1. Plots showing the variation of the rate constant (k) with temperature (T) are given below. The plot that follows Arrhenius equation is

JEE-2010
(A

(B)

(D

1. \mathbf{A}
$\mathrm{K}=A \mathrm{e}^{-\mathrm{Ea} / \mathrm{RT}}$
Rate constant increases with increase in temperature exponentially.
2. The species which by definition has ZERO standard molar enthalpy of formation at 298 K is

JEE-2010
(A) $\mathrm{Br}_{2}(\mathrm{~g})$
(B) $\mathrm{Cl}_{2}(\mathrm{~g})$
(C) $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
(D) $\mathrm{CH}_{4}(\mathrm{~g})$
2. B

The standard molar enthalpy of formation of elements in standard state is zero. For chlorine standard state is gas.
3. The bond energy (in $\mathrm{kcal} \mathrm{mol}^{-1}$) of a $\mathrm{C}-\mathrm{C}$ single bond is approximately JEE-2010
(A) 1
(B) 10
(C) 100
(D) 1000
3. \mathbf{C}
4. Among the following, the intensive property is (properties are)

JEE-2010

(A) molar conductivity
(B) electromotive force
(C) resistance
(D) heat capacity
4. A, B

Molar conductivity and EMF are physical quantities independent of amount of matter in the system.

Paragraph for Questions 5 to 6

The concentration of potassium ions inside a biological cell is at least twenty times higher than the outside. The resulting potential difference across the cell is important in several processes such as transmission of nerve impulses and maintaining the ion balance. A simple model for such a concentration cell involving a metal M is :

JEE-2010
$\mathrm{M}(\mathrm{s}) \mid \mathrm{M}^{+}$(aq; 0.05 molar) $\| \mathrm{M}^{+}$(aq; 1 molar) | $\mathrm{M}(\mathrm{s})$
For the above electrolytic cell the magnitude of the cell potential $\left|\mathrm{E}_{\text {cell }}\right|=70 \mathrm{mV}$.
5. For the above cell
(A) $\mathrm{E}_{\text {cell }}<0 ; \Delta \mathrm{G}>0$
(B) $\mathrm{E}_{\text {cell }}>0 ; \Delta \mathrm{G}<0$
(C) $\mathrm{E}_{\text {cell }}<0 ; \Delta \mathrm{G}^{\circ}>0$
(D) $\mathrm{E}_{\text {cell }}>0 ; \Delta \mathrm{G}^{\circ}<0$
6. If the 0.05 molar solution of M^{+}is replaced by a 0.0025 molar M^{+}solution, then the magnitude of the cell potential would be
(A) 35 mV
(B) 70 mV
(C) 140 mV
(D) 700 mV
5. B
$\mathrm{E}=\mathrm{E}^{\circ}-\frac{2.303 \mathrm{RT}}{\mathrm{nF}} \log _{10} \mathrm{Q}$
Here temp is not given
$\mathrm{E}=0-\frac{2.303 \mathrm{RT}}{\mathrm{nF}} \log _{10} \frac{.05}{1}$
So $\mathrm{E}=70 \mathrm{mV}$.
$\Delta \mathrm{G}=-\mathrm{nFE}$
Here $\mathrm{E}_{\text {cell }}$ is + ve then $\Delta \mathrm{G}$ is negative.
6. \mathbf{C}

When $\mathrm{E}^{\circ}=0$
$\frac{E_{1}}{E_{2}}=\frac{\log _{10} Q_{1}}{\log _{10} Q_{2}}$
$\frac{70}{\mathrm{E}_{2}}=\frac{\log .05}{\log (.05)^{2}}$
$\mathrm{E}_{2}=140 \mathrm{mV}$.
7. A student performs a titration with different burettes and finds titre values of $25.2 \mathrm{~mL}, 25.25 \mathrm{~mL}$, and 25.0 mL . The number of significant figures in the average titre value is

JEE-2010
7. 3

Average titre value $=\frac{25.2+25.25+25}{3}=25.15$
The minimum digits after decimal in data decides the extent of significant digit after decimal in "average value". Hence answer is 25.1 with total no. of significant digits $=3$.
8. The concentration of R in the reaction $\mathrm{R} \rightarrow \mathrm{P}$ was measured as a function of time and the following data is obtained :

JEE-2010

[R]	1.0	0.75	0.40	0.10
(molar)				
t(min.)	0.0	0.05	0.12	0.18

8. 0
0

$\mathbf{t}(\mathbf{m i n})$.	$[\mathbf{R}]_{\mathbf{0}}-[\mathbf{R}]_{\mathbf{t}}$	$[\mathbf{R}]_{\mathbf{0}}$ $[\mathbf{R}]_{\mathbf{t}} / \Delta \mathbf{t}$
0.05	0.25	5
0.12	0.60	5
0.18	0.9	5

since, $\frac{[R]_{0}-[R]_{t}}{\Delta t}$ ratio is constant. This indicates that the given reaction is of zero order.
For zero order reactions,

$$
\mathrm{K}=\frac{1}{\Delta \mathrm{t}}\left([\mathrm{R}]_{0}-[\mathrm{R}]_{\mathrm{t}}\right)
$$

9. The number of neutrons emitted when ${ }_{92}^{235} \mathrm{U}$ undergoes controlled nuclear fission to ${ }_{54}^{142} \mathrm{Xe}$ and ${ }_{38}^{90} \mathrm{Sr}$ is

JEE-2010
9. 3
${ }_{92}^{235} \mathrm{U} \longrightarrow{ }_{54}^{142} \mathrm{Xe}+{ }_{38}^{90} \mathrm{Sr}+3_{0}^{1} \mathrm{n}$
No. of neutrons emitted $=3$
10. Based on VSEPR theory, the number of 90 degree $\mathrm{F}-\mathrm{Br}-\mathrm{F}$ angles in BrF_{5} is

JEE-2010
10. $\mathbf{0}$

Because LP-BP repulsions are stronger than BP-BP repulsions, there will be a distortion in the geometry \& bond angles deviate from regular 90°.
11. Assuming that Hund's rule is violated, the bond order and magnetic nature of the diatomic molecule B_{2} is

