CAREER POINT TOTALLEARNING SOLUTION PROVIDER GUWAHATI CENTRE

LECTURE BASED PROBLEM SHEET

TOPIC: Magnetic Effects of Electric Current

Q.1. Two thin long parallel wires separated by a distance b are carrying current i each. The magnitude of the force per unit length exerted by one wire on the other is

(a)
$$\frac{\mu_0 i^2}{b^2}$$
 (b) $\frac{\mu_0 i^2}{2 \times b}$
(c) $\frac{\mu_0 i^1}{2 \times b}$ (d) $\frac{\mu_0 i^1}{2 \times b^2}$

Q.2. Three long straight wires are connected parallel to each other across a battery of negligible internal resistance. The ratio of their resistances are 3: 4: 5. What is the ratio of distance of middle wire from the others if the net force experienced by it is zero?

(a) 4: 3	(b) 3: 1		
(c) 5: 3	(d) 2 : 3		

Q.3. A circular current carrying coil has radius R. the distance from the centre of the coil on the axis where the magnetic induction will be $\frac{1}{8}$ th of its value at the centre of the coil is

(a) R√3	(b) 2R√3		
(c) R/√3	(d) 2R/√3		

- Q.4. Two electrons move parallel to each other with equal speed v. The ratio of magnetic and electrical forces between them is (a) $\frac{v}{c}$ (b) $\frac{c}{v}$ (c) $\frac{v^2}{c^2}$ (d) $\frac{c^2}{v^2}$
- Q.5. A long wire carries a current of 20 A along the axis of solenoid. The field due to the solenoid is 4mT. The resultant field at a point 3mm from the axis of solenoid is
 (a) 1.33 mT
 (b) 4.2 mT
 (c) 2.1 mT
 (d) 8.4 mT
- Q.6. A non conducting thin disc of radius r charged uniformly over one side with surface density σ rotates about its axis with an angular velocity ω . The magnetic induction at the centre is $(a)\frac{\mu_0\sigma\omega R}{2} \qquad (b) \ 2\mu_0\sigma\omega R$ $(c)\frac{\mu_0\omega R^2}{2} \qquad (d) \text{ None of these}$
- Q.7. A particle of specific charge α moving from the origin under the action of an electric field $\vec{E} = E_0 \hat{i}$ and magnetic field $\vec{B} = B_0 \hat{k}$. Its velocity at (x, 0, 0) is $4\hat{i}+3\hat{j}$. The value of x is

$(a) \frac{13\alpha E_0}{2 B_0}$	(b) $\frac{16\alpha E_0}{E_0}$
(c) $\frac{25}{2\alpha E_0}$	(d) $\frac{5\alpha}{2B_0}$

Q.8. Find the magnetic field at P due to the arrangement shown

$$(a)\frac{\mu_{0}i}{\sqrt{2}\pi d}\left(1-\frac{1}{\sqrt{2}}\right)\otimes$$

$$(b)\frac{2\mu_{0}i}{\sqrt{2}\pi d}\otimes$$

$$(c)\frac{\mu_{0}i}{\sqrt{2}\pi d}\otimes$$

$$(d)\frac{\mu_{0}i}{\sqrt{2}\pi d}\left(1+\frac{1}{\sqrt{2}}\right)\otimes$$

Q.9. A current carrying square loop is placed near an infinitely long current carrying wire as shown in figure. The torque acting on the loop is

Q.10. Equal current i flows in two segments of a circular loop in the directions shown in figure. Radius of the loop is a. Magnetic field at the centre of the loop is

Q.11. Two particles X and Y having equal charges, after being accelerated through the same potential difference, enter a region of uniform magnetic field and describe circular paths of radii R_1 and R_2 respectively. The ratio of the mass of X to that of Y is (a) $(P_1 (P_2)^{1/2})$ (b) $P_1 (P_2)$

(a)
$$(R_1 / R_2)^{1/2}$$
 (b) R_2 / R_1
(c) $(R_1 / R_2)^2$ (d) R_1 / R_2

Q.12. A particle of charge q and mass m moves in a circular orbit of radius r with angular speed ω. The ratio of the magnitude of its magnetic moment to that of its angular momentum depends on

 (a) ω and q
 (b) ω q and m

(a) ω and q	(b) ω q and m
(c) q and m	(d) ω and m

Q.13. In the figure the force on the wire ABC in the given uniform magnetic field will be (B = 2 tesla)

- (a) $4(3 + 2\pi)$ Nt (b) 20 Nt (c) 30 Nt (d) 40 Nt
- Q.14. A charged particle with specific charge s moves undeflected through a region of space containing mutually perpendicular and uniform electric and magnetic fields e and B. When the electric field is switched off, the particle will move in a circular path of radius

(a)
$$\frac{E}{Bs}$$
 (b) $\frac{Es}{B}$ (c) $\frac{Es}{B^2}$ (d) $\frac{E}{B^2s}$

Q.15. An insulating rod of length *l* carries a charge q uniformly distributed on it. The rod is pivoted at one of is ends and is rotated at a frequency *f* about a fixed perpendicular axis. The magnetic moment of the rod is

(a)
$$\frac{\pi q f l^2}{12}$$
 (b) $\frac{\pi q f l^2}{2}$
(c) $\frac{\pi q f l^2}{6}$ (d) $\frac{\pi q f l^2}{3}$

Q.16. Equal currents are flowing in three infinitely long wires along positive x, y and z directions. The magnetic field at appoint (0, 0, -a) would be (i = current in each wire)

(a)
$$\frac{\mu_0 i}{2\pi a} (\hat{j} - \hat{i})$$
 (b) $\frac{\mu_0 i}{2\pi a} (\hat{i} - \hat{j})$
(c) $\frac{\mu_0 i}{2\pi a} (\hat{i} + \hat{j})$ (d) $\frac{\mu_0 i}{2\pi a} (-\hat{i} - \hat{j})$

ANSWER KEY	
------------	--

1b	2c	3 а	4c	5b		
6a	7c	8a	9d	10b		
11c	12c	13b	14d	15d		
16a						