BANSAL CLASSES Target IIT JEE 2006

PHYSICS **Daily Practice Problems**

CLASS : XI (P, Q, R, S)

DATE: 27-28/04/2005

DPP. NO.-1

O.1 . Complete the cross word by filling either left to right or vertically the unit of appropriate physical quantity

19 20 5 Ĥ 1. Pressure A 2. Temperature 3 J L (°) 3. Across: Energy Ο ٧ down: Heat 7 υ Power 4. 4 6) 5 H L N 5. Frequency Ĉ Ĥ ž E б. Charge Ŕ r. V 7. Current -1 ٢ 8. Potential difference 2 Q 9. Resistance 10 1. 10. Length · 11 8 r)11. Absolute temperature 7. 12. Time 6 13. Force 13 -12 - $\mathcal{F}^{\mathbf{a}}$ V Weight 14. 1 15. Mass ų, Ĩ •7 15 1 1 L Ő 6 Ŀ 11

Q.2 A uniform wire of length L and mass M is stretched between two fixed points, keeping a tension force F. A sound of frequency μ is impressed on it. Then the maximum vibrational energy is existing in the wire when u=

(A) $\frac{1}{2}\sqrt{\frac{ML}{F}}$ (B) $\sqrt{\frac{FL}{M}}$ (C) $2 \times \sqrt{\frac{FM}{L}}$ (D) $\frac{1}{2}\sqrt{\frac{F}{ML}}$

Which of the following physical quantities represents the dimensional formula [M¹L⁻²T⁻²]. O.3 (B) Pressure (C) Force \times length (D) Pressure per unit length (A) Energy/Area .

In a particular system of unit, if the unit of mass becomes twice & that of time becomes half, then 8 Joules Q.4 will be written as _____units of work (A) 16 (B) 1

 (\mathcal{Q}) 4

The time dependence of a physical quantity p is given by $p = p_0 e^{(-\alpha t^2)}$ where α is constant and t is time.

Which of the following equations can be dimensionally incorrect.(Symbol have their usual notations.) Q.5

(A)
$$t = 2\pi \sqrt{\frac{ml^2}{E}}$$
 (B) $l = \frac{F}{m(f_1^2 - f_2^2)}$ (C) $t = \sqrt{\frac{ml}{6F\sin\theta}}$ (C) $a = \left(\frac{lv^2}{Gm}\right)$

Q.6

- The constant α
- (A) is dimensionless
- (C) has dimensions T²

(X) has dimensions T-2 (D) has dimensions of p

(D) 64

	Target IIT JEE 2006 SS : XI (P, Q, R, S) DA3	E : 29-30/04/2005	Daily Practice Problems
Q.1	A gas bubble oscillates with a time period and E is the energy. The values of a, b &	T proportional to P ^a d ^b	
	(A) $a = \frac{3}{2}$, $b = -\frac{1}{3}$, $c = \frac{1}{2}$	(B) $a = -\frac{5}{6}$,	5 4
	(9) $a = -\frac{5}{6}$, $b = \frac{1}{2}$, $c = \frac{1}{3}$	(D) $a = \frac{3}{2}, b =$	$=-\frac{1}{3}, c=\frac{1}{2}$
Q.2	If the unit of length be doubled then the n	umerical value of the	universal gravitation constant G will
	become (with respect to present value) (A) double (B) half	(C) 8 times	(D) 1/8times
Q.3	Force F and density d are related as $F = -$	$\frac{\alpha}{3+\sqrt{d}}$ then find the d	limensions of α and β .
Q.4	In the following equations, the distance metres/second. What are the SI units of the second s	x is in metres, the tir ne constants C_1 and C_2	me t in seconds and the velocity v in $_2^2$?
	(a) $v^2 = 2C_3 x$ (b) $x = C_1 \cos C_2 t$ (c)		en e
Q.5	In the formula $p = \frac{nRT}{V-b}e^{\sqrt{\frac{a}{RTV}}}$. Find th	e dimensions of a and	b where p=pressure,n=no. of moles,
	T=temperature, V=volume and R=univers	al gas constant.	
Q.6	The value of Stefan's constant in CGS sys	stem is $\sigma = 5.67 \times 10^{-5}$	$5 \text{ crg s}^{-1} \text{ cm}^{-2} \text{ K}^{-4}$. Its value in SI units
07	Match the following :		
Q.7	COLUMN-1	COLUMN-II	
	(a) Latent heat constant	(i) $M^0 L^0 T$	
	(b) Reynold number	(ii) M L ² (†) (iii) M L ⁰ T	-3
	(c) coefficient of friction (d) Avogadro constant	(iii) $L^2 T^{-2}$ (iv)	
	(e) Intensity of wave	(v) M ⁰ L ⁰ Ĭ	∛ ©
	(f) Moment of inertia	(vi) mol ⁻¹ (
Q.8	The loss of pressure when a fluid flows the diameter and length of the pipe respectivel the fluid, V is the mean velocity of flow threa, b and c.	y, ρ and μ are the mass bugh the pipe and k is a	s density and coefficient of viscosity of numerical constant. Find the values of
Q.9	In two systems of units, the relation betw $a_2 = a_1 \varepsilon \tau$, $F_2 = \frac{F_1}{\varepsilon \tau}$, where ε and τ are constants	veen velocity, accelera	ation and force is given by $\mathbf{v}_2 = \frac{\mathbf{v}_1 \mathbf{\epsilon}^2}{\tau}$,
	E		$m_2^{\prime\prime}$ L_2
	$a_2 = a_1 \varepsilon \tau$, $F_2 = \frac{\tau_1}{\varepsilon \tau}$, where ε and τ are constant τ	stants then find in this	s new system (a) $\overline{m_1}$ (b) $\overline{L_1}$

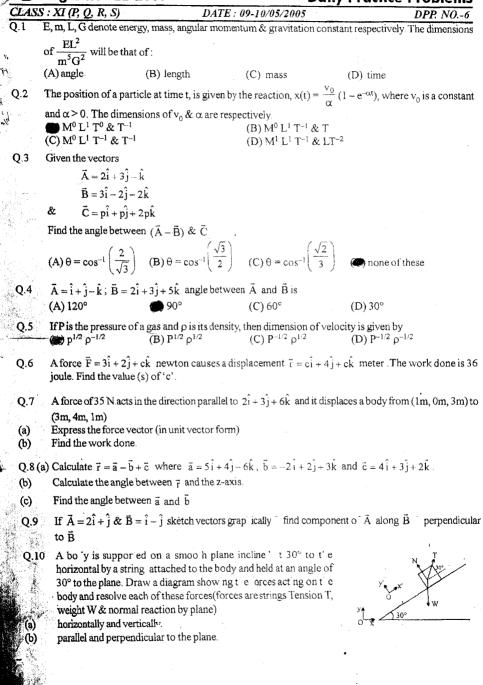
.

Ĭ.

	arget IIT JEE			ily Practice Problem
	S : XI (P, Q, R, S)		ATE : 02-03/05/2005	DPP. NO.
Q.1			f north direction and anothe direction.	r vector \vec{B} along 15° south of e
	Their resultant canno (A) North	(B) East	(C) North-East	(D) South
				$\left(\sqrt{3}\right)$
Q.2			= 1 : 2. If their resultant is	at an angle $\tan^{-1}\left(\frac{\sqrt{3}}{2}\right)$ to vec
	P, then angle betwee	en P and Q is :		:
	$(\mathbf{A})\tan^{-1}\left(\frac{1}{2}\right)$	(B) 45°	(C) 30°	(D) 60°
Q.3				(P) are taken as fundamental u
с. Т	the dimensions of gra (A) $c^2g^3p^2$	avitational constan (B) c ⁰ g ² p ⁻¹	t (G) are (C) $c^2g^2p^{-2}$	(D) $c^{0} q p^{-3}$
		. / 01		
Q.4	A force of 6kg and a (A) 1 kg	nother of 8kg can (B) 11 kg	be applied together to prod (C) 15 kg	uce the effect of a single force of (D) 20 kg
Q.5	The horizontal com	ponent of a force of	f 10 N inclined at 30° to ver	
	(A) 3 N	(B) 5√3	(C) 5 N	(D) $\frac{10}{\sqrt{3}}$ N
0.6-	-A particle is movin	ng westward wit	h a velocity $\vec{v}_1 = 5 \text{ m/s}$	Its velocity changed to $\vec{v}_2 = 5$
				, <u>,</u>
	northward . The cł	nange in velocity v	$\operatorname{vector}\left(\overrightarrow{\Delta V} = \overrightarrow{v}_2 - \overrightarrow{v}_1\right)$ is :	
	(A) $5\sqrt{2}$ m/s tow	ards north east	(B) 5 m/s towar	ds north west
	(C) zero		(D) $5\sqrt{2}$ m/s to	wards north west
Q.7				n is about 0.524°. Use this and th
	that the moon is ab	out 384 Mm away	to find the diameter of the r	200n.
	•			
Q.8	angle of 1 sec of ar			s distance at which 1 AU subter
		-, puiseo in it.		
Q.9	ABCDEF is a regu	ılar hexagon in wh	\rightarrow ich AB represent a vector	$\vec{p} \& \overrightarrow{BC}$ represents a vector \vec{q}
			, & FA represent in term	,
•	are vectors which	un CD, DE, El	, & FA represent in term	sor p and q.
•) A man in 4 11	in east direction w	thavelocity of 6 m/s. Rain is	falling down vertically with a sp
0.10	J A man is travelling			with the vertical using the conce
Q.10	U	oury or rain with t		
Q.10	U		V _A .	
Q.10	4 m/s. Find the vel		V _A .	
Q.1(4 m/s. Find the vel		v _A .	

All the second se

C	BANSAL (PHYS aily Practice	
	SS : XI (P, Q, R, S)				DPP. NO4
Q.1		ving quantities are d	limensionless? (symbols	have their usual mea	aning)
	(A) $\frac{l\omega^2}{m v r}$	(B) $\frac{G\rho}{\Upsilon}$	(C) $\frac{\rho vr}{\eta}$	(D) $\frac{\tau\theta}{1\omega}$	
	[Useful relation I =	$=\frac{2}{5} \mathrm{mr}^2, \mathrm{F}=6\pi \eta \mathrm{r}^3$	v]		
Q.2	$ \vec{a} = 2; \vec{b} = 3; \vec{c} =$	= 6. Angle between	\vec{a} and \vec{b} ; \vec{b} and \vec{c} and \vec{c}	č and ā is 120° each	, find $\left \vec{a} + \vec{b} + \vec{b} \right $
	(A)√ <u>15</u>	(B) √17	(C) √13	(D) √11	
Q.3			limensions of $\frac{\pi P r^4}{3Q \ell}$: (Q		n m³/s)
	(A) surface tension (C) energy	(S)	(B) coefficient of (D) power	viscosity	
Q.4	A force $\vec{F} = 6\hat{i} - 8\hat{j} + 10$)k newton produce:	s acceleration 1 m/s ² in a	body. The mass of th	e body is (in k
	(A) $6\hat{i} - 8\hat{j} + 10\hat{k}$	(B) 100	(C) $10\sqrt{2}$	(D) 10	
Q.5			forces $\vec{F}_1 = 2\hat{i} + a\hat{j} - 3\hat{k}$		
	$\vec{\mathbf{F}}_{\mathbf{A}} = \mathbf{c}\hat{\mathbf{i}} + 6\hat{\mathbf{j}} - \mathbf{a}\hat{\mathbf{k}}_{\mathbf{A}} \cdot \mathbf{I}$	Find the values of the	constants a, b, c in order	that the particle will b	e in equilibriu
Q.6	The x and y compor	ents of vector \overrightarrow{A} are	e 4m and 6m respectively.	The x, y components	of vector \vec{A} +
	are 10m and 9m x axis is given by		ength of \vec{B} is a	and angle that \vec{B} n	nakes with t
Q.7	The angle $\sqrt{3}\hat{i} - \hat{j}y$	vector makes with th	e positive x-axis is		
Q.8		own in the fig have n	nagnitudes	Y	
	$\left \overrightarrow{a} \right = 3$, $\left \overrightarrow{b} \right = 4$ and			y0° p	
		components of these s p an 'q suc' 'a			<u>x</u>
Q.9	A 300 gm mass has	a velocity of $\vec{v} = 3\hat{i}$	$+4\hat{j}$ m/s at certain insta	nt. Its kinetic energy	is
0.10	Att = 0 a particla	$\frac{1}{1}$ (1 0 0) moves u	ith velocity vector = (1)	5i + 20i + 60k) m/s F	Find its positio


1

Q.10 At t = 0, a particle at (1, 0, 0) moves with velocity vector = (15i + 20j + 60k) m/s. Find its position vector at time t = 2 sec.

