CLASS TEST-2/7 BINOMIAL THEOREM MATHEMATICS

Dear student following is a Moderate level [O O] test paper. Score of 18 Marks in 15 Minutes would be a satisfactory performance. Questions 1-12($+3,-1$), (Single option correct)
Q. 1 If there is a term containing $x^{2 r}$ in $\left(x+1 / x^{2}\right)^{n-3}$, then
(A) $n-2 r$ is a positive integral multiple of 3
(B) $n-2 r$ is even
(C) $n-2 r$ is odd
(D) None of these
Q. 2 If the sum of the coefficients in the expansion of $\left(\alpha x^{2}-2 x+1\right)^{35}$ is equal to the sum of the coefficients in the expansion of $(x-\alpha y)^{35}$, then α
(A) 0
(B) 1
(C) May be any real number
(D) No such value exist
Q. 3 In the polynomial (x-1)(x-2) ($x-3$)....(x - 100), the coefficient of x^{99} is
(A) 5050
(B) -5050
(C) 100
(D) 99
Q. 4 The coefficient of $\mathbf{x}^{\mathbf{1 0 0}}$ in the expansion of $\sum_{j=0}^{200}(1+x)^{j}$ is
(A)
$\stackrel{200}{200} \mathbf{1 0}$
(B) ${ }_{1}^{201} 2$
(c) $\stackrel{2 p 0}{2} 101<$
(D) $\stackrel{2}{2} 101 \times$
Q. 5 Middle term in the expansion of $\left(1+3 x+3 x^{2}+x^{3}\right)^{6}$ is
(A) $4^{\text {th }}$
(B) $3^{\text {rd }}$
(C) $10^{\text {th }}$
(D) None of these
Q. 6 Which of the following expression is divisible by 1225
(A) $6^{2 n}-35 n-1$
(B) $6^{2 n}-35 n+1$
(C) $6^{2 n}-35 n$
(D) $6^{2 n}-35 n+2$
Q. 7 If $7^{\mathbf{1 0 3}}$ is divided by 25, then the remainder is
(A) 20
(B) 16
(C) 18
(D) 15
Q. $8 \quad$ For all $\mathbf{n} \in \mathbf{N}, \mathbf{2}^{\mathbf{4 n}} \mathbf{- 1 5 n - 1} \mathbf{1}$ is divisible by
(A) 225
(B) 125
(C) 325
(D) None
Q. $9 \quad 9^{7}+7^{9}$ is divisible by
(A) 6
(B) 24
(C) 64
(D) 72
Q. 10 The coefficients of the middle term in the binomial expansion in powers of x of $(1+\alpha x)^{4}$ and of $(1-\alpha x)^{6}$ is same if α equals :
(A) $\frac{-3}{10}$
(B) $\frac{10}{3}$
(C) $\frac{-5}{3}$
(D) $\frac{3}{5}$
Q. 11 If $\frac{T_{2}}{T_{3}}$ in the expansion of $(a+b)^{n}$ and $\frac{T_{3}}{T_{4}}$ in the expansion of $(a+b)^{n+3}$ are equal, then $\mathbf{n}=$
(A) 3
(B) 4
(C) 6
(D) 5
Q. 12 If in the expansion of $(1+x)^{m}(1-x)^{n}$, the coefficients of x and x^{2} are 3 and - 6 respectively, then \mathbf{m} is
(A) 6
(B) 9
(C) 12
(D) 24

MATHEMATICS FOUNDATION (CLASS TEST - 2/7) (BINOMIAL THEOREM) ANSWER KEY

Name \qquad

Roll No. \qquad

ANSWER KEY

Que.	1	2	3	4	5	6	7	8	9	10	11	12
Ans.	A	B	B	A	C	A	C	A	C	A	D	C

SOLUTIONS

Sol. 1 (A)

$T_{p+1}={ }^{n-3} C_{p} x^{n-3-p} . \underset{x^{p}}{\underset{-}{e}} \stackrel{p}{p}={ }^{n-3} C_{p} x^{n-3-3 p}$
$2 r=n-3-3 p \Rightarrow p=\frac{n-2 r-3}{3}=\frac{n-2 r}{3}-1$
$\Rightarrow p+1=(n-2 r) / 3$
$\therefore(n-2 r)$ is a positive integer, multiple of 3 .

Sol. 2 (B)

Putting $x=y=1$, we have
$(\alpha-1)^{35}=(1-\alpha)^{35}$
$\Rightarrow 2(\alpha-1)^{35}=0 \Rightarrow \alpha=1$

Sol. 3 (B)

$(x-1)(x-2)(x-3) \ldots(x-100)$
Numbers of terms $=100$;
\therefore Coefficient of x^{99}
$=(x-1)(x-2)(x-3) \ldots(x-100)$
$=(-1-2-3-\ldots . .-100)$
$=-(1+2+\ldots+100)$
$=-\frac{100 \times 101}{2}=-5050$
$=\left(6^{2}\right)^{n}-35 n-1=36^{n}-35 n-1$
so $6^{2 n}-35 n-1=(1+35)^{n}-35 n-1$
$=1+35 n+{ }^{n} C_{2} \cdot 35^{2}+\ldots \ldots .+35^{n}-35 n-1$
$=(35)^{2}\left[{ }^{n} C_{2}+{ }^{n} C_{3} .35+\ldots \ldots .+35^{n-2}\right]$
$=1225 \times$ a positive integer if $n \geq 2$
If $n=1$, then $6^{2 n}-35 n-1=0$, which is divisible by 1225 .
so, (B), (C), (D) are not divisible by 1225 .

