$ } \cup (x² = 4y)

								A	121	/ER	KEY	1								
Q.No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	d	a	c	d	a	c	c	d	a	a	b	d	с	a	с	a	c	а	с	a

15. PARABOLA

- The point of intersection of the tangents at the ends of the latus return of the parabola $y^2 = 4x$ is... 1. (c)(0,1)(d) None of these (a) (-1, 0)(b) (1, 0)
- Consider a circle with centre lying on the focus of the parabola $y^2 = 2px$ such that it touches the 2. directrix of the parabola. Then a point of intersection of the circle and the parabola is (a) (p/2, p)(b) (-p/2, p)(c) (-p/2, -p)(d) None of these
- The curve described parametrically by $x = t^2 + t + 1$, $y = t^2 t + 1$ represents-3. (a) a pair of st. lines (b) an ellipse (c) a parabola (d) a hyperbola
- (a) 3 (b) 9 (c) -9 (d) -3If the line x 1 = 0 is the directrix of the parabola $y^2 kx + 8 = 0$, then one of the values of k is-(a) 1/8 (b) 8 (c) 4 If x + y = k is normal to $y^2 = 12x$, then k is-4.
- 5.
- 6. Above x-axis, the equation of the common tangents to the circle $(x - 3)^2 + y^2 = 9$ and parabola $v^2 = 4x$ is-(a) $\sqrt{3}y = 3x + 1$ (b) $\sqrt{3}y = -(x + 3)$ (c) $\sqrt{3}y = x + 3$ (d) $\sqrt{3}y = -(3x + 1)$
- The equation of the directrix of the parabola $y^2 + 4y + 4x + 2 = 0$ is-7. (c) $x = -\frac{3}{2}$ (b) x = 1(a) x = -1
- The locus of the mid-point of the line segment joining the focus to a moving point on the parabola $y^2 = 4ax$ is another 8. parabola with directrix-

(d) $x = \frac{3}{2}$

(a) x = -a(b) x = -a/2(c) x = 0(d) x = a/2

If focal chord of $y^2 = 16x$ touches $(x - 6)^2 + y^2 = 2$ then slope of such chord is-9.

(a) 1, -1 (b) 2,
$$-\frac{1}{2}$$
 (c) $\frac{1}{2}$, -2 (d) 2, -2

Angle between the tangents drawn from (1, 4) to the parabola $y^2 = 4x$ is-10.

(a)
$$\frac{\pi}{2}$$
 (b) $\frac{\pi}{3}$ (c) $\frac{\pi}{6}$ (d) $\frac{\pi}{4}$

A tangent at any point P (1, 7) the parabola $y = x^2 + 6$, which is touching to the circle 11. $x^{2} + y^{2} + 16x + 12y + c = 0$ at point Q, then Q = is (b) (-10, -15) (c)(-9,-7)(d)(-6, -3)(a) (-6, -7)

Mathematics Online : It's all about Mathematics **IIT JEE Screening Exam Questions**

			1	ANS	WE	R K	EY				
<mark>Q.No.</mark>	1	2	3	4	5	6	7	8	9	10	11
Ans.	а	a	с	b	с	с	d	с	a	b	a

16. FUNCTION

If function $f(x) = \frac{1}{2} - \tan\left(\frac{\pi x}{2}\right)$; (-1 < x < 1) and $g(x) = \sqrt{3 + 4x - 4x^2}$, then the domain of gof is-1. (b*) $\left[-\frac{1}{2}, \frac{1}{2}\right]$ (c) $\left[-1, \frac{1}{2}\right]$ (d) $\left| -\frac{1}{2}, -1 \right|$ (a) (-1, 1)

If $f(x) = \cos [\pi^2]x + \cos [-\pi^2]x$, where [x] stands for the greatest integer function, then 2. (c) $f\left(\frac{\pi}{4}\right) = 2$ (a*) $f\left(\frac{\pi}{2}\right) = -1$ (b) $f(\pi) = 1$ (d) None of these

- 3. The value of b and c for which the identity f(x + 1) - f(x) = 8x + 3 is satisfied, where $f(x) = bx^2 + cx + d$, are $(b^*) b = 4, c = -1$ (c) b = -1, c = 4(a) b = 2, c = 1(d) None
- 4. Let $f(x) = \sin x$ and $g(x) = \ell n |x|$. If the ranges of the composities functions fog and gof are R_1 and R_2 respectively, then-(a) $R_1 = \{u: -1 < u < 1\}, R_2 = \{v: -\infty < v < 0\}$ (b) $R_1 = \{u : -\infty < u \le 0\}, R_2 = \{v : -1 \le v \le 1\}$ (c) $\mathbf{R}_1 = \{\mathbf{u}: -1 < \mathbf{u} < 1\}, \mathbf{R}_2 = \{\mathbf{v}: -\infty < \mathbf{v} < 0\}$ $(d^*) R_1 = \{u: -1 \le u \le 1\}, R_2 = \{v: -\infty < v \le 0\}$

Let $2\sin^2 x + 3\sin x - 2 > 0$ and $x^2 - x - 2 < 0$ (x is measured in radians). Then x lies in the interval 5. (a) $\left(\frac{\pi}{6}, \frac{5\pi}{6}\right)$ (b) $\left(-1, \frac{5\pi}{6}\right)$ $(d^*)\left(\frac{\pi}{6},2\right)$ (c) (-1, 2)

Let $f(x) = (x + 1)^2 - 1$, $(x \ge -1)$. Then the set $S = \{x : f(x) = f^{-1}(x)\}$ is-6. (a) Empty $(b^*) \{0, -1\}$ (1, -1) $(1, -1, \frac{-3 + i\sqrt{3}}{2}, \frac{-3 - i\sqrt{3}}{2}$ ſ

(c)
$$\{0, 1, -1\}$$
 (d) $\left\{0, -1, \frac{-5 + i\sqrt{5}}{2}, \cdots\right\}$

If f(1) = 1 and f(n + 1) = 2f(n) + 1 if $n \ge 1$, then f(n) is-(a) 2^{n+1} (b) 2^n (c* 7. $(c^*) 2^n - 1$ (d) $2^{n-1} - 1$

Let $f : R \rightarrow R$ be given by $f(x) = (x + 1)^2 - 1$. Then $f^{-1}(x) = (x + 1)^2 - 1$. 8. $(a^*) - 1 + \sqrt{x+1}$ $(b) - 1 - \sqrt{x+1}$ (c) does not exist because if not one-one (d) does not exist because f is not onto

If f is an even function defined on the interval (-5, 5), then the real values of x satisfying the equation f(x) =f $\underline{x+1}$

- 21 -

1

< 5 UNLING

(d) 0

(a*)
$$\frac{-1\pm\sqrt{5}}{2}, \frac{-3\pm\sqrt{5}}{2}$$
 (b) $\frac{-1\pm\sqrt{3}}{2}, \frac{-3\pm\sqrt{3}}{2}$
(c) $\frac{-2\pm\sqrt{5}}{2}$ (d) None of these

10. Let $f(x) = [x] \sin\left(\frac{\pi}{[x+1]}\right)$, where [.] denotes the greatest integer function. The domain of f is..... (a) $\{x \in R \mid x \in [-1, 0)\}$ (b) $\{x \in R \mid x \notin [1, 0)\}$ (c*) $\{x \in R \mid x \notin [-1, 0)\}$ (d) None of these

11. If
$$f(x) = \sin^2 x + \sin^2 \cos x \cos \left(x + \frac{\pi}{3} \right)$$
 and $g\left(\frac{5}{4} \right) = 1$, then (gof) (x) =
(a) -2 (b) -1 (c) 2 (d*)

12. If
$$g(f(x)) = |\sin x|$$
 and $f(g(x)) = (\sin \sqrt{x})^2$, then
 $(a^*) f(x) = \sin^2 x$, $g(x) = \sqrt{x}$ (b) $f(x) = \sin x$, $g(x) = |x|$
(c) $f(x) = x^2$, $g(x) = \sin \sqrt{x}$ (d) f and g cannot be determined

13. If
$$f(x) = 3x - 5$$
, then $f^{-1}(x)$
(a) is given by $\frac{1}{3x - 5}$
(b*) is given by $\frac{x + 5}{3}$

17.

(c) does not exist because f is not one-one

(d) does not exist because f is not onto

14. If the function $f:[1, \infty] \rightarrow [1, \infty)$ is defined by $f(x) = 2^{x(x-1)}$, then $f^{-1}(x)$ is

(a)
$$\left(\frac{1}{2}\right)^{(3,4)}$$
 (b*) $\frac{1}{2}(1+\sqrt{1+4\log_2 x})$ (c) $\frac{1}{2}(1-\sqrt{1+4\log_2 x})$ (d) not defined

- **15.** The domain of definition of the function y(x) given by the equation $2^x + 2^y = 2$ is-(a) $0 < x \le 1$ (b) $0 \le x \le 1$ (c) $-\infty < x \le 0$ (d*) $-\infty < x < 1$
- 16. Let $f(\theta) = \sin\theta (\sin\theta + \sin3\theta)$, then $f(\theta)$ (b) ≤ 0 for all θ (a) ≥ 0 only when $\theta \geq 0$ (b) ≤ 0 for all θ (c*) ≥ 0 for all real θ (d) ≤ 0 only when $\theta \leq 0$
 - The number of solutions of $\log_4 (x 1) = \log_2 (x 3)$ is-
- (a) 3 (b*) 1 (c) 2

18. Let
$$f(x) = \frac{dx^2}{x+1}$$
, $x \neq -1$, then for what value of α , $f\{f(x)\} = x$.
(a) $\sqrt{2}$ (b) $-\sqrt{2}$ (c) 1 (d*) -1

- 22 -

JEE SCREENING QUESTIONS CHAPTER WISE ТTТ

19. The domain of definition of
$$f(x) = \frac{\log_2(x+3)}{x^2+3x+2}$$
 is-
(a) R/{-2, -2} (b) (-2, ∞) (c) R/{-1, -2, -3} (d*) (-3, ∞)/{-1, -2}

If $f: [1, \infty) \to [2, \infty)$ is given by $f(x) = x + \frac{1}{x}$ then $f^{-1}(x)$ equals-20.

(a*)
$$\frac{x + \sqrt{x^2 - 4}}{2}$$
 (b) $\frac{x}{1 - x^2}$ (c) $\frac{x - \sqrt{x^2 - 4}}{2}$ (d) $1 + \sqrt{x^2 - 4}$

21. Suppose $f(x) = (x + 1)^2$ for $x \ge -1$. If g(x) is the function whose graph is the reflection of the graph of f(x) with respect to the line y = x, then g(x) equals-

(a)
$$-\sqrt{x} - 1, x \ge 0$$
 (b) $\frac{1}{(x+1)^2}, x > -1$
(c) $\sqrt{x+1}, x \ge -1$ (d*) $\sqrt{x} - 1, x \ge 0$

Х

T . C()

22. Let function $f : R \rightarrow R$ be defined by $f(x) = 2x + \sin x$ for $x \in R$. Then f is-(a*) one to one and onto (b) one to one but NOT onto (c) onto but NOT one to one (d) neither one to one onto

23. Let
$$f(x) = \frac{x}{1+x}$$
 defined as $[0, \infty) \rightarrow [0, \infty)$, $f(x)$ is-
(a)one one & onto
(c) not one-one but onto
24. Find the range of $f(x) = \frac{x^2 + x + 2}{x^2 + x + 1}$ is-
(a) $(1, \infty)$ (b) $\left(1, \frac{11}{7}\right)$ (c*) $\left(1, \frac{7}{3}\right)$ (d) $\left(1, \frac{7}{5}\right)$
25. Domain of $f(x) = \sqrt{\sin^{-1}(2x) + \pi/6}$ is-
(a*) $\left[-\frac{1}{4}, \frac{1}{2}\right]$ (b) $\left[-\frac{1}{2}, \frac{1}{2}\right]$ (c) $\left[-\frac{1}{4}, \frac{1}{4}\right]$ (d) $\left[-\frac{1}{2}, \frac{1}{4}\right]$

Let $f(x) = \sin x + \cos x \& g(x) = x^2 - 1$, then g(f(x)) will be invertible for the domain-26.