CLAS	Target IIT JE SS : XI (P, Q, R, S)		ATE : 06-07/05/2005	ily Practice Problem DPP: NO
Q.1		olume) & Work done	ave same dimensions. (B) (Force × Time) (D) Angle & no. of	& Change in momentum f moles
Q.2	ABCD is a quadri	lateral. Forces \vec{BA} , I	\vec{BC} , \vec{CD} & \vec{DA} act at a po	oint. Their resultant is
	(A) 2 \overrightarrow{AB}	(B) 2 \overrightarrow{DA}	(C) zero vector	(D) $2 \overrightarrow{BA}$
Q.3	$\vec{A} + \vec{B} = 2\hat{i}$ and \vec{A} (A) 127°	$\vec{B} = 4\hat{j}$ then angle (B) 143°	between \vec{A} and \vec{B} is (C) 53°	(D) 37°
Q.4	6J then the value o	of 'c' is		$=-4\hat{i}+2\hat{j}+3\hat{k}$. If the work done
	(A) 12	(B) 0	(C) 6	(D) 1
Q.5	A particle is displa	ced from $A \equiv (2, 2, 4)$ t	to $\mathbf{B} \equiv (5, -3, -1)$. A constant	nt force of 34N acts in the direction
	of \overrightarrow{AP} . where P =	(10, 2, -11). (Coordi	nates are in m).	
	(i) Find the (\vec{F}).	(ii) Find	the work done by the force	to cause the displacement.
Q.6	these two vectors	has a magnitude 8.0 is a third vector which The magnitude of \vec{A} is	ch lie along the y-axis and	ch lie along the x-axis. The sum has a magnitude that is twice the
	_	· · · · · · · · · · · · · · · · · · ·		
Q.7	A particle travels vector after 3 seco		m the point $(3, -7)$ in a dir	ection $7\hat{i} - 24\hat{j}$. Find its position
Q.8				the magnitude of their resultant 2 ant is halved. Find the ratio of P to
Q.9	A particle whose	speed is 50 m/s move	s along the line from $A(2,$	1) to B(9, 25). Find its veloci
	vector in the form	of ai+bj.		-
Q.10	A particle of mas coordinates are gi	s 10 kg moves in x- ven by (5t ² , 15t ²). Fin	y plane such that its d	F_1 120° 30° $F_3 = 100N$
(a) ·	acceleration vecto	r of the particle	There are a spine in the disc	$F_3 = 100N$
(b)	shown in the figur	e. Find the magnitude	es. They are acting in the dire of forces F_1 and F_2 .	
			ne by \vec{F}_2 from t = 1 to t = 2	

Target IIT JEE 2007

PHYSICS Daily Practice Problems

J	S	F	۱L	. (5	Ą	S	S	E	S	

1

Ĺ

	SS : XI (P, Q, R, S)		ATE: 11-12/05/2005		DPP. NO:
Q.1			fter moving 10 m in a stra the man just after 7 such (C) 70 m		a sharp turn of 60
Q.2	Momentum of a bo (A) 6 N	ody moving in a straight (B) 8 N	line is $p = (t^2 + 2t + 1) kg$ (C) 4 N	m/s. Force acting o (D) 2 N	n a body at t = 2se
Q.3	From the followin (A) momentum & (C) energy & wor	Impulse	ntities, in which group dir (B) torque & en (D) light year & n	ergy	me:
Q.4	A particle moves a	long a straight line suc	h that at time t its displace	ement from a fixed	noint () on the lin
χ .τ	is $3t^2 - 2$. The velo	ocity of the particle wh	t = 2 is:		point o on the in
	(A) 8 ms ⁻¹	(B) 4 ms^{-1}	(C) 12 ms^{-1}	(D) 0	
Q.5	If the distance 's' t	ravelled by a body in t	ime 't' is given by $s = \frac{a}{t}$ -	+ bt ² then the accel	eration equals
	$(A) \frac{2a}{t^3} + 2b$	(B) $\frac{2s}{t^2}$	(C) $2b - \frac{2a}{t^3}$	(D) $\frac{s}{t^2}$	
Q.6	-		and P act on a partic xagon. Find the magnitud		
Q.6 Q.7	$\overrightarrow{AB}, \overrightarrow{BC}, \overrightarrow{CD}$ sides $\overrightarrow{AB}, \overrightarrow{BC}, \overrightarrow{CD}$ Show that energy,	and \overrightarrow{DE} of a regular he	xagon. Find the magnitud	le and direction of t	their resultant.
	sides \overrightarrow{AB} , \overrightarrow{BC} , \overrightarrow{CDa} Show that energy, of universal gravit The area 'A' of a b	and \overrightarrow{DE} of a regular he density and power for ational constant (G) in	xagon. Find the magnitud	le and direction of t of units. Find the dir	heir resultant. mensional formul
Q.7 Q.8	sides \overrightarrow{AB} , \overrightarrow{BC} , \overrightarrow{CDa} Show that energy, of universal gravit The area 'A' of a b the rate of increas	and \overrightarrow{DE} of a regular he density and power for ational constant (G) in lot of ink is growing su se of area at $t = 5$ sec.	xagon. Find the magnitud m a fundamental system o this system.	le and direction of t of units. Find the dir a is given by $A = 3t$	their resultant. mensional formul 2+7cm ² . Calculat
Q.7 Q.8	sides \overrightarrow{AB} , \overrightarrow{BC} , \overrightarrow{CDa} Show that energy, of universal gravit The area 'A' of a b the rate of increas The angle θ thr	and \overrightarrow{DE} of a regular he density and power for ational constant (G) in lot of ink is growing su the of area at $t = 5$ sec. ough which a pul	xagon. Find the magnitud m a fundamental system of this system. Ich that after t sec. its are ley turns with time	le and direction of t of units. Find the dir a is given by $A = 3t$	their resultant. mensional formul 2+7cm ² . Calculat
2.7	sides \overrightarrow{AB} , \overrightarrow{BC} , \overrightarrow{CDa} Show that energy, of universal gravit The area 'A' of a b the rate of increas The angle θ thr	and \overrightarrow{DE} of a regular he density and power for ational constant (G) in lot of ink is growing su se of area at $t = 5$ sec.	xagon. Find the magnitud m a fundamental system of this system. Ich that after t sec. its are ley turns with time	le and direction of t of units. Find the dir a is given by $A = 3t$	their resultant. mensional formul 2+7cm ² . Calculat

	Target IIT JEE				actice Proble	-
	SS : XI (P, Q, R, S)		: 13-14/05/200		DPP. N	
Q.1	in this system, 1 N re				•	. The
	2	(B) $\frac{2}{5}$ units of force			2	
Q.2		$\vec{F}_1 = 100N, \vec{F}_2 = 80$	$\vec{F}_{3} = 60N$	acting on a pa	article is zero. The	angl
	between $\vec{F_1}$ & $\vec{F_2}$ is (A) 53°	nearly (B) 143°	(C) 37°	(D) 127°	(E) 90°	
Q.3	A point moves in a s acceleration in m/s ² a	traight line so that its di t time t sec is :	splacement is x	m at time t see	c, given by $x^2 = t^2 + t^2$	· 1. It
	(A) $\frac{1}{x}$	$(B) \frac{1}{x} - \frac{1}{x^2}$	(C) $-\frac{t}{x^2}$	$(D) - \frac{t^2}{x^3}$	(E) $\frac{1}{x^3}$	
Q.4		e xy plane and at time t ill its velocity and acceler (B) 2/3 sec		perpendicular t		hen a
Q.5	The co-ordinates of speed of the particle i (A) 25	a moving particle at a s: (B) 50	time t, are give (C) 10		10t, $y = 5 \cos 10t$ None	. The
Q.6	The momentum of a p	article moving in straigh	t line is given by			
	$p = \ln t + \frac{1}{t} (i$	n m/s)				
	find the (time $t > 0$) at	which the net force actin	ng on particle is	0 and it's mom	entum at that time.	
Q.7 (i) (ii)	times when the partic	in meter of a body of ma le crosses x-axis and pos y is perpendicular to acco particle at this instant	ition of body at	$tan as (4t^2 + 1, 3)$ these times	t ² – 16t + 16). Find	I
Q.8	A point moves in a	straight line so that it	s distance fron	n the start in t	ime t is equal to	
	$s = \frac{1}{4}t^4 - 4t^3 + 16t^4$	2.				
(a) (b)	At what times was the At what times is its ve	e point at its starting posi locity equal to zero?	tion?			
Q.9	by a horizontal force P	V is fastened to one end c until the string is inclined nd resolve each force pa	l at 37° to the ve	rtical. Draw a di	agram showing the	way: force:
Q.10	as fundamental quanti	th and time as fundamenties and express their din 's modulus can be expre	ensional symbol	ls as V, A and F	ity, acceleration and repectively. Show th	force at the

CLA	SS : XI (P, Q, R, S)	DATE : 16-17/05/2005	MAX.TIME	: 60 Min.	DPP. NO9
Q.1		nula for which of the follow	01		
	(A) impulse and mor (C) stress and press		(B) torque and wo(D) momentum and		um
Q.2	Which of the follow	ving forces cannot be a re	sultant of 5N force	and 7N force?	
	(A) 2N	(B) 10N	(C) 14N	(D) 5N	
Q.3	The velocity of a par its acceleration in m/	ticle moving on the x-axis i 's ² when passing through th	s given by $v = x^2 + x$ he point $x = 2m$	where v is in m/s	and x is in m. Find
	(A) 0	(B) 5	(C) 11	(D) 30	
	(A) $36\hat{i} + 2\hat{j} + \hat{k}$ ma	asured in meter and \hat{t} in sec s^{-2} (B) $36\hat{i} + 2\hat{j} + \pi \hat{k}$ ms	cond. The accelerati 2 (C) $36\hat{i} + 2\hat{j}$ m	s^{-2} (D) $12\hat{i} + 2$	at $t = 3s$ is
Q.5		ticle moving in straight line ration is best represented h		n snown	
	(A) *	(B)	(C)	(D)	t 1 ()
Q .6		eriod of vibration of a tunin oung's modulus of the mate ration.			
Q.7		$+\hat{\mathbf{k}}$ displaces a body from Calculate the work done		inate (1, 1, 1) to	another point of

Q.8 A body whose mass is 3 kg performs rectilinear motion according to the formula $s = 1 + t + t^2$, where s is measured in centimeters & t in seconds. Determine the kinetic energy $\frac{1}{2}$ mv² of the body in 5 sec after

its start.

- Q.9 The angle rotated by a disc is given by $\theta = \frac{2}{3}t^3 \frac{25}{2}t^2 + 77t + 5$, where θ is in rad, and t in seconds.
- (a) Find the times at which the angular velocity of the disc is zero.
- (b) Its angular acceleration at these times.
- Q.10 A body of mass 1 kg moves in x-y plane such that its position vector is given by $\vec{r} = \sin(t)\hat{i} + \cos(t)\hat{j}$ (i) Find its equation of trajectory.
- (ii) Find the velocity of the particle at the initial time.
- (iii) Find the component of its acceleration in the direction of velocity at time t.
- (iv) Find angle between velocity vector and acceleration vector at time t.

CLA	SS : XI (P, Q, R, S)	DATE : 18-19/05/2005			DPP. NO.
Q.1	If \vec{a} , \vec{b} and \vec{c} are uni (A) 30°	t vectors such that $\vec{a} + \vec{b} - (B) 60^{\circ}$	$\vec{c} = \vec{0}$, then the angle (C) 90°	between \vec{a} as (D) 120°	nd b is
Q.2	The velocity of a bod (A) 182 m/s ²	y moving in a straight line is (B) 172 m/s ²	s given by $V = (3x^2 + x)^2$ (C) 192 m/s ²) m/s. Find acc (D) 162 m	
Q.3	A particle moves in a	straight line, according to	the law $x = 4a [t + as$	$in\left(\frac{t}{a}\right)$], when	re x is its positio
		s some constants, then the			
	(A) $x = 4a^2\pi$ meters	(B) $t = \pi$ sec.	(C) $t = 0 \sec \theta$	(D) none	
Q.4		of a particle is in shape of a werage acceleration from '		. a.s (m/s) 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	time - (sec
Q.5	Coordinates of a mov	ing particle are given by x =	ct^2 and $y = bt^2$. The sp	eed of the part	ticle is given by
	(A) 2t (c + b)	(B) 2 t $\sqrt{c^2-b^2}$	(C) t $\sqrt{c^2+b^2}$	(D)2t√c	$b^{2} + b^{2}$
Q.6	Four forces of magni Use the vector metho	itudes P, 2P, 3P and 4P act od to find the resultant forc	along the four sides one.	of a square AB	ICD in cyclic o
Q .7	depends on the length	air particle in a flute is give 1 of the flute (L), gas const expression for a in terms of	ant (R), temperature o	fair (T) and m	ass per unit mo
Q.8		hat the angle of rotation is j he wheel for 8 sec. Find the			
Q.9		kg moves in x-y plane suc nomentum vector at time			
Q.10	Two vectors a & b	are varying with time as	$\vec{a} = 3t \hat{i} + 4t^2 \hat{j} \&$	$\vec{b} = (6t + 1)$	3) $\hat{i} + (7 \text{ sint})$
	Find the magnitude of	of the rate of change of a.	\vec{b} at t = $\pi/2$ sec.		
Q.11		moving in straight line chang point during 10 seconds fro		ation V=(3t ² +	2t+1)m/s.Fin

.

· 1

(6	BANSAL (Deril		SICS
CLAS	Target IIT JEE SS : XI (P, Q, R, S)	2007 DATE': 20-21/05/200	والمحجبين الشارك الشاعب وجرابا المتحد الكالا ومستحد فالمحد والمحد		e Problems
Q.1	Which of the followi (A) solid angle and u (B) potential energy	ng pairs don't have same d nit vector	imensions?	0011111	<u></u>
Q.2	Which of the follow (A) force	wing is not a vector qua (B) current	ntity ? (C) velocity	(D) torqu	e
Q.3	A body moves with $(A) 0 m$	velocity $v = \ell n x m/s$ where (B) $x = e^2 m$	e x is its position. The n (C) $x = e m$		on body is zero at n
Q.4	The initial velocity o The distance travelle (A) $\mathbf{s} = \mathbf{ut}^2 + \mathbf{kt}^2$		· ·	(D) $s = (ut)$	a positive constant $\frac{2}{2} + (kt^{3}/6)$
Q.5	The displacement-tim is shown in the figure	he graph of a moving partic The velocity-time graph	le with constant accelera is best given by	ation $\frac{\widehat{\mathbb{B}}}{\times}$	1 2 t (s)
Q.6	A force of 40N is	(B) $\underbrace{\underbrace{\overset{(0)}}{\overset{(0)}}}{\overset{(0)}{\overset{(0)}{\overset{(0)}}{\overset{(0)}}{\overset{(0)}{\overset{(0)}}{\overset{(0)}{\overset{(0)}}{\overset{(0)}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	ion of a body govern	ied by the e	
2.7 a) b) c)	the force $(\mathbf{F} = \mathbf{ma})$ a	of a body of mass m=6k cting on the particle () generated by the force nv)		-6t) + j (-4t ³)t	n. Find:
2.8		ity diaplacement graph of a its. The acceleration of the			
) i)	must be sent from th closest to the boat. If 5km per hour and ca Form an expression r	red 9km away from the nea e fishing boat to a camp, f the messenger can walk n row at 4km per hour. elating time taken to reacl re must he land in order to	15km from the point of at a speed of n the camp t with distar	on shore 9 km 	x Camp 15 km where he lands.
) .10	sec. Determine the	the particle moving in straig velocity and displacement the initial velocity is $v_0 = 3n$	nt as function of tim		

Q.11 A particle is accelerated with acceleration 3+2t where t is time. At t = 0 the velocity is 4. Find the velocity as a function of time and the distance between the position of the particle at time zero and time 4.

