LECTURE BASED PROBLEM SHEET

TOPIC: HEAT

FACULTY: MONI KAKATI
Q.1. Find the amount of work done to increase the temperature of one mole of an ideal gas by $30^{\circ} \mathrm{C}$, if it is expanding under the condition $v \propto T^{2 / 3}$
(a) 166.2 J
(b) 136.2 J
(c) 126.2 J
(d) None of these
Q.2. 3 mole of H_{2} is mixed with 1 mole of Ne . The specific heat at constant pressure is
(a) $\frac{9}{4} R$
(b) $\frac{13}{4} R$
(c) $\frac{9}{2} R$
(d) $\frac{13}{2} R$
Q.3. A bimetallic strip is formed out of two identical strips one of Cu and the other of brass. The coefficients of linear expansion of the two metals are α_{c} and α_{B}. If on heating the temperature of the strip goes up by ΔT and the strip bends to form an arc of radius R , then R is
(a) proportional to ΔT
(b) inversely proportional to ΔT
(c) proportional to| $\alpha_{B}-\alpha_{C} \mid$
(d) inversely proportional to $\left|\propto_{B}-\propto_{C}\right|$
Q.4. A and B are two gases, $\frac{T_{A}}{M_{A}}=\frac{4 T_{B}}{M_{B}}$, where T is the temperature and M is the molecular mass. If C_{A} and C_{B} are the rms speed, the $\frac{C_{A}}{C_{B}}$, will be
(a) 2
(b) 4
(c) 0.5
(d) 0.25
Q.5. The saturated vapour pressure on a planet is 760 mm of Hg . Its vapour density is
(a) $0.8 \mathrm{~kg} / \mathrm{m}^{3}$
(b) $0.58 \mathrm{~kg} / \mathrm{m}^{3}$
(c) $1.2 \mathrm{~kg} / \mathrm{m}^{3}$
(d) none of these
Q.6. One mole of Argon is heated using $\mathrm{P} V^{3 / 2}=$ constant. The amount of heat obtained by the process when the temperature changes by $\Delta T=-26 \mathrm{~K}$ is
(a) 27 J
(b) 54 J
(c) 108 J
(d) 216 J
Q.7. A gram mole of a gas at $127^{\circ} \mathrm{C}$ expands isothermally until its volume is doubled. The amount of work done is
(a) 238 cal
(b) 548 cal
(c) 548 J
(d) 238 J
Q.8. A gas mixture consist of 2 moles of oxygen and 4 moles of Ar at temperature T. Neglecting all vibrational modes, the total internal energy of the system is
(a) 4RT
(b) 15 RT
(c) 9 Rt
(d) 11 RT
Q.9. A monoatomic gas is supplied Q amount of heat keeping the pressure constant. The work done by the gas is
(a) $\frac{2}{5} \mathrm{Q}$
(b) $\frac{3}{5} \mathrm{Q}$
(c) $\frac{Q}{5}$
(d) $\frac{2}{3} \mathrm{Q}$
Q.10. The room temperature is $\mathrm{t}+20^{\circ} \mathrm{C}$ when outside temperature is $-20^{\circ} \mathrm{C}$ and room temperature is $+10^{\circ} \mathrm{C}$ when outside temperature is $-40^{\circ} \mathrm{C}$, the temperature of radiator heating the room is
(a) $80^{\circ} \mathrm{C}$
(b) $60^{\circ} \mathrm{C}$
(c) $100^{\circ} \mathrm{C}$
(d) None of these

ANSWER KEY			
1.-(a)	2.-(b)	3.-(b, d) $4 .-(\mathrm{a})$	
5.-(b)	6.-(c)	7.-(b)	$8 .-$ (d)
9.-(a)	10.-(b)		