(a)
$$\mathbf{x} \in [0, \pi]$$
 (b*) $\mathbf{x} \in \left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$ (c) $\mathbf{x} \in \left[0, \frac{\pi}{2}\right]$ (d) $\mathbf{x} \in \left[-\frac{\pi}{2}, 0\right)$

 $f(x) = \begin{cases} x & x \in Q \\ 0 & x \notin Q \end{cases}; g(x) = \begin{cases} 0 & x \in Q \\ x & x \notin Q \end{cases}$ 27. then (f - g) is

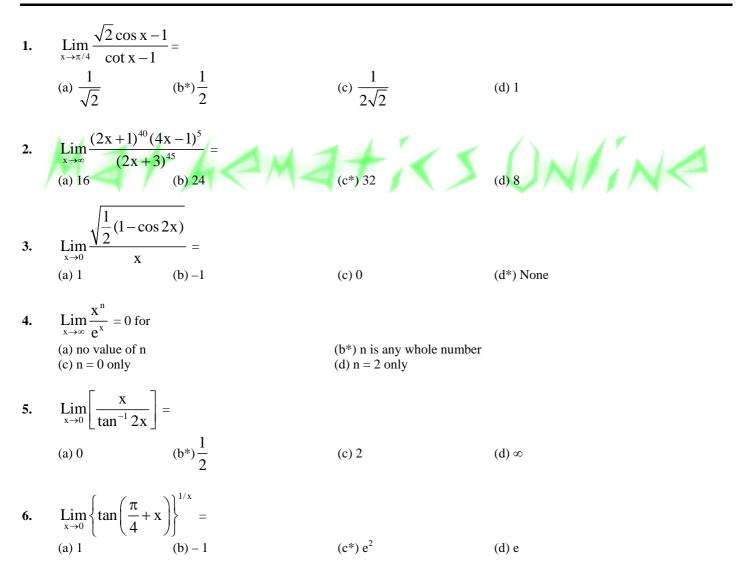
(a*) one – one, onto (c) one-one but not onto

28.
$$f: R \rightarrow R, f\left(\frac{1}{n}\right) = 0 n \in I, n \ge 1$$
 then
(a) $f(x) = 0$ for $x \in [0, 1]$

(b) neither one-one, nor onto (d) onto but not one-one

(b) f(x) = 0 for $x \in R$

Mathematics Online : It's all about Mathematics **IIT JEE Screening Exam Questions**


IIT JEE SCREENING QUESTIONS CHAPTER WISE

 $(c^*) f(0) = 0 = f'(0)$

(d) f(x) = 0 = f'(x) can not be

						AN	SWE	R KE	Y						
Q.No	. 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	b	а	b	d	d	b	с	а	а	c	d	а	b	b	D
	Q.No.	16	17	18	19	20	21	22	23	24	25	26	27	28	
	Ans.	c	b	d	d	a	d	а	b	c	а	b	а	c	

17. LIMITS

Mathematics Online : It's all about Mathematics IIT JEE Screening Exam Questions

IIT JEE Screening Exam Questions

Visit us at: www.mathematicsonline.co.in

7.
$$\lim_{x \to 0} \left(\frac{1+5x}{1+3x^2} \right)^{1/x^2} = (b) c (c) c^2 (d^*) c^{-1}$$

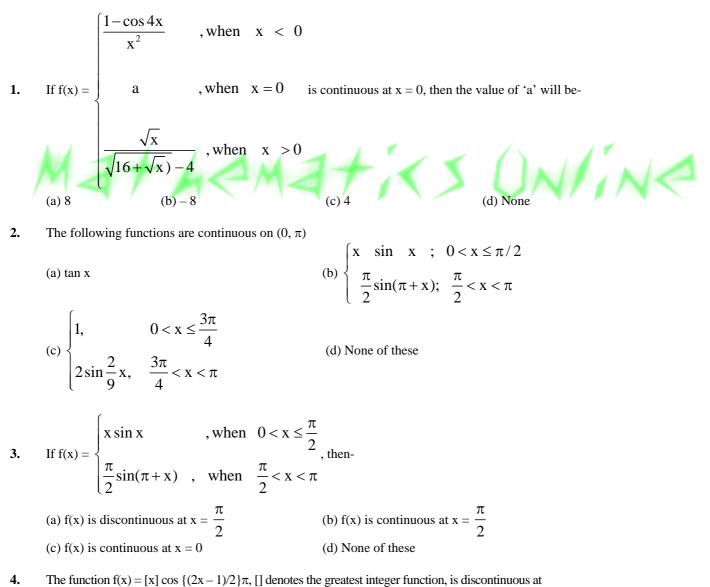
8. The value of
$$\lim_{h \to 0} \frac{\log(1+2h) - 2\log(1-h)}{h^2} is.$$
(a*) 1 (b) -1 (c) 0 (d) None of these
9.
$$\lim_{x \to 1} \frac{\sqrt{1-\cos 2(x-1)}}{x-1} = (b) -1 (c) 0 (d) None of these
9.
$$\lim_{x \to 0} \frac{\sqrt{1-\cos 2(x-1)}}{x-1} = (b) -1 (c) 0 (d) None of these
9.
$$\lim_{x \to 0} \frac{\sqrt{1-\cos 2(x-1)}}{x-1} = (b) -1 (c) 0 (d) Exists and it equals - \sqrt{2}$$
(c) Does not exist because LH. 4 RH. (b) Exists and it equals $-\sqrt{2}$
(c) Does not exist because $x - 1 \to 0$ (d) Exists and it equals $-\sqrt{2}$
(e) Does not exist because $x - 1 \to 0$ (f) Exists and it equals $\sqrt{2}$
10.
$$\lim_{x \to 0} \frac{x (an 2x - 2x (an x)}{(1 - \cos 2x)^2} is.$$
(a*) $\frac{1}{2} (b) -2 (c) 2 (c) 2 (d) -\frac{1}{2}$
11. For $x \in R$, $\lim_{x \to 0} \left(\frac{x-3}{x+2}\right)^x = (c^*) c^5$ (d) c^2
12.
$$\lim_{x \to 0} \frac{\sin(\pi \cos^2 x)}{x^2} equals.$$
(a) $-\pi (b^*) \pi (c) \frac{\pi}{2} (c) (2 \cos x - b) (c \cos x - b) (c^*) c^2 (d) c^2$
13. The value of integer n, for which $\lim_{x \to 0} \frac{(\cos x - 1)}{(c^*) a^2} (c^*) c^2 (d) c^3$
14. Let $f : R \to R$ such that $f(1) = 3$ and $f'(1) = 6$. then $\lim_{x \to 0} \left(\frac{f(1 + x)}{f(1)}\right)^{1/x}$ equals.
(a) 1 (b) $e^{1/2} (c^*) c^2 (d) e^3$
15. If $\lim_{x \to 0} \frac{(\sin nx)}{x^2} \frac{[(a - n)nx - \tan x]}{x^2} = 0$ then the value of a is.
(a) $\frac{1}{n+1} (b) \frac{n}{n+1} (c^*) n + \frac{1}{n} (d) n$
16. If $f(x)$ is a differentiable function and $f'(2) = 6$, $f'(1) = 4$, $f'(c)$ represents the differentiation of $f(x)$ at $x = c$, then $\lim_{x \to 0} \frac{f(2+2h+h^2) - f(2)}{f(1+h^2+h) - f(1)}$
(a) may exist (b) will not exist (c^*) is equal to 3 (d) is equal to -3$$

Mathematics Online : it's all about Mathematics$$

- 25 -

(a) 1

(d) 2


17. Let f(x) be strictly increasing and differentiable, then $\lim_{x \to 0} \frac{f(x^2) - f(x)}{f(x) - f(0)}$ is-

 $(b^*) - 1$

_							ANS	WE	R K	ΕY							
<mark>Q.No.</mark>	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Ans.	b	с	d	b	b	с	a	b	а	а	с	b	с	с	с	с	b

(c) 0

18. CONTINUITY

(a) all x (b) all integer points (c) no x (d) x which is not an integer

Mathematics Online : It's all about Mathematics IIT JEE Screening Exam Questions

5. Let f(x) be defined for all x > 0 and be continuous. Let f(x) satisfy $f\left(\frac{x}{y}\right) = f(x) - f(y)$ for all

x, y &
$$f(e) = 1$$

(a)
$$f(x)$$
 is bounded (b) $f\left(\frac{1}{x}\right) \to 0$ as $x \to 0$

(c) $x f(x) \rightarrow 1$ as $x \rightarrow 0$ (d) $f(x) = \log x$

6. The function $f(x) = [x]^2 = [x^2]$ (where [y] is the greatest integer less than or equal to y), is discontinuous at-(a) All integers (b) All integers except 0 and 1 (c) All integers except 0 (d) All integers except 1

	A	NSM	/ER	KE١	(
Q.No.	1	2	3	4	5	6
Ans.	а	с	a	с	d	d

19. DIFFERENTIATION

1. The derivative of function
$$\cot^{-1} [(\cos 2x)^{1/2}]$$
 at $x = \frac{\pi}{6}$ is
(a*) $(2/3)^{1/2}$ (b) $(1/3)^{1/2}$ (c) $3^{1/2}$ (d) $6^{1/2}$
2. Indicate the correct alternative:
Let [x] denote the greater integer $\leq x$ and $f(x) = [\tan^2 x]$, then
(a) $\lim_{x \to 0} f(x)$ does not exist (b*) $f(x)$ is continous at $x = 0$
(c) $f(x)$ is not differentiable at $x = 0$ (d) $f'(0) = 1$
3. If $y = \sec \tan^{-1} x$ then $\frac{dy}{dx} =$
(a) $x/(1 + x^2)$ (b) $x \sqrt{(1 + x^2)}$ (c) $1/\sqrt{(1 + x^2)}$ (d*) $x/\sqrt{(1 + x^2)}$
4. If $f(x) = \tan^{-1} \sqrt{\frac{1 + \sin x}{1 - \sin x}} \ 0 \leq x \leq \pi/2$, the f' ($\pi/6$) is
(a) $-\frac{1}{4}$ (b) $-\frac{1}{2}$ (c) $\frac{1}{4}$ (d*) $\frac{1}{2}$
5. $g(x) = x f(x)$, where $f(x) = \begin{cases} x \sin(1/x), x \neq 0 \\ 0 & x = 0 \end{cases}$ at $x = 0$
(a*) g is differentiable but g' is not continuous
(b) both f and g are differentiable
(c) g is differentiable but g' is continuous
(d) None of these
6. Let $f\left(\frac{x + y}{2}\right) = \frac{f(x) + f(y)}{2}$ for all real x and y and f' (1) = -1, then f'(2) =
(a) $1/2$ (b) 1 (c*) -1 (d) -1/2

Mathematics Online : It's all about Mathematics IIT JEE Screening Exam Questions

Mathematics Online : It's all about Mathematics IIT JEE Screening Exam Questions

(d) 1

- **20.** If f(1) = 1; f(2) = 4, f(3) = 9 & f is twice differentiable then (a*) f " (x) = for all x $\in [1, 3]$ (b) f " (x) = f ' (x) = 5 ; x $\in [1, 3]$ (c) f " (x) = 2 for only x $\in [1, 3]$ (d) ax + (1 - a) x² ; for x $\in (1, 3)$
- **21.** f(x) = ||x| 1| is not differentiable at $x = (a^*) 0, \pm 1$ (b) ± 1 (c) 0

							ANS	WE	R	KE	Y								
Q.No.	Q.No. 1 2 3 4 5 6 7				8	3	9)	10	1	1	12	13	14	15				
Ans.	а	b	d	d	8	a o	c	d	ł	,	a		d		b	d	а	d	c
				Q.N	lo.	16	17	1	8	19		2	0	21					
		An	s.	d	b	1	a	d		а	ι	a							

20. TANGENT & NORMAL

- 1. The co-ordinates of the point on the curve $y = x^2 + 3x + 4$ the tangent at which passes through the origin is equal to (a*) (2, 14) (-2, 2) (b) (2, 14), (-2, -2) (c) (2, 14) (2, 2) (d) None of these
- 2. If the parametric equation of a curve is given by $x = e^t \cos t$, $y = e^t \sin t$ then the tangent to the curve at the point $t = \pi/4$ makes with the axis of x the angle (a) 0 (b) $\pi/4$ (c) $\pi/3$ (d*) $\pi/2$

3. The curve
$$y - e^{xy} + x = 0$$
 has a vertical tangent at the point-
(a) (1, 1) (b) at no point (c) (0, 1)

- 4. If y = 4x 5 is tangent to the curve $y^2 = px^3 + q$ at (2, 3), then (a*) p = 2, q = -7 (b) p = -2, q = 7 (c) p = -2, q = -7 (d) p = 2, q = 7
- 5. The curve $y = ax^3 + bx^2 + cx + 5$ touches the x-axis at P(-2, 0) and cuts the y-axis at a point Q where its gradient is 3. The a, b, c are respectively $(a^*) - 1/2, -3/4, 3$ (b) 3, -1/2, -4 (c) -1/2, -7/4, 2 (d) None of these
- 6. Let C be the curve $y^3 3xy + 2 = 0$. If H be the set of points on the curve C, where tangent is horizontal and V is the set of points on the curve C where the tangent is vertical, then H = ... V = ...(a*) ϕ , (1, 1) (b) ϕ , (2, 1) (c) ϕ , (0, 1) (d) None of these
- 7. On the ellipse $4x^2 + 9y^2 = 1$, the points at which the tangents are parallel to the line 8x = 9y are-(a) $\left(\frac{2}{5}, \frac{1}{5}\right)$ or $\left(\frac{1}{5}, \frac{2}{5}\right)$ (b*) $\left(-\frac{2}{5}, \frac{1}{5}\right)$ or $\left(\frac{2}{5}, -\frac{1}{5}\right)$ (c) $\left(-\frac{2}{5}, -\frac{1}{5}\right)$ (d) $\left(-\frac{1}{5}, -\frac{2}{5}\right)$
- 8. If x + y = K is normal to $y^2 = 12$, then K is-(a) 3 (b*) 9 (c) -9 (d) -3
- 9. If the normal to the curve y = f(x) at the point (3, 4) makes an angle $3\pi/4$ with the positive x-axis, then f'(3) =