PHYSICS

2.1 A particle has a rectilinear motion and the figure gives its displacement as a function of time. Which of the following statements are true with respect to the motion (A) in the motion between O and A the velocity is positive and acceleration is negative (B) between A and B the velocity and acceleration are positive (D) between D and E the velocity is negative and acceleration is positive (D) between D and E the velocity is negative and acceleration is positive (D) between D and E the acceleration is positive (C) between D and E the velocity is negative and acceleration is positive (D) between D and E the acceleration is positive (C) between D and E the acceleration is positive (C) between D and E the acceleration is positive (D) between D and E the acceleration is positive (D) between D and E the acceleration is positive (D) between D and E the acceleration is positive (D) between D and E the acceleration is positive (D) between D and E the acceleration of the path is $(A) x = y^2 + y^2 + 2$ (B) $x = y^2 + 2$ (C) $x = y^2 + 2$ (D) $x = y^2 + y + 2$ 2.3 A particle moves along $x - axis according to the law x = t^3 - 3t^2 - 9t + 5 m then (A) in the interval 3 < t \leq 5 the arritcle is moving in t \times direction(B) the particle reverses its direction of motion twice in entire motion if it starts at t=0 (C) the average acceleration from 1 \le t \le 2 sec is 6 m/s^2(D) in the interval 3 < t \leq 6 sec, the distance travelled is equal to the displacement2.4 A motor boat of mass m moves along a lake with velocity V_0. At t = 0, the engine of the boat is a down. Magnitude of resistance force offered to the boat is equal to rV. (v) is instantaneous speed). W is the total distance coverend till it stops completely?(A) mV_0/r (B) 3 mV_0/2r (C) mV_0/2r (D) 2 mV_0/r, where \alpha is a positi constant.(A) The particle owile one to rest at t = \frac{2\sqrt{v_0}}{\alpha}.(B) The particle ower to rest at t = \frac{2\sqrt{v_0}}{3}.(C) The distance travelled by the particle is \frac{2v_0^{3/2}}{\alpha}.(D) Th$		Target IIT JEE 2007	Daily Practic	
function of time. Which of the following statements are true with respect to the motion (A) in the motion between O and A the velocity is positive and acceleration is negative (B) between A and B the velocity and acceleration are positive (C) between B and C the velocity is negative and acceleration is positive (D) between D and E the acceleration is positive (D) between D and E the acceleration of the path is (A) $x = y^2 - y^2 = (B) x = y + 2$ (C) $x = y^2 + 2$ (D) $x = y^2 + y + 2$ (A particle moves in the $x - y$ plane with velocity $v_x = 8t - 2$ and $v_y = 2$. If it passes through the point $x =$ and $y = 4$ at $t = 2$ see. The equation of the path is (A) $x = y^2 - y + 2$ (B) $x = y + 2$ (C) $x = y^2 - 2$ (D) $x = y^2 + y + 2$ (A) anticle moves along $x - axis according to the law x = ^2 - 3t - 9t + 5 m then(A) in the interval 3 < t - 5, the particle is moving in + x direction(B) the particle reverses its direction of motion twice in entire motion if it starts at t = 0(C) the average acceleration from 1 \le t \le 2 sec is 6 \ m/s^2(D) in the interval 5 \le t \le 6 sec, the distance travelled is equal to the displacement2.4 A motor boat of mass m moves along a lake with velocity V_0. At t = 0, the engine of the boat is asdown. Magnitude of resistance force offered to the boat is equal to TV. (V is instantaneous speed). Wis the total distance coverent till it stops completely?(A) mV_0/t (B) 3 \ mV_0/2r (C) mV_0/2r (D) 2 \ mV_0/r2.5 A particle having a velocity v = v_0 at t = 0 is decelerated at the rate a = \alpha \sqrt{v}, where \alpha is a positconstant.(A) The particle comes to rest at t = \frac{2\sqrt{v_0}}{\alpha}.(B) The particle comes to rest at t = \frac{2\sqrt{v_0}}{\alpha}.(C) The distance travelled by the particle is \frac{2v_0^{3/2}}{\alpha}.(D) The distance travelled by the particle is \frac{2}{3} \frac{v_0^{3/2}}{\alpha}.(D) The distance travelled by the particle is \frac{2}{\sqrt{v_0}} + \frac{1}{a} \tan^{-1}(\frac{x}{a}) + C3. The velocity of a body is given by v = \frac{1}{t^2 + 4} m/s where t is tince clapsed. If $	_			DPP. NO12
and $y = 4$ at $t = 2$ sec. The equation of the path is (A) $x = y^2 - y + 2$ (B) $x = y + 2$ (C) $x = y^2 + 2$ (D) $x = y^2 + y + 2$ (A) a particle moves along x-axis according to the law $x = t^3 - 3t^2 - 9t + 5$ m then (A) in the interval $3 < t > 5$, the particle is moving in +x direction (B) the particle reverses its direction of motion twice in entire motion if it starts at $t = 0$ (C) the average acceleration from $1 \le t \le 2$ sec is 6 m/s ² (D) in the interval $5 \le t \le 6$ sec, the distance travelled is equal to the displacement (A) motor boat of mass m moves along a lake with velocity V_0 . At $t = 0$, the engine of the boat is s down. Magnitude of resistance force offered to the boat is equal to rV. (V is instantaneous speed). W is the total distance coverent till it stops completely? (A) mV_0/r (B) $3 mV_0/2r$ (C)mV_0/2r (D) $2 mV_0/r$ (A) mV_0/r (B) $3 mV_0/2r$ (C)mV_0/2r (D) $2 mV_0/r$ (A) The particle having a velocity $v = v_0$ at $t = 0$ is decelerated at the rate $ a = \alpha \sqrt{v}$, where α is a posit constant. (A) The particle comes to rest at $t = \frac{2\sqrt{v_0}}{\alpha}$ (B) The particle comes to rest at infinity. (C) The distance travelled by the particle is $\frac{2v_0^{3/2}}{3}$. (D) The distance travelled by the particle is $\frac{2v_0^{3/2}}{3}$. (D) The distance travelled by the particle is $\frac{2v_0^{3/2}}{3}$. (A) The velocity of a body is given by $v = \frac{1}{t^2 + 4}$ m/s where t is time elapsed. If it is located at origin initia find its position at $t = 2$ sec. Useful relation: $\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{-1}(\frac{x}{a}) + C$ (A) a particle moves in a straight line with acceleration $(-\frac{1}{3y^2})$ where v is its velocity at time t. Initially particle is at 0, a fixed point on the line, with velocity u. Find in terms of u the time at which the velocits is zero and the displacement of the particle from O at this time. (P) A particle moves in a straight line with acceleration $(-\frac{1}{3y^2})$ where v is its velocity at time t. Initially particle is at 0, a fixed point on the lin	Q.1	 function of time. Which of the following statements are true v the motion (A) in the motion between O and A the velocity is por acceleration is negative (B) between A and B the velocity and acceleration are positi (C) between B and C the velocity is negative and acceleration 	vith respect to sitive and over the second sec	A B E
 (A) in the interval 3 < t < 5, the particle is moving in +x direction (B) the particle reverses its direction of motion twice in entire motion if it starts at t=0 (C) the average acceleration from 1 ≤ t ≤ 2 sec is 6 m/s² (D) in the interval 5 ≤ t ≤ 6 sec, the distance travelled is equal to the displacement 2.4 A motor boat of mass m moves along a lake with velocity V₀. At t = 0, the engine of the boat is s down. Magnitude of resistance force offered to the boat is equal to rV. (V is instantaneous speed). W is the total distance covered till it stops completely? (A) mV₀/r (B) 3 mV₀/2r (C)mV₀/2r (D) 2 mV₀/r 2.5 A particle having a velocity v = v₀ at t = 0 is decelerated at the rate a = α√v, where α is a positic constant. (A) The particle comes to rest at t = 2√v₀/α. (B) The particle will come to rest at infinity. (C) The distance travelled by the particle is 2v₀^{3/2}/α. (D) The distance travelled by the particle is 2v₀^{3/2}/α. (D) The distance travelled by the particle is 2v₀^{3/2}/α. (A) The velocity of a body is given by v = 1/(t + 4) m/s where t is time elapsed. If it is located at origin initia find its position at t = 2 sec. Useful relation : ∫ dx/(2 + a) = 1/(a) the particle the particle moving along the x axis is proportional to x. At time t=0 the particle located at x=2 and at time t=10 it is at x=4. Find the position at t=5. (A) particle moves in a straight line with acceleration (-1/(3v²)) where v is its velocity at time t. Initially particle is at 0, a fixed point on the line, with velocity u. Find in terms of u the time at which the velox is zero and the displacement of the particle that is confined to move along a straight line is given x = 2v²-2v²-2v²+2v²+4 where x is index acceleration of a particle from 0 at this time. 	Q.2	and $y = 4$ at $t = 2$ sec. The equation of the path is		
down. Magnitude of resistance force offered to the boat is equal to rV. (V is instantaneous speed). W is the total distance covered till it stops completely? (A) mV_0/r (B) $3 mV_0/2r$ (C) $mV_0/2r$ (D) $2 mV_0/r$ 2.5 A particle having a velocity $v = v_0$ at $t = 0$ is decelerated at the rate $ a = \alpha \sqrt{v}$, where α is a positic constant. (A) The particle comes to rest at $t = \frac{2\sqrt{v_0}}{\alpha}$ (B) The particle will come to rest at infinity. (C) The distance travelled by the particle is $\frac{2v_0^{3/2}}{\alpha}$. (D) The distance travelled by the particle is $\frac{2v_0^{3/2}}{\alpha}$. (D) The distance travelled by the particle is $\frac{2v_0^{3/2}}{\alpha}$. (A) The velocity of a body is given by $v = \frac{1}{t^2 + 4}$ m/s where t is time elapsed. If it is located at origin initial find its position at $t = 2$ sec. Useful relation : $\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{-1}(\frac{x}{a}) + C$ 2.8 The velocity of a certain particle moving along the x axis is proportional to x. At time t=0 the particle located at $x=2$ and at time t=10 it is at $x=4$. Find the position at $t=5$. 2.9 A particle moves in a straight line with acceleration $(-\frac{1}{3v^2})$ where v is its velocity at time t. Initially particle is at 0, a fixed point on the line, with velocity u. Find in terms of u the time at which the veloc is zero and the displacement of the particle from O at this time. 2.10 The position coordinate of a particle that is confined to move along a straight line is given $x = 2t^3 - 24t + 6$ where x is measured from a convenient origin and t is in seconds. Determine the distance the distance to the distance to the distance to the distance to rest the distance to rest the distance to rest at the distance term or the distance termine the distance the distance termine t	Q.3	(A) in the interval $3 \le 5$, the particle is moving in +x direction (B) the particle reverses its direction of motion twice in entir (C) the average acceleration from $1 \le t \le 2$ sec is 6 m/s^2	n e motion if it starts at t=0)
constant. (A) The particle comes to rest at $t = \frac{2\sqrt{v_0}}{\alpha}$ (B) The particle will come to rest at infinity. (C) The distance travelled by the particle is $\frac{2v_0^{3/2}}{\alpha}$. (D) The distance travelled by the particle is $\frac{2}{3}\frac{v_0^{3/2}}{\alpha}$. (D) The distance travelled by the particle is $\frac{2}{3}\frac{v_0^{3/2}}{\alpha}$. (D) The distance travelled by the particle is $\frac{2}{3}\frac{v_0^{3/2}}{\alpha}$. (D) The distance travelled by the particle is $\frac{2}{3}\frac{v_0^{3/2}}{\alpha}$. (D) The distance travelled by the particle is $\frac{2}{3}\frac{v_0^{3/2}}{\alpha}$. (D) The velocity of a body is given by $v = \frac{1}{t^2 + 4}$ m/s where t is time elapsed. If it is located at origin initial find its position at $t = 2$ sec. Useful relation : $\int \frac{dx}{x^2 + a^2} = \frac{1}{a}\tan^{-1}\left(\frac{x}{a}\right) + C$ 2.8 The velocity of a certain particle moving along the x axis is proportional to x. At time t=0 the particle located at x=2 and at time t=10 it is at x=4. Find the position at t=5. (2.9 A particle moves in a straight line with acceleration $(-\frac{1}{3\sqrt{2}})$ where v is its velocity at time t. Initially particle is at 0, a fixed point on the line, with velocity u. Find in terms of u the time at which the veloc is zero and the displacement of the particle from O at this time. (2.10 The position coordinate of a particle that is confined to move along a straight line is given $x - 2t^3 - 24t + 6$ where x is measured from a convenient origin and t is in seconds. Determine the distance the	Q.4	down. Magnitude of resistance force offered to the boat is eq is the total distance covererd till it stops completely?	ual to rV. (V is instantant	eous speed). Wha
 (D) The distance travelled by the particle is 2/3 (x^{3/2}/3) (α). (D) The distance travelled by the particle is 3/3 (α). (E) F = (sint)i + (cost)j, m = 1, i₀ = -j, v₀ = i. Find v and r. (D) The velocity of a body is given by v = 1/(t² + 4) m/s where t is time elapsed. If it is located at origin initial find its position at t = 2 sec. Useful relation : ∫ dx/(x² + a²) = 1/a tan⁻¹(x/a) + C (E) The velocity of a certain particle moving along the x axis is proportional to x. At time t=0 the particle located at x=2 and at time t=10 it is at x=4. Find the position at t=5. (P) A particle moves in a straight line with acceleration (-1/(3v²)) where v is its velocity at time t. Initially particle is at 0, a fixed point on the line, with velocity u. Find in terms of u the time at which the velocit is zero and the displacement of the particle from 0 at this time. (P) The position coordinate of a particle that is confined to move along a straight line is given x = 2t³-24t+6 where x is measured from a convenient origin and t is in seconds. Determine the distant of the particle from 0 at the stime. 	Q.5	constant. (A) The particle comes to rest at $t = \frac{2\sqrt{v_0}}{\alpha}$	the rate $ a = \alpha \sqrt{v}$, where $ a = \alpha \sqrt{v}$ is the rate $ a = \alpha \sqrt{v}$ is the rate $ a = \alpha \sqrt{v}$ is the rate $ a = \alpha \sqrt{v}$.	ere α is a positiv
 2.6 F = (sint)i + (cost)j, m =1, i₀[∞] - j, v₀ = i. Find v and r. 2.7 The velocity of a body is given by v = 1/t² + 4 m/s where t is time elapsed. If it is located at origin initia find its position at t = 2 sec. Useful relation : ∫ dx/(x²+a²) = 1/a tan⁻¹(x/a) + C 2.8 The velocity of a certain particle moving along the x axis is proportional to x. At time t=0 the particle located at x=2 and at time t=10 it is at x=4. Find the position at t=5. 2.9 A particle moves in a straight line with acceleration (-1/(-3y²)) where v is its velocity at time t. Initially particle is at 0, a fixed point on the line, with velocity u. Find in terms of u the time at which the velocits zero and the displacement of the particle from O at this time. 2.10 The position coordinate of a particle that is confined to move along a straight line is given x =2t³-2t⁴-6 where x is measured from a convenient origin and t is in seconds. Determine the distant x = 2t³-2t⁴-6 where x is measured from a convenient origin and t is in seconds. 		(C) The distance travelled by the particle is $\frac{2v_0^{3/2}}{\alpha}$.		
 2.7 The velocity of a body is given by v = 1/t² + 4 m/s where t is time elapsed. If it is located at origin initial find its position at t = 2 sec. Useful relation : ∫ dx/(x² + a²) = 1/a tan⁻¹(x/a) + C 2.8 The velocity of a certain particle moving along the x axis is proportional to x. At time t=0 the particle located at x=2 and at time t=10 it is at x=4. Find the position at t=5. 2.9 A particle moves in a straight line with acceleration (-1/(3v²)) where v is its velocity at time t. Initially particle is at 0, a fixed point on the line, with velocity u. Find in terms of u the time at which the veloc is zero and the displacement of the particle from 0 at this time. 2.10 The position coordinate of a particle that is confined to move along a straight line is given x-2t³-24t+6 where x is measured from a convenient origin and t is in seconds. Determine the distant of the displacement of the particle that is confined to move along a straight line is given x-2t³-24t+6 where x is measured from a convenient origin and t is in seconds. Determine the distant of the displacement of the particle that is confined to move along a straight line is given x-2t³-24t+6 where x is measured from a convenient origin and t is in seconds. Determine the distant of the displacement of the particle that is confined to move along a straight line is given x-2t³-24t+6 where x is measured from a convenient origin and t is in seconds. Determine the distant of the particle that is confined to move along a straight line is given x-2t³-24t+6 where x is measured from a convenient origin and t is in seconds. Determine the distant of the particle that is confined to move along a straight line is given x-2t³-24t+6 where x is measured from a convenient origin and t is in seconds. 		(D) The distance travelled by the particle is $\frac{2}{3} \frac{v_0^{3/2}}{\alpha}$.		
 find its position at t = 2 sec. Useful relation : \$\frac{dx}{x^2 + a^2} = \frac{1}{a} \text{tan}^{-1} \bigg(\frac{x}{a}\bigg) + C\$ The velocity of a certain particle moving along the x axis is proportional to x. At time t=0 the particle located at x=2 and at time t=10 it is at x=4. Find the position at t=5. A particle moves in a straight line with acceleration (\$-\frac{1}{3v^2}\$) where v is its velocity at time t. Initially particle is at O, a fixed point on the line, with velocity u. Find in terms of u the time at which the veloc is zero and the displacement of the particle from O at this time. The position coordinate of a particle that is confined to move along a straight line is given x = 2t^3 - 24t + 6 where x is measured from a convenient origin and t is in seconds. Determine the distantiant of the particle that the displacement of the particle that is confined to move along a straight line is given x = 2t^3 - 24t + 6 where x is measured from a convenient origin and t is in seconds. Determine the distantiant of the particle that is confined to move along a straight line is given x = 2t^3 - 24t + 6 where x is measured from a convenient origin and t is in seconds. Determine the distantiant of the particle that is confined to move along a straight line is given x = 2t^3 - 24t + 6 where x is measured from a convenient origin and t is in seconds. 	Q.6			
 2.8 The velocity of a certain particle moving along the x axis is proportional to x. At time t=0 the particle located at x=2 and at time t=10 it is at x=4. Find the position at t=5. 2.9 A particle moves in a straight line with acceleration (-¹/_{3v²}) where v is its velocity at time t. Initially particle is at 0, a fixed point on the line, with velocity u. Find in terms of u the time at which the veloc is zero and the displacement of the particle from 0 at this time. 2.10 The position coordinate of a particle that is confined to move along a straight line is given x -2t³-2t⁴-6 where x is measured from a convenient origin and t is in seconds. Determine the distant of the particle that is not second to a second be displacement of the particle from the train the train the distant acceleration (-2t³-2t⁴-6 where x is measured from a convenient origin and t is in seconds. Determine the distant of the particle from the termine the distant of the termine the distant of the termine the distant of the particle from the termine the distant of the termine the distant of the particle from the termine the distant of the termine termine	Q.7	1 14	<i>,</i> , ,	l at origin initially
 located at x=2 and at time t=10 it is at x=4. Find the position at t=5. A particle moves in a straight line with acceleration (-¹/_{3v²}) where v is its velocity at time t. Initially particle is at 0, a fixed point on the line, with velocity u. Find in terms of u the time at which the velocits zero and the displacement of the particle from 0 at this time. The position coordinate of a particle that is confined to move along a straight line is given x=2t³-24t+6 where x is measured from a convenient origin and t is in seconds. Determine the distant. 				
 particle is at O, a fixed point on the line, with velocity u. Find in terms of u the time at which the velocis zero and the displacement of the particle from O at this time. 2.10 The position coordinate of a particle that is confined to move along a straight line is given x-2t³-24t+6 where x is measured from a convenient origin and t is in seconds. Determine the distant of the particle from the distant of	Q.8	located at $x=2$ and at time $t=10$ it is at $x=4$. Find the position	n at t=5.	
 is zero and the displacement of the particle from O at this time. The position coordinate of a particle that is confined to move along a straight line is given x-2t³-24t+6 where x is measured from a convenient origin and t is in seconds. Determine the distance of the second second	Q.9			
$x = 2t^3 = 24t + 6$ where x is measured from a convenient origin and t is in seconds. Determine the distant				which the velocity
	Q.10	$x = 2t^3 = 24t + 6$ where x is measured from a convenient origin	and t is in seconds. Deter	line is given b mine the distanc