JEE-2010
(A) 1 and diamagnetic
(B) 0 and diamagnetic
(C) 1 and paramagnetic
(D) 0 and paramagnetic
11. \mathbf{A}

Electronic configuration of ' B_{2} ' is
$\sigma_{1 \mathrm{~s}}^{2} \sigma_{1 \mathrm{~s}}^{* 2} \sigma_{2 \mathrm{~s}}^{2} \sigma_{2 \mathrm{~s}}^{* 2} \pi_{2 \mathrm{p}_{\mathrm{x}}}^{2}=\pi_{2 \mathrm{py}}^{0}$
Number of unpaired electrons $=0 \Rightarrow$ diamagnetic
Bond order $=\frac{n_{b 0}-n_{a b o}}{2}=\frac{4-2}{2}=1$
12. The species having pyramidal shape is

JEE-2010
(A) SO_{3}
(B) BrF_{3}
(C) SiO_{3}^{2-}
(D) OSF_{2}
12. D

Central atom ' S ' has 3σ bond pairs and $1 \mathrm{y} p$ of electrons.
13. The packing efficiency of the two-dimensional square unit cell shown below is JEE-2010

(A) 39.27%
(B) 68.02%
(C) 74.05%
(D) 78.54%
13. D

Number of atoms per unit cell

$$
\begin{aligned}
& =4 \times \frac{1}{4}+1=2 \\
& \sqrt{2} \mathrm{~L}=4 \mathrm{a} . \Rightarrow \mathrm{a}=\frac{\mathrm{L}}{2 \sqrt{2}} \\
& \text { Packing fraction }=\frac{2 \times \pi \cdot\left(\frac{\mathrm{L}}{2 \sqrt{2}}\right)^{2}}{\mathrm{~L}^{2}}
\end{aligned}
$$

$=\frac{\pi}{8}=0.7854$
$\%$ efficiency $=78.54 \%$.

www.sakshieducation.com

14. One mole of an ideal gas is taken from a to b along two paths denoted by the solid and the dashed lines as shown in the graph below. If the work done along the solid line path is w_{S} and that along the dotted line path is w_{d}, then the integer closest to the ratio w_{d} / w_{s} is

JEE-2010

14

$$
\begin{aligned}
\mathbf{2} & \mathrm{W}_{\mathrm{d}} \\
& =4(2-0.5)+1(3-2)+0.5(5.5-3) \\
& =6+1+1.25=8.25 \mathrm{~L}-\mathrm{atm} \\
\mathrm{~W}_{\mathrm{s}} & =2.303 \mathrm{nRT} \log \left(\frac{\mathrm{~V}_{2}}{\mathrm{~V}_{1}}\right) \quad \mathrm{nRT}=\mathrm{PV}=4 \times 0.5 \\
& =2.303 \times 2 \times \log \left(\frac{5.5}{0.5}\right) \\
& =4.79 . \mathrm{L}-\mathrm{atm} . \\
& \frac{\mathrm{W}_{\mathrm{d}}}{\mathrm{~W}_{\mathrm{s}}}=\frac{8.25}{4.79}=1.72 . \quad=2 .
\end{aligned}
$$

15. Silver (atomic weight $=108 \mathrm{~g} \mathrm{~mol}^{-1}$) has a density of $10.5 \mathrm{~g} \mathrm{~cm}^{-3}$. The number of silver atoms on a surface of area $10^{-12} \mathrm{~m}^{2}$ can be expressed in scientific notation as $\mathrm{y} \times 10^{\mathrm{x}}$. The value of x is
16. 7
'Ag' crystallizes in 'CCP' manner and $\mathrm{n}=4$

$$
\mathrm{d}=\frac{\mathrm{n} \times \mathrm{A}}{\mathrm{~N}_{0} \cdot \mathrm{a}^{3}} \quad 10.5=\frac{4 \times 108}{6 \times 10^{23} \times \mathrm{a}^{3}}
$$

$$
a \cong 4 \times 10^{-8} \mathrm{~cm}
$$

Volume of the solid given $=10^{-12} \times 10^{4} \times 4 \times 10^{-8}=4 \times 10^{-16} \mathrm{cc}$.
Number of atoms per CC $=\frac{10.5}{108} \times 6 \times 10^{23}=5.8 \times 10^{22}$
\therefore no of ' Ag ' atom $=4 \times 10^{-16} \times 5.8 \times 10^{22}=2.74 \times 10^{7}$

Paragraph for questions 16 to 18

The hydrogen-like species Li^{2+} is in a spherically symmetric state S_{1} with one radial node. Upon absorbing light the ion undergoes transition to a state S_{2}. The state S_{2} has one radial node and its energy is equal to the ground state energy of the hydrogen atom.

JEE-2010
16. The state S_{1} is
(A) 1 s
(B) 2 s
(C) 2 p
(D) 3 s
17. Energy of the state S_{1} in units of the hydrogen atom ground state energy is
(A) 0.75
(B) 1.50
(C) 2.25
(D) 4.50
18. The orbital angular momentum quantum number of the state S_{2} is
(A) 0
(B) 1
(C) 2
(D) 3
16. B

No. of radial nodes $=1$
$\Rightarrow-1=1 \square \mathrm{n}$ -
$\Rightarrow \mathrm{n}-\ddot{\mathrm{y}}=2$

Orbital	$\mathbf{n - \ddot { \mathbf { y } }}$
1 s	1
2 s	2
2 p	1
3 s	3

17. \mathbf{C}

Energy of state $S_{1}=\frac{E_{1}(H)}{n^{2}} \times Z^{2}$

$$
=\frac{\mathrm{E}_{1}(\mathrm{H})}{4} \times 9
$$

$$
=2.25 \mathrm{E}_{1}(\mathrm{H})
$$

18. B

Energy of state $\mathrm{S}_{2}=\mathrm{E}_{1}(\mathrm{H})$
$\Rightarrow \frac{\mathrm{E}_{1}(\mathrm{H})}{\mathrm{n}^{2}} \times 9=\mathrm{E}_{1}(\mathrm{H})$
$\Rightarrow \mathrm{n}=3$
Now, no. of radial nodes $=1$
$\Rightarrow \mathrm{n}-\ddot{\mathrm{y}}-1=1$
$\Rightarrow 2-\ddot{y}=1$
$\Rightarrow \ddot{\mathrm{y}}=1$
19. Given that the abundances of isotopes ${ }^{54} \mathrm{Fe},{ }^{56} \mathrm{Fe}$ and ${ }^{57} \mathrm{Fe}$ are $5 \%, 90 \%$ and 5%, respectively, the atomic mass of Fe is