(a)
$$-1$$
 (b) $-\frac{3}{4}$ (c) $\frac{4}{3}$ (d*) 1

10. The triangle formed by the tangent to the curve $f(x) = x^2 + bx - b$ at the point (1, 1) and the cofirst quadrant. If its area is 2, then the value of b is (a) -1 (b) 3 (c*) -3 (d) 1

- 11. The point(s) on the curve $y^3 + 3x^2 = 12y$ where the tangent is vertical, is (are) (a) $\left(\pm\frac{4}{\sqrt{3}}, -2\right)$ (b) $\left(\pm\sqrt{\frac{11}{3}}, 1\right)$ (c) (0, 0) (d*) $\left(\pm\frac{4}{\sqrt{3}}, 2\right)$
- 12. The equation of the common tangent to the curves $y^2 = 8x$ and xy = -1 is-(a) 3y = 9x + 2 (b) y = 2x + 1 (c) 2y = x + 8 (d*) y = x + 2
- 13. According to mean value theorem in the interval $x \in [0, 1]$ which of the following does not follow-

(a*) $f(x) = \frac{1}{2} - x$; x < $\frac{1}{2}$	(b) $f(x) = \frac{\sin x}{x}$; x ≠ 0
$=\left(\frac{1}{2}-\mathbf{x}\right)^2$	$; x \ge \frac{1}{2}$	=1	; x = 0
(c) $f(x) = x x $		(d) $f(x) = x $	

14. If focal chord of $y^2 = 16 x$ touches $(x - 6)^2 + y^2 = 2$ then slope of such chord is

(a*) 1, -1 (b) 2,
$$-\frac{1}{2}$$
 (c) $\frac{1}{2}$, -2 (d) 2, -2
15. Let $f(x) = x^{\alpha} \log x$ for $x > 0$ & $f(0) = 0$ follows Rolle's theorem for [0, 1] then α is-
(a) -2 (b) -1 (c) 0 (d*) 1/2

						AN	SWE	R KE	Y						
Q.No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	а	d	d	а	а	а	b	b	d	c	d	d	а	а	d

21. MONOTONICITY

1. If $f(x) = \begin{cases} 3x^2 + 12x - 1, -1 \le x \le 2\\ 37 - x, \quad 2 < x \le 3 \end{cases}$ then f(x) is-

(a) Increasing in [-1, 2]
(b) Continuous in [-1, 3]
(c) Greatest at x = 2
(d*) All above correct

2. The function f defined by f(x) = (x + 2) e^{-x} is(a) Decreasing for all x
(b) Decreasing in (-∞, -1) and increasing (-1, ∞)
(c) Increasing for all x
(d*) Decreasing in (-1, ∞) and increasing in (-∞, -1)

3. Function
$$f(x) = \frac{\log (\pi + x)}{\log (e + x)}$$
 is decreasing in the interval-
(a) $(-\infty, \infty)$ (b*) $(0, \infty)$ (c) $(-\infty, 0)$

Mathematics Online : It's all about Mathematics IIT JEE Screening Exam Questions

- 30 -

pankaj.baluja@mathematicsonline.co.in Visit us at: www.mathematicsonline.co.in

(d) No where

4. If
$$f(x) = \frac{x}{\sin x}$$
 and $g(x) = \frac{x}{\tan x}$, where $0 < x \le 1$, then in this interval-
(a) Both $f(x)$ and $g(x)$ are decreasing function
(c) Both $f(x)$ and $g(x)$ are decreasing function
(c) $f(x)$ is an increasing function
(d) $g(x)$ is an increasing function
(e) is idecreasing whenever *I* is increasing
(c) h is idecreasing whenever *I* is increasing
(d) nothing can be said in general
6. The function $f(x)$ is diffied by $f(x) - (x + 2) e^{-x}$ is:
(a) $0 < x < \frac{\pi}{8}$ (b) $\frac{\pi}{4} < x < \frac{3\pi}{8}$ (c) $\frac{3\pi}{8} < x < \frac{5\pi}{8}$ (d) $\frac{5\pi}{8} < x < \frac{3\pi}{4}$
7. The function $f(x)$ is diffied by $f(x) - (x + 2) e^{-x}$ is:
(a) $0 < x < \frac{\pi}{8}$ (b) $\frac{\pi}{4} < x < \frac{3\pi}{8}$ (c) $\frac{3\pi}{8} < x < \frac{5\pi}{8}$ (d) $\frac{5\pi}{8} < x < \frac{3\pi}{4}$
8. Let $f(x) = \int e^{x} (x - 1) (x - 2) dx$. Then *I* decreases in the interval-
(a) $(-\infty, -2)$ (b) $(-2, -1)$ (c^a) $(1, 2)$ (d) $(2, +\infty)$
9. Consider the following statement S and R:
8. So for the following statement S and R:
8. If a differentiable function decreases in an interval (α, b) , then its derivative also decreases in (a, b) Which of the
following is true e^{-1} (b) D decreasing on $[-1/2, 1]$ (b) Decreasing on R
(c) S is correct and R is the correct explanation for S
(c) S is correct and R is the correct explanation for S
(d) P S is correct and R is the correct explanation for S
(d) D decreasing on $[-1/2, 1]$ (b) Decreasing on R
(d) $(|x| - x^2 - 2bx + 3x^2)^2 g(x) = -x^2 - 2cx + 5^2$ if the minimum value of $f(x)$ is always greater than maximum value of $g(x)$
then.
(a) $|x| - x^2 - 2bx + 3x^2 - 2bx - 2x^2 - 2x - 5^2$ if the minimum value of $f(x)$ is always greater than maximum value of $g(x)$
then.
(a) $|x| - x^2 - 2bx + 3x^2 - 3g(x) = -x^2 - 2cx - 5^2$ if the minimum value of $f(x)$ is always greater t

(c) has local minima

(d) is bounded curve

								ANSV	VER	ΚΕΥ							_
		Q.No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
		Ans.	d	d	b	c	a	d	b	c	d	а	а	А	а	а	
						:	22. N	IAXII	MA &	MIN	IIMA						
1.	If A > 0, B (a*)1/3	> 0 and	A + B (b) 2		, then t	the ma	ximur	n valu (c) 1		nA tai	n B is		(d) No	ne of t	hese		
2.	The function $(a) p \neq q$	on $f(x) =$	px – 0 (b) r	-	k , x ∈	(−∞, ¤) whe	ere p > (c*)	-	0, r >	0, assu		ts mini (d) p =		value	only at	t one point if
3.	On the inter	rval [0, 1			on x ²⁵	(1 – x	⁷⁵) tak			num va	alue of	the po	int-				
	(a) 0		(b*)	$\frac{1}{4}$				$(c)\frac{1}{2}$	-			($(d)\frac{1}{3}$				
4.	The numbe (a) 0	r of valu	es of x (b*)		e the f	unctio	n f(x)	$= \cos x$ (c) 2		s (√2	$\overline{\mathbf{x}}$) att		s maxi (d) infi				
5.	The function (a) 0, 4 Let $f(x) = <$	on $f(x) =$	$\int_{-1}^{x} t(e) (b^*)$	^t –1) 1, 3	(t –	1) (t – 2)	³ (t (c) 0	-3) ⁵	dt has	a loca	l minir	num a (d) 2, 4	t x =]]	C	
6.	Let $f(x) = \langle$	$ \left x \right for $	or 0	< x = 0	≤ 2	, then	at x =	0, f ha	ıs-				Č				
	(a*) a local (c) a local r				ocal m extrem		ım										
7.	Let $f(x) = (1)$ (a) [0, 1]	$(+b^2) x^2$		+ 1 and 0, 1/2		is mini	imum v		f f(x). 1/2, 1]		aries, tł	-	e of m((d*) (0				
8.	The value of	of 'θ'; θ	∈ [0, 2	π] for	which	the su	m of i	nterce	pts on	coord	linate a	xes cu	t by ta	ngent	at poi	nt (31	$\sqrt{3} \cos \theta$, sin θ) to
	ellipse $\frac{x^2}{27}$	$+y^{2}=1$	l is mi	nimun	n is:												
	$(a^*) \ \frac{\pi}{6}$		(b) $\frac{\pi}{3}$	$\frac{\tau}{3}$				$(c)\frac{\pi}{4}$	-			($(d)\frac{\pi}{8}$				
9.	If $f(x) = \sqrt{2}$	$\overline{x^2 + x}$	$+\frac{\mathrm{ta}}{\sqrt{\mathrm{x}}}$	$\frac{n^2 \alpha}{x^2 + x}$	-,α∈	(0, π/2	2), x >	> 0 the	n valu	e of f((x) is g	reater	han oi	equal	to:		
	(a) 2		(b*)	2 tan	α			(c) $\frac{2}{2}$	$\frac{5}{2}$			((d) sec	α			

ANSWER KEY

Mathematics Online : It's all about Mathematics IIT JEE Screening Exam Questions

- 32 -

Q.No.	1	2	3	4	5	6	7	8	9
Ans.	а	с	b	b	b	a	d	а	b

23. INDEFINITE INTEGRATION

1.
$$\int \frac{(3x+1)}{(x-1)^3} dx = qual to^{-1}$$
(a*) $\frac{1}{4} \log |x+1| - \frac{1}{4} \log |x-1| - \frac{1}{2(x-1)} - \frac{1}{(x-1)} + c$
(b) $\frac{1}{4} \log |x-1| - \frac{1}{4} \log |x+1| - \frac{1}{2(x-1)} - \frac{1}{(x-1)^2} + c$
(c) $\frac{1}{4} \log |x+1| + \frac{1}{4} \log |x-1| - \frac{1}{2(x-1)} - \frac{1}{(x-1)} + c$
(d) None of these
2. The value of the integral $\int \frac{\cos^3 x + \cos^3 x}{\sin^2 x + \sin^4 x} dx$ is-
(a) $\sin x - 6 \tan^{-1} (\sin x) + c$
(b) $\sin x - 2 (\sin x)^{-1} + c$
(c) $\sin x^{-1} (\sin x)^{-1} - 6 \tan^{-1} (\sin x) + c$
(d) $\sin x - 2 (\sin x)^{-1} + 5 \tan^{-1} (\sin x) + c$
(e) $\sin x - 2 (\sin x)^{-1} + 5 \tan^{-1} (\sin x) + c$
(f) $\frac{dx}{(x-p) - \sqrt{(x-p)}}$
(g) $\frac{dx}{(x-p) - \sqrt{(x-q)}}$
(g) $\frac{dx}{(x-p) - \sqrt{(x-q)}}$
(g) $\frac{dx}{(x-p) - \sqrt{(x-q)}}$
(g) $\frac{1}{\sqrt{(x-p) - (x-q)}} + c$
(h) $\log \left(-\frac{x}{1+x} - \frac{e^x}{e^x}\right) + \frac{1}{1+x} - \frac{e^x}{e^x} + c$
(c) $\frac{1}{\sqrt{(x-p) - (x-q)}} + c$
(d) None of these
5. $\int \frac{dx}{(\sin x+4) - (\sin x-1)} = \frac{A}{\tan \frac{x}{2}-1} + B \tan^{-1} (f(x)) + c$, then-
(a) $A = \frac{1}{5}, B = -\frac{2}{5\sqrt{15}}, f(x) = \frac{4 \tan x + 3}{\sqrt{15}}$

Mathematics Online : It's all about Mathematics IIT JEE Screening Exam Questions

IIT JEE SCREENING QUESTIONS CHAPTER WISE

(b)
$$A = -\frac{1}{5}, B = \frac{1}{\sqrt{15}}, f(x) = \frac{4\tan\left(\frac{x}{2}\right) + 1}{\sqrt{15}}$$