1

	BANSAL (Target IIT JEE		Dail	PHYSICS by Practice Probl	
		DATE : 30-31/05/200			
Q.1	If a, b, c are three u	nit vectors such that a +	b + c = 0, then a.b + b.c	+ c.a is equal to	
	(A)-1	(B) 3	(C) 0	(D) $-\frac{3}{2}$	
Q.2	Two forces P and Q	act at a point and have 1	resultant R. If Q is repla	aced by $\frac{(R^2 - P^2)}{Q}$ acting	; in the
		that of Q, the resultant			
	(A) remains same	(B) becomes half	(C) becomes twice	(D) none of these	
Q.3	B is the mid point of (A) the velocity at B (B) the average velo (C) the ratio of the t	AC. Then	.0m/s that from B to C is 3 : 2	elocities 7m/s at A and 17m	/s at C.
Q.4	A bird flies for 4 sec distance of		n/s in a straight line, whe	re t = time in seconds. It co	overs a
	(A) 2 m	(B) 4 m	(C) 6 m	(D) 8 m	
Q.5		ation or deceleration that a station to the other sepa		minimum time in which th	ne train
	(A) $\sqrt{\frac{d}{a}}$	(B) $\sqrt{\frac{2d}{a}}$	(C) $\frac{1}{2}\sqrt{\frac{d}{a}}$	(D) $2\sqrt{\frac{d}{a}}$	
Q.6	minutes. A man cycl every $t_1 = 18$ minutes	ing with speed of 20km/	h in the direction A to B, n, and every $t_2 = 6$ minute	eaving in either direction e notices that a bus goes pa es in the opposite direction ss than velocity of bus (D) 12 minutes	st him
Q.7	The displacement of	a body of mass m 3 kg is	given as, $\vec{S} = 2 \sin t(\hat{i})$	+ $tan t(\hat{j})$ the velocity & I	ς.Ε. of
	the body at time t =	$\pi/6$ sec. are given as	<u> </u>		
Q.8 (a	a) Find a unit vector at	an angle of 45° with x-as	kis.		
(1		$= 2\hat{i} - 3\hat{j}$ into two perpent of the makes an angle of 45°	-	h that.	
Q.9	If energy, density and in terms of these qua		system of units. Find the d	imensional formula of mom	enturr

Q.10 At a distance L = 400m from the traffic light brakes are applied to a locomotive moving at a velocity v=54 km/hr. Determine the position of the locomotive relative to the traffic light 1 min after the application of the brakes if its acceleration is -0.3m/sec².

	BANSAL (Target IIT JEE		ſ	PHYSICS Daily Practice Problems
	S : XI (P, Q, R, S)	DATE : 01-02/06	2005 MAX.TIM	AE : 60 Min. DPP. NO14
Q.1		3k is rotated through The values of x are	gh an angle θ and dou	bled in magnitude, then it becomes
	(A) $-\frac{2}{3}$	(B) $\frac{1}{3}$	(C) $\frac{2}{3}$	(D) 2
Q.2	forces is	vo forces of magnitud	les P and 2P is perpend	icular to P, then the angle between the
	(A) $\frac{2\pi}{3}$	(B) $\frac{3\pi}{4}$	(C) $\frac{4\pi}{5}$	(D) $\frac{5\pi}{6}$
Q.3	A ball is thrown at $g = 10 \text{ms}^{-2}$, the value (A) 45°	an angle θ such tha e of θ is (B) 90°	t its range R is related (C) 30°	to its time of flight T as $R = 5T^2$. If (D) 60°
Q.4	A body initially at re	est, starts moving alor splacement plot is as f particle is	ng x-axis in such a way s shown in figure. The B) 6 m/s D) none	
Q.5	A body is thrown up acceleration with wh	in a lift with a velocit tich the lift is moving	ty u relative to the lift an up is	d the time of flight is found to be t. The
	(A) $\frac{u-gt}{t}$	(B) $\frac{2u-gt}{t}$	(C) $\frac{u+gt}{t}$	(D) $\frac{2u + gt}{t}$
Q.6	X and Y are 2m/s ar (A) Its speed at mid (B) Its speed at a po (C) The time to go f	nd 14m/s. Then point of XY is 15m/ pint A such that XA : form X to the mixed p	s AY = 1 : 3 is $5m/s$ point of XY is double of	etween two stops X and Y. Its speed at f that to go from mid point to Y. distance travelled in the second half of
Q.7	If the velocity of the $v = \frac{a}{t} + bt^2$			
		a & b are given as	· · · · · · · · · · · · · · · · · · ·	
Q.8	$Q = ms \Delta t$ where $Q \longrightarrow heat$ $m \longrightarrow mas$ $s \longrightarrow spec$ $\Delta t \longrightarrow cha$	ss of the body	perature is given as,	
Q.9	If torque $(\tau) = \text{lengt}$		e (t) and angular momer ntum.	ntum (L).
Q.10	A lift starts from the throws a stone verti where stone hits the	cally upwards from	descends with a consta the top of the shaft w	Int speed of 10 m s^{-1} . 4 sec. later a boy ith a speed of 30 m s^{-1} . Find when &

PHYSICS

\mathbf{U}	Target IIT JEE	ſ	Daily Practic	e Problems		
CLAS	5S : XI (P, Q, R, S)	DATE : 03-04/06/200	5 MAX.TIN	AE : 60 Min.	DPP. NO15	
Q.1	If the resultant of the magnitude equal to $(A) - 6$	ree forces $F_1 = pi + 3j - k$, 5 units, then the value (s) o (B) - 4	$F_2 = -5i + j + 2k = 0$ of p is (are) (C) 2	and $F_3 = 6i - k$ actin (D) 4	g on a particle has	
Q.2		$(\hat{i} + \hat{j} + \hat{k}) \& (2\hat{i} + 2\hat{j} - 2\hat{l})$	k) is			
		(B) $\cos^{-1} \frac{1}{\sqrt{3}}$		(D) None o	f these.	
Q.3	A ball is thrown vert ball will pass by the	ically upwards with a velo balloon after time.	city 'u' from the b	alloon descending w	ith velocity V. The	
	(A) $\frac{u-V}{2g}$	(B) $\frac{u+V}{2g}$	(C) $\frac{2(u-V)}{g}$	(D) $\frac{2(u+1)}{g}$	<u>()</u>	
Q.4	A projectile is thrown is passes through a	n from ground. With what point $(3, 4)$. (Take $g = 10$	minimum velocity m/s ²)	, the projectile shoul	d be thrown so that	
Q.5		(B) 7.5 m/s B and C are trown simu rtical plane. Their trajector			m/s	
Q.6	point in the same vertical plane. Their trajectories are shown in the figure. Then which of the following statement is false . (A) The time of flight is the same for all the three. (B) The launch speed is greatest for particle C. (C) The vertical velocity component for particle C is greater than that for the other particles (D) Y-coordinate of all particles is always same Two balls are thrown simultaneously at two different angles with the same speed v_0 from the same position so that both have equal ranges. If H_1 and H_2 be the maximum heights attained in two cases, the the summation $H_1 + H_2$ is equal to					
	$(A) \frac{\mathbf{v}_0^2}{2g}$	(B) $\frac{v_0^2}{g}$	(C) $\frac{2v_0^2}{g}$	(D) $\frac{v_0^2}{4g}$		
Q.7	The velocity of the p	article is given as $v = 3t^3 +$	$t = \frac{1}{t^2}$. Calculate	the net force acting o	on the body at time	
Q.8		s of the body is 5 kg tudes P & Q are inclined at inged to $(180 - \theta)$ the mag				
Q.9	Figure shows a graph	h of acceleration of a parti blowing graphs if the part t=0	cle moving on icle is at 2	a m/s ²	t	
(i) (ii)	velocity-time graph displacement-time gr		-:	2 m/s^2	20 25 30 35 40	
(ii) Q.10	a m/s ² along the v m/s. The car travel	pint A on a straight road its a road for T seconds s at this speed for a furthe ith constant acceleration 3	till it reaches r 10 sec till it reach	the point B when the point C. From	ere its speed is m C it travels for a	
-	Taraner I seconds w	in constant acceleration :	a mis unui it rea	and a spread of 201	wo at point D.	

- (i) Find v
- Given that the distance between A & D is 675 m find

(ii) a & T.

PHYSICS

CLAS	Target IIT JEE SS : XI (P, Q, R, S)	DATE : 06-07/06			e Problems
Q.1	A body is projected		certain point on a planet umed horizontal). The ho		
		ectively vary with th ained by the body is :	me t in second as, $x = 1$	$0\sqrt{3}$ 1 and $y =$	$10 t - t^2$. Then the
	(A) 200 m	(B) 100 m	(C) 50 m	(D) 25 m	~ V/
Q.2	If time taken by the (A) Tv sin θ (C) sec θ	projectile to reach Q	is T, than PQ = (B) Tv cos θ (D) Tv tan θ	ł	90° P
Q.3		projectile on a horizon speed of projection is		-	
	(A) 2h	(B) $\frac{R^2}{8h}$	$(C) 2R + \frac{h^2}{8R}$	(D) $2h + \frac{1}{4}$	<u>₹²</u> 3h
2.4	A football is thrown Perpendicular to velo		here any point at which th	ne acceleration is j	parallel to velocity?
2.5			or to the horizontal and lar the throwing point. How f		
2.6	from the edge of the	table. (a) Find the tim	ve the floor and strikes the of flight (b) Find the in the flight (b) the floor it strikes the floor	itial velocity (c) l	
2.7			nd after the stone began to nitial velocity of the stone		iitude of its velocity
2.8	travelling at 80ft/see	c. in the same directio	1024ft with a speed of 2 on as the plane. At what n order to hit the boat? [§	horizontal dista	
) .9		angle of 45° with the	e with the horizontal fro horizontal . Find the hei		
2.10	A boy throws a wate toward the boy at a c		angle of 53° with a spe		

the second data	Target IIT JEE SS : XI (P, Q, R, S)	DATE : 08-09/06/20		Daily Practic ME : 60 Min.	DPP. NO12
Q.1		ed with a certain velocity angle of 45° to the horizo (B) tan ⁻¹ (1/2)		strike the plane nor	mally then θ equal
	$(A) \tan^{-}(1/3)$	$(B) \tan^{-1}(1/2)$	(C) $\tan^{-1}(1/\sqrt{2})$	$(D) \tan^{-2}$,
Q.2		the two projectiles are fir m during their flight is	red simultaneously.	The minimum 2	20 m/s 20 m/s
	(A) 20 m	(B) 10 √3 m	(C) 10 m	(D) None	60° 30°
Q.3		horizontally from an i $= 10 \text{ m/s}^2$, the range me			h horizontal) wit
	(A) 500 m	(B) 1000/3 m	(C) $200\sqrt{2}$ m	(D) 100 √	3 m
Q.4	respect to himself. B	a smooth horizontal gro Ball strikes a box placed a city with which child nov	at a distance 10 m fr		
	projection, the vero		"income in.		
	(A) 2.5 m/s	(B) 5 m/s	(C) 10 m/s	(D) 20 m/s	5
Q.5	(A) 2.5 m/s A train is moving on	(B) 5 m/s a track at 30 m/s, A ball i horizontal. Find the dist	(C) 10 m/s s thrown from it per	pendicular to the di	rection of motion

- Q.6 Two trains A and B are travelling from station P to Q starting from P and stopping at Q. Train A has constant acceleration a for (1/3)rd of time, constant velocity for second (1/3)r^d of time and constant retardation a for last (1/3)rd of time. Train B has same constant acceleration a for first (1/3)rd of distance, constant velocity for 2nd (1/3)rd of distance & constant tetardation a for last (1/3)rd of distance. Find the ratio of time taken by train A and train B from P to Q.
- Q.7 A man standing on a road has to hold his umbrella at 30° with the vertical to keep the rain away. He throws the umbrella and starts running at 10km/h. He finds that raindrops are hitting his head vertically. Find the speed of the raindrops w.r.t. (a) the road, (b) the moving man.