JEE-2009
(A) 55.85
(B) 55.95
(C) 55.75
(D) 56.05
19. B

Sol : The abundance of $\quad{ }^{54} \mathrm{Fe}=5 \%$
${ }^{56} \mathrm{Fe}=90 \%$
${ }^{57} \mathrm{Fe}=5 \%$.
\therefore The atomic mass of Fe is $=\frac{5(54)+90(56)+(57) \times 5}{100}$
20. The term that corrects for the attractive forces present in a real gas in the van der Waals equation is

JEE-2009
(A) nb
(B) $\frac{\mathrm{an}^{2}}{\mathrm{~V}^{2}}$
(C) $-\frac{\mathrm{an}^{2}}{\mathrm{~V}^{2}}$
(D) - nb
20. B
21. Among the electrolytes $\mathrm{Na}_{2} \mathrm{SO}_{4}, \mathrm{CaCl}_{2}, \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ and $\mathrm{NH}_{4} \mathrm{Cl}$, the most effective coagulating agent for $\mathrm{Sb}_{2} \mathrm{~S}_{3}$ sol is

JEE-2009
(A) $\mathrm{Na}_{2} \mathrm{SO}_{4}$
(B) CaCl_{2}
(C) $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
(D) $\mathrm{NH}_{4} \mathrm{Cl}$
21. \mathbf{C}

Sol: $\quad \mathrm{Sb}_{2} \mathrm{~S}_{3}$ is an negatively charged sol, so among the given cations Al^{3+} has highest floculating power.
22. The Henry's law constant for the solubility of N_{2} gas in water at 298 K is $1.0 \times 10^{5} \mathrm{~atm}$. The mole fraction of N_{2} in air is 0.8 . The number of moles of N_{2} from air dissolved in 10 moles of water at 298 K and 5 atm pressure is

JEE-2009
(A) 4.0×10^{-4}
(B) 4.0×10^{-5}
(C) 5.0×10^{-4}
(D) 4.0×10^{-6}
22. A

Sol : Henry's law is $\mathrm{P}=\mathrm{K}_{\mathrm{H}} \mathrm{X}$

$$
\begin{array}{rlr}
& \mathrm{n}_{\mathrm{N}_{2}}=\mathrm{n}_{\mathrm{H}_{2} \mathrm{O}} \times \frac{\mathrm{P}_{\mathrm{N}_{2}}}{\mathrm{~K}_{\mathrm{H}}^{\mathrm{N}_{2}}} & \text { Where } \mathrm{n}_{\mathrm{N}_{2}}=\text { no. of moles of nitrogen, } \mathrm{N}_{2} \text { dissolved. } \\
\mathrm{P}_{\mathrm{N}_{2}}=\mathrm{X}_{\mathrm{N}_{2}} \mathrm{P}_{\text {air }} & \mathrm{n}_{\mathrm{H}_{2} \mathrm{O}}=\text { no. of moles of solvent } \\
=0.8 \times 5 & \mathrm{P}_{\mathrm{N}_{2}}=\text { partial pressure of gas dissolved. } \\
\mathrm{P}_{\mathrm{N}_{2}}=4 \text { atm } & \mathrm{K}_{\mathrm{H}}^{\mathrm{N}_{2}}=\text { Henry's law constant for gas dissolved } \\
\mathrm{n}_{\mathrm{N}_{2}}=10 \times \frac{4}{1 \times 10^{5}} & \mathrm{X}_{\mathrm{N}_{2}}=\text { mole fraction of Nitrogen, } \mathrm{N}_{2} \text { in air } \\
\mathrm{n}_{\mathrm{N}_{2}}=4 \times 10^{-4} \text { moles. } &
\end{array}
$$

23. The correct statement(s) regarding defects in solids is(are)

JEE-2009
(A) Frenkel defect is usually favoured by a very small difference in the sizes of cation and anion
(B) Frenkel defect is a dislocation defect
(C) Trapping of an electron in the lattice leads to the formation of F -center
(D) Schottky defects have no effect on the physical properties of solids
23. B, C
24. Match each of the diatomic molecules in Column I with its property/properties in Column II.

JEE-2009

Column - I		Column - II	
(A)	B_{2}	(p)	Paramagnetic
(B)	N_{2}	(q)	Undergoes oxidation
(C)	O_{2}^{-}	(r)	Undergoes reduction
(D)	O_{2}	(s)	Bond order ≥ 2
		(t)	Mixing of 's' and ' p ' orbitals

24. $\quad \mathbf{A} \rightarrow \mathbf{p}, \mathbf{q}, \mathbf{r}, \mathbf{t} ; \mathbf{B} \rightarrow \mathbf{q}, \mathbf{r}, \mathbf{s}, \mathbf{t} ; \mathbf{C} \rightarrow \mathbf{p}, \mathbf{q}, \mathbf{r} ; \mathbf{D} \rightarrow \mathbf{p}, \mathbf{q}, \mathbf{r}, \mathbf{s}$
25. For a first order reaction $A \rightarrow P$, the temperature (T) dependent rate constant (k) was found to follow the equation $\log \mathrm{k}=-(2000) \frac{1}{\mathrm{~T}}+6.0$. The pre-exponential factor A and the activation energy E_{a}, respectively, are JEE-2009
(A) $1.0 \times 10^{6} \mathrm{~s}^{-1}$ and $9.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(B) $6.0 \mathrm{~s}^{-1}$ and $16.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(C) $1.0 \times 10^{6} \mathrm{~s}^{-1}$ and $16.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(D) $1.0 \times 10^{6} \mathrm{~s}^{-1}$ and $38.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$
26. D

Sol. $\quad \log \mathrm{K}=\log \mathrm{A}-\frac{\mathrm{E}_{\mathrm{a}}}{2.303 \mathrm{RT}}$
$\frac{\mathrm{E}_{\mathrm{a}}}{2.303 \mathrm{R}}=2000$
$\log \mathrm{A}=6$
26. The spin only magnetic moment value (in Bohr magneton units) of $\mathrm{Cr}(\mathrm{CO})_{6}$ is

JEE-2009
(A) 0
(B) 2.84
(C) 4.90
(D) 5.92
26. A

Sol. CO is strong field ligand
$\mathrm{Cr}(\mathrm{CO})_{6}$: Cr is in zero oxidation state. All 6 electrons present in Cr will be paired. So no unpaired electrons
27. For the reduction of NO_{3}^{-}ion in an aqueous solution, E° is +0.96 V . Values of E° for some metal ions are given below.