(c) $A = \frac{2}{5}, B = -\frac{2}{5\sqrt{5}}, f(x) = \frac{4\tan\left(\frac{x}{2}\right) + 1}{\sqrt{5}}$
(d*) $A = \frac{2}{5}, B = -\frac{2}{\sqrt{15}}, f(x) = \frac{4\tan\left(\frac{x}{2}\right) + 1}{\sqrt{5}}$
6. $\int \frac{\cos x - \sin x}{\cos x + \sin x} (2 + 2 \sin 2x) dx$ is equal to
(a*) $\sin 2x + c$ (b) $\cos 2x + c$ (c) $\tan 2x + c$ (d) None of these
7. $\int \frac{dx}{(2x - 7)\sqrt{x^2 - 7x + 12}}$ is equal to-
(a) $2 \sec^{-1}(2x - 7) + c$ (b*) $\sec^{-1}(2x - 7) + c$
(c) $\frac{1}{2} \sec^{-2}(2x - 7) + c$ (b*) $\sec^{-1}(2x - 7) + c$
(c) $\frac{1}{2} \sec^{-2}(2x - 7) + c$ (b*) $\sec^{-1}(2x - 7) + c$
(c) $\frac{1}{2} \sec^{-2}(2x - 7) + c$ (b*) $\sec^{-1}(2x - 7) + c$
(c) $\frac{1}{2} \sec^{-2}(2x - 7) + 2$ (d) None of these
8. $\int \left(\frac{1 - \sqrt{x}}{1 + \sqrt{x}}\right)^{1/2} \frac{dx}{x}$ is equal to-
(a) $\left[\log \left[\frac{1 + \sqrt{1 - x}}{\sqrt{x}}\right] - \cos^{-1}\sqrt{x} \right] + c$ (d) None of thse
9. $\int \cos x \log \left(\tan \frac{x}{2} \right) dx$ is equal to-
(a) $\sin x \log \left(\tan \frac{x}{2} \right) + c$ (b*) $\sin x \log \tan \frac{x}{2} - x + c$
(c) $\sin x \log \left(\tan \frac{x}{2} \right) + x + c$ (d) None of these
10. $\int \frac{x^3 + 3x + 2}{(x^2 + 1)^2(x + 1)} dx$ is equal to-
(a) $\frac{1}{4} \log \left| \frac{x^2 + 1}{(x + 1)^2} \right| + \frac{3}{2} \tan^{-1} x - \frac{x}{x^2 + 1} + c$ (d) None of these
10. $\int \frac{x^3 + 3x + 2}{(x^2 + 1)^2(x + 1)} dx$ is equal to-
(c) $\frac{1}{4} \log \left| \frac{x^2 + 1}{(x + 1)^2} \right| + \frac{3}{2} \tan^{-1} x - \frac{x}{x^2 + 1} + c$ (d) None of these
10. $\int \frac{x^2 + 3x + 2}{(x^2 + 1)^2(x + 1)} dx$ is equal to-
(a) $\frac{1}{4} \log \left| \frac{x^2 + 1}{(x + 1)^2} \right| + \frac{3}{2} \tan^{-1} x - \frac{x}{x^2 + 1} + c$ (d) None of these
10. $\int \frac{x^2 + 3x + 2}{(x^2 + 1)^2(x + 1)} dx$ is equal to-
(c) $\frac{1}{4} \log \left| \frac{x^2 + 1}{(x + 1)^2} \right| + \frac{3}{2} \tan^{-1} x - \frac{x}{x^2 + 1} + c$ (d) None of these
10. $\int \frac{x^2 + 3x + 2}{(x^2 + 1)^2(x + 1)} dx$ is equal to-
(c) $\frac{1}{4} \log \left| \frac{x^2 + 1}{(x + 1)^2} \right| + \frac{3}{2} \tan^{-1} x - \frac{x}{x^2 + 1} + c$ (d) None of these
ANSWER KEY

Mathematics Online : It's all about Mathematics IIT JEE Screening Exam Questions

- 34 -

1.

2.

3.

4.

5.

6.

7.

8.

9.

								1					
		Q.No.	1	2	3	4	5	6	7	8	9	10	
		Ans.	а	c	b	a	d	а	b	b	b	с	
				24.	DEF	ΙΝΙΤΙ	ε ιντ	FEGR	ΑΤΙΟ	DN			
_	$\int_{-\pi}^{\pi} (\cos ax - \sin b)$	$(\mathbf{x})^2 d\mathbf{x} w \mathbf{h}$	ere a a	nd b ai	e inte	vers is	equal	to-					
-	$\int_{-\pi}^{-\pi} (\cos a) = -\pi$	(b) 0			2	(c) π				((d*) 2	π	
•	The value of $\int_{-\pi}^{\pi} (1 - t) dt$	$-x^2$) sin x	$\cos^2 x$	dx is-									
	(a*) 0	(b) $\pi - \pi^3$	3			(c) 2	$\pi - \pi^3$	}		((d) $\frac{7}{2}$	$-2\pi^2$	
•	Integral $\int_0^1 \sin 2\pi x $		ual to-										
	(a) 0	(b) $-\frac{1}{\pi}$				(c) $\frac{1}{\pi}$	-			($(d^*)\frac{2}{\pi}$		
•	If $\int_0^{\pi/3} \frac{\cos x}{3 + 4\sin x}$	$dx = k \log dx$	$\left(\frac{3+2}{3}\right)$	$\left(\frac{2\sqrt{3}}{3}\right)$	then l	c is-							
	(a) $\frac{1}{2}$	(b) $\frac{1}{3}$	4	M	A	(c*)	$\frac{1}{4}$	1		5	$(d)\frac{1}{8}$		Vine
	The value of $\int_0^{3\pi/2}$ (a) 0	$\frac{\mathrm{dx}}{1+\tan^3} i$ (b) 1	S			(c) π	/2			([d*) π/	/4	
	The value of $\int_{\pi/4}^{3\pi/4} \frac{1}{1}$	•						2					
	(a*) $\pi(\sqrt{2}-1)$	(b) $\pi(\sqrt{2})$	+1)			(c)π	(√2 -	-2)		(d) No	ne	
•	$\int_{2}^{3} \frac{\sqrt{x}}{\sqrt{(5-x)} + \sqrt{x}}$ (a*) 1/2	dx = (b) 1/3				(c) 1	/5			ſ	(d) No	ne	
•	If $f(x) = A \sin(\pi x/2)$	$) + B, f' \left(- \frac{1}{2} \right)$	$\left(\frac{1}{2}\right) =$	$\sqrt{2}$ and	nd $\int_0^1 f$				en the	consta	ints A	and B	are-
	(a) $\pi/2$ and $\pi/2$	(b) $2/\pi$ and	d 3π			(c) 0	and –	4/π		((d*) 4/	π and	0
•	The value of $\int_{\pi}^{2\pi} [2 \sin \theta]$	in x]dx , w	here []	repres	sents t	he grea	atest ii	nteger	functio	on is:			
	$(a^*) - \frac{5\pi}{3}$	$(b) - \pi$				(c) $\frac{5}{2}$	$\frac{\pi}{3}$			((d) – 2	π	

Mathematics Online : It's all about Mathematics IIT JEE Screening Exam Questions

- 35 -

10. The function
$$L(x) = \int_{1}^{x} \frac{dt}{t}$$
 satisfied the equation
(a) $L(x + y) = L(x) + L(y)$ (b) $L\left(\frac{x}{y}\right) = L(x) = L(y)$
(c*) $L(xy) = L(x) + L(y)(d)$ None of these
11. If for a non-zero x, a $f(x) + bf\left(\frac{1}{x}\right) = \frac{1}{x} - 5$, where $a \neq b$, then $\int_{1}^{2} f(x) dx =$
(a) $\frac{1}{a^{2} + b^{2}} \left(a \log 2 + 5a + \frac{7b}{2}\right)$ (b) $\frac{1}{a^{2} - b^{2}} \left(a \log 2 - 5a + \frac{7b}{2}\right)$
(c) $-\frac{1}{a^{2} + b^{2}} \left(a \log 2 + 5a - \frac{7b}{2}\right)$ (d) None of these
12. The value of $\int_{x}^{2} \frac{\cos^{2} x}{1 + a^{4}} dx$, $a > 0$ is-
(a) π (b) $a \pi$ (c*) $\frac{\pi}{2}$ (d) 2π
13. Let $\frac{d}{dx} F(x) = \frac{e^{axx}}{x}$, $x > 0$. If $\int_{1}^{4} \frac{2e^{aax^{2}}}{x} dx = F(K) - F(1)$, therefore of the possible values of K is-
(a) 2 (b) 4 (c) 3 (d*) 16
14. If $g(x) = \int_{x}^{1} \cos^{4} t dt$, then $g(x + \pi)$ equals-
(a^{2}) g(x) + g(\pi) (b) $g(x) - g(\pi)$ (c) $g(x) g(\pi)$ (d) $g(x)/g(\pi)$
15. Let for a positive function, let $I_{1} = \int_{1-x}^{1} x \cdot f(x(1-x)] dx & k_{12} = \int_{1-x}^{1} (f(x(1-x))] dx$, where
($2k - 1$) > 0, then $\frac{1}{12}$ is
(a) 2 (b) k (c*) 1/2 (d) 1
16. If $\int_{0}^{x} f(t) dt = x + \int_{1}^{1} tf(t) dt$, then the value of f(1) is-
(a^{2}) 1/2 (b) 0 (c) 1 (d) -1/2
17. $\int_{0}^{1} tan^{-1}(1 - x + x^{2}) dx =$
(a^{2}) $\log 2$ (b) $\log \frac{1}{2}$ (c) $\pi \log 2$ (d) $\frac{\pi}{2} \log \frac{1}{2}$
18. For $n > 0$ $\int_{0}^{2} \frac{x \sin^{2n} x}{\sin^{2n} x + \cos^{2n} x} dx =$
(a^{2}) π (b) π (b) π (c) 2π (d) 3π
Mathematics conline. L's all about Mathematics
- 36 - V Vistu s sit wy wanthematicsconline.co.in

IIT JEE SCREENING QUESTIONS CHAPTER WISE

19. Let f(x) = x - [x], for every real number x, where [x] is the integral part of x. Then $\int f(x) dx$ is-

(a*) 1 (b) 2 (c) 0
$$(d)\frac{1}{2}$$

20.
$$\int_{\pi/4}^{3\pi/4} \frac{dx}{1 + \cos x}$$
 is equal to-
(a*) 2 (b) - 2 (c) $\frac{1}{2}$ (d) - $\frac{1}{2}$

21. If for a real number y, [y] is the greatest integer less than or equal to y, then the value of the integral $\int_{\pi/2}^{3\pi/2} [2\sin x] \, dx$ is

(a)
$$-\pi$$
 (b) 0 (c*) $-\pi/2$ (d) $\pi/2$

22.
$$\int_{-\pi}^{\pi} \frac{\cos^2 x}{1+a^x} dx, a > 0$$
(a) π (b) πa (c*) $\pi/2$ (d) 2π

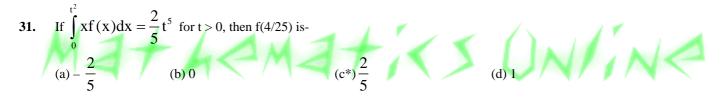
24. If
$$f(x) = \begin{cases} e^{\cos x} \sin; & |x| < 2\\ 2; & \text{otherwise} \end{cases}$$
 Then $\int_{-2}^{3} f(x) dx =$
(a) 0 (b) 1 (c*) 2 (d) 3

25. Let
$$g(x) = \int_{0}^{x} f(t) dt$$
 where $\frac{1}{2} \le f(t) \le 1$, $t \in [0, 1]$ and $0 \le f(t) \le \frac{1}{2}$ for $t \in [1, 2]$. Then
(a) $-\frac{3}{2} \le g(2) < \frac{1}{2}$ (b*) $0 \le g(2) < 2$ (c) $\frac{3}{2} < g(2) \le \frac{5}{2}$ (d) $2 < g(2) < 4$

26. Let f:
$$(0, \infty) \to R$$
 and $F(x^2) = \int_{0}^{x^2} f(t) dt$ If $F(x^2) = x^2 (1 + x)$, then f(4) equals-
(a) $\frac{5}{4}$ (b) 7 (c*) 4 (d) 2

27. The integral
$$\int_{-\frac{1}{2}}^{\frac{1}{2}} \left([x] + \ln\left(\frac{1+x}{1-x}\right) \right) dx \text{ equals-}$$

Mathematics Online : It's all about Mathematics IIT JEE Screening Exam Questions


- 37 -

(a*)
$$-1/2$$
 (b) 0 (c) 1 (d) $2\ell n(1/2)$

28. Let T > 0 be a fixed real number. Suppose f is a continuous function such that for al $x \in R$, f(x + T) = f(x). If $I = \int_{0}^{T} f(x) dx$ then the value of $\int_{3}^{3+3T} f(2x) dx$ is-(b) $\pm 1/\sqrt{2}$ $(c^*) \pm \frac{1}{2}$ (a) -3/2 I (d) 0 and 1

Let $f(x) = \int_{-\infty}^{x} \sqrt{2 - t^2} dt$. Then the real roots of the equation $x^2 - f'(x) = 0$ are-29. $(c)\pm\frac{1}{2}$ (b) $\pm 1/\sqrt{2}$ (a*) ± 1 (d) 0 and 1

30.
$$I_{(m,n)} = \int_{0}^{1} t^{m} (1+t)^{n} dt$$
, then $I_{m,n} = ?$
(a) $I_{(m,n)} = \frac{n}{m+1} \cdot \frac{I_{(m+1, n-1)}}{m+1}$ (b) $I_{(m,n)} = \frac{1}{m+1} \cdot \frac{I_{(m+1, n-1)}}{m+1}$
(c*) $I_{(m,n)} = \frac{2^{n}}{1+m} - \frac{n \cdot I_{(m+1, n-1)}}{m+1}$ (d) $I_{(m,n)} = \frac{2^{n}}{1+m} + \frac{n \cdot I_{(m+1, n-1)}}{m+1}$

32.
$$\int_{0}^{1} \sqrt{\frac{1-x}{1+x}} \, dx \text{ equals to-}$$
(a) $\frac{\pi}{2} + 1 \, (b^*) \frac{\pi}{2} - 1 \, (c) \, 1 \, (d) \, \pi$