Q.8 A man wishes to cross a river to an exactly opposite point on the other bank; if he can pull his boat with twice the velocity of the current, find at what inclination to the current he must point the boat.

Q.9 A man who can swim at the rate of 2 km/hr. crosses a river to an exactly opposite point on the other bank by swimming in a direction of 120° to the flow of the water in the river. The velocity of the water current in km/hr is

Q.10 Velocity of water current in a river is 2 km/hr. A boat rowing with a velocity of 8 k /hr. A boat rowing with a velocity of 8 km/hr. is directed towards exactly opposite point on the other side of the bank. However the boat strikes the opposite bank 75 m away from the desired point. The width of the river is

	BANSAL C			PHY	SICS
	Target IIT JEE			aily Practic	e Problems:
CLAS	S : XI (P, Q, R, S)	DATE : 10-11/06/200		IE : 60 Min.	DPP. NO18
Q.1		serves that the rain strikes of 25 m/s then the drops rops is :		at an angle of 30° i	from horizontal. the
	(A) 25 m/s	(B) 50 m/s	(C) 12.5 m/s	(D) 24√2	m/s
Q.2		C are in motion. The tion of B as seen by C is wards (B) south			A
Q.3	A projectile is fired w when it is at the high (A) u cos θ	ith a velocity u making an est point ? (B`u	angle θ with the hore (C) u sin θ	rizontal. What is th	
Q.4	A girl is riding of 10 ms ⁻¹ as shown in hoop in such a mann	on a flat car travellin the fig. She wishes to the result of the the ball will move	ng with a consta nrow a ball through horizontally as it pa	ant velocity a stationary asses through	€ 5m
		s the ball with an initial stance in front of the hoo			
Q.5	plane in still air is 500		the effect of the wir	nd and directs his p velocity is 45°N of E	
Q.6 (a) (b)	start from the same j travels at 4 km/hr in along a path which w the distance between	m is flowing from west t point on southern bank o still water. Raju crosses vill take him shortest time n the points where they la aju & Kaju to reach the	f river. Raju travels the river along shor to cross the river. F nd on the other ban	s at 5 km/hr in stil test path while Ka ind	l water, while Kaju
Q.7	A man holding a fla	g is running in North-Ea	st direction with sp	peed 10 m/s. Wind	l is blowing in east
	direction with speed	$5\sqrt{2}$ m/s. Find the direct	ion in which flag wi	ll flutter.	
Q.8		apart on a line running s is steaming north at 40kr reach it?			
Q.9	A target is fixed on	the top of a pole 13 m l	iigh. A person stan	iding at a distance	e of 50 m from the
•		ojecting a stone with a v uld be the angle of eleva	••	ı∕s. If his aim is to	strike the target in
Q.10 (i) (ii)	water with an initial	ed at a distance 18 m from velocity of 30 m/s as sho ht h that can be reached ngle α .	wn in the figure. Fir		

CLA	Target IIT JE	 DATE : 11/06/2			ARKS: 5
Q.1		maximum distance 1.6m	. It spends negligible tim		
	(A) $5\sqrt{2}$ m	(B) $10\sqrt{2}$ m	(C) $20\sqrt{2}$ m	(D) $40\sqrt{2}$ m	
Q.2	The coordinates of particle at time t is g			• · · ·	he speed of [2]
	$(A)t\sqrt{a^2+b^2}$	(B) $2t\sqrt{a^2+b^2}$	(C) $\sqrt{a^2 + b^2}$	(D) $2t^2\sqrt{a^2+b^2}$	
Q.3		thorizontally from an is $z = 10 \text{ m/s}^2$, the range me			ontal) wit [2]
	(A) 500 m	(B) 500√2 m	(C) $200\sqrt{2}$ m	(D) none of these	
Q.4		tically upwards from the he ball was thrown with (B) 25 m/sec.		int at the height of 25 m (D) 35 m/sec.	n twice at a [2]
Q.5		d from point A with vel as in figure. Range of the (B) 20/13 m		dicular to [2] D) 40/3m	30°
Q.6		at an angle 60° with the h with the horizontal, the h (B) k/3			the veloci [3]
Q.7		ong a straight line in such on and velocity were zero			
	(A) 19/3 m	(B) 12/5 m	(C) 17/5 m	(D) 19/4 m	101
Q.8	An object is thrown striking the ground v	horizontally from a towe vill be :	er H meter high with a v	elocity of $\sqrt{2gH}$ m/s.	Its speed o [3]
	(A) $\sqrt{2gH}$	(B) $\sqrt{6gH}$	(C) $2\sqrt{gH}$	(D) $2\sqrt{2gH}$	
	Two nexticles are fi	red from the same point,		nd 100 m/s, and firing a poity vectors become pe	
Q.9		120 respectively. The th			[3]

- Q.11 A stationary man observes that the rain strikes him at an angle 60° to the horizontal. When he begins to move with a velocity of 25 m/s then the drops appear to strike him at an angle of 30° from horizontal. Find the velocity of the rain drops. [5]
- Q.12 A particle is projected norizontally with speed u from point A, which is 10 m above the ground. If the particle hits the inclined plane perpendicularly at point B. $[g = 10 \text{ m/s}^2]$

- (a) Find horizontal speed with which the particle was projected.
- b Find the len th OB alon the inclined lane.
- Q.13
 Man A sitting in a car moving at 54 km/hr observes a man B in front of the car crossing perpendicularly the road of width 15 m in three seconds. Find the velocity of man B.
 [5]
- Q.14 A man can swim in still water at a speed of 5 km/hr. He wants to cross a river 6 km wide, flowing at the rate of 4 km/hr. If he heads in a direction making an angle of 127° with stream direction. Find the distance he drifts along the river by the time he reaches the opposite bank. [5]
- Q.15 Raindrops are falling vertically with a velocity of 10 m/s. To a cyclist moving on a straight road the raindrops appear to be coming with a velocity of 20 m/s. Find the velocity of cyclist. [5]

- the inclined plane is inclined at an angle of 45° to the horizontal.
 (a) Find the time of flight.
- (b) Find the distance between the point of projection and the foot of inclined plane.

PHYSICS

Ŀ	Target IIT JEE 2007 Daily Practice Problems
CLAS	SS : XI (P, Q, R, S) DATE : 15-16/06/2005 MAX.TIME : 60 Min. DPP. NO20
Q.1	A man is standing in a lift which goes up and comes down with the same constant acceleration. If the ratio of the apparent weights in the two cases is $2:1$, then the acceleration of the lift is (A) 3.33 ms^{-2} (B) 2.50 ms^{-2} (C) 2.00 ms^{-2} (D) 1.67 ms^{-2}
Q.2	Three equal weights of mass 2kg each are hanging by a string passing over a fixed pulley. The tension in the string (in N) connecting B and C is $(A)4g/3 \qquad (B)g/3 \qquad (C)2g/3 \qquad (D)g/2$
Q.3	 A 10kg monkey is climbing a massless rope attached to a 15kg mass over a tree limb. The mass is lyin, on the ground. In order to raise the mass from the ground he must climb with (A) uniform acceleration greater than 5m/sec² (B) uniform acceleration greater than 2.5m/sec² (C) high speed (D) uniform acceleration greater than 10m/sec²
Q.4	Three blocks are connected as shown in the figure, on a horizontal frictionless table and pulled to the right with a force at 60N. if $M_1 = 10$ kg, $M_2 = 20$ kg and $M_3 = 30$ kg then the value of T_2 is (A) 40N (B) 30N (C) 20N (D) 10N
Q.5	Two blocks A & B with mass 4 kg and 6 kg respectively are connected by a stretched spring of negligible mass as in figure . When the two blocks are released simultaneously the initial acceleration of B is 1.5 m/s ² westward . The acceleration of A is : (A) 1 m/s ² westward (B) 2.25 m/s ² eastward (C) 1 m/ ² e t ard (D) 2.75 m ² westward are a stretched spring of the initial acceleration of A is :
Q.6	The three blocks shown move with constant velocities. Find the velocity of block A and B. Given $V_{p_2}=10m/s\downarrow$, $V_c=2m/s\uparrow$.
Q.7	2 men Ram & Gopal are competing to cross a river. Ram start from point A runs to bridge BC and then crosses bridge maintaining a speed of 7 m/s. Gopal swims across to point C starting from point A. His velocity in still water is $4m/s$ and river flows with velocity of 3 m/s. What is the time taken by each person. A 300m B
Q.8	A swimmer starts to swim from point A to cross a river. He wants to reach a point B on the opposite side of the river. The line AB makes on angle 60° with the river flow as shown. The velocity of the swimmer in still water is same as that of the river.
(a) (b)	In what direction should he try to direct his velocity? Calculate angle between his velocity and rive velocity. Find the ratio of the time taken to cross the river in this situation to the minimum time in which he can
Q.9	cross this river. A projectile is thrown from a platform at a height 10 m above the ground with velocity o
	20 m/sec. At what angle should the projectile be thrown to reach the farthest point from O, which it vertically below the point from which it is thrown. $[g = 10 \text{ m/s}^2]$
Q.10	A particle P is projected horizontally, with speed V, from a point O on a plane which is inclined at an angle β to the horizontal. The particle hits the plane at a point A which is on the line of greatest slope through O. (a) Find the time of flight. (b) Find the tangent of the acute angle between the horizontal and the direction of motion of P when P reached A. A second particle Q is projected from O, with speed V in a direction perpendicular to the plane. (c) Find the time taken for Q to return to the plane and (d) show that Q hits the plane at A.

1

	Target IIT JEE	2007 DATE : 17-18/06/2003		actice Problems
Q.1	SS : XI (P, Q, R, S) A uniform thick stri horizontal force of 5 (A) zero	ng of length 5 m is restin	g on a horizontal frictionless sion in the string at 1m from th	surface . It is pulled by a
Q.2	by attaching a mass	2m while in (b) the mass i	mass m. In (a) the mass is lifted s lifted by pulling the other er re the accelerations of the tw (C) $f_a=f_b/3$ (D)	d T
0.1	u U		cube as shown in the figure.	
Q.3	$V = (5t\hat{i} + 2t\hat{j})m/s$ The sphere is at rest by the sphere on the	. Here t is the time in sec	ond. All surfaces are smooth. What is the total force exerted by-axis along vertical)	y 1 1 P
	(A) $\sqrt{29}$ N		(B) 29 N	0 X
	(C) 26 N		(D) $\sqrt{89}$ N	
Q.4		Il pulleys are massless and ball to reach the upper er	frictionless. The acceleration of the rod is :	of $\frac{1111111}{4}$
	(A) $\sqrt{\frac{10l}{3g}}$		(B) $\sqrt{\frac{5l}{3g}}$	U Q
	(C) $\sqrt{\frac{3l}{4g}}$		(D) $\sqrt{\frac{3l}{10g}}$	
Q.5		to the left with a constant v	relocity	
(a)	of 6 m/s. Determine the velocity of block	b.	min	
(b)	the velocity of portio	n D of the cable.		
(c)	the relative velocity respect to portion D.	of portion C of the cab	e with	В
Q.6	former climbing up w		ving along a vertical rope, th s ² while the latter coming dow n in the rope at the fixed	

Q.7 A pulley fixed to the ceiling of a lift carries a string whose ends are tied to blocks of mass 2 kg and 1 kg. The lift is having a downward acceleration of 2 n/s^2 . Calculate the acceleration of the blocks relative the lift and relative to ground. Also find the tension in the string connecting the blocks.

.

Q.8 A bird is flying along a horizontal straight line AB, h meters above level ground. It flies with constant speed of 10 m/s over a point O on the ground, where there is a hunter with a shotgun. The hunter fires directly at the bird when it is at A, where OA makes an angle of 53° with the horizontal, as shown in the diagram. The shot leaves the gun at a speed of 80 ms⁻¹. If the shot hits the bird at B, find h and also the coordinates of point B with respect to point of projection O.

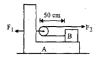
- Q.9 A man can row a boat in still water at 3 km/h. He can walk at a speed of 5 km/h on the shore. The water in the river flows at 2 km/h. If the man rows across the river and walks along the shore to reach the opposite point on the river bank find the direction with the river flow in which he should row the boat so that he could reach the opposite shore in the least possible time. The width of the river is 500 m.
- Q.10 A helicopter is moving vertically upwards with a velocity 5 m/s. When the helicopter is at a height 10m from ground. A stone is thrown with a velocity

 $(3\hat{i}+4\hat{j})$ m/s from the helicopter w.r.t. the man in it. Considering the point on ground vertically below the helicopter as the origin of coordinates, and the ground below as xy plane, find the coordinates of the point where the stone will fall. Its distance from origin & the distance between the helicopter & the stone, at the instant the stone strikes the ground, assuming helicopter moves upwards with the same velocity.