JEE-2009

$$
\begin{aligned}
& \mathrm{V}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{V} \quad \mathrm{E}^{\circ}=-1.19 \mathrm{~V} \\
& \mathrm{Fe}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Fe} \mathrm{E} \mathrm{E}^{\circ}=-0.04 \mathrm{~V} \\
& \mathrm{Au}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{AuE}^{\circ}=+1.40 \mathrm{~V} \\
& \mathrm{Hg}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Hg} \mathrm{E}^{\circ}=+0.86 \mathrm{~V}
\end{aligned}
$$

The pair(s) of metals that is(are) oxidized by NO_{3}^{-}in aqueous solution is (are)
(A) V and Hg
(B) Hg and Fe
(C) Fe and Au
(D) Fe and V
27. A, B, D

Sol. $\quad \mathrm{E}_{\mathrm{V} / \mathrm{V}^{+2}}^{0}=+1.19 \mathrm{~V}$
$\mathrm{E}_{\mathrm{Fe} / \mathrm{Fe}} 0 \mathrm{~s}=+0.04 \mathrm{~V}$
$\mathrm{E}_{\mathrm{Au} / \mathrm{Au}{ }^{+3}}^{0}=-1.4 \mathrm{~V}$
$\mathrm{E}_{\mathrm{Hg} / \mathrm{Hg}^{+2}}^{0}=-0.86 \mathrm{~V}$
The cell constructed with Au will have negative $\mathrm{E}^{\circ} .(+0.96+(-1.4)=-0.44)$ with remaining three metals it will be positive.
28. Among the following, the state function(s) is (are)

JEE-2009
(A) Internal energy
(B) Irreversible expansion work
(C) Reversible expansion work
(D) Molar enthalpy
28. A, D
29. The dissociation constant of a substituted benzoic acid at $25^{\circ} \mathrm{C}$ is 1.0×10^{-4}. The pH of a 0.01 M solution of its sodium salt is

JEE-2009
29. 8

Sol : $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}+\mathrm{OH}^{-}$
Initial conc . $0.01 \quad 0 \quad 0$
Eq. conc. $\quad 0.01(1-\propto) \quad 0.01 \propto \quad 0.01 \propto$
For conjugate acid - base pair,

$$
\begin{array}{ll}
& \mathrm{K}_{\mathrm{w}}=\mathrm{K}_{\mathrm{a}} \times \mathrm{K}_{\mathrm{b}} \\
\Rightarrow \quad & \mathrm{~K}_{\mathrm{b}}=\frac{\mathrm{Kw}}{\mathrm{~K}_{\mathrm{a}}}=\frac{10^{-14}}{10^{-4}}=10^{-10} \\
& \mathrm{~K}_{\mathrm{b}}=\frac{0.01 \propto \times 0.01 \propto}{0.01(1-\propto)} \\
\Rightarrow \quad & 10^{-10}=0.01 \propto \\
\Rightarrow \quad & \propto=\frac{10^{-10}}{0.01}=10^{-8} \\
{\left[\mathrm{OH}^{-}\right]=0.01 \propto=10^{-6}} \\
\mathrm{P}^{\mathrm{OH}}=6 \\
\mathrm{P}^{\mathrm{H}}=8
\end{array}
$$

30. At 400 K , the root mean square (rms) speed of a gas X (molecular weight $=40$) is equal to the most probable speed of gas Y at 60 K . The molecular weight of the gas Y is

JEE-2009
30. 4

Sol : $\sqrt{\frac{3 \mathrm{RT}_{1}}{40}}=\sqrt{\frac{2 \mathrm{RT}_{2}}{\mathrm{M}_{\mathrm{y}}}}$
$\Rightarrow \quad \frac{3 \mathrm{~T}_{1}}{40}=\frac{2 \mathrm{~T}_{2}}{\mathrm{M}_{\mathrm{y}}}$
$\Rightarrow \quad 30=\frac{2 \times 60}{\mathrm{M}_{\mathrm{y}}}$
$\Rightarrow \quad \mathrm{M}_{\mathrm{y}}=4$
Mol. Wt. of gas $\mathrm{y}=4$.
31. The total number of α and β particles emitted in the nuclear reaction ${ }_{92}^{238} \mathrm{U} \rightarrow_{82}^{214} \mathrm{~Pb}$ is JEE-2009
31. 8

Sol : ${ }_{92}^{238} \mathrm{U} \xrightarrow{\mathrm{x} \alpha, \mathrm{y} \mathrm{\beta}}{ }_{82}^{214} \mathrm{~Pb}$
$92-2 x+y=82$
$\Rightarrow 2 \mathrm{x}-\mathrm{y}=10$
$238-4 \mathrm{x}=214$
$\Rightarrow 4 \mathrm{x}=24$
$\therefore \mathrm{x}=6$
from equation (1),
$y=2$
Total. No of $\alpha \& \beta$ particles $=6+2=8$
32. The coordination number of Al in the crystalline state of AlCl_{3} is . JEE-2009
32. 6

Sol : The crystalline solid has a layer lattice with six co-ordination Aÿ.
Coordination No. of $\mathrm{A} \ddot{\mathrm{y}}=6$.
33. In a constant volume calorimeter, 3.5 g of a gas with molecular weight 28 was burnt in excess oxygen at 298.0 K . The temperature of the calorimeter was found to increase from 298.0 K to 298.45 K due to the combustion process. Given that the heat capacity of the calorimeter is $2.5 \mathrm{~kJ} \mathrm{~K}^{-1}$, the numerical value for the enthalpy of combustion of the gas in $\mathrm{kJ} \mathrm{mol}^{-1}$ is JEE-2009
33. 9

