Q.1. Two thin long parallel wires separated by a distance b are carrying current i each. The magnitude of the force per unit length exerted by one wire on the other is
(a) $\frac{\mu_{0} i^{2}}{b^{2}}$
(b) $\frac{\mu_{0} i^{2}}{2 \times b}$
(c) $\frac{\mu_{0} i^{1}}{2 \times b}$
(d) $\frac{\mu_{0} i^{1}}{2 \times b^{2}}$
Q.2. Three long straight wires are connected parallel to each other across a battery of negligible internal resistance. The ratio of their resistances are 3:4:5. What is the ratio of distance of middle wire from the others if the net force experienced by it is zero?
(a) 4:3
(b) 3: 1
(c) $5: 3$
(d) $2: 3$
Q.3. A circular current carrying coil has radius R. the distance from the centre of the coil on the axis where the magnetic induction will be $\frac{1}{8}$ th of its value at the centre of the coil is
(a) $R \sqrt{3}$
(b) $2 \mathrm{R} \sqrt{3}$
(c) $\mathrm{R} / \sqrt{3}$
(d) $2 R / \sqrt{3}$
Q.4. Two electrons move parallel to each other with equal speed v. The ratio of magnetic and electrical forces between them is
(a) $\frac{v}{c}$
(b) $\frac{c}{v}$
(c) $\frac{v^{2}}{c^{2}}$
(d) $\frac{c^{2}}{v^{2}}$
Q.5. A long wire carries a current of 20 A along the axis of solenoid. The field due to the solenoid is 4 mT . The resultant field at a point 3 mm from the axis of solenoid is
(a) 1.33 mT
(b) 4.2 mT
(c) 2.1 mT
(d) 8.4 mT
Q.6. A non conducting thin disc of radius r charged uniformly over one side with surface density σ rotates about its axis with an angular velocity ω. The magnetic induction at the centre is
(a) $\frac{\mu_{0} \sigma \omega R}{2}$
(b) $2 \mu_{0} \sigma \omega R$
(c) $\frac{\mu_{0} \omega R^{2}}{2}$
(d) None of these
Q.7. A particle of specific charge α moving from the origin under the action of an electric field $\vec{E}=\mathrm{E}_{0} \hat{\imath}$ and magnetic field $\vec{B}=\mathrm{B}_{0} \hat{k}$. Its velocity at $(x, 0,0)$ is $4 \hat{\imath}+3 \hat{\jmath}$. The value of x is
(a) $\frac{13 \alpha \mathrm{E}_{0}}{2 \mathrm{~B}_{0}}$
(b) $\frac{16 \alpha \mathrm{E}_{0}}{\mathrm{E}_{0}}$
(c) $\frac{25}{2 \alpha \mathrm{E}_{0}}$
(d) $\frac{5 \alpha}{2 \mathrm{~B}_{0}}$
Q.8. Find the magnetic field at P due to the arrangement shown
(a) $\frac{\mu_{0} i}{\sqrt{2} \pi d}\left(1-\frac{1}{\sqrt{2}}\right) \otimes$
(b) $\frac{2 \mu_{0} i}{\sqrt{2} \pi d} \otimes$
(c) $\frac{\mu_{0} i}{\sqrt{2} \pi d} \otimes$
(d) $\frac{\mu_{0} i}{\sqrt{2} \pi d}\left(1+\frac{1}{\sqrt{2}}\right) \otimes$
Q.9. A current carrying square loop is placed near an infinitely long current carrying wire as shown in figure. The torque acting on the loop is
(a) $\frac{\mu_{0}}{2 \pi}\left(\frac{i_{1} i_{2} a}{2}\right) \otimes$
(b) $\frac{\mu_{0} i_{1} i_{2} a}{2 \pi}$
(c) $\frac{\mu_{0} i_{1} i_{2} a}{2 \pi} \ln (2)$

(d) zero
Q.10. Equal current i flows in two segments of a circular loop in the directions shown in figure. Radius of the loop is a. Magnetic field at the centre of the loop is
(a) zero
(b) $\left(\frac{\pi-\theta}{\pi}\right) \frac{\mu_{0} i}{2 a}$
(c) $\left(\frac{2 \pi-\theta}{\pi}\right) \frac{\mu_{0} i}{2 a}$
(d) $\left(\frac{\theta}{2 \pi}\right) \frac{\mu_{0} i}{2 a}$

Q.11. Two particles X and Y having equal charges, after being accelerated through the same potential difference, enter a region of uniform magnetic field and describe circular paths of radii R_{1} and R_{2} respectively. The ratio of the mass of X to that of Y is
(a) $\left(R_{1} / R_{2}\right)^{1 / 2}$
(b) R_{2} / R_{1}
(c) $\left(R_{1} / R_{2}\right)^{2}$
(d) R_{1} / R_{2}
Q.12. A particle of charge q and mass m moves in a circular orbit of radius r with angular speed ω. The ratio of the magnitude of its magnetic moment to that of its angular momentum depends on
(a) ω and q
(b) $\omega \mathrm{q}$ and m
(c) q and m
(d) ω and m
Q.13. In the figure the force on the wire $A B C$ in the given uniform magnetic field will be ($\mathrm{B}=2$ tesla)

(a) $4(3+2 \pi) \mathrm{Nt}$
(b) 20 Nt
(c) 30 Nt
(d) 40 Nt
Q.14. A charged particle with specific charge s moves undeflected through a region of space containing mutually perpendicular and uniform electric and magnetic fields e and B. When the electric field is switched off, the particle will move in a circular path of radius
(a) $\frac{E}{B S}$
(b) $\frac{E s}{B}$
(c) $\frac{E s}{B^{2}}$
(d) $\frac{E}{B^{2} s}$
Q.15. An insulating rod of length l carries a charge q uniformly distributed on it. The rod is pivoted at one of is ends and is rotated at a frequency f about a fixed perpendicular axis. The magnetic moment of the rod is
(a) $\frac{\pi q f l^{2}}{12}$
(b) $\frac{\pi q f l^{2}}{2}$
(c) $\frac{\pi q f l^{2}}{6}$
(d) $\frac{\pi q f l^{2}}{3}$
Q.16. Equal currents are flowing in three infinitely long wires along positive x, y and z directions. The magnetic field at appoint $(0,0,-a)$ would be ($\mathrm{i}=$ current in each wire)
(a) $\frac{\mu_{0} i}{2 \pi a}(\hat{\jmath}-\hat{\imath})$
(b) $\frac{\mu_{0} i}{2 \pi a}(\hat{\imath}-\hat{\jmath})$
(c) $\frac{\mu_{0} i}{2 \pi a}(\hat{\imath}+\hat{\jmath})$
(d) $\frac{\mu_{0} i}{2 \pi a}(-\hat{\imath}-\hat{\jmath})$

ANSWER KEY					
$1 .-\mathrm{b}$	2.-c	3.- a	$4 .-\mathrm{c}$	5.-b	
6.-a	7.-c	8.-a	9.-d	$10 .-\mathrm{b}$	
11.-c	12.-c	13.-b	$14 .-\mathrm{d}$	$15 .-\mathrm{d}$	
16.-a					