Max	. Marks : 50	Class: XI (P, Q, R, S)	Time : 90 Min	Date : 29-05-2005
	ral Remarks :		<u></u>	
1.		per contain 12 questions. All qu question should begin after the		
2. 3.		ct of a subjective question sho		
4.	Use of Calculato	r, Log table, Slide Rule and Mo	bile is not permitted.	• • • •
5. 6.		earity in answering the question on the rough work done by yo		
	· · · · · · · · · · · · · · · · · · ·			
Q.1		ved by a force $\vec{F} = 20\hat{i} - 30\hat{j} + \hat{i}$		
		$2\hat{i} + 7\hat{j} - 3\hat{k}$ and $5\hat{i} - 3\hat{j} - 6\hat{l}$		
Q.2	restoring force of	cillation of a nonlinear oscilla onstant k with dimensions of M ysis find the expression for peri	1L ^{−2} T ^{−2} and the ampli	
Q.3		orces of magnitudes 10 N & P1		
		acts due west & the force of m th as shown in figure. The resul		
		agnitude of this resultant.	tant of these two force	[3] 10N
Q.4		ugh which groundwater can m ough a cross section of area A o V/t = KAH/L.		
		rtical height of the aquifer over K is the hydraulic conductivit		
Q.5		in a straight line with an accele v = 0 when $s = 0$. Find its veloci		
Q.6	A car starts from starting is given	rest and for the first 4 sec of its by $a = 6 - 2t$	s motion the accelerat	ion a m/s ² at time t seconds aft
(a)		n velocity of the car		
(b)	find the velocity	of the car after 4 sec and the dis	stance travelled up to t	this time. [5]
Q.7	kg which slows	ws the (v, t) graph for the motio 'own uni `ormly from a speed o g on a straight level road.		
(a)	Calculate the ma	gnitude of the brakin_ force the	at is applied to th car.	0 4 1(3)
(b)	calculated in part	h for the motion of the car when (a) but increases in magnitude me for the car to stop are the s	as the car slows down	lied is initially less than the value
Q.8		s along the space curve defind		
2.0		y and (b) acceleration at any		sin i, z – e . i ma ule magintuc

- 0.9 At t = 0 a flower pot A is dropped from rest from the window of a highrise building, some height h_{Δ} above the ground. Also t = 0, another flower pot B is thrown downward from a window higher up (height $h_{\rm p}$ above ground) with some initial downward speed v_0 . For now, consider only pot A: Find the time at which it arrives at the ground, and the speed it has (a) immediately before hitting the ground. Give each answer in terms of any of h, and g. Assume that B, on its way down, passes A without touching it. Find the time at which B catches up with (b) A. Give your answer in terms of any of h_A , h_B , v_0 , and g. [5] O.10 Given the three vectors \vec{A} , \vec{B} and \vec{C} shown. (i) Which simple combination of any Two of these results in a vector of the largest possible magnitude? (e.g., $\vec{A} - \vec{B}, \vec{B} + \vec{C}$ etc.) Which simple combination of all three of these results in a vector of the smallest possible magnitude? (ii) (e.g. $\vec{A} + \vec{B} + \vec{C}$, $\vec{C} - \vec{B} - \vec{A}$ etc.) Suppose a complicated physics problem yields the result, $Q = (\sqrt{3g/2L_1})(L_1 - L_2)^2/(vL_1)$, where g (iii) is the magnitude of some acceleration, the L's are distances, and v is some speed. What are the units of the quantity Q? (Simplify as much as possible) [5] Q.11 Starting at t = 0, a mobile robot moves on a horizontal surface such that its position is described by $x(t) = x_0 + \alpha t - \beta t^2$, $y(t) = y_0 - \gamma t^3$, where $x_0, y_0, \alpha, \beta, \gamma$ are given constants. Write an expression for the magnitude $|\vec{a}|$ of the robot's acceleration, in terms of any $x_0, y_0, \alpha, \beta, \gamma$ and t. (i) Is $|\vec{a}|$ constant? If yes, explain why. If not, does it increase or decrease with time? (ii) [5] Q.12 02 displacement (m) (a) The diagram shows the displacement-time graph for a particle moving in a straight line. Find the average velocity for the interval from t = 0 to t = 5. time(s)
- (b)

The diagram shows the displacement-time graph for a particle moving in a straight line. Find the average speed for the interval from t = 0 to t = 5. [5]


[2]

i 45	BANSAL C			<i>(</i> SICS
	Target IIT JEE	2007	Daily Pract	ice Problems
	SS : XI (P, Q, R, S)	DATE : 20-21/06/2005	MAX.TIME : 60 Min.	DPP. NO22
Q.1		m/s ² vertically downwards. I	ooth. Rod is moved by external a Force exerted on the rod by the w (C) 135/2 N (D) 225/2 N	
Q.2	I the figure show to m/s. The velocity of. (A) 12.5 m/s (C) 6.25 m/s		B) 25 m/s D) none of these	
Q.3	A sphere of mass m the coefficient of fric	is kept between two inclined tion between each wall and t $\langle N_2 \rangle$ offered by the walls 1 a	d walls, as shown in the figure. It he sphere is zero, then the ratio of	
Q.4	without breaking the(A) lowering the object(B) lowering it with a(C) lowering it with a	e cord.	2 m/s ² .	kup strength of 80 N,
Q.5 Q.6	block. Assume g=9. (A) The block exerts (B) The block exert (C) The block exert (D) The block has ar If the strings in inext block in terms of v a	.8m/s ² . s a force of 10N on the table is a force of 19.8N on the table ts a force of 9.8N on the tabl n upward acceleration. tensible, determine the veloc	ble le sity u of each where the state of the	I force of 10N on the
Q.7	trajectories accordin(a) time of flight(b) initial vertical vertical vertical	ng to elocity component I velocity component	cked footballs. Ignoring air re	esistance, order the
Q.8	Find the tension T nee	eded to hold the cart in equili	brium, if there is no friction.	T 30°
Q.9 (a) (b)	seconds starts acting Find the time at whic The height of the blo	g on it at $t = 0$. the normal reaction acting lock from ground at $t = 10$ sec	•	where t is the time in $\sqrt{60^\circ 60^\circ}$
Q.10	two cords A and B. D	led from the ceiling of an acceleration \mathbf{a} betermine the acceleration \mathbf{a} \mathbf{a} in A to be twice that in B.	elerating carriage by means of of the carriage which	BOA -

	Target IIT JEE 2007 SS : XI (P, Q, R, S) DATE : 22-23/06/2		Practice Problems Min. DPP. NO23
$\frac{0.1}{0.1}$	The acceleration of the blocks (A) and (B)		
	strings are massless)		
	(A) $\frac{2g}{7}$ downward, $\frac{g}{7}$ upward	(B) $\frac{g}{3}$ downward, $\frac{g}{3}$ u	ipward
	, ,	3 3	M
	(C) $\frac{10g}{13}$ downward, $\frac{5g}{13}$ upward	(D) none of these'	↓ 4 kg B 5 kg
Q.2	From the fixed pulley, masses 2 kg, 1 kg a	nd 3 kg are suspended as show	wn in
	the figure. Find the extension in the spring i	f k = 100 N/m. (Neglect oscilla	tions
	due to spring)		2kg
	(Å) 0.1 m	(B) 0.2 m	148
	(C) 0.3 m	(D) 0	Allen k
Q.3	In the fig. at the free end of the light string	a force F is annied to keep th	e suspended
×	mass of 18 kg at rest. Assuming pulley is light		
	system is:	at their the force exerted by the	(A)
	(A) 200 N		IM
	(B) 120 N		ĔΩ
	(C) 180 N		·¥
	(_)_4		18 kg
0.4	A 50 kg person stand on a 25 kg platform. H	a an Ila an tha nama a biah in atta	abad had
Q.4	to the platform via the frictionless pulleys a		
	moves upwards at a steady rate if the force w		
	(A) 500 N (B) 250 N		D) None \square
	(H) 500 H (B) 250 H	(0) 25 11 (1	
Q.5	In the figure shown man is balanced by coun	ter weight of same mass. He sta	rts to climb the uniquium
	rope with an accelerator of 2 m/s2 w.r.t. rope. T	he time after which he reaches th	e pulley will be 🙀 🕕
	(A) $\sqrt{10}$ sec	(B) $2\sqrt{5}$ sec	10m
	(C) infinity	(D) None of these	
		(-)	20 30kg
Q.6	A particle is projected at an angle α to the ho		
	inclined plane. It moves in the vertical plan	ne containing the line of greate	st slope, which is inclined at
	(1)		
	$\tan^{-1}\left(\frac{1}{2}\right)$ to the horizontal.		
	(a) Find α if the particle strikes the inclined	nlane at right angles	
	(b) If $\alpha = \tan^{-1}(2)$ at what angle to the horiz		st before the impact.
			· · · ·
Q.7	A lift goes up with velocity 10 m/s. A pulley		
	this pulley other two pulleys P_1 and P_2 are a		
	30m/s. A moves up with velocity 10m/s. D i		ocity
	10m/s at same instant of time. The velocity		$ \stackrel{r_1}{\bigcirc} \stackrel{r_2}{\bigcirc} $
	at that instant. Assume that all velocit	ties are relative to the ground.	

2 - AN ² -

8 A 1kg block 'B' rests as shown on a bracket 'A' of same mass. Constant forces $F_1 = 20N$ and $F_2 = 8N$ start to act at time t = 0 when the distance of block B from pulley is 50cm. Time when block B reaches the pulley is _____.

Q.9 Find tension in the string and acceleration of all blocks with respect to ground. Assume friction absent and string and pulley light.

- Q.10 To point the side of a building, painter normally hoists himself up by pulling on the rope A as in figure. The painter and platform together weigh 200N. The rope B can withstand 300N. Find
- (a) the maximum acceleration of the painter.
- (b) tension in rope A
 - (i) when painter is at rest
 - (ii) when painter moves up with an acceleration 2 m/s^2 .

Target IIT JEE 2007

BANSAL CLASSES

PHYSICS Daily Practice Problems

CLA	SS : XI (P, Q, R, S)	DATE : 24-25/06/20	05 MAX.7	TIME : 60 Min.	DPP. NO24			
Q.1		own in figure, there is f						
	masses m and 2m which are in contact. The ground is smooth. The mass of							
		s m. The block of mass			m			
		ect to block of mass 2 m.		ion between				
	m and 2m is (pulleys a	and strings are light and	frictionless):		2m			
	(A) $\frac{\text{mg}}{2}$	(B) $\frac{\text{mg}}{\sqrt{2}}$	(C) $\frac{\text{mg}}{4}$	(D) $\frac{mg}{mg} = 77$	smooth ground			
	$(A) \frac{1}{2}$	$\sqrt{2}$	4	(D) 3				
Q.2).6 kg slides down the s			P			
		can move freely on a sn		surface. The	В			
		PR to the horizontal is	45°. Then:					
	(A) the acceleration of			C	45° R			
		onent of t e acce erat of						
		mponent of the accelera	tion of B is 17 g	/40				
	(D) none of these							
					. <u>щици</u>			
					P_1			
Q.3		eys shown what should	be the value of n	n ₁ such that				
	100greai_s at r_s	-	(7) 100	(D) 200	$P_{2}(1)^{-1}$			
	(A) 180gm	(B) 160gm	(C) 100gm	(D) 200g	200gm			
					100gm			
0.4	A hop us enhorized hell	is constraine ⁴ in a fra-	a ag in firmura T	inalina autora	·			
Q.4		num acceleration with v						
	causing the ball to leav		villen die frame e	an move without	∇			
	A) $g/2$	(B) g 3	(C) g/ 3	(D) g/√2	<u>30° X</u>			
	n) g2	(D) g 5	(C) g/ 3	(D) g/v2				
Q.5	tro ev sacce erat n	ng lown an incline o an	o'eAw't					
X		hich of the following is		• · · · · · · · · · · · · · · · · · · ·				
1.1		y the string with vertica						
	(A) $\alpha = \theta$		$x = 0^0$	· · · · ·	4			
	(C) Tension in the stri		ension in me sa	ing, 1 mg sec θ	<u>X</u> 0			
				,				
0.0								

- Q.6 A fixed rifle is aimed at a point on a vertical wall 1440 m horizontally away and 1080 m high above the point of the rifle end. A bullet is fired at 150 m/s towards the target. 10 sec after firing the gravitational field vanishes, find where the bullet will hit the vertical wall. [$g = 10 \text{ m/s}^2$]
- Q.7 Find the acceleration of wedge of mass 4m placed on smooth horizontal surface as two blocks of masses m and 2m slide over it.

٠.

4m m 45° 45°

- pu'ey sys em is se up as in `igure. T' e mova' e pu'ey ', B an `` are eac' o `1 kg. Pulley D and E are fixed. All pulleys are smooth and string is light and inextensible. Find the acceleration of pulley C and the tension in the string.
 - tensible. Find

- Q.9 If the system is released from rest find
- (a) total kinetic energy of he bloc's af $er = 2 \sec of mo ion$.
- (v) distance word by the 1 ke black during this time. (all surfaces and pulleys are frictionless)
- Q.10 In the pulley system shown here pulleys are ideal and string is inextensible. Mass of all the blocks is M.
- (a) Draw the free body diagram for all the blocks.
- (b) Find the constraint relationship between acceleration of the masses.
- (c Find the acceleration of all the three masses and tension in the string.

PHYSICS BANSAL CLASSES Target IIT JEE 2007 **Daily Practice Problems DPP. NO.-26** CLASS : XI (P, Q, R, S) DATE : 27-28/06/2005 Max. Marks: 60 Time : Exact 2 hour. PRACTICE TEST [Take : $g = 10 \text{ m/s}^2$] One end of a string is connecte to top o t e xe ver car ng as s own in e Q.1 figure. The other end is connected to a bead free to slide smoothly on the ring. [3] If the string is taut in the shown configuration, find tension in it. A block of weight 5 N is pushed against a vertical wall by a force 12 N. The coefficient Q.2 of friction between the wall and block is 0.6. Find the magnitude of the force exerted by [3] the wall on the block. O.3 A particle is thrown upwards from ground. It experiences a constant resistance force which can produce retardation 2 m/s². Find the ratio of time of ascent to the time of descent. [3] The equation of a projectile is $y = \sqrt{3} x - \frac{gx^2}{2}$. The angle of projectile is _____ and initial velocity **O.4** [3] is 0.5 Find the minimum value of mass m required to lift the load M shown in figure. Treat pulley as light and string inextensible. [3] Q.6 The velocities of A and B are marked in the figure. Find the velocity of block C. (assume that the pulleys are ideal and string inextensible) [3] 1 km/hr B С Q.7 A river is flowing with a speed of 1 km/hr. A swimmer wants to go to point 'C' starting from 'A'. He swims with a speed of 5 km/hr, at an angle θ w.r.t. the river. If AB = BC = 400 m. Then find the value of θ . [4] A block is given certain upward velocity along the incline of elevation a. The time of ascent to upper Q.8 point was found to be half the time of descent to initial point. Find the co-efficient of friction between block and incline. [4] 0.9 If the coefficient of friction at all surfaces is 0.4, then find the force required to pull out the 6 kg block with an acceleration of 1.5 m/s^2 . [4] Q.10 Two Particles instantaneously at A & B respectively 4.5 meters apart are moving with uniform velocities as shown in the figure. The former towards B at 1.5 m/ sec and the latter perpendicular to AB at 1.125 m/sec. Find the instant when they are nearest. [4]

- Q.11 Two particles A & B projected along different directions from the same point P on the ground with the same speed of 70 m/s in the same vertical plane. They hit the ground at the same point Q such that PQ = 480 m. Then : (Use g = 9.8 m/s², Sin⁻¹ 0.96 = 74°, Sin⁻¹ 0.6 = 37°)
- (a) find the ratio of their times of flights.
- (b) find the ratio of their maximum heights.
- (c) find the ratio of their minimum speeds during flight.
- Q.12 The velocity time graph of a particle moving along a straight line is shown in fig.
- (i) If the particle starts its motion from x = -4 m, then draw the a t and x t graphs.
- (ii) Find the position of the particle at t = 3 s.
- Q.13 A stone thrown with the velocity $v_0 = 12 \text{ m/s}$ at an angle $\alpha = 45^{\circ}$ to the horizontal, dropped to the ground at a distance s from the point where it was thrown. From what height h should the stone be thrown in a horizontal direction with the same initial velocity v_0 for it to fall at the same spot? [5]
- Q.14 Block A of mass m/2 is connected to one end of light rope which passes over a pulley as shown in the Fig. Man of mass m climbs the other end of rope with a relative acceleration of g/6 with respect to rope find acceleration of block A and tension in the rope. [5]
- Q.15 A particle moving with uniform acceleration along a straight line passes three successive points A, B & C where the distances AB : BC is 3 : 5 & the time taken from A to B is 40 sec. If the velocities at A & C are 5 m/s & 15 m/s respectively. Find
- (a) the velocity of the particle at B
- (b) acceleration of the particle
- (c) time taken to cover B to C
- (d) total distance from A to C.

