CLASS TEST - 2/7 BINOMIAL THEOREM MATHEMATICS

Dear student following is a Moderate level [0 • 0] test paper. Score of 18 Marks in 15 Minutes would be a satisfactory performance. Questions 1-12(+3, -1), (Single option correct)

Q.1	If there is a term containing x^{2r} in $(x + 1/x^2)^{n-3}$, then	Q.6	Which of the following expression is divisible by 1225				
	(A) $n - 2r$ is a positive integral multiple of 3		(A) 6 ²ⁿ – 35n – 1	(B) 6 ²ⁿ – 35n + 1			
	(B) n – 2r is even		(C) 6 ²ⁿ – 35n	(D) 6 ²ⁿ – 35n + 2			
	(C) $n - 2r$ is odd						
		Q.7	If 7^{103} is divided by 25, then the remainde				
	(D) None of these		is				
			(A) 20	(B) 16			
Q.2	If the sum of the coefficients in the expansion of $(\alpha x^2 - 2x + 1)^{35}$ is equal to		(C) 18	(D) 15			
	the sum of the coefficients in the expan-	Q.8	For all $n \in \mathbb{N}$, $2^{4n} - 15n - 1$ is divisible				
	sion of $(x - \alpha y)^{35}$, then α		(A) 225	(B) 125			
	(A) 0 (B) 1		(C) 325	(D) None			
	(C) May be any real number						
	(D) No such value exist	Q.9	9 ⁷ + 7 ⁹ is divisible by				
			(A) 6	(B) 24			
Q.3	In the polynomial $(x - 1)(x - 2)$		(C) 64	(D) 72			
	(x - 3) $(x - 100)$, the coefficient of						
	x ⁹⁹ is	Q.10		the middle term in the			
	(A) 5050 (B) -5050		-	on in powers of x of $(1 - \alpha x)^6$ is same if α			
	(C) 100 (D) 99		equals :				
			-3	. 10			
Q.4	The coefficient of x ¹⁰⁰ in the expansion		(A) $\frac{-3}{10}$	(B) $\frac{10}{3}$			
	of $\sum_{i=0}^{200} (1+x)^{j}$ is		(C) $\frac{-5}{3}$	(D) $\frac{3}{5}$			
			3	5			
	(A) 100 (B) 101	0 11	If $\frac{T_2}{T_2}$ in the expanse	sion of (a + b) ⁿ and $\frac{T_3}{T_4}$			
	(A) [100] (D) [102]	Q.11	T_3	T_4			
	(C) 101 (D) 100		in the expansion of then n =	f (a + b) ^{n + 3} are equal,			
			(A) 3	(B) 4			
			(C) 6				
Q.5	Middle term in the expansion of		(C) 0	(D) 5			
	$(1 + 3x + 3x^2 + x^3)^6$ is	Q.12	If in the expansion	of (1+ x) ^m (1 –x) ⁿ , the			
	(A) 4 th (B) 3 rd		coefficients of x and x^2 are 3 and -6 respectively, then m is				
	(C) 10 th (D) None of these						
			(A) 6 (B) 9				
MATH	IEMATICS FOUNDATION (CLASS TES	Г - 2/7)	(BINOMIAL THEOI	REM) ANSWER KEY			
Name							
	A B C D A B		_	BCD			
		_	_				
	$\begin{array}{c} 1. \\ 2. \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $						
	$\begin{array}{c} 2. \\ 3. \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $						
	4. 0 0 0 0 8. 0 0						

ABLES, 608-A, TALWANDI KOTA (RAJ.) Ph. 0744 - 6450883, 2405510

4. 0 0 0 0

(FOUNDATION) ∕₽∕∕₽₿Ĩ€

ABLES CLASS TEST - 2/7 BINOMIAL THEOREM MATHEMATICS

(FOUNDATION)

ANSWER KEY

Que.	1	2	3	4	5	6	7	8	9	10	11	12
Ans.	Α	В	В	А	С	А	С	Α	С	А	D	С

SOLUTIONS

Sol.1 (A)

$T_{p+1} = {}^{n-3}C_p x^{n-3-p}. \ \left[\frac{1}{x^2} \right]^p = {}^{n-3}C_p x^{n-3-3p}$

 $2r = n-3-3p \Rightarrow p = \frac{n-2r-3}{3} = \frac{n-2r}{3} - 1$ $\Rightarrow p + 1 = (n - 2r)/3$ $\therefore (n - 2r) \text{ is a positive integer, multiple of 3.}$