33.
$$\int_{-2}^{0} [x^{3} + 3x^{2} + 3x + 3 + (x + 1)\cos(x + 1)]dx =$$

(a*) 4 (b) 0 (c) -1 (d) 1

34.
$$\int_{\sin x}^{1} t^{2} f(t) dt = 1 - \sin x; \ 0 \le x \le \frac{\pi}{2}, \text{ then } f\left(\frac{1}{\sqrt{3}}\right) \text{ is-}$$
(a*) 3 (b) $\frac{1}{2}$ (c) 1

*) 3 (b)
$$\frac{1}{3}$$
 (c) 1 (d) $\sqrt{3}$

Q.No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Ans.	d	a	d	с	d	a	a	d	a	с	b	с	d	а	с	а	а
Q.No.	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34

Mathematics Online : It's all about Mathematics **IIT JEE Screening Exam Questions**

IIT JEE Screening Exam Questions

- 39 -

Visit us at: <u>www.mathematicsonline.co.in</u>

12. If area bounded by the curves $x = ay^2$ and $y = ax^2$ is 1, then a equals-

$$(a^*)\frac{1}{\sqrt{3}}$$
 $(b)\frac{1}{3}$ $(c)\frac{1}{2}$ (d) $\frac{1}{6}$

13. Find the area between the curves $y = (x - 1)^2$, $y = (x + 1)^2$ and $y = \frac{1}{4}$

(a*)
$$\frac{1}{3}$$
 (b) $\frac{2}{3}$ (c) $\frac{4}{3}$ (d) $\frac{1}{6}$

	ANSWER KET											
).	1	2	3	4	5	6	7	8	9	10	11	12
•	с	а	b	а	b	а	d	с	с	с	b	a

26. DIFFERENTIAL EQUATION

1. The differential equation whose solution is $(x - h)^2 + (y - k)^2 = a^2$ is (where a is a constant)-

(a)
$$\left[1 + \left(\frac{dx}{dx}\right)^2\right]^3 = a^2 \frac{d^2 y}{dx^2}$$

(b*) $\left[1 + \left(\frac{dy}{dx}\right)^2\right]^3 = a^2 \left(\frac{d^2 y}{dx^2}\right)^2$
(c) $\left[1 + \left(\frac{dy}{dx}\right)^2\right]^3 = a^2 \left(\frac{d^2 y}{dx^2}\right)^2$
(d) None of these
The solution of the differential equation $(2x - 10y^3) \frac{dy}{dx} + y = 0$ is-
(a) $x + y = ce^{2x}$
(b) $y^2 = 2x^3 + c$
(c*) $xy^2 = 2y^5 + c$
(d) $x(y^2 + xy) = 0$

3. A curve y = f(x) passes thro' the point P(1, 1). The normal to the curve at P is a (y-1) = 0. If the slope of the tangent at any point on the curve is proportional to the ordinate of the point, then the $(a^*) y = e^{K(x-1)}$ (b) $y = e^{Kx}$ (c) $y = e^{K(x-2)}$ (d) None of these

4. The equation of the curve passing through origin and satisfying the differential equation $\frac{dy}{dx} = \sin (10x + 6y)$ is-

(a*)
$$y = \frac{1}{3} \tan^{-1} \left(\frac{5 \tan 4x}{4 - 3 \tan 4x} \right) - \frac{5x}{3}$$
 (b) $y = \frac{1}{3} \tan^{-1} \left(\frac{5 \tan 4x}{4 + 3 \tan 4x} \right) - \frac{5x}{3}$
(c) $y = \frac{1}{3} \tan^{-1} \left(\frac{3 + \tan 4x}{4 - 3 \tan 4x} \right) - \frac{5x}{3}$ (d) None of these

5. A curve C has the property that if the tangent drawn at any point P on C meets the coordinate axis at A and B, then P is the midpoint of AB. If the curve passes through the point (1, 1) then the equation of the curve is-(a) xy = 2 (b) xy = 3 (c*) xy = 1 (d) None of these

6. The order of the differential equation whose general solution is given by $y = (c_1 + c_2) \cos (x + c_2) - c_4 e^{x + c_5}$ where $c_1 c_2 c_3 c_4 c_5$ are arbitrary constant is

7. The differential equation representing the family of curve $y^2 = 2x (x + \sqrt{c})$, where c is a positive parameter, is of-(a*) Order 1, degree 3 (b) Order 2, degree 2 (c) Degree 3, order 3 (d) Degree 4, order 4

Mathematics Online : It's all about Mathematics IIT JEE Screening Exam Questions

- 40 -

pankaj.baluja@mathematicsonline.co.in Visit us at: www.mathematicsonline.co.in

13

а

O.No

Ans

2.

8. The solution of the differential equation
$$\left(\frac{dy}{dx}\right)^2 - x\frac{dy}{dx} + y = 0$$
 is-
(a) $y = 2$ (b) $y = 2x$ (c*) $y = 2x - 4$ (d) $y = 2x^2 - 4$

9. Let
$$(1 + t) \frac{dy}{dt} - ty = 1$$
, $y(0) = -1$. find $y(t) t = 1$?
 $(a^*) -\frac{1}{2}$ (b) $\frac{1}{2}$ (c) $e -\frac{1}{2}$ (d) $e +\frac{1}{2}$

10. If y = y(x) satisfies $\frac{2 + \sin x}{1 + y} \left(\frac{dy}{dx} \right) = -\cos x$ such that y(0) = 1 then $y(\pi/2)$ is equal to-(a) 3/2 (b) 5/2 (c*) 1/3 (d) 1

11.
$$(x^2 + y^2) dy = xy dx$$
 (initial value problem), $y > 0$, $x > 0$, $y(1) = 1$, $y(x_0)$ then find $x_0 = ?$
(a) $\sqrt{\frac{e^2 - 1}{2}}$ (b) $\sqrt{2e^2 - 1}$ (c) $\sqrt{e^2 - 2}$ (d*) $\sqrt{3} e^{2}$

 $xdy - ydx = y^{2}dy, y > 0 \& y(1) = 1$ then find y(-3) = ?12. (a*) 3 (d) 5 (b) 2 (c) 4 **ANSWER KEY** 12 1 2 3 5 11 Q.No 4 6 7 8 9 10 b d Ans. с а а с с а с а с а

1. A unit vector coplanar with $\mathbf{i} + \mathbf{j} + 2\mathbf{k}$ and $\mathbf{i} + 2\mathbf{j} + \mathbf{k}$ and perpendicular to $\mathbf{i} + \mathbf{j} + \mathbf{k}$ is

(a*)
$$\pm \frac{j-k}{\sqrt{2}}$$
 (b) $\frac{j-k}{\sqrt{2}}$ (c) $-\frac{j+k}{\sqrt{2}}$ (d) None of these

2. A unit vector in xy-plane that makes an angle of 45° with the vector $\mathbf{i} + \mathbf{j}$ and an angle of 60° with the vector $3\mathbf{i} - 4\mathbf{j}$ is

(a) i (b)
$$\frac{(1+J)}{\sqrt{2}}$$
 (c) $\frac{(1-J)}{\sqrt{2}}$ (d*) None of these

3. If **x** and **y** are two unit vectors and ϕ is the angle between them, then $\frac{1}{2} |\mathbf{x} - \mathbf{y}|$ is equal to

(a) 0 (b)
$$\pi/2$$
 (c) $\left| \sin \frac{1}{2} \phi \right|$ (d*) $\left| \cos \frac{1}{2} \phi \right|$

Let a, b, c be distinct non-negative numbers. If the vectors ai + aj + ck, I + k and ci + cj + bk lie in a plane, then c is(a) The Arithmetic Mean of a and b
(b*) The Geometric mean of an and b
(c) The Harmonic mean of and b
(d) Equal to zero+

Mathematics Online : It's all about Mathematics IIT JEE Screening Exam Questions

- 41 -

If the non-zero vectors \vec{a} and \vec{b} are perpendicular to each other, then the solution of the equation $\vec{r} \times \vec{a} = \vec{b}$ is -5.

(a*)
$$\vec{r} = x \vec{a} + \frac{1}{\vec{a} \cdot \vec{a}} (\vec{a} \times \vec{b})$$

(b) $\vec{r} = x \vec{b} + \frac{1}{\vec{b} \cdot \vec{b}} (\vec{a} \times \vec{b})$
(c) $\vec{r} = x \vec{a} \times \vec{b}$
(d) $\vec{r} = x \vec{b} \times \vec{a}$

Let α , β , γ be distinct real numbers. The points with position vectors $\alpha i + \beta j + \gamma k$, $\beta i + \gamma j + \alpha k$, 6. $\gamma i + \alpha j + \beta k$ -(a) Are collinear (b*) Form an equilateral triangle

(c) Form an isosceles triangle

(d) Form a right angled triangle

b)

7. The vector
$$\frac{1}{3}(2i-2j+k)$$
 is
(a*) A unit vector

- (b) Makes an angle $\pi/3$ with the vector 2i 4j + 3k
- (c) Parallel to the vector 3i + 2j 2k
- (d) None of these

8. Let a = i - j, b = j - k, c = k - i. If d is a unit vector such that a. d = 0 = [b, c, d], then d equals $(a^*) \pm \frac{i+j-2k}{\sqrt{6}}$ $(b) \pm \frac{i+j-k}{\sqrt{3}}$ $(c) \frac{i+j+k}{\sqrt{2}}$ $(d) \pm k$

9. Let u, v, w be vectors such that u + v + w = 0. If |u| = 3, |v| = 4, |w| = 5. Then the value of the u.v. + v. w + w. u is-(b) - 25-(c) 0 / 🔰 (a^*) 47 (d) 25

10. A, B and C are three non coplanar vectors, then
$$(A + B + C)$$
. $((A + B) \times (A + C))$ equals
(a) 0 (b) $[A, B, C]$ (c) $2[A, B, C]$ (d*) – $[A, B, C]$

If $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar unit vectors such that $\vec{a} \times (\vec{b} \times \vec{c}) = \frac{\vec{b} + \vec{c}}{\sqrt{2}}$ then the angle between 11. \vec{a} and \vec{b} is-

(a*) $\frac{3\pi}{\Lambda}$ (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{2}$ (d) π

A vector \vec{a} has components 2p and 1 with respect to a rectangular Cartesian system. The system is rotated thro'a certain 12. system, \vec{a} has components p + 1 and 1, angle about the origin in the counterclockwise sense. If, with respect to new then

(b*) p = 1 or $p = -\frac{1}{3}$ (c) p = -1 or $p = \frac{1}{3}$ (d) p = 1 or p = -1(a) p = 0

If \vec{b} and \vec{c} are any two perpendicular unit vectors and \vec{a} is any vector, then $(\vec{a}.\vec{b})\vec{c}+(\vec{a}.\vec{c})\vec{b}+\frac{\vec{a}.(\vec{b}\times\vec{c})}{|\vec{b}\times\vec{c}|^2}(\vec{b}\times\vec{c})$ 13.

is equal to-

(c) \vec{c} (a) \vec{b} (b^*) \vec{a}

Mathematics Online : It's all about Mathematics **IIT JEE Screening Exam Questions**

- 42 -

pankaj.baluja@mathematicsonline.co.in Visit us at: www.mathematicsonline.co.in

(d) None of these

14. Let $\overrightarrow{OA} = \overrightarrow{a}, \overrightarrow{OB} = 10 \overrightarrow{a}$ and $\overrightarrow{OC} = \overrightarrow{b}$ where O, A, c are non-collinear. Let p denote the are of the quadrilateral OABC and q denote the area of the parallelogram with OA and OC as adjacent sides. The $\frac{p}{q}$ is equal to-(a) 4 (b*) 6 (c) $\frac{1}{2} |\overrightarrow{a} - \overrightarrow{b}|$ (d) None of these 15. Let $\overrightarrow{p}, \overrightarrow{q}, \overrightarrow{r}$ be three mutually perpendicular vectors of the same magnitude. If a vector \overrightarrow{x} satisfies the equation. $\overrightarrow{p} \times [(\overrightarrow{x} - \overrightarrow{q}) \times \overrightarrow{p}] + \overrightarrow{q} \times [(\overrightarrow{x} - \overrightarrow{r}) \times \overrightarrow{q} + \overrightarrow{r} \times [(\overrightarrow{x} - \overrightarrow{p}) \times \overrightarrow{r}] = \overrightarrow{0}$, then \overrightarrow{x} is given by (a) $\frac{1}{2} (\overrightarrow{p} + \overrightarrow{q} - 2\overrightarrow{r})$ (b*) $\frac{1}{2} (\overrightarrow{p} + \overrightarrow{q} + \overrightarrow{r})$ (c) $\frac{1}{3} (\overrightarrow{p} + \overrightarrow{q} + \overrightarrow{r})$ (d) $\frac{1}{3} (2\overrightarrow{p} + \overrightarrow{q} - \overrightarrow{r})$

16. If \vec{a}, \vec{b} and \vec{c} are vectors such that $|\vec{b}| = |\vec{c}|$, then $[(\vec{a} + \vec{b}) \times (\vec{a} + \vec{c})] \times (\vec{b} \times \vec{c}) \cdot (\vec{b} + \vec{c}) =$ (a) 1 (b) -1 (c*) 0 (d) None of these