Sol: $\quad q=$ Heat capacity $\times \Delta T$
$=2.5 \times 0.45$
$=1.125 / \mathrm{g}$
for 1 mole, $\quad q=1.125 \times \frac{28}{3.5}=9$
Heat of combustion $=-9 \mathrm{~kJ} \mathrm{~mol}^{-1}$
34. Under the same reaction conditions, initial concentration of $1.386 \mathrm{~mol} \mathrm{dm}^{-3}$ of a substance becomes half in 40 seconds and 20 seconds through first order and zero order kinetics, respectively. Ratio $\left(\frac{k_{1}}{k_{0}}\right)$ of the rate constants for first order $\left(k_{1}\right)$ and zero order $\left(k_{0}\right)$ of the reactions is

JEE-2008
(A) $0.5 \mathrm{~mol}^{-1} \mathrm{dm}^{3}$
(B) $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$
(C) $1.5 \mathrm{~mol} \mathrm{dm}^{-3}$
(D) 2.0 $\mathrm{mol}^{-1} \mathrm{dm}^{3}$
34. (A)
$\mathrm{K}_{1}=\frac{0.693}{\mathrm{t}_{\frac{1}{2}}} \quad \mathrm{~K}_{0}=\frac{\mathrm{a}}{2 \mathrm{t}_{\frac{01}{2}}}, \quad \frac{\mathrm{~K}_{1}}{\mathrm{~K}_{0}}=\frac{0.693}{\mathrm{t}_{\frac{1}{2}}} \times \frac{2 \mathrm{t}_{0(1 / 2)}}{\mathrm{a}}$
or, $\frac{\mathrm{K}_{1}}{\mathrm{~K}_{0}}=\frac{0.693}{40} \times \frac{40}{1.386}$ or, $\frac{\mathrm{K}_{1}}{\mathrm{~K}_{0}}=\frac{0.693}{1.386}=0.5 \mathrm{~mol}^{-1} \mathrm{dm}^{3}$
35. $\quad 2.5 \mathrm{~mL}$ of $\frac{2}{5} \mathrm{M}$ weak monoacidic base $\left(\mathrm{K}_{\mathrm{b}}=1 \times 10^{-12}\right.$ at $\left.25^{\circ} \mathrm{C}\right)$ is titrated with $\frac{2}{15} \mathrm{M} \mathrm{HCl}$ in water at $25^{\circ} \mathrm{C}$. The concentration of H^{+}at equivalence point is $\left(\mathrm{K}_{\mathrm{w}}=1 \times 10^{-14}\right.$ at $\left.25^{\circ} \mathrm{C}\right) \quad$ JEE-2008
(A) $3.7 \times 10^{-13} \mathrm{M}$
(B) $3.2 \times 10^{-7} \mathrm{M}$
(C) $3.2 \times 10^{-2} \mathrm{M}$
(D) 2.7 x $10^{-2} \mathrm{M}$
35. (C)
$\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2}$
$\frac{2}{5} \times 2.5=\frac{2}{15} \mathrm{~V}_{\mathrm{HCl}}$
$\Rightarrow \quad \mathrm{V}_{\mathrm{HCl}}=7.5 \mathrm{ml}$
Meq of base $=1$

$$
\begin{aligned}
& {[\text { Base }]=\frac{1}{10} \mathrm{M} } \\
& {\left[\mathrm{H}^{+}\right]=\sqrt{\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{~K}_{\mathrm{b}}} \times \mathrm{C}} } \\
& {\left[\mathrm{H}^{+}\right]=\sqrt{\frac{10^{-14}}{10^{-12}} \times 0.1} } \\
\Rightarrow \quad & {\left[\mathrm{H}^{+}\right]=3.2 \times 10^{-2} \mathrm{M} }
\end{aligned}
$$

36. A gas described by van der Waals equation

JEE-2008
(A) behaves similar to an ideal gas in the limit of large molar volumes
(B) behaves similar to an ideal gas in the limit of large large pressures
(C) is characterized by van der Waals coefficients that are dependent on the identify of the gas but are independent of the temperature
(D) has the pressure that is lower than the pressure exerted by the same gas behaving ideally

36 (A), (C) and (D)

- $\left(\mathrm{P}+\frac{\mathrm{a}}{\mathrm{V}_{\mathrm{m}}{ }^{2}}\right)\left(\mathrm{V}_{\mathrm{m}}-\mathrm{b}\right)=\mathrm{RT}$

If V_{m} is large

$$
\mathrm{PV}_{\mathrm{m}}=\mathrm{RT}
$$

- 'a' and 'b' are characteristics of vanderwaal's gas and independent of temperature.
- Due to attractive forces among the gaseous molecules, the pressure exerted is lower than the pressure exerted by the ideal gas.

37. STATEMENT - 1: The plot of atomic number (y-axis) versus number of neutrons (x-axis) for stable nuclei shows a curvature towards x-axis from the line of 45° slope as the atomic number is increased.

JEE-2008
and
STATEMENT - 2: Proton-proton electrostatic repulsions begin to overcome attractive forces involving protons and neutrons in heavier nuclides.
(A) Statement -1 is True, Statement -2 is True; Statement -2 is a correct explanation for Statement -1
(B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct Explanation for Statement-1
(C) Statement- 1 is True, Statement-2 is False
(D) Statement-1 is False, Statement-2 is True

38. STATEMENT - 1: For every chemical reaction at equilibrium, standard Gibbs energy of reaction is zero.

JEE-2008
and
STATEMENT - 2: At constant temperature and pressure, chemical reactions are spontaneous in the direction of decreasing Gibbs energy.
(A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1
(B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct Explanation for Statement-1
(C) Statement-1 is True, Statement-2 is False
(D) Statement-1 is False, Statement-2 is True
38. (D) $\Delta \mathrm{G}=\Delta \mathrm{G}^{0}+\mathrm{RT} \ln \mathrm{Q}$

At equilibrium, $\Delta \mathrm{G}=0\left(\Delta \mathrm{G}^{0} \neq 0\right)$

$$
\Delta \mathrm{G}^{0}=-\mathrm{RT} \ln \mathrm{~K}
$$

If $\Delta \mathrm{G}$ is - ve, reaction will be spontaneous.