Sol.2 (B)

Putting x = y = 1, we have $(\alpha - 1)^{35} = (1 - \alpha)^{35}$ $\Rightarrow 2 (\alpha - 1)^{35} = 0 \Rightarrow \alpha = 1$

Sol.3 (B)

(x - 1)(x - 2)(x - 3)...(x - 100)Numbers of terms = 100; $\therefore \text{ Coefficient of } x^{99}$ = (x - 1)(x - 2)(x - 3) ...(x - 100) = (-1 - 2 - 3 - - 100) = -(1 + 2 + ... + 100) $= -\frac{100 \times 101}{2} = -5050$

Sol.4 (A)

$$T_{r+1} = {}^{200}C_r (1)^{200-r} (x)^r$$

Hence coefficient of $x^{100} = {}^{200}C_{100} = {}^{200}C_{100}$

Sol.5 (C)

 $(1 + 3x + 3x^2 + x^3)^6$ = { (1 + x)³}⁶ = (1 + x)¹⁸ Hence the middle term is 10th

Sol.6 (A)

Consider expression = $6^{2n} - 35n - 1$

= $(6^2)^n - 35n - 1 = 36^n - 35n - 1$ so $6^{2n} - 35n - 1 = (1 + 35)^n - 35n - 1$ = $1 + 35n + {}^{n}C_2 \cdot 35^2 + \dots + 35^n - 35n - 1$ = $(35)^2[{}^{n}C_2 + {}^{n}C_3 \cdot 35 + \dots + 35^{n-2}]$ = $1225 \times a$ positive integer if $n \ge 2$ If n = 1, then $6^{2n} - 35n - 1 = 0$, which is divisible by 1225. so, (B), (C), (D) are not divisible by 1225.

Sol.7 (C)

We have, $7^{103} = 7(49)^{51} = 7(50 - 1)^{51}$ = 7((50)⁵¹ - ⁵¹C₁50⁵⁰ + ⁵¹C₂50⁴⁹ - - 1)) = 7{(50⁵¹ - ⁵¹C₁50⁵⁰ + ⁵¹C₂50⁴⁹ -) - (7 + 18 - 18)} = k + 18 (say) ∴ k is divisible by 25. ∴ remainder is 18.

Sol.8 (A)

We have, $2^{4n} = (2^4)^n = (16)^n = (1 + 15)^n$ $\therefore 2^{4n} = 1 + {}^{n}C_1 \cdot 15 + {}^{n}C_2 \cdot 15^2 + {}^{n}C_3 \cdot 15^3 + \dots$ $\Rightarrow 2^{4n} - 1 - 15n = 15^2 [{}^{n}C_2 + {}^{n}C_3 \cdot 15 + \dots]$ = 225 K, where K is an integer.Hence $2^{4n} - 15n - 1$ is divisible by 225.

Sol.9 (C)

We have, $9^7 + 7^9 = (1 + 8)^7 - (1 - 8)^9$ = $(1 + {}^7C_1 \cdot 8^1 + {}^7C_2 \cdot 8^2 + \dots + {}^7C_7 \cdot 8^7)$ - $(1 - {}^9C_1 \cdot 8^1 + {}^9C_2 \cdot 8^2 - \dots - {}^9C_9 \cdot 8^9)$ = $16 \times 8 + 64[({}^7C_2 + \dots + {}^7C_7 \cdot 8^5)$ - $({}^9C_2 - \dots - {}^9C_9 \cdot 8^7)]$ = 64 (an integer) $\Rightarrow 9^7 + 7^9$ is divisible by 64.

Sol.10 (A)

In $(1 + \alpha x)^4$, the middle term is $T_{(4/2 + 1)} = T_3$ and in $(1 - \alpha x)^6$, the middle term is $T_{(6/2 + 1)} = T_4$. In $(1 + \alpha x)^4$, $T_3 = {}^4C_2(1)^2 (\alpha x)^2$ and in $(1 - \alpha x)^6$, $T_4 = {}^6C_3(1)^3 (-\alpha x)^3$ $\Rightarrow {}^4C_2\alpha^2 = {}^6C_3(-\alpha)^3$ (As given) $\Rightarrow 6\alpha^2 = -20\alpha^3$

CLASS TEST - 2/7 BINOMIAL THEOREM MATHEMATICS

$$\Rightarrow \quad \alpha = -\frac{6}{20} = -\frac{3}{10} \,.$$

(Note that α ought to be non-zero)