[6]

[5]

[5]

 $\vec{\tau}^n$

PHYSICS

Daily Practice Problems

	Target IIT JEE 2007 SS : XI (P, Q, R, S) DATE : 27-28/06/2005	MAX.TIME : 60 Min.	DPP. NO25
Q.1	T e system s own is just on t e verge of slippin fri. i.nn.hk.ndblepis: (A) 0.5 (I	g. ~ e co-e ~ icien of s atic 3) 0.95 5) 0.35	W'=40N 307
Q.2	The velocity time graph of the fig. shows the mot mass 1 kg which is given an initial push $t=0$, alon (A) The coefficient of friction between the block (B) The coefficient of friction between 'e' locks (C) If the table was half of its present roughness, the block to complete the journey is 4 sec. (D) If the table was half of its present roughness, the sec.	g a horizontal table. s and the table is 0.1 and t' e ta' le is 0.2 the time taken by $(0,0)$	4 :(60)
Q.3	A bead of mass 'm' can slide on a thin vertical rod, v rod is translated horizontally with a constant accele see equal horizontal and vertical components of th (A) $g/(1+\mu)$ (B) $g/(1-\mu)$ (O	ration 'a'. For what value of 'a'	will an Earth observer
Q.4	The force required just to move a body up an incli- the body from sliding down. If μ is the coefficient of (A) $\theta = \tan^{-1}(3\mu)$ (B) $\theta = \tan^{-1}(2\mu)$ (C		ne to the horizontal is
Q.5			m H
Q.6	The rear side of a truck is open and a box of mass open end $\mu = 0.15$ and $g = 10$ m/sec ² . The truck s straight road. The box will fall off the truck when the (A) 4 metres (B) 8 metres (C	tarts from rest with an accelera	ation of 2m/sec ² on a tarting point equal to:
Q.7	With what minimum acceleration mass M must be that m remains stick to it as shown. The coefficient (A) μg (B) $\frac{g}{\mu}$ (C		sμ.
Q.8	A l g oc s e ng pus e against a way y a or The coefficient of friction is 0.25. The magnitude of	rce F = 75 N as shown nt e Figure 100 m m m m m m m m m m m m m m m m m m	gure.
Q.9	If the tension in the string in figure shown is 16 N each block is 0.5 m/s^2 . Find the friction coefficient the blocks, where wedge is fixed.		30°
Q.10 (i) (ii)	A block of mass $m = 10$ kg is to be pulled on a hori: The block should be pulled at an angle $\theta =$ the magnitude of the force F is equal to	contal rough surface with the m	inimum force. F

	SS : XI (P, Q, R, S)	DATE : 04-05/0	07/2005 MAX.TIME :	: 60 Min. DPP. NO27
Q.1	A boat is moving towards east with velocity 4 m/s with respect to still water and river is flowing towards north with velocity 2 m/s and the wind is blowing towards north with velocity 6 m/s. The direction of the flag blown over by the wind hoisted on the boat is: (A) north-west (B) south-cast (C) tan ⁻¹ (1/2) with east (D) north			
Q.2	Two blocks A(1kg) and B(3kg) rest over the other on a smooth horizontal plane (A over B). The coeffici of static and dynamic friction between A and B is the same and equal to 0.75. The maximum horizon force in newton that can be applied to A in order that both A and B do not have relative motion is : $[g = 9.8 \text{ m/s}^2]$			to 0.75. The maximum horizontal
	(A) 19.6	(B) 14.7	(C) 9.8	(D) 4 .9
Q.3	In the figure shown, speed with which the		ck is v to the right. The up at $\theta = 60^{\circ}$ is :	
	(A) v (B)	2v/3 (C) $3v/3$	/4 (D) none	
Q.4	$\mu_s = 0.75 \& \text{ coefficie}$	ent of kinetic friction angle $\theta = \tan^{-1}(\mu_s)$.	with coefficient of static frictic $n \mu_k = 0.5$. The plate is leanin . If the plate is further tilted .e (C) 2.5 m/s ²	
Q.5		from rest from the to	op and just comes to rest at the	and the lower portion is rough. A e foot. If the ratio of smooth length
Q.6	cords. The block B h	as a mass of 10 kg.	lock A. Neglect the mass of the transformed function of the coefficient of kinetic friends $= 0.1.$ (Take $g = 10 \text{ m/s}^2$)	
	The 110 kg block is resting on the horizontal surface when the force F is applied to it for 7 seconds. The variation of F with time is shown. Calculate the maximum velocit, reached b, the b c n t e t during which the block is in motion. The coefficient of static and kinetic $(100 \text{ km})^{10} \text{ f}^{10} \text{ km}^{10} \text{ km}^{10} \text{ f}^{10} \text{ km}^{10} \text{ km}^{10} \text{ f}^{10} \text{ km}^{10} k$			
Q.7	applied to it for 7 se Calculate the maximu t during which the blo	um velocit_ reached ck is in motion. The	lb theb cnte	
Q.7 Q.8	applied to it for 7 se Calculate the maximum t during which the blo fricti n are b h 0.50 A block is to be raise	um velocit_ reached ck is in motion. The). d a height h from re	b the b c n t e coefficient of static and kinet est to rest. If the rope used to l	ic 10 kg F 40
	applied to it for 7 sc Calculate the maximut t during which the blo frictinare b h 0.50 A block is to be raise tension of $\lambda mg (\lambda > 1$ the bl^k. Calculate the force P just to slide under the	um velocit, reached ck is in motion. The), d a height h from re), where m is the ma required to cause the block of weight W	b the b c n t e coefficient of static and kinet est to rest. If the rope used to l	ic $(10 \text{ kg}) \rightarrow f^{40}$ if the block can bear a maximum inimum time in which we can raise N

	BANSAL CLASSES	PHYSICS	
	Target IIT JEE 2007	Daily Practice Problems	
		AAX.TIME : 60 Min. DPP. NO28	
Q.1	A plank of mass 2kg and length 1 m is placed on a horize on top of the plank, at its right extreme end. The coeffic and that between plank and block is 0.2. If a horizonta right, the time after which the block will fall off the plan (A) (2/3) s (B) 1.5 s (C) 0.7	cient of friction between plank and floor is 0.5 al force = 30 N starts acting on the plank to the kk is $(g = 10 \text{ m/s}^2)$ 75 s (D) (4/3) s	
Q.2		brees of mass1 kg and $1 - 1 - 0.1$ e following is correct? $7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 $	
Q.3	Block A is placed on cart B as shown id figure. If the coef 20 kg block A and 100 kg cart B are both essentially th (A) The blocks A and B will have a common accelerati (B) Acceleration of cart B is 0.98 m/s^2 if $P=40 \text{ N}$ (C) Acceleration of cart B is greater than that of A if $P=$ (D) The common acceleration of both the blocks is 0.6	the same value of 0.5 [g = 10 m/s ²] tion if P = 60 N = 60 N y = 0	
Q.4	A 40kg slab rests on a frictionless floor. A 10 kg block as shown in the Fig. The coefficient of static friction betw is 0.60 and coefficient of kinetic friction is 0.40. The 10 by a horizontal force of 100N. The resulting acceleratio (A) 1 m/s ² (B) 1.47 m/s ² (C) 1.5	ween the block and slab Ng block is acted upon n of slab will be 2 m/s^2 D) 6.1 m/s ²	
Q.5	The small marble is projected with a velocity of 10 m/s the horizontal y-direction on the smooth inclined plane. O v of its velocit_after 2 seconds. Take $_{-}$ =10 m/s ² .		
Q.6	Particles A and B of mass 5 kg and 3 kg are connected by a light inextensible string passing under a smooth light pulley C which carries a particle D of mass 4 kg. A and B rest on a horizontal rough surfaces as shown in the diagram. The coefficient of friction is same for both A and B and is just sufficient to prevent A, but not B, from moving. Find the coefficient of friction.		
Q.7	O is a point at the bottom of a rough plane inclined at an angle α to the horizontal. Up to a vertical height h above O the coefficient of friction is 2tan α , above this height it is (tan α)/2. A particle is projected up the plane with a velocity V. Find the minimum value of V so that the particle returns to O.		
Q.8	A force F=20N is applied to a block (at rest) as shown in fig. After the block has moved a distance of 8m to the right, the direction of horizontal comopnent of the force F is reversed. Find the velocity with which block arrives at its starting point.		
Q.9	Find the acceleration of the blocks and magnitude & directi force between block A and table, if block A is pulled to left with a force of 50N.		
0.10	In the figure $M = 2m$ The coefficient of friction at all s	surfaces is u Find the	

Q.10 In the figure M = 2m. The coefficient of friction at all surfaces is μ . Find the acceleration of bigger block. String is light and inextensible and all the pulleys are smooth.

M

Ann

	Target IIT JEE	and the second		aily Practice Problems DPP. NO29
	S : XI (P, Q, R, S) Exact 1 hour.	DAI	E : 08-09/07/2005	Max. Marks : 60
ime.	Exact 1 nout.	ном	<u>1e test</u>	THE AND THE MOTOR
Q.1	A block rests on a ror static friction betwee of the block (in kg) i (A) 2.0	ugh inclined plane ma n the block and the pla	king an angle of 30° wit	th the horizontal. The coefficient of force on the block is 10 N, the mass (D) 2.5
Q.2	A swimmer swims in speed = 4 km/hr at po direction. Another po	bint A and proceeds to int B is located directl m which he walks the	= 5 km/hr. He enters a 2 swim at an angle of 127 y across A on the other si	200 m wide river, having river flow 7° (sin 37° = 0.6) with the river flow ide. The swimmer lands on the other d = 3 km/hr. The total time in which (D) None
Q.3	Two bullets are fired (A) 1 : 1	at angles θ and $90 - \theta$ (B) tan θ : 1	, the ratio of their time o (C) 1: tanθ	f flights is : (D) $\tan^2\theta$: 1
Q.4		sly from the same pla	ce in the same direction	n uniform acceleration 10m/s^2 , star . They will be at a distance of 125m (D) $10(\sqrt{2} + 1) \text{sec}$.
Q.5	F = Mg. The force is	acting at one end of t etic friction betwe	he rope in the same dire	floor by a constant horizontal force ection as the length of the rope. The 1/2. Then, the tension at the (D) Mg / 2
Q.6	v=5m/s relative to gro	ound in a direction opp	posite to the direction of	onstant velocity receives a velocity motion of conveyer. After t=4sec the 2 find the velocity of the belt.
Q.7	maximum horizontal	force that can be applie	other on a smooth horizo ed to the upper block A so cient of friction betweer	that A and B $F \rightarrow 3 \text{ Kg} \text{ A}$
Q.8	Find 'a'.	ا بر	= 0.2	
Q.9	coefficient of friction	between A and B is 0	a ock B of mass 8kg whi	ch rests on a horizontal floor. The and floor is 0.5. When a horizonta ween A and B is
2 10	m			

PHYSICS

 Daily Practice Problems

 AX.TIME : 60 Min.
 DPP. NO,-30

CLASS : XI (P, Q, R, S) DATE : 11-12/07/2005 MAX.TIME : 60 Min.

Q.1 A block A (5 kg) rests over another block B (3 kg) placed over a smooth horizontal surface. There is friction between A and B. A horizontal force F_1 gradually increasing from zero to a maximum is applied to A so that the blocks move together without relative motion. Instead of this another horizontal force F_2 , gradually increaseing from zero to a maximum is applied to B so that the blocks move together without relative motion. Then $F_1 = \frac{1}{25 \text{ kg}}$

$(A) F_1(max) = F_2(max)$	$(B) F_1(max) > F_2(max)$	A 5 kg	$F_2 \rightarrow B 3 \text{ kg}$
$(C) F_1(max) < F_2(max)$	(D) $F_1(max) : F_2(max) = 5 : 3$	thinnint.	minnin :

Q.2 A block of mass 10 kg is placed on the top of a block of mass 20 kg, resting on a table. A force F in the horizontal direction is applied to the lower mass such that they both move together to the right with acceleration a. The coefficients of static and kinetic friction between the blocks are 0.4 and 0.2 respectively. The upper block does not slide relative to the lower one if

The upper store as as more strate		IONS
(A) $a \le 0.4 g$	(B) $a \le 0.2 g$	F 20kg
(C) $a \ge 0.4 g$	(D) $a \ge 0.2 g$	mitaniinminii

- Q.3 Two boats were going down stream with different velocities. When one overtook the other a plastic ball was dropped from one of the boats. Some time later both boats turned back simultaneously & went at the same speeds as before (relative to the water) towards the spot where the ball had been dropped. Which boat will reach the ball first?
 - (A) the boat which has greater velocity (relative to water)
 - (B) the boat which has lesser velocity (relative to water)
 - (C) both will reach the ball simultaneously

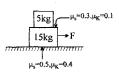
(D) cannot be decided unless we know the actual values of the velocities and the time after which they turned around.

