CAREER POINT IOTALLEARNING SOLUTION PROVIDER GUWAHATI CENTRE

LECTURE BASED PROBLEM SHEET

TOPIC: HEAT

Q.1. Find the amount of work done to increase the temperature of one mole of an ideal gas by 30^{9} C, if it is expanding under the condition v $\propto T^{2/3}$

(a) 166.2 J	(b) 136.2J
(a) 100.2 J	(0) 150.25

- (c) 126.2J (d) None of these
- Q.2. 3 mole of H₂ is mixed with 1 mole of Ne. The specific heat at constant pressure is

(a)
$$\frac{9}{4} R$$
 (b) $\frac{13}{4} R$
(c) $\frac{9}{2} R$ (d) $\frac{13}{2} R$

- Q.3. A bimetallic strip is formed out of two identical strips one of Cu and the other of brass. The coefficients of linear expansion of the two metals are \propto_c and \propto_B . If on heating the temperature of the strip goes up by ΔT and the strip bends to form an arc of radius R, then R is
 - (a) proportional to ΔT
 - (b) inversely proportional to ΔT
 - (c) proportional to $| \propto_B \propto_C |$
 - (d) inversely proportional to $| \propto_B \propto_C |$
- Q.4. A and B are two gases, $\frac{T_A}{M_A} = \frac{4T_B}{M_B}$, where T is the temperature and M is the molecular mass. If C_A and C_B are the rms speed, the $\frac{C_A}{C_B}$, will be

(a)
$$2$$
 (b) 4 (c) 0.5 (d) 0.25

- Q.5. The saturated vapour pressure on a planet is 760 mm of Hg. Its vapour density is
 - (a) 0.8 kg/m^3 (b) 0.58 kg/m^3 A

 (c) 1.2 kg/m^3 (d) none of these
 5.-(b)
 6

FACULTY: MONI KAKATI

- Q.6. One mole of Argon is heated using $PV^{3/2}$ = constant. The amount of heat obtained by the process when the temperature changes by ΔT = -26 K is
 - (a) 27 J (b) 54 J
 - (c) 108 J (d) 216 J
- Q.7. A gram mole of a gas at 127⁰ C expands isothermally until its volume is doubled. The amount of work done is
 - (a) 238 cal (b) 548 cal (c) 548 J (d) 238 J
- Q.8. A gas mixture consist of 2 moles of oxygen and 4 moles of Ar at temperature T. Neglecting all vibrational modes, the total internal energy of the system is

 (a) 4RT
 (b) 15RT
 (c) 9Rt
 (d) 11 RT
- Q.9. A monoatomic gas is supplied Q amount of heat keeping the pressure constant. The work done by the gas is
 - (a) $\frac{2}{5}Q$ (b) $\frac{3}{5}Q$ (c) $\frac{Q}{5}$ (d) $\frac{2}{3}Q$
- Q.10. The room temperature is $t+20^{\circ}$ C when outside temperature is -20° C and room temperature is $+10^{\circ}$ C when outside temperature is -40° C, the temperature of radiator heating the room is

(a) 80° C	(b) 60° C
--------------------	--------------------

(c) 100° C (d) None of these

ANSWER KEY					
1(a)	2(b)	3(b, c	l) 4(a)		
5(b)	6(c)	7(b)	8(d)		
9(a)	10(b)				

Career Point, Guwahati centre, Bora Service Bye Lane, Ph: 0361-2466191