17. If \vec{a} , \vec{b} and \vec{c} be three vectors having magnitudes 1, 1 and 2 respectively. If $\vec{a} \times (\vec{a} \times \vec{c}) - \vec{b} = \vec{0}$, then the acute angle between \vec{a} and \vec{c} is- π π π π

(a) $\frac{\pi}{4}$ (b*) $\frac{\pi}{6}$ (c) $\frac{\pi}{3}$ (d) None of these **18.** If a = i + j + k, b = 4i + 3j + 4k and $c = I + \alpha j + \beta k$ are linearly dependent vectors and $|c| = \sqrt{3}$, then (a) $\alpha = 1, \beta = -1$ (b) $\alpha = 1, \beta = \pm 1$ (c) $\alpha = -1, \beta = \pm 1$ (d*) $\alpha = \pm 1, \beta = 1$

19. For three vectors u, v, w which of the following expressions is not equal to any of remaining three ? (a) u. $(v \times w)$ (b) $(v \times w)$. u (c*) v. $(u \times w)$ (d) $(u \times v)$. w

20. Which of the following expression of meaningful ? (a^*) u. ($v \times w$) (b) (u. v). w (c) (u. v)w (d) None of these

21. Let a = 2i + j - 2k and b = I + j. if c is vector such that $a \cdot c = |c|, |c - a| = 2\sqrt{2}$ and the angle between $(a \times b)$ and c is 30°. Then $|(a \times b) \times c| = 2$

(a)
$$\frac{2}{3}$$
 (b*) $\frac{3}{2}$ (c) 2 (d) 3

22. Let a = 2i + j + k, b = I + 2j - k and a unit vector c be coplanar. If c perpendicular to a, the c = (a) $\frac{1}{\sqrt{2}}(-j+k)$ (b) $\frac{1}{\sqrt{3}}(-i-j-k)$ (c*) $\frac{1}{\sqrt{5}}(i-2j)$ (d) $\frac{1}{\sqrt{3}}(i-j-k)$

23. Let a and b be two non-collinear unit vectors. If $u = a - (a \cdot b) b$ and $v = a \times b$, then |v| is (a) |u| + |u + a| (b*) $|u| + |u \cdot a|$ (c) $|u| + |u \cdot b|$ (d) $|u| + u \cdot (a + b)$

24. Let \vec{u} and \vec{v} be unit vectors. If \vec{w} is a vector such that $\vec{w} + (\vec{w} + \vec{u}) = \vec{v}$, then $|(\vec{u} \times \vec{v}).\vec{w}|$ (a) $\leq 1/3$ (b*) $\leq 1/2$ (c) >1/3 (d) $\geq 1/2$

25. If the vector a,b and c form the sider BC, CA and AB respectively of a triangle ABC, the (a*) a . b + b . c + c . a = 0
(b) a × b = b × c = c × a

Mathematics Online : It's all about Mathematics IIT JEE Screening Exam Questions

IIT JEE SCREENING QUESTIONS CHAPTER WISE

(c) a. b = b. c = c. a(d) a × b + c × c + c × a = 0
26. Let the vector a. b. c and d be such that (a × b) × (c × d) = 0. Let P₁ and P₂ be planes determined by the pairs of vectors a, b. c and d respectively. Then the angle between P₁ and P₂ is:
(a⁺) 0 (b) π/4 (c) π/3 (d) π/2
27. Let a, b, c è de the position vectors of three vertices. A, B, C of a triangle respectively. Then the area of this triangle is given by-
(a)
$$a × b + b × c + c × a$$
 (b) $\frac{1}{2}(a × b) \cdot c$
(c*) $\frac{1}{c}(a × b + b × c + a × a)$ (d) None of these
28. Let a = i - k, b = xi + j + (1 - x)k and c = yi + xj + (1 + x - y)k. Then [a b c] depends on-
(a) only x (b) only y (c*) neither x nor y (d) both x and y
29. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors, then $|\vec{a} - \vec{b}|^2 + |\vec{b} - \vec{c}|^2 + |\vec{c} - \vec{a}|^2$ does not exceed-
(a) 4 (b⁺) 9 (c) 8 (d) 6
30. If \vec{a} and \vec{b} are two unit vectors such that $\vec{a} + 2\vec{b}$ and $5\vec{a} - 4\vec{b}$ are perpendicular to each other then the angle
between \vec{a} and \vec{b} is-
(a) -1 (b) $\sqrt{10} + \sqrt{6}$ (c) $\cos^{-1}(\frac{1}{6})$ (d) $\cos^{-1}(\frac{2}{7})$
31. Let $\vec{v} = 2\vec{1} + \vec{j} - \vec{k}$ and $\vec{W} = \vec{i} + 3\vec{k}$. If \vec{U} is a unit vector, then the maximum value of the scalar triple product
 $|\vec{U}\vec{V}\vec{W}|_{18-}$
(a) -1 (b) $\sqrt{10} + \sqrt{6}$ (c') $\sqrt{59}$ (d) $\sqrt{60}$
32. If $\vec{a} = 1 + aj + k$, $\vec{b} = j - ak$; $\vec{c} = ai + k$, then find the value of 'a' for which volume of parallelepiped formed by these
three vectors as coterminous edges, is minimum.
(a) $\sqrt{3}$ (b) 3 (c') $\frac{1}{\sqrt{3}}$ (d) $\frac{1}{3}$
33. If $\vec{a} = i + j + k$ and $\vec{a}, \vec{b} = j - k$ then \vec{b} is equal to-
(a) $2i$ (b) $1 - j + k$ (c*) i (c) $\frac{6j - 5k}{\sqrt{61}}$ (d) $\frac{2j - k}{3}$
34. A unit vector is orthogonal to $5i - 2j + 6$ and is coplanar to $2i - 5j + 3k$ and $1 - j + k$ then the vector, is-
(a) $\frac{3\frac{1}{\sqrt{10}}}$ (b) $\frac{2j + 5k}{\sqrt{29}}$ (c) $\frac{6j - 5k}{\sqrt{61}}$ (d) $\frac{2i + 2j - k}{3}$
35. If $\vec{a} = 1 + 2j + k$ and $\vec{a} = 5 + 6$ and is coplanar to $2i - 5j + 3k$ and $1 - j + k$ then the vector, is-

Mathematics Online : It's all about Mathematics IIT JEE Screening Exam Questions

Q.No.

- 44 -

pankaj.baluja@mathematicsonline.co.in Visit us at: <u>www.mathematicsonline.co.in</u>