Paragraph for Question Nos. 39 to41

Properties such as boiling point, freezing point and vapour pressure of a pure solvent change when solute molecules are added to get homogenous solution. These are called colligative properties. Applications of colligative properties are very useful in day-to-day life. One of its examples is the use of ethylene glycol and water mixture as anti-freezing liquid in the radiator of automobiles.

JEE-2008
A solution \mathbf{M} is prepared by mixing ethanol and water. The mole fraction of ethanol in the mixture is 0.9 .
Given: \quad Freezing point depression constant of water $\left(\mathrm{K}_{\mathrm{f}}{ }^{\text {water }}=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}\right.$
Freezing point depression constant of ethanol $\left(\mathrm{K}_{\mathrm{f}}^{\text {ethanol }}\right)=2.0 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$
Boiling point elevation constant of water $\left(\mathrm{K}_{\mathrm{b}}{ }^{\text {water }}\right)=0.52 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$
Boiling point elevation constant of ethanol $\left(\mathrm{K}_{\mathrm{b}}{ }^{\text {ethanol }}\right)=1.2 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$
Standard freezing point of water $=273 \mathrm{~K} \quad$ Standard freezing point of ethanol $=155.7 \mathrm{~K}$
Standard boiling point of water $=373 \mathrm{~K} \quad$ Standard boiling point of ethanol $=351.5 \mathrm{~K}$
Vapour pressure of pure water $=32.8 \mathrm{~mm} \mathrm{Hg} \quad$ Vapour pressure of pure ethanol $=40 \mathrm{~mm} \mathrm{Hg}$
Molecular weight of water $=18 \mathrm{~g} \mathrm{~mol}^{-1}$
Molecular weight of ethanol $=46 \mathrm{~g} \mathrm{~mol}^{-1}$
In answering the following questions, consider the solutions to be ideal dilute solutions and solutes to be non-volatile and non-dissociative.
39. The freezing point of the solution \mathbf{M} is
(A) 268.7 K
(B) 268.5 K
(C) 234.2 K
(D) 150.9 K
39. (D)

Molality of the solution $\mathrm{m}=\frac{0.1 \times 1000}{0.9 \times 46}=2.4$
$\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{K}_{\mathrm{f}} \times \mathrm{m}=2 \times 2.4=4.8$
$\mathrm{T}_{\mathrm{f}}=155.7-4.8=150.9 \mathrm{~K}$
40. The vapour pressure of the solution \mathbf{M} is
(A) 39.3 mm Hg
(B) 36.0 mm Hg
(C) 29.5 mm Hg
(D) 28.8
mm Hg
40. (B)
$\mathrm{P}=\mathrm{x}_{\mathrm{A}} \mathrm{p}_{\mathrm{A}}^{0} \quad=(0.9 \times 40)=36 \mathrm{~mm}$ of Hg
41. Water is added to the solution \mathbf{M} such that the mole fraction of water in the solution becomes 0.9 . The boiling point of this solution is
(A) 380.4 K
(B) 376.2 K
(C) 375.5 K
(D) 354.7 K
41. (B)

Molality of the solution in which mole fraction of $\mathrm{H}_{2} \mathrm{O} 0.9$, is,
$\mathrm{m}=\frac{0.1}{0.9 \times 18} \times 1000=6.17 \mathrm{~m}$
$\Delta \mathrm{T}_{\mathrm{b}} \quad=\mathrm{K}_{\mathrm{b}} \times \mathrm{m}$
$=0.52 \times 6.17$

$$
=3.2
$$

$\therefore \mathrm{T}_{\mathrm{b}}=373+3.2=376.2 \mathrm{~K}$
42. Electrolysis of dilute aqueous NaCl solution was carried out by passing 10 milli ampere current. The time required to liberate 0.01 mol of H_{2} gas at the cathode is (1 Faraday $=96500 \mathrm{C} \mathrm{mol}^{-1}$)

JEE-2008

(A) 9.65×10^{4}
(B)
(B) $19.3 \times 10^{4} \mathrm{sec}$
(C) $28.95 \times 10^{4} \mathrm{sec}$
(D) $38.6 \times 10^{4} \mathrm{sec}$
42. (B)
0.01 mole of $\mathrm{H}_{2}=0.02$ equivalents of $\mathrm{H}_{2} \equiv 0.02 \mathrm{~F}$

$$
\begin{array}{ll}
& i=\frac{Q}{t} \\
\Rightarrow \quad & 10 \times 10^{-3}=\frac{0.02 \times 96,500}{t} \\
\Rightarrow \quad & t=\frac{0.02 \times 96,500}{10^{-2}} \\
\Rightarrow \quad & t=19.3 \times 10^{4} \mathrm{sec}
\end{array}
$$

43. Among the following, the surfactant that will form micelles in aqueous solution at the lowest molar concentration at ambient conditions is

JEE-2008
(A) $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{15} \mathrm{~N}^{+}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Br}^{-}$
(B) $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{11} \mathrm{OSO}_{3}{ }^{-} \mathrm{Na}^{+}$
(C) $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{COO}^{-} \mathrm{Na}^{+}$
(D) $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{11} \mathrm{~N}^{+}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Br}^{-}$
43. (B)

Detergents have more tendency to form micelles. Due to higher molar mass and greater polarity,
$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{11} \mathrm{OSO}_{3}{ }^{-} \mathrm{Na}^{+}$will form micelles at lowest molar concentration.
44. Solubility product constants ($\mathrm{K}_{\text {sp }}$) of salts of types MX, MX_{2} and $\mathrm{M}_{3} \mathrm{X}$ at temperature "T" are 4.0 x 10^{-8},
3.2×10^{-14} and 2.7×10^{-15} respectively. Solubilities $\left(\mathrm{mol} \mathrm{dm}^{-3}\right)$ of the salts at temperature "T" are in the order