Sol. 7 (C)

We have, $7^{103}=7(49)^{51}=7(50-1)^{51}$
$=7\left((50){ }^{51}-{ }^{51} \mathrm{C}_{1} 50^{50}+{ }^{51} \mathrm{C}_{2} 50^{49}-\right.$
$=7\left\{\left(50^{51}-{ }^{51} \mathrm{C}_{1} 50^{50}+{ }^{51} \mathrm{C}_{2} 50^{49}-\right.\right.$ \qquad

$$
-(7+18-18)\}
$$

$=k+18$ (say) $\quad \because k$ is divisible by 25 .
$\therefore \quad$ remainder is 18 .

Sol. 8 (A)

We have, $2^{4 n}=\left(2^{4}\right)^{n}=(16)^{n}=(1+15)^{n}$
$\therefore \quad 2^{4 n}=1+{ }^{n} C_{1} \cdot 15+{ }^{n} C_{2} \cdot 15^{2}+{ }^{n} C_{3} \cdot 15^{3}+\ldots$
$\Rightarrow \quad 2^{4 n}-1-15 n=15^{2}\left[{ }^{n} C_{2}+{ }^{n} C_{3} .15+\ldots.\right]$ $=225 \mathrm{~K}$, where K is an integer.
Hence $2^{4 n}-15 n-1$ is divisible by 225 .

Sol. 9 (C)

We have, $9^{7}+7^{9}=(1+8)^{7}-(1-8)^{9}$
$=\left(1+{ }^{7} C_{1} \cdot 8^{1}+{ }^{7} C_{2} \cdot 8^{2}+\ldots \ldots .+{ }^{7} C_{7} \cdot 8^{7}\right)$
$-\left(1-{ }^{9} C_{1} \cdot 8^{1}+{ }^{9} \mathrm{C}_{2} \cdot 8^{2}-\ldots \ldots . .-{ }^{9} \mathrm{C}_{9} \cdot 8^{9}\right)$
$=16 \times 8+64\left[\left({ }^{7} \mathrm{C}_{2}+\ldots . .+{ }^{7} \mathrm{C}_{7} \cdot 8^{5}\right)\right.$
$\left.-\left({ }^{9} \mathrm{C}_{2}-\ldots . . .-{ }^{9} \mathrm{C}_{9} .8^{7}\right)\right]$
$=64$ (an integer)
$\Rightarrow \quad 9^{7}+7^{9}$ is divisible by 64 .

Sol. 10 (A)

$\ln (1+\alpha X)^{4}$, the middle term is $T_{(4 / 2+1)}=T_{3}$ and in $(1-\alpha x)^{6}$, the middle term is $\mathrm{T}_{(6 / 2+1)}=\mathrm{T}_{4}$.
$\ln (1+\alpha x)^{4}, T_{3}={ }^{4} C_{2}(1)^{2}(\alpha x)^{2}$
and in $(1-\alpha x)^{6}, T_{4}={ }^{6} C_{3}(1)^{3}(-\alpha x)^{3}$
$\Rightarrow{ }^{4} \mathrm{C}_{2} \alpha^{2}={ }^{6} \mathrm{C}_{3}(-\alpha)^{3}$ (As given)
$\Rightarrow 6 \alpha^{2}=-20 \alpha^{3}$
$\Rightarrow \quad \alpha=-\frac{6}{20}=-\frac{3}{10}$.
(Note that α ought to be non-zero)

Sol. 11 (D)

$$
\frac{{ }^{n} C_{1} a^{n-1} b}{{ }^{n} C_{2} a^{n-2} b^{2}}=\frac{{ }^{n+3} C_{2} a^{n+1} b^{2}}{{ }^{n+3} C_{3} a^{n} b^{3}}
$$

$$
\Rightarrow \frac{n}{\frac{n(n-1)}{2}}=\frac{\frac{(n+3)(n+2)}{2}}{\frac{(n+3)(n+2)(n+1)}{6}}
$$

$$
\Rightarrow \quad \frac{2}{n-1}=\frac{3}{n+1} \Rightarrow n=5
$$

Sol. 12 (C)

We have,
$(1+x)^{m}(1-x)^{n}$
$=M m x+\frac{m(m-1 \mid}{2!} x^{2}+\frac{m(m-1|m-2|}{3!} x^{3}+\ldots \cdot p$

$$
\left\lvert\, n x+\frac{n(n-1 \mid}{2!} x^{2}-\frac{n(n-1 \mid(n-2 \mid}{3!} x^{3}+\ldots \boldsymbol{P}\right.
$$

$$
=1+(m-n) x+\frac{\mid m(m-1 \mid}{2!}+\frac{n(n-1 \mid}{2!}-m n \mathbf{V}
$$

$$
\begin{equation*}
x^{2}+\ldots . . \tag{1}
\end{equation*}
$$

Given, $m-n=3$

$$
\begin{aligned}
& \text { and } \frac{m(m-1 \mid+n(n-1 \mid-2 m n}{2!}=-6 \\
& \Rightarrow m^{2}-m+n^{2}-n-2 m n=-12 \\
& \Rightarrow(m-n)^{2}-(m+n)=-12 \\
& \Rightarrow m+n=9+12=21 \quad \ldots \ldots(2) \\
& \text { (Using (1)) }
\end{aligned}
$$

Solving (1) and (2), we get $\mathrm{m}=12$.