	Ans. d	c a b	а	c	b	b	a	c	c	b	b	с	c	с	а	
					28. F	PROB	BABII	ͺΙΤΥ								
	India plana tura m	atahaa aaah with	West	ndias	and A	natuali	o In o		tob th	nuch	h:1:+	of	In	dia aa	tting	ncinta O
	India plays two ma and 2 are 0.45, 0.0															points 0 of Ind
	getting at least 7 p				(26			(L)	0.025	0				
	(a) 0.8750	(b*) 0.0875			((c) 0.06	026			(a)	0.025	0				
	An unbiased die w								Out of							probabil
	that the minimum (a*) 16/81	face value is no (b) 1/81	t less th	an 2 a		2 max11 2) 80/8		ace			ie is no 15/81	ot grea	ter tha	an 5 1s	then-	
						,										
	Let E and F be two E nor F happens is		vents. T	he pro	babili	ty that	both	E and	F happ	pen is 1	/12 ar	nd the	pr	obabil	ity tł	nat neitl
	$(a^*) p(E) = 1/3, p(a^*)$) p(E)			= 1/6							
	(c) $p(E) = 1/6$, $p(F)$) = 1/2			(a) None	e or th	ese								
•	You are given a bo printed on the. If y															e letter d I.I.T. i
	(a) $\frac{9}{80}$	$(b^*) \frac{1}{8}$			(c) $\frac{4}{27}$				(d)	$\frac{5}{38}$					
	$(a) \frac{1}{80}$	$(0^{-1})^{-1}$			(($\frac{1}{27}$				(u)	38					
	Three identical disc	are rolled. The r	robabilit	try that	the cor	no nun	aharm	:11 opp	or on	ach of	thom	ia				
	Three identical dice	1	robabilit	ty mat				m appe	earon		•	18-				
	$(a)\frac{1}{6}$	$(b^*)\frac{1}{36}$			(($(z)\frac{1}{18}$	1			(d)	10		1	1		
	0															
	MAT		21			18	- /	<	1		28	NI				0
	The probability of	f India winning			agains	st Wes	st Indi		⁄2. Ass	uming	indep		ce fro	m ma	tch to	match
	probability that in	f India winning a 5 match series			agains nd wi	st Wes th occu	st Indi		⁄2. Ass	uming thire	indep 1 test i		ce fro	m ma	tch to	match
	probability that in (a*) 1/8	f India winning a 5 match series (b) 1/4	s. India'	s seco	agains nd wi ((st Wes th occu c) 1/2	st India urs at t	the		uming thire (d)	indep 1 test i 1/3	S-				
	probability that in (a*) 1/8 Three of the six v	f India winning a 5 match series (b) 1/4 ertices of a regr	s. India'	s seco	agains nd wi ((st Wes th occu c) 1/2	st India urs at t	the		uming thire (d)	indep 1 test i 1/3	S-				
	probability that in (a*) 1/8 Three of the six v equilateral, equals	f India winning a 5 match series (b) 1/4 ertices of a regu-	s. India'	s seco	agains nd wi ((are ch	st Wes th occu c) 1/2 tosen a	st Indie urs at t at rand	the		uming third (d) obabili	indep 1 test i 1/3 ty that	S-				
	probability that in (a*) 1/8 Three of the six v equilateral, equals (a) 1/2	f India winning a 5 match series (b) 1/4 ertices of a regu- (b) 1/5	s. India' ular hex	s seco xagon	agains nd wi ⁻ ((are ch	st Wes th occu c) 1/2 nosen a c*) 1/1	st Indi urs at t at ranc	the lom. T	The pro	uming third (d) obabilit (d)	indep 1 test i 1/3 ty that 1/20	s-	iangle	e with	these	vertices
	probability that in (a*) 1/8 Three of the six v equilateral, equals (a) 1/2 Three numbers ar	f India winning a 5 match series (b) 1/4 ertices of a regr - (b) 1/5 e chosen at ran	s. India' ular hex dom wi	s seco agon	agains nd wi ⁻ ((are ch	st Wes th occu c) 1/2 nosen a c*) 1/1	st Indi urs at t at ranc	the lom. T	The pro	uming third (d) obabilit (d)	indep 1 test i 1/3 ty that 1/20	s-	iangle	e with	these	vertices
	probability that in (a*) 1/8 Three of the six v equilateral, equals (a) 1/2	f India winning a 5 match series (b) 1/4 ertices of a regr - (b) 1/5 e chosen at ran	s. India' ular hex dom wi	s seco agon	agains nd wi (d are ch (d replad	st Wes th occu c) 1/2 nosen a c*) 1/1	st Indie urs at t at rand 0 t from	the lom. T	The pro	uming third (d) obabilit (d) 10}. T	indep d test i 1/3 ty that 1/20 the pro	s-	iangle ty tha	e with	these	vertices
	probability that in (a*) 1/8 Three of the six v equilateral, equals (a) 1/2 Three numbers ar chosen numbering (a*) 7/40	f India winning a 5 match series (b) 1/4 ertices of a regu- (b) 1/5 e chosen at ran ; is 3 or their ma (b) 5/40	s. India' ular hex dom wi ximum	s secc agon ithout is 5,	agains nd wi (d are ch (d replad	st Wes th occu c) 1/2 nosen a c*) 1/1 cement c) 11/4	st Indiurs at t at rance 0 t from 0	the lom. T	The pro	uming third (d) obabilit (d) 10}. T (d)	indep d test i 1/3 ty that 1/20 he pro None	s- the tr bbabili of thes	iangle ty tha se	e with t the	these	vertices
	probability that in (a*) 1/8 Three of the six v equilateral, equals (a) 1/2 Three numbers ar chosen numbering (a*) 7/40 Seven white balls	f India winning a 5 match series (b) 1/4 ertices of a regu- (b) 1/5 e chosen at ran (is 3 or their ma (b) 5/40 and three black	s. India' ular hex dom wi ximum	s secc agon ithout is 5,	agains nd wi (d are ch (d replad	st Wes th occu c) 1/2 nosen a c*) 1/1 cement c) 11/4	st Indiurs at t at rance 0 t from 0	the lom. T	The pro	uming third (d) obabilit (d) 10}. T (d)	indep d test i 1/3 ty that 1/20 he pro None	s- the tr bbabili of thes	iangle ty tha se	e with t the	these	vertices
	probability that in (a*) 1/8 Three of the six v equilateral, equals (a) 1/2 Three numbers ar chosen numbering (a*) 7/40	f India winning a 5 match series (b) 1/4 ertices of a regu- (b) 1/5 e chosen at ran (is 3 or their ma (b) 5/40 and three black	s. India' ular hex dom wi ximum	s secc agon ithout is 5,	agains nd wi (d are ch (d replad (d omly j	st Wes th occu c) 1/2 nosen a c*) 1/1 cement c) 11/4	st Indigurs at the start rando at rando 0 t from 0 in a re	the lom. T	The pro	uming third (d) obabilit (d) 10}. T (d)	indep d test i 1/3 ty that 1/20 The pro None y that r	s- the tr bbabili of thes	iangle ty tha se	e with t the	these	vertices
	probability that in (a*) 1/8 Three of the six v equilateral, equals (a) 1/2 Three numbers ar chosen numbering (a*) 7/40 Seven white balls adjacently equals- (a) 1/2	f India winning a 5 match series (b) 1/4 ertices of a regu- (b) 1/5 e chosen at ran (b) 5/40 and three black (b*) 7/15	s. India' ular hex dom wi ximum balls are	s seco agon ithout is 5, e rand	agains nd wi (d are ch (d replac (d omly j	st Wes th occu c) 1/2 nosen a c*) 1/1 cement c) 11/4 placed c) 2/15	st Indigurs at the start random of the start	the lom. T ({1, 2	The pro	uming (d) obabilit (d) 10}. T (d) oability (d)	indep d test i 1/3 ty that 1/20 The pro None v that r 1/3	s- the tr obabili of thes	iangle ty tha se bl	e with t the a	these minin alls	vertices num of t are plac
	probability that in (a*) 1/8 Three of the six v equilateral, equals (a) 1/2 Three numbers ar chosen numbering (a*) 7/40 Seven white balls adjacently equals-	f India winning a 5 match series (b) 1/4 ertices of a regu- (b) 1/5 e chosen at ran (b) 5/40 and three black (b*) 7/15 e three boxes cor	s. India' ular hex dom wi ximum balls are ntaining	s seco agon ithout is 5, e rand g 3 2hi	agains nd wi (d are ch (d replac (d omly) (d te and	st Wes th occu c) 1/2 nosen a c*) 1/1 cement c) 11/4 placed c) 2/15 1 blac	st Indigurs at the start random of the start	the lom. T { 1, 2 ow. Th hite an	The pro- 9, 3, ne pro-	uming (d) obabilit (d) 10}. T (d) oability (d) ack, w	indep d test i 1/3 ty that 1/20 The pro None v that r 1/3	s- the tr obabili of thes	iangle ty tha se bl	e with t the a	these minin alls	vertices num of a
	probability that in (a*) 1/8 Three of the six v equilateral, equals (a) 1/2 Three numbers ar chosen numbering (a*) 7/40 Seven white balls adjacently equals- (a) 1/2 If from each of the	f India winning a 5 match series (b) 1/4 ertices of a regu- (b) 1/5 e chosen at ran (b) 5/40 and three black (b*) 7/15 e three boxes cor	s. India' ular hex dom wi ximum balls are ntaining	s seco agon ithout is 5, e rand g 3 2hi	agains nd wi (d are ch (d replac (d omly) (d te and nite an	st Wes th occu c) 1/2 nosen a c*) 1/1 cement c) 11/4 placed c) 2/15 1 blac	st Indi- urs at t at rand 0 t from 0 in a ro 5 ck, 2 2 ack ba	the lom. T { 1, 2 ow. Th hite an	The pro- 9, 3, ne pro-	uming (d) obability (d) 10}. T (d) oability (d) ack, w drav	indep 1 test i 1/3 ty that 1/20 The provide None that r 1/3 hite ar	s- the tr obabili of thes	iangle ty tha se bl	e with t the a	these minin alls	vertices
).	probability that in (a*) 1/8 Three of the six v equilateral, equals (a) 1/2 Three numbers ar chosen numbering (a*) 7/40 Seven white balls adjacently equals- (a) 1/2 If from each of the drawn at random, (a*) 13/32	f India winning a 5 match series (b) 1/4 ertices of a regu- (b) 1/5 e chosen at ran (b) 5/40 and three black (b*) 7/15 e three boxes con then the probabi (b) 1/4	s. India' ular hex dom wi ximum balls are ntaining ility tha	s seco agon ithout is 5, e rand g 3 2hi at 2 wl	agains nd wi (d are ch (d replac (d omly) (d te and nite an (d	st Wes th occu c) 1/2 nosen a c*) 1/1 cement c) 11/4 placed c) 2/15 c 1 blac d 1 bla c) 1/32	st Indi- urs at t at rand 0 t from 0 in a re 5 ck, 2 2 ack ba 2	the lom. T (1, 2 ow. Th hite an Il will	The pro- 2, 3, ne pro- nd 2 bl be	uming (d) obabilit (d) 10}. T (d) oability (d) ack, w drav (d)	indep d test i 1/3 ty that 1/20 the pro None w that r 1/3 hite ar wn is- 3/16	s- the tr obabili of thes no two	iangle ty tha se bl	e with t the ack b ack b	these minim alls a	vertices num of t are plac
	probability that in (a*) 1/8 Three of the six v equilateral, equals (a) 1/2 Three numbers ar chosen numbering (a*) 7/40 Seven white balls adjacently equals- (a) 1/2 If from each of the drawn at random,	f India winning a 5 match series (b) 1/4 ertices of a regr- (b) 1/5 e chosen at ran (b) 5/40 and three black (b*) 7/15 e three boxes con then the probabi (b) 1/4 chines and it is 1	s. India' ular hex dom wi ximum balls are ntaining ility tha cnown t	s seco agon ithout is 5, e rand g 3 2hi at 2 wl hat ex	agains nd wi (d are ch (d replac (d omly j (d te and nite an (d actly t	st Wes th occu c) 1/2 nosen a c*) 1/1 cement c) 11/4 placed c) 2/15 d 1 blac d 1 bla c) 1/32 cwo of	st Indi- urs at t at rand 0 t from 0 in a ro 5 ck, 2 2 ack ba 2 them	the lom. T (1, 2 ow. Th hite at ll will are fat	The pro 2, 3, ne prol nd 2 bl be alty. T	uming (d) obabilit (d) 10}. T (d) oability (d) ack, w drav (d) hey are	indep i test i 1/3 ty that 1/20 The pro None that r 1/3 hite ar wn is- 3/16	s- the tr obabili of thes no two	iangle ty tha se bl bl	e with t the ack b ack b	these minim alls a alls, c	vertices num of t are plac
).	probability that in (a*) 1/8 Three of the six v equilateral, equals (a) 1/2 Three numbers ar chosen numbering (a*) 7/40 Seven white balls adjacently equals- (a) 1/2 If from each of the drawn at random, 1 (a*) 13/32 There are four made	f India winning a 5 match series (b) 1/4 ertices of a regr- (b) 1/5 e chosen at ran (b) 5/40 and three black (b*) 7/15 e three boxes con then the probabi (b) 1/4 chines and it is 1	s. India' ular hex dom wi ximum balls are ntaining ility tha cnown t	s seco agon ithout is 5, e rand g 3 2hi at 2 wl hat ex	agains nd wi (d are ch (d replac (d omly p (d te and hite an (d actly t . Ther	st Wes th occu c) 1/2 nosen a c*) 1/1 cement c) 11/4 placed c) 2/15 d 1 blac d 1 bla c) 1/32 cwo of	st Indi- urs at t at rand 0 t from 0 in a ro 5 ck, 2 2 ack ba 2 them	the lom. T (1, 2 ow. Th hite at ll will are fat	The pro 2, 3, ne prol nd 2 bl be alty. T	uming (d) obabilit (d) 10}. T (d) oability (d) ack, w drav (d) hey are	indep d test i 1/3 ty that 1/20 The pro None that r 1/3 hite ar vn is- 3/16 e tested two t	s- the tr obabili of thes no two nd 3 d, one	iangle ty tha se bl bl	e with t the ack b ack b	these minim alls a alls, c	vertices num of t are plac
٥.	probability that in (a*) 1/8 Three of the six v equilateral, equals (a) 1/2 Three numbers ar chosen numbering (a*) 7/40 Seven white balls adjacently equals- (a) 1/2 If from each of the drawn at random, (a*) 13/32 There are four mad order till both the	f India winning a 5 match series (b) 1/4 ertices of a regu- (b) 1/5 e chosen at ran (b) 5/40 and three black (b*) 7/15 e three boxes con then the probabi (b) 1/4 chines and it is I faulty machines (b*) 1/6	s. India' ular hex dom wi ximum balls ard ntaining ility tha cnown t are ider	s seco agon ithout is 5, e rand g 3 2hi at 2 wl hat ex ntified	agains nd wi (d are ch (d replac (d omly) (d te and nite an (d actly t . Ther (d	st Wes th occu c) 1/2 nosen a c*) 1/1 cement c) 11/4 placed c) 2/15 d 1 blac d 1 blac c) 1/32 cwo of n the pr c) 1/2	st Indi- urs at t at rand 0 t from 0 in a ro 5 ck, 2 2 ack ba 2 them robabi	the lom. T { 1, 2 ow. Th hite an ll will are fau lity th	The properties of the properti	uming (d) obabilit (d) 10}. T (d) oability (d) ack, w drav (d) hey are only (d)	indep d test i 1/3 ty that 1/20 The pro None that r 1/3 hite ar wn is- 3/16 testee two t 1/4	s- the tr obabili of the no two nd 3 d, one ests ar	iangle ty tha se bl bl e need	e with t the f ack b ack b ack b	these minim alls a alls, c	vertices num of t are plac

Mathematics Online . It's an about Mathematics		pankaj.baluja@mathematicsomme.co.m
IIT JEE Screening Exam Questions	- 45 -	Visit us at: <u>www.mathematicsonline.co.in</u>

- 13. If the integers m and n are chosen at random between 1 and 100, then the probability that a number of the form 7^m + 7ⁿ is divisible by 5 equals(a) 1/4
 (b) 1/7
 (c*) 1/8
 (d) 1/49
- 14. The probabilities that a student passes in Mathematics, Physics and Chemistry are m, p and c, respectively. Of these subjects the student have a 75% chance of passing in atleast one, a 50% change of passing in atleast two, and a 40% chance of passing in exactly two. Which of the (a) $p + m + c = 19/20(b^*) p + m + c = 27/20$ (c) pmc = 1/4 (d) None of these
- **15.** A coin has probability p of showing head when tossed. It is tossed in times. Let p_n denote the probability that no two (or more) consecutive heads occurs, then

(a) $p_1 = 1$ (b) $p_2 = 1 - p^2$ (c) $p_n = (1 - p)p_{n-1} + p(1 - p)p_{n-2}$ for all $n \ge 3$ (d*) All of these

16. Given that $P(B) = \sqrt[3]{4}$, $P(A \cap B \cap \overline{C}) = 1/3$, $P(\overline{A} \cap B \cap \overline{C}) = 1/3$ then find probability of $B \cap C$, when $\overline{A}, \overline{B}, \overline{C}$ are negotiations of A,B,C respectively, is (a) 2/3 (b*) 1/12 (c) 1/15 (d) 1/4

17. Two numbers are chosen, one by one (with out replacement) from the set of numbers $A = \{1, 2, 3, 4, 5, 6\}$ The probability that minimum value of chosen number is less than 4 is(a) 1/15(b) 14/15(c) 1/5(d*) 4/4

18. Three distinct numbers are chosen randomly from first 100 natural number, then probability that all are divisible by 2 and 3 both is

(a)
$$4/33$$
 (b) $4/35$ (c) $4/25$ (d*) $4/115$
19. While throwing a dice getting one an even no. of throws has probability P, then P is equal to
(a) $1/6$ (b) $5/36$ (c) $6/11$ (d*) $5/11$
ANSWER KEY

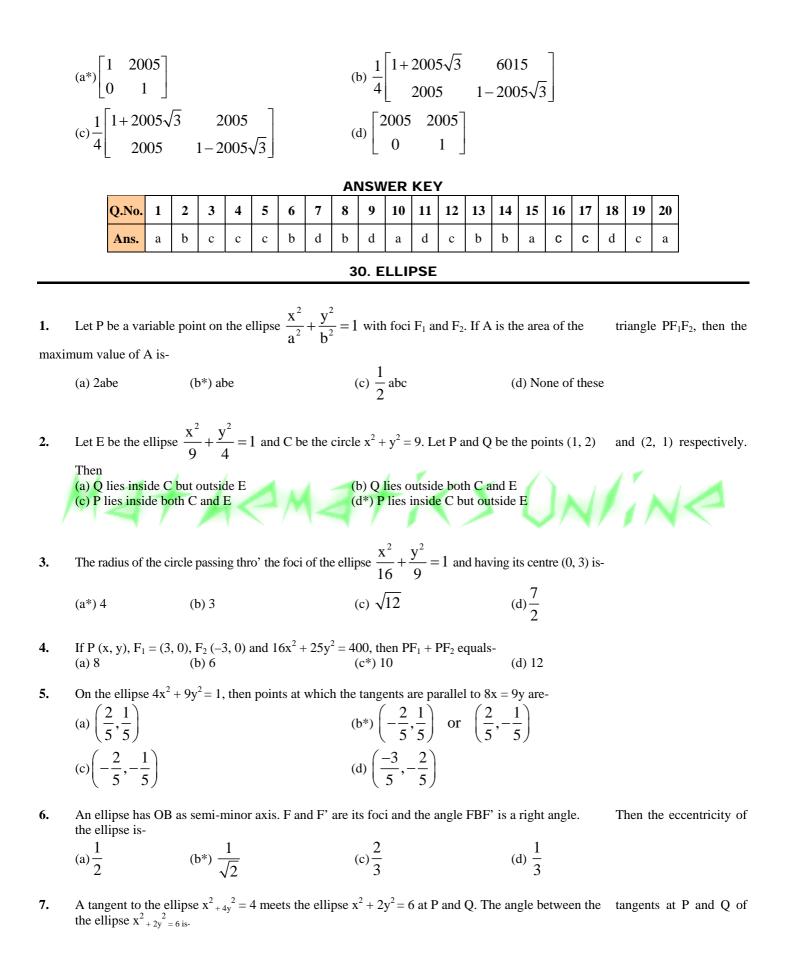
							-										
Q.No.	1	2	3	4	5	6	7	7	8		9	10	11	12	13	14	15
Ans.	b	а	а	d	b	a	(2	a		b	а	b	а	c	b	D
					Q.N	lo.	16	1'	7	18	1	.9					
					An	s.	b	ċ	1	d	(d					

