CLASS TEST 2/6

ATOMIC STRUCTURE

CHEMISTRY (FOUNDATION)

Dear student following is an Easy level $[\bigcirc 0 0]$ test paper. Score of 19 Marks in 10 Minutes would be a satisfactory performance. Questions 1-8 (+3, -1). (Only one option is correct)

Q.1 The spectrum of He is expected to be Q.5 similar to that of :

(A) H (B) Li⁺ (C) Na (D) He⁺

- Q.2 Which of the following electron transition in a hydrogne atom will require the largest amount of energy ?
 - (A) From n = 1 to n = 2
 - (B) From n = 2 to n = 3
 - (C) From $n = \infty$ to n = 1
 - (D) From n = 3 to n = 5
- Q.3 Which of the following statements is not true ?s
 - (A) Lyman spectral series of hydrogen atom lies in the ultraviolet region of electromagnetic radiation
 - (B) Balmer spectral series of hydrogen atom lies in the visible region of electromagnetic radiation
 - (C) Pashen spectral series of hydrogen atom lies in the visible region of electromagnetic radiation
 - (D) Brackett spectral series of hydrogen atom lies in the infrared region of electromagnetic radiation
- Q.4 The first emission line in the atomic spectrum of hydrogen in the Balmer series apears at :
 - (A) $\frac{9R}{400}$ cm⁻¹ (B) $\frac{7R}{144}$ cm⁻¹

(C)
$$\frac{3R}{4}$$
 cm⁻¹ (D) $\frac{5R}{36}$ cm⁻¹

In Balamer series of hydrogen atom spectrum which electronic transition causes third line?

ABĨES

- (A) Fifth Bohr orbit to second one
- (B) Fifth Bohr orbit to first one
- (C) Fourth Bohr orbit to second one
- (D) Fourth Bohr orbit to first one
- Q.6 What transition in the hydrogen spectrum would have the same wavelength as the Balamer transition, n = 4 to n = 2 in the He⁺ spectrum ?
 - (A) n = 4 to n = 1
 - (B) n = 3 to n = 2
 - (C) n = 3 to n = 1
 - (D) n = 2 to n = 1

Q.7 The spectrum produced by white light is

- (A) Emission spectrum
- (B) Continuous spectrum
- (C) Absorption spectrum
- (D) Both emission and continuous spectrum.
- Q.8 In hydroggen spectrum, the series of lines appearing in ultraviolet region of electromagnetic spectrum are called
 - (A) Lyman lines
 - (B) Balmer lines
 - (C) Pfund lines
 - (D) Brackett lines.

-\$€-CHEMISTRY FOUNDATION (CLASS TEST 2/6) (ATOMIC STRUCTURE) ANSWER KEY Roll No. : Name : С С С D Α В D Α В Α В D 0 1 0 0 \circ 4 0 0 0 0 7 0 0 0 \circ 2 0 0 0 0 5 0 0 0 0 8 \bigcirc \bigcirc \bigcirc 0 3 \bigcirc 0 0 0 6 \bigcirc 0 \bigcirc \bigcirc

ATOMIC STRUCTURE

ANSWER KEY

Que.	1	2	3	4	5	6	7	8
Ans.	В	А	С	D	Α	D	D	Α

SOLUTIONS

Sol.6 (D)

For He^s spectrum, for Balmer transition, n = 4 to 2

$$\overline{v} = \frac{1}{I}RZ^2\left(\frac{1}{2^2} - \frac{1}{4^2}\right) = R \times 4 \times \frac{3}{16} = \frac{3}{4}R$$

For H spectrum.

$$\overline{v} = \frac{1}{I} R \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) = \frac{3}{4} R$$

or $\frac{1}{n_1^2} - \frac{1}{n_2^2} = \frac{3}{4}$

It is clear $n_1 = 1$ and $n_2 = 2$ Alternative Method:

For He⁺,
$$\overline{v} = RZ^2 \left(\frac{1}{2^2} - \frac{1}{4^2}\right)$$

= R × 4 $\left(\frac{1}{2^2} - \frac{1}{4^2}\right) = R \left(\frac{1}{1^2} - \frac{1}{2^2}\right)...$ (1)
For H, $\overline{v} = R \left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right) = R \left(\frac{1}{1^2} - \frac{1}{2^2}\right)...$ (2)

Hence, $n_1 = 1$ and $n_2 = 2$

Sol.7 (D)

Sol.8 (D)

Sol.1 (B) He and Li⁺ contain two electrons each.

4BLES

Sol.2 (A) Energy is released for $n = \infty$ to 1 and energy difference is maximum between n = 1 and n = 2.

CLASS TEST 2/6

Sol.3 (C)

Paschen spectral series lies in the near infrared region of electromagnetic radiation.

Sol.4 (D)

 $\overline{\mathsf{v}} = \mathsf{R}\left(\frac{1}{2^2} - \frac{1}{3^2}\right)$

(:: 1st line appears jump n = 3 to n = 2)

$$= \frac{5R}{36} \text{ cm}^{-1}$$
.

Sol.5 (A)

Ist line is for $n_3 \rightarrow n_2$ 2nt line is for $n_4 \rightarrow n_2$ and 3rd line is for $n_s \rightarrow n_2$

CHEMISTRY (FOUNDATION)