JEE-2008
(A) $M X>M_{2}>M_{3} X$
(B) $\mathrm{M}_{3} \mathrm{X}>\mathrm{MX}_{2}>\mathrm{MX}$
(C) $\mathrm{MX}_{2}>\mathrm{M}_{3} \mathrm{X}>\mathrm{MX}$
(D) $\mathrm{MX}>\mathrm{M}_{3} \mathrm{X}>\mathrm{MX}_{2}$
44. (D)

$$
\begin{aligned}
M X \rightleftharpoons & M^{+}+X^{-} \\
& K_{\text {sp }}=s^{2}=4 \times 10^{-8} \\
& \Rightarrow s=2 \times 10^{-4}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{MX}_{2} \rightleftharpoons \mathrm{M}^{2+}+2 \mathrm{X}^{-} \\
& \mathrm{K}_{\mathrm{sp}}=4 \mathrm{~s}^{3}=3.2 \times 10^{-14} \\
& \Rightarrow \mathrm{~s}=2 \times 10^{-5} \\
& \mathrm{M}_{3} \mathrm{X} \rightleftharpoons 3 \mathrm{M}^{+}+\mathrm{X}^{3-} \\
& \rightleftharpoons \mathrm{K}_{\mathrm{sp}}=27 \mathrm{~s}^{4}=2.7 \times 10^{-15} \\
& \Rightarrow \mathrm{~s}=1 \times 10^{-4} \\
& \text { so, } \mathrm{MX}>\mathrm{M}_{3} \mathrm{X}>\mathrm{MX}_{2}
\end{aligned}
$$

45. STATEMENT-1:

JEE-2008
There is a natural asymmetry between converting work to heat and converting heat to work.

and

STATEMENT-2 :
No process is possible in which the sole result is the absorption of heat from a reservoir and its complete conversion into work.
(A) STATEMENT-1 is True, STATEMENT-2 is True; STATEMENT-2 is a correct explanation for STATEMENT-1
(B) STATEMENT-1 is True, STATEMENT-2 is True; STATEMENT-2 is NOT a correct explanation for STATEMENT-1
(C) STATEMENT-1 is True, STATEMENT-2 is False
(D) STATEMENT-1 is False, STATEMENT-2 is True
45. (A)

Paragraph for Question Nos. 46 to 48

In hexagonal systems of crystals, a frequently encountered arrangement of atoms is described as a hexagonal prism. Here, the top and bottom of the cell are regular hexagons and three atoms are sandwiched in between them. A space-filling model of this structure, called hexagonal close-packed (HCP), is constituted of a sphere on a flat surface surrounded in the same plane by six identical spheres as closely as possible. Three spheres are then placed over the first layer so that they touch each other and represent the second layer. Each one of these three spheres touches three spheres of the bottom layer. Finally, the second layer is covered with a third layer that is identical to the bottom layer in relative position. Assume radius of every sphere to be 'r'. JEE-2008
46. The number of atoms in this HCP unit cell is
(A) 4
(B) 6
(C) 12
(D) 17
46. (B)

Effective number of atoms per unit cell of $\mathrm{HCP}=6$
47. The volume of this HCP unit cell is
(A) $24 \sqrt{2} r^{3}$
(B) $16 \sqrt{2} \mathrm{r}^{3}$
(C) $12 \sqrt{2} \mathrm{r}^{3}$
(D) $\frac{64}{3 \sqrt{3}} \mathrm{r}^{3}$
47. (A)

The volume of HCP unit cell $=24 \sqrt{2} \mathrm{r}^{3}$
48. The empty space in this HCP unit cell is
(A) 74%
(B) 47.6%
(C) 32%
(D) 26%

48 (D)
$\%$ packing fraction $=74 \%$
$\%$ of empty space $=26 \%$.

www.sakshieducation.com

49. Match the entries in Column I with the correctly related quantum number(s) in Column II. Indicate your answer by darkening the appropriate bubbles of the 4×4 matrix given in the ORS.

Column I	Column II		
(A)Oribital angular momentum of the electron in a hydrogen-like atomic orbital	(p)	JEE-2008 Principal quantum number	
(B)A hydrogen-like one-electron wave function obeying Pauli principle	(q)	Azimuthal quantum number	
(C)	Shape, size and orientation of hydrogen-like atomic orbitals	(r)	Magnetic quantum number
(D)Probability density of electron at the nucleus in hydrogen-like atom	(s)	Electron spin quantum number	

49. (A) -q
(B) $\quad-\mathrm{p}, \mathrm{q}, \mathrm{r}$
(C) $-\mathrm{p}, \mathrm{q}, \mathrm{r}$
(D) $\quad-\mathrm{p}, \mathrm{q}, \mathrm{r}$
50. When 20 g of naphthoic acid $\left(\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{O}_{2}\right)$ is dissolved in 50 g of benzene $\left(\mathrm{K}_{\mathrm{f}}=1.72 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}\right)$, a freezing point depression of 2 K is observed. The van't Hoff factor (i) is
(A) 0.5
(B) 1
(C) 2
(D) 3
51. (A)
$\Delta \mathrm{T}_{\mathrm{f}}=i \mathrm{~K}_{\mathrm{f}} \mathrm{m}$
$2=i \times 1.72 \times \frac{20}{172} \times \frac{1000}{50}$
$\therefore i=0.5$
52. The value of $\log _{10} \mathrm{~K}$ for a reaction $\mathrm{A} \rightleftharpoons \mathrm{B}$ is

JEE-2008

(Given: $\Delta_{\mathrm{r}} \mathrm{H}_{298 \mathrm{~K}}^{\circ}=-54.07 \mathrm{~kJ} \mathrm{~mol}^{-1}, \Delta_{\mathrm{r}} \mathrm{S}_{298 \kappa}^{\circ}=10 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ and
$\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} ; 2.303 \times 8.314 \times 298=5705$)
(A) 5
(B) 10
(C) 95
(D) 100
51. (B)
$\Delta \mathrm{G}^{\mathrm{o}}=\Delta \mathrm{H}^{\mathrm{o}}-\mathrm{T} \Delta \mathrm{S}^{\mathrm{o}}=-2.303 \mathrm{RT} \log _{10} \mathrm{~K}$
or, $-54.07-298 \times \frac{10}{1000}=-\frac{5705}{1000} \log _{10} \mathrm{~K}$
$\therefore \log _{10} \mathrm{~K}=10$
52. The species having bond order different from that in CO is