Sol.11 (D)

$$\frac{{}^{n}C_{1} a^{n-1}b}{{}^{n}C_{2} a^{n-2} b^{2}} = \frac{{}^{n+3}C_{2} a^{n+1} b^{2}}{{}^{n+3}C_{3} a^{n} b^{3}}$$

$$\Rightarrow \frac{n}{\frac{n(n-1)}{2}} = \frac{\frac{(n+3)(n+2)}{2}}{\frac{(n+3)(n+2)(n+1)}{6}}$$

$$\Rightarrow \qquad \frac{2}{n-1} = \frac{3}{n+1} \Rightarrow n = 5$$

Sol.12 (C)

We have,

$$(1 + x)^{m} (1-x)^{n}$$

$$= \left\| 1 + mx + \frac{m(m-1)!}{2!}x^{2} + \frac{m(m-1)!(m-2)!}{3!}x^{3} + \dots \right\| \times \frac{m(m-1)!}{2!}x^{2} - \frac{m(n-1)!(n-2)!}{3!}x^{3} + \dots \right\|$$

$$= 1 + (m-n)x + \left\| \frac{m(m-1)!}{2!} + \frac{m(n-1)!}{2!} - mn \right\|$$

$$= 1 + (m-n)x + \left\| \frac{m(m-1)!}{2!} + \frac{m(n-1)!}{2!} - mn \right\|$$

$$= 1 + (m-n)x + \left\| \frac{m(m-1)!}{2!} + \frac{m(n-1)!}{2!} - mn \right\|$$

$$= 1 + (m-n)x + \left\| \frac{m(m-1)!}{2!} + \frac{m(n-1)!}{2!} - mn \right\|$$

$$= 1 + (m-n)x + \left\| \frac{m(m-1)!}{2!} + \frac{m(n-1)!}{2!} - mn \right\|$$

$$= 1 + (m-n)x + \left\| \frac{m(m-1)!}{2!} + \frac{m(n-1)!}{2!} - mn \right\|$$

$$= 1 + (m-n)x + \left\| \frac{m(m-1)!}{2!} + \frac{m(n-1)!}{2!} - mn \right\|$$

$$= 1 + (m-n)x + \left\| \frac{m(m-1)!}{2!} + \frac{m(n-1)!}{2!} - mn \right\|$$

$$= 1 + (m-n)x + \left\| \frac{m(m-1)!}{2!} + \frac{m(n-1)!}{2!} - mn \right\|$$

$$= 1 + (m-n)x + \left\| \frac{m(m-1)!}{2!} + \frac{m(n-1)!}{2!} - mn \right\|$$

$$= 1 + (m-n)x + \left\| \frac{m(m-1)!}{2!} + \frac{m(n-1)!}{2!} - mn \right\|$$

$$= 1 + (m-n)x + \left\| \frac{m(m-1)!}{2!} + \frac{m(n-1)!}{2!} - mn \right\|$$

$$= 1 + (m-n)x + \left\| \frac{m(m-1)!}{2!} + \frac{m(n-1)!}{2!} - mn \right\|$$

$$= 1 + (m-n)x + \left\| \frac{m(m-1)!}{2!} + \frac{m(n-1)!}{2!} - mn \right\|$$

$$= 1 + (m-n)x + \left\| \frac{m(m-1)!}{2!} + \frac{m(m-1)!}{2!} - mn \right\|$$

$$= 1 + (m-n)x + \left\| \frac{m(m-1)!}{2!} + \frac{m(m-1)!}{2!} - mn \right\|$$

$$= 1 + (m-n)x + \left\| \frac{m(m-1)!}{2!} + \frac{m(m-1)!}{2!} - mn \right\|$$

$$= 1 + (m-n)x + \left\| \frac{m(m-1)!}{2!} + \frac{m(m-1)!}{2!} - mn \right\|$$

$$= 1 + (m-n)x + \left\| \frac{m(m-1)!}{2!} + \frac{m(m-1)!}{2!} - mn \right\|$$

$$= 1 + (m-n)x + \left\| \frac{m(m-1)!}{2!} + \frac{m(m-1)!}{2!} - mn \right\|$$

$$= 1 + (m-n)x + \left\| \frac{m(m-1)!}{2!} + \frac{m(m-1)!}{2!} - mn \right\|$$

$$= 1 + (m-n)x + \left\| \frac{m(m-1)!}{2!} + \frac{m(m-1)!$$

(FOUNDATION)

A™**A**BL