29. MATRICES & DETERMINANTS

1.	If $D_r = \begin{vmatrix} 2^{r-1} \\ \alpha \\ 2^n - 1 \end{vmatrix}$	$\begin{array}{c ccc} 2.3^{r-1} & 4.5^{r-1} \\ \beta & \gamma \\ 3^{n}-1 & 5^{n}-1 \end{array}$, then the value	e of $\sum_{r=1}^{n} D_r$		
	(a*) 0	(b) $\alpha \beta \gamma$	(c) $\alpha + \beta +$	-γ	(d) $\alpha . 2^n + \beta . 3^n + \gamma . 4^n$
2.	If a, b,c are in G	P., then the value of determinant	$\Delta = \begin{vmatrix} a \\ b \\ ax + b \end{vmatrix}$	b c bx+c	$\begin{vmatrix} ax + b \\ bx + c \\ 0 \end{vmatrix}$ is-
	(a) 1	(b*) 0	(c) –1		(d) None of thees

Mathematics Online : It's all about Mathematics IIT JEE Screening Exam Questions

IIT JEE SCREENING QUESTIONS CHAPTER WISE


3. If
$$a_{1,2},...,a_{1}$$
 or $a \in Q$, and $a > 0$ for all $i \ge 1$, then $\Delta = \begin{vmatrix} \log a_{m-1} & \log a_{m-2} \\ \log a_{m-2} & \log a_{m-2} \\ \log a_{m-2} & \log a_{m-2} \end{vmatrix}$ is equal to-
(a) $\log (a_{m+2}) - \log (a_m) (b) \log (a_{m-2}) + \log a_m \\ (c'') zero (b) \log (a_{m-2}) + \log a_m \\ (d) \log_2 a_{m+2} \end{vmatrix}$
4. If the system of equations $x + ay + az = 0$; bx $+y - bz = 0$; cx $+cy + z = 0$ where a, b and c are non-zero and non-unity, has a non-trivial solution, then the value of $\frac{a}{1-a} + \frac{b}{1-b} + \frac{c}{1-c}$ is
(a) $2cro (b) 1 (c'') - 1 (d) \frac{abc}{a^2 + b^2 + c^2}$
5. If $a(r + 1)$ is a cube root of unity, then $\begin{vmatrix} 1 & 1+i+\omega - 1 & -1 & 0 \\ -i & -i + 0 - 1 & -1 \end{vmatrix}$ equals
(a) 0 (b) 1 (c'') - 1 (d) α
6. The determinant $\begin{vmatrix} xp + y & x & y \\ py + z & y & z \\ 0 & xp + y & yp + z \end{vmatrix} = 0$ if:
(a) x, y, z are in H.P. (d) xy, y, z are in G.P.
(e) x, y, z are in H.P. (d) xy, y, z are in G.P.
(e) x, y, z are in H.P. (d) xy, y, z are in G.P.
(e) x, y, z are in H.P. (d) xy, y, z are in G.P.
(e) x, y, z are in H.P. (d) xy, y, z are in G.P.
(e) x, y, z are in H.P. (d) xy, y, z are in $G.P$.
(e) x, y, z are in H.P. (d) xy, y, z are in $G.P$.
(f) $p = (b) p + p^3$ (c) $p + p^3$ (d'') independent of p
8. The parameter on which the value of the determinant $\left| cos(p - d)x & cos px & cos(p + d)x \\ sin(p - d)x & sin px & sin(p + d)x \right|$ does not depend upon
(a) a (b'') p (c) d (d) x
9. If $\left| \frac{6i}{4}, -\frac{3i}{3}, -1 \\ \frac{2x}{2x}, x(x-1), (x+1)x} \\ (a) x_{x}(x-1), x(x-1)(x-2), (x+1)x(x-1) \\ (a(x-1)), x(x-1)(x-2), (x+1)x(x-1) \\ (b - 1, 1) \\ panka babla demathematicsontine.co.In
Mathematics Conline. Cit R = 47 - Visit us at xw subthematicsontine.co.In$

If the system of equations x - Ky - z = 0, Kx - y - z = 0, x + y - z = 0 has a non-zero solution, then the possible values 11. of K are-(b) 1, 2 (c) 0, 1 $(d^*) - 1, 1$ (a) -1, 2 $\sin x \cos x \cos x$ The number of distinct real roots of $\begin{vmatrix} \cos x & \sin x & \cos x \end{vmatrix} = 0$ in the interval $-\frac{\pi}{4} \le x \le \frac{\pi}{4}$ is-12. $\cos x \cos x$ sin x (b) 2 (a) 0(c*) 1 (d) 3 13. The number of values of K for which the system of equations, (K + 1)x + 8y = 4K and Kx + (K + 3) y = 3K - 1 has infinitely many solutions, is (a) 0 (b*) 1 (d) Infinite (c) 2Let $\omega = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$. Then the value of the determinant $\Delta = \begin{vmatrix} 1 & -1 - \omega^2 & \omega^2 \\ 1 & \omega^2 & \omega^4 \end{vmatrix}$ is 14. (b*) $3\omega (\omega - 1)$ (d) $3\omega(1-\omega)$ (a) 3ω (c)3 w If $A = \begin{bmatrix} \alpha & 0 \\ 1 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix}$ and $A^2 = B$, then 15. (a*) Statement is not true for any real value of α (b) $\alpha = 1$ (c) $\alpha = -1$ (d) $\alpha = 4$ If x + ay = 0; y + az = 0; z + ax = 0, then value of 'a' for which system of equations will have infinite number 16. of solution is $(c^*) a = -1$ (a) a = 1(b) a = 0(d) no value of a $\begin{vmatrix} 2 \\ \alpha \end{vmatrix} = A \& |A^3| = 125, \text{ then } \alpha \text{ is-}$ 17. (a) 0 $(c^*) \pm 3$ $(d) \pm 5$ (b) ± 2 If the system of equations 2x - y - 2z = 2; x - 2y + z = -4; $x + y + \lambda z = 4$ has no solutions then λ is 18. equal to (a) - 2(b) 3 (c) 0 $(d^*) - 3$ Let $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -2 & 2 \end{bmatrix} \& I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ and $A^{-1} = \frac{1}{6} [A^2 + cA + dI]$, find ordered pair (c, d) ? 19. (b) (-6, -11) $(c^*)(-6, 11)$ (d)(6, -11)(a) (6, 11) Let a matrix $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \& P = \begin{vmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{vmatrix} Q = PAP^{T}$ where P^{T} is transpose of matrix P. Find 20. $P^T O^{2005} P$ is

Mathematics Online : It's all about Mathematics IIT JEE Screening Exam Questions

- 48 -

IIT JEE SCREENING QUESTIONS CHAPTER WISE

Mathematics Online : It's all about Mathematics IIT JEE Screening Exam Questions

- 49 -

 $\frac{\pi}{6}$

(a*)
$$\frac{\pi}{2}$$
 (b) $\frac{\pi}{3}$ (c) $\frac{\pi}{4}$ (d)

The number of values of c such that the straight line y = 4x + c touches the curve $\frac{x^2}{4} + y^2 = 1$ is 8. (c*) 2 (a) 0 (b) 1 (d) infinite

Locus of middle point of segment of tangent to ellipse $x^2 + 2y^2 = 2$ which is intercepted between 9. the coordinate axes, is-(a*) $\frac{1}{2x^2} + \frac{1}{4y^2} = 1$ (b) $\frac{1}{4x^2} + \frac{1}{2y^2} = 1$ (c) $\frac{x^2}{2} + \frac{y^2}{4} = 1$ (d) $\frac{x^2}{4} + \frac{y^2}{2} = 1$

A tangent is drawn at some point P of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is intersecting to the coordinate axes at points A & B then 10. minimum area of the $\triangle PAB$ is-

(a*) ab (b)
$$\frac{a^2 + b^2}{2}$$
 (c) $\frac{a^2 + b^2}{4}$ (d) $\frac{a^2 + b^2 - ab}{3}$

	ANSWER KEY									
Q.No.	1	2	3	4	5	6	7	8	9	10
Ans.	b	d	а	с	b	b	a	с	a	a

1. A variable straight line of slope 4 intersects the hyperbola xy = 1 at two point. The locus of the point which divides the line segment between these two points in the ratio 1 : 2 is (a*) $16x^2 + 1 = xy + y^2 = 2$ (c) $16x^2 + 10 xy + y^2 = 4$ (b) $16x^2 - 10xy + y^2 = 2$ (d) None of these

- If the circle $x^2 + y^2 = a^2$ intersects the hyperbola $xy = c^2$ in four points P(x₁, y₁), Q (x₂, y₂), 2. $R(x_3, y_3), S(x_4, y_4), then$ (b) $y_1 + y_2 + y_3 + y_4 = 2$ (d) $y_1y_2y_3y_4 = 2c^4$ (a*) $x_1 + x_2 + x_3 + x_4 = 0$ (c) $x_1x_2x_3x_4 = 2c^4$
- 3. If a circle cuts the rectangular hyperbola xy = 1 in the points (x_1, y_r) wher r = 1, 2, 3, 4, then (c) $x_1 + x_2 + x_3 + x_4 = 0$ (d) $y_1 + y_2 + y_3 + y_4 = 0$ (a) $x_1x_2x_3x_4 = 2$ $(b^*) x_1 x_2 x_3 x_4 = 1$
- If x = 9 is the chord of contact of the hyperbola $x^2 y^2 = 9$, then the equation of the corresponding pair of tangents is-(a) $9x^2 8y^2 + 18x 9 = 0$ (b*) $9x^2 8y^2 18x + 9 = 0$ (c) $9x^2 8y^2 18x 9 = 0$ (d) $9x^2 8y^2 + 18x + 9 = 0$ 4. (a) $9x^2 - 8y^2 + 18x - 9 = 0$ (c) $9x^2 - 8y^2 - 18x - 9 = 0$

Let P (a sec θ , b tan) and Q (a sec ϕ , b tan ϕ) where $\theta + \phi = \frac{\pi}{2}$, be two points on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. If (h, k) 5.

is the point of intersection of the normals at P and Q, then K is equal to-

(a)
$$\frac{a^2 + b^2}{a}$$
 (b) $-\frac{a^2 + b^2}{a}$ (c) $\frac{a^2 + b^2}{b}$ (d*) $-\frac{a^2 + b^2}{b}$

Mathematics Online : It's all about Mathematics **IIT JEE Screening Exam Questions**

- 50 -

6. $\frac{x^2}{\cos^2 \alpha} - \frac{y^2}{\sin^2 \alpha} = 1$ represents family of hyperbolas, where α varies then (a) e remains constant (c) equation of directrices remain constant (d) Abscissas of vertices remains constant

7. The point at which the line $2x + \sqrt{6} y = 2$ touches the curve $x^2 - 2y^2 = 4$, is-

(a*)
$$(4, -\sqrt{6})$$
 (b) $(\sqrt{6}, 1)$ (c) $\left(\frac{1}{2}, \frac{1}{\sqrt{6}}\right)$ (d) $\left(\frac{\pi}{6}, \pi\right)$

ANSWER KEY

Q.No.	1	2	3	4	5	6	7
Ans.	а	а	b	b	d	b	a

32. 3-DIMENSIONAL GEOMETRY

- 1. If line $\frac{x-4}{1} = \frac{y-2}{1} = \frac{2-k}{2}$ lies in the plane 2x 4y + z = 7 then the value of k = ?(a) k = -7 (b*) k = 7 (c) k = -7 (d) no value of k
- 2. Two lines $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-1}{4}$ and $\frac{x-3}{1} = \frac{y-k}{2} = \frac{z}{1}$ intersect at a point then k is-(a) 3/2 (b*) 9/2 (c) 2/9 (d) 2

3. A plane at a unit distance from origins cuts at three axes at P, Q, R points. $\triangle PQR$ has centroid at (x, y, z) point and satisfies to $\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} = k$, then k = (a*) 9 (b) 1 (c) 3 (d) 4

ANSWER KEY

Q.No.	1	2	3
Ans.	b	b	a