JEE-2008
(A) NO^{-}
(B) NO^{+}
(C) CN^{-}
(D) N_{2}
52. (A)

Except NO^{-}, all other species have 14 electrons as there are in CO , so they have same bond order of 3.
NO^{-}has $16 \mathrm{e}^{-} \mathrm{s}$ and has a bond order of 2
53. The percentage of p -character in the orbitals forming $\mathrm{P}-\mathrm{P}$ bonds in P_{4} is

JEE-2008
(A) 25
(B) 33
(C) 50
(D) 75

www.sakshieducation.com

53. (D)

Since the hybridisation of P in P_{4} is sp^{3}, the $\%$ p-character is 75

54. STATMENT-1: Micelles are formed by surfactant molecules above the critical micellar concentration CMC.

JEE-2008
because
STATEMENT-2: The conductivity of a solution having surfactant molecules decreases sharply at the CMC.
(A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1
(B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for statement-1
(C) Statement-1 is True, Statement-2 is False
(D) Statement-1 is False, Statement-2 is True
55. (B)

No. of ions per unit volume decreases due to aggregation of ions at CMC, hence conductivity decreases.

Paragraph for Question Nos. 56 to 58

Chemical reactions involve interaction of atoms and molecules. A large number of atoms/molecules (approximately 6.023×10^{23}) are present in a few grams of any chemical compound varying with their atomic/molecular masses. To handle such large numbers conveniently, the mole concept was introduced. This concept has implications in diverse areas such as analytical chemistry, biochemistry, electrochemistry and radiochemistry. The following example illustrates a typical case, involving chemical/electrochemical reaction, which requires a clear understanding of the mole concept.

JEE-2008
A 4.0 molar aqueous solution of NaCl is prepared and 500 mL of this solution is electrolysed. This leads to the evolution of chlorine gas at one of the electrodes (atomic mass: $\mathrm{Na}=23, \mathrm{Hg}=200 ; 1$ Faraday $=96500$ coulombs).
56. The total number of moles of chlorine gas evolved is
(A) 0.5
(B) 1.0
(C) 2.0
(D) 3.0
56. (B)

At anode:
$2 \mathrm{Cl}^{-} \longrightarrow \mathrm{Cl}_{2} \uparrow+2 \mathrm{e}^{-}$
At cathode:
$2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \longrightarrow \mathrm{H}_{2} \uparrow+2 \mathrm{OH}^{-}$
The solution contains 2 moles of Cl^{-}ions, which on electrolysis produce 1 mole of Cl_{2} gas.
57. If the cathode is a Hg electrode, the maximum weight (g) of amalgam formed from this solution is
(A) 200
(B) 225
(C) 400
(D) 446
57. (D)

If Hg is used as cathode then following reactions occur
At anode:
$2 \mathrm{Cl}^{-} \longrightarrow \mathrm{Cl}_{2} \uparrow+2 \mathrm{e}^{-}$
At Cathode:
$\mathrm{Na}^{+}+\mathrm{Hg}+\mathrm{e}^{-} \longrightarrow \mathrm{Na}-\mathrm{Hg}$ (Sodium amalgam)
Since 2 moles of Na^{+}ions are there in solution, 2 moles of sodium amalgam will be formed.
\therefore weight of amalgam $=223 \times 2=446 \mathrm{~g}$
58. The total charge (coulombs) required for complete electrolysis is
(A) 24125
(B) 48250
(C) 96500
(D) 193000
58. (D)

At anode:
$2 \mathrm{Cl}^{-} \longrightarrow \mathrm{Cl}_{2} \uparrow+2 \mathrm{e}^{-}$
At Cathode:
$2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \longrightarrow \mathrm{H}_{2} \uparrow+2 \mathrm{OH}^{-}$
2 moles of $\mathrm{e}^{-} \mathrm{s}$ are involved in electrolysis
\therefore total charge required $=96500 \times 2=193000$ Coulombs.
59. Match gases under specified conditions listed in Column I with their properties / laws in Column II. Indicate your answer by darkening the appropriate bubbles of the 4×4 matrix given in the ORS.

JEE-2008

Column I		Column II	
(A)	hydrogen gas $(\mathrm{P}=200 \mathrm{~atm}, \mathrm{~T}=273 \mathrm{~K})$	(p)	compressibility factor $\neq 1$
(B)	hydrogen gas $(\mathrm{P} \approx 0 \mathrm{~atm}, \mathrm{~T}=273 \mathrm{~K})$	(q)	attractive forces are dominant
(C)	$\mathrm{CO}_{2}(\mathrm{P}=1 \mathrm{~atm}, \mathrm{~T}=273 \mathrm{~K})$	(r)	$\mathrm{PV}=\mathrm{nRT}$
(D)	real gas with very large molar volume	(s)	$\mathrm{P}(\mathrm{V}-\mathrm{nb})=\mathrm{nRT}$

59. A- $\mathrm{p}, \mathrm{s} ; \mathrm{B}-\mathrm{r} ; \mathrm{C}-\mathrm{p}, \mathrm{q} \quad$; D- p, s
(A) H_{2} is the lightest gas and has very weak attractive forces, hence ' a ' is negligible. It always shows positive deviation.
(B) H_{2} at very low pressure i.e. $\mathrm{p} \approx 0$, shows ideal behaviour i.e. $\mathrm{PV}=\mathrm{nRT}$
(C) For CO_{2}, the following graph is valid

At low pressure, $\mathrm{z}<1 \&$ at high pressure, $\mathrm{z}>1$.
According to conditions given at very low temperature, attractive forces are dominant.
(D) $\left(P+\frac{a}{v^{2}}\right)(V-b)=R T$
at large molar volume
$\mathrm{v}-\mathrm{b} \neq \mathrm{v}$; but $\left(\mathrm{P}+\frac{\mathrm{a}}{\mathrm{v}^{2}}\right) \approx \mathrm{P}$
hence, the above Vanderwaal's equation becomes $\mathrm{P}(\mathrm{v}-\mathrm{b})=\mathrm{RT}$ \& hence $\mathrm{z} \neq 1$