(C) $\frac{2}{\sqrt{3}}$

Q.4 A particle is projected with a speed V from a point O making an angle of 30° with the vertical. At the same instant, a second particle is thrown vertically upward from a point A with speed v. The two particle reach H, the highest point on the parabolic path of the first particle simultaneously, then the ratio V/v

Q.5 Two blocks A and B of mass 1 kg and 2 kg respectively are placed over a smooth o z.nta.s.r.ace as s... wn n_g.re.__e.__fri.i...block at an angle is $\mu = 1/2$. An external force of magnitude F is applied to the top block at an angle $\alpha = 30^{\circ}$ below the horizontal.

 m_1


a=37°

- () I h ve ge , fi e l.t.nit...s...
- (b) Find the maximum values of F so that both the blocks move together with same acceleration. $(g=10 \text{ m/s}^2)$
- Q.6 Find acceleration of upper block it static & kinetic friction coefficients have same value.
- Q.7 A block of mass m_2 lies on a plane inclined at an angle $\alpha = 37^{\circ}$ to the horizontal. Another block of mass m_1 is connected to the block m_2 by a thread slung over a pulley. Coefficient of friction between m_2 and the plane is 0.5. Calculate the acceleration of the blocks and the frictional force on m_2 in the following cases. (a) $m_1 = 2kg$, $m_2 = 5kg$ (b) $m_1 = 6kg$, $m_2 = 5kg$

 $\mu = 0.3 \qquad 1 \text{ kg}$

(D) $\frac{\sqrt{3}}{2}$

- Q.8 A particle inside a hollow sphere of radius r, having a coefficient of friction $(1/\sqrt{3})$ can rest up to a height of _____.
- Q.9 If the lower block is held fixed and force is applied to P minimum force required to slide P on Q is 12N. Now if Q is free to move on frictionless surface and force is applied to Q then the minimum force F required to slide P on Q is ____.
- Q.10(a) In the figure shown a constant force F is applied on lower block, just large enough to make this block on the verge of sliding out from between the upper block and the table. Determine the force F at this instant and common acceleration of each block. Take $g = 10 \text{ m/s}^2$.

P 4Kg

5 Kg

(b) It instead of a constant force F we apply a time varying force F = (20t)Newton. Plot a graph between acceleration of both the blocks and time.

					PHYSICS Daily Practice Problems		
-	Target IIT JEE SS : XI (P, Q, R, S)	2007 DATE : 13-14/	06/2005	Dai MAX.TIME :		DPP. NO31	
Q.1	The system shown in (A) $a_1 = 0.35 \text{ m/s}^2$; (C) $a_1 = 2 \text{ m/s}^2$; a_2	a figure is released $a_2 = 4.5 \text{ m/s}^2$	(B) $a_1 = 3$	m/s^2 ; $a_2 = 0.5 m$ 5 m/s ² ; $a_2 = 3 m$	/s ² 101	$\frac{\text{Nt}}{\text{Nt}} = 2\text{kg} \mu=0.2$	
Q.2	The coefficient of fric Skg block and ground (A) Minimum force (B) When force is 41 (C) Maximum accel (D) Slipping between	d is 0.1 respectively needed to cause sy N static friction at eration of 4kg bloc	y. Choose the ystem to mo all surfaces ck is 2m/s ²	e correct statement ve is 17N is 4N to keep syst	^s Q	$ \begin{array}{c} 4 \text{ kg} \\ 5 \text{ kg} \\ \hline $	
Q.3	The maximum value shown in the figure is (A) 2			(D) 3.5	M = 10	$\mu = 0.1$	
Q.4	Two particles are speed = 20 cm/s. The moment, the two pa Subsequently, the sh	e angle between th rticles are located	e two lines i l at distance	s 60°, and their in s 3m and 4m from	tersection poi	int is O. At a certai	
	(A) 50 cm	(B) $40\sqrt{2}$ cm	(C	$50\sqrt{2}$ cm	(D) 50 √3	cm	
Q.5	Two blocks A and B figure. A time varyin figure. Here t is in sec and B on y-axis and t and the horizontal su	g horizontal force cond and F is in ne time on x-axis. Co	F = 2t is app wton. Draw efficient of	lied on the upper t a graph showing a friction between A	block as shown accelerations of Λ and B is $\mu =$	nin of A	
Q.6 (a)	A block of mass m = If $F_2 = 20$ N and $\theta = 6$						
	so that the block rem	ains at rest. (Take	$:\mu_{s}=1/\sqrt{3}$ at	$d\mu_{k} = 1/3, g = 10m$	/s ²)	annan ann an ann an an an an an an an an	
(b)	Calculate the magnit	ude and direction	of frictional	force on the block	$ifF_1 = 12 N.$		
Q.7	Find the acceleration Friction coefficient b			Ŷ			
Q.8	A man of mass 50 kg resting on a fric 10 kg, its length is 30 the plank is 0.2. Find other end starting fro	tionless surfact 0 m and the coeffi- the shortest time i	e. The m cient of frict n which the	ass of the pla ion between the m man can reach the	ank is l ana and	$ \begin{array}{c} \mu = 0.2 \\ \mu = 0.2 \\ \mu = 0.2 \\ \mu = 0 \end{array} $	
Q.9	A block of weight w increased upto 90°. I normal force to the w the weight. Indicate th	Draw two graphs, b eight as a function	both with θ a of θ . In the	long the x-axis. I second graph, sho	gle of of the p n one graph sh w the ratio of t	lank θ is gradually now the ratio of the	
Q.10	Two masses A and B, of a light rope which mass. Find the accele The pulley P ₂ is vertice	passes around a ho eration of each ma	orizontal mo	vable pulley of ne	gligible		

CLAS	S : XI (P, Q, R, S)	DATE	: 15-16/07/2005	DPP. NO32
Time	: Exact 1 hour.			Max. Marks : 60
			E TEST	
Q.1	A body is thrown with the two positions of b (A) 1.15 sec.	velocity 20 m/s at an a ody where velocity of t (B) 0.95 sec.	ngle of 60° with the horizo body makes an angle of 30 (C) 1 sec.	ontal. Find the time gap between)° with horizontal (D) 1.5 sec.
Q.2	vertical. If the rain dro	ps are actually falling v	ertically downwards, the	
	(A) 5	(B) 5√3	(C) $5\sqrt{2}$	(D) 4
Q.3	river, capable of swin	n west to east at a spee uming at 10 metres per Id swim in a direction (B) 30° east of north	minute in still water, wan	A man on the south bank of th ts to swim across the river in th (D) 60° east of north
Q.4			nentum P at such an angle kinetic energy in its path v	e that its maximum height (H) i will be
	(A) $\frac{p^2}{8m}$	(B) $\frac{p^2}{4m}$	(C) $\frac{3p^2}{4m}$	(D) $\frac{p^2}{m}$
Q.5)° to the horizontal, a ball is lane. Its range on the incli	s thrown upwards with a velocit ined plane is :
	(A) 10 m	(B) $5\sqrt{3}$ m	(C) 0 m	(D) $10\sqrt{3}$ m
Q.6	(A) The change in the(B) The change in the(C) The magnitude of	h a speed v changes dir magnitude of its veloci magnitude of its veloci the change in velocity the change in its veloc	ty is 2vsin(θ/2). is 2vsin(θ/2)	iout change in speed.
Q.7	which of the following(A) Displacement of t(B) Distance covered	statement is correct?		r its motion during third second
Q.8	force \vec{F} is applied that		t. The time constant t _o at v	tion $\mu = 0.5$: At t = 0 a horizonta which motion starts and distanc
Q.9	Find the acceleration		n acceleration $a = 3 m/s^2$. of masses 10 kg and 5 kg nd friction is absent	
Q.10	A and B each weight 1	70 kg and $\mu_A = 0.2$ and	th a bar of negligible weig $\mu_B = 0.4$, where μ_A and μ_B and an and the bodies respective.	Bare Bare

BANSAL CLASSES Target IIT JEE 2007

Daily Practice Problems DPP. NO.-33

B

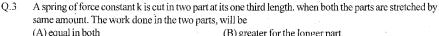
в

Final position

10kg

37

≁10 m/s


А

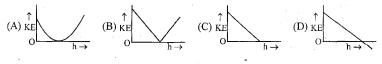
A 10 c

PHYSICS

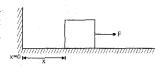
A block 'A' of mass 45 kg is placed on a block 'B' of mass 123 kg. Now block 'B' is displaced by external agent by 50 cm horizontally towards right. During the same time block 'A' just reaches to the left end of block B. Initial & final position Initial position are shown in figure. Refer to the figure & find the workdone by frictional force on block A in ground frame during above time. (A) - 18 Nm(B) 18 Nm (C) 36 Nm (D) - 36 NmA block of mass 10 kg is release ' on a fixe ' we 'ge insi 'c a car' which is moved with constant velocity 10 m/s towards right. Take initial velocity of block with respect to cart zero. Then work done by normal reaction on $c_{1} c_{2} c_{2} n_{1} m g_{2} un_{2} f_{2} m e_{1} ill_{1} e_{1} (g = 1 m s^{2})$ (B) 960 J (C) 1200 J (D) none of these (A) zero

DATE: 18-19/07/2005

(C) greater for the shorter part


CLASS: XI(P, O, R, S)

Q.1


Q.2

0.4

- (B) greater for the longer part (D) data insufficient.
- A ball is projected vertically up with an initial velocity. Which of the following graphs represents the KE of the ball?

Q.5 The block of mass 'm' initially at x = 0 is acted upon by a horizontal force F = a - bx as shown in the figure. The coefficient of friction between the surfaces of contact is µ. The net work done on the block is zero if the block travels a distance of

r hun

- Q.6
- T ee evator E as a mass of 3000 kg when fully loaded and is connected as shown to a counterweight W of mass 1000 kg. Determine the power in kilowatts delivered by the motor
- when the elevator is moving down at a constant speed of 3 m/s, (a)

(b) when it has an upward velocity of 3 m/s and a deceleration of 0.5 m/s^2 . Q.7 A block of mass 'm' is attached to one end of a massless spring of spring constant 'k'. The other end of the spring is fixed to a wall. The block can move on a horizontal rough surface. The coefficient of friction between the block and the

 \overline{m}

surface is μ . The block is released when the spring has a compression of $\frac{2\mu mg}{k}$. (a) Find the initial acceleration of block. (b) Find the maximum speed of the block.

- Q.8 Power applied to a particle varies with time as P=2t+1. If the body of mass 1 kg is initially at rest. Find its kinetic energy at t=3 sec.
- Q.9 A spring constant K = 100 N/m is initially in the relaxed state. It undergoes two steps slowly under application of an external force.

Step I: Stretched by 10cm from initial position

 Step II : Then compressed through a distance of 25cm (from position attained after step l.)

 Find: (a) work done by spring force in step I
 (b) work done by external force in step II

(a) What is the K.E. of the body at x = 3.0 m?

(b) At what value of x will the body have a K.E. of 8 J?

(c) What is the maximum K.E. attained by the body between x = 0 to x = 5 meter?

CL	Target IIT JEE LSS : XI (P, Q, R, S)			Daily Practi	
$\frac{CLA}{0.1}$			ATE: 20-21/07/2005 locity V on the block co	nnastad tu tha	DPP. NO
Q.1	spring of force consta becomes 4K, the ma	unt K as shown in the	fig. When the force con	istant of spring	K M
	(A) $\frac{V}{4}$	(B) 2V	(C) $\frac{V}{2}$	(D) V	
Q.2	A small sphere of ma terminal velocity and (A) greater than the w (B) less than the wor (C) equal to weight n (D) greater than weig	continues to fall. The work done during se k done during secor		it has fallen throug friction during fir	h 100 m it attai st 100 m fall is
Q.3	friction between A ar of A, B and C are 3	nd B is 0.2, B and C kg, 2 kg and 1 kg 1	own in the figure. The is 0.1, C and ground is respectively. A is giver in in contact i.e. lies as	0.0. The mass a horizontal	
	total work done by fr (A) – 75 J			(D) – 100 J 7	
Q.4			rizontal surface as shown the time interval t = 0 t (B) + 15 J (D) data insuffici	to $t = 5$ sec.	2 kg 2 kg μ = 0.5
Q.5	An object is attracted force F_x when the object	towards the origin v ject moves in the x o	with a force given by $F_x = \frac{1}{2}$ direction from x_1 to x_2 (2)	= -k/x ² Calculate t x ₂ >x ₁).	he work done b
Q.6	Starting at rest, a 5kg in fig. Find the total		by only one force as indi rce.	icated Fo	20 rce(N) 0 1 2 -10 Time
Q.7		e for following disp	One of these forces is placements (a) $(0,4)$ to (2 placements (b) $y=2x$.		
Q.8	block is lying on a sm unstretched. Natural	ooth horizontal table length of spring is that block moves	ss m and a fixed horizo and initially the spring $3l_0$. A constant horizon in the direction of force. ontact with the table.	is vertical and ntal force F is	

Q.9 Two blocks A and B of mass 1 kg and 2kg respectively are connected by a string, passing over a light frictionless pulley. Both the blocks are resting on a horizontal floor and the pulley is held such that string remains just taut. At moment t=0, a force F=20t newton starts acting on the pulley along vertically upward direction, as in Fig. Calculate (a) velocity of A when B loses contact with the floor (b) height raised by the pulley upto that instant and (c) work done by the force F up to that instant.

† F = 20 t

- Q.10 A block of mass 2 kg kept 1 m away from a spring is projected with velocity of 2 m/s towards the spring.
- (a) What is the maximum compression in the spring?
- (b) At what distance from the spring will the block finally come to rest.

2 m/s k=360 N/m ഞ്ഞ 2kg <u>∝0 1</u>

PHYSICS

	Target IIT JEE 2007 S : XI (P, Q, R, S) DATE : 22-23/4	07/2005 TIM	Daily Practic	DPP. NO35
		E TEST		
Q.1	A particle is moved from $(0, 0)$ to (a, a) u	nder a force \vec{E} -	$(3\hat{i} + 4\hat{j})$ from two	۷
-	paths. Path 1 is OP and path 2 is OQP. Find	the ratio $\frac{W_1}{W_2}$ th	e work done by this	p (a, a)
	force in these two paths.	-	[3]	0 45° Q ×X
Q.2	System shown in the figure is released from spring is massless and friction is absent ev 2 kg block leaves the contact with ground. (Take force constant of spring $k = 40$ N/m	erywhere. Find s		nen
Q.3	A motor drives a body along a straight line v by the motor must varying with time t	vith a constant for	rce. Draw the graph of	power p developed [3]
Q.4	The force acting on a body moving along x a particle as shown in the fig. State the nature			
Q.5	A block of mass 1 kg is kept on smooth incli- up with a constant velocity of 5 m/s. Find the seen from ground) on the block is 10 sec.			1kg 37%
Q.6	A pulley block system is shown in figure. Find ti 5' g block wi'' move 'oge'' er. S a'ic fric ion or and 5 kg block is 0.8 and all other surfaces	befficien be ween	surfaces of 4 g	
Q.7	In the figure shown, an external force $F = 15$ horizontal is applied to the block. Find the d seconds. Initial velocity of the block is 10 m	isplacement of th	here and the here here here here	rizontal $F = 150 \text{ N}$ rizontal 10 kg 10 m/s
Q.8	A ring of mass m can slide over a smooth ve	rtical rod. The rin	g is connected to a	
	spring o force cons ant $K = \frac{4mg}{R}$ w ere	R 's t' e natural le	ngt oft e spring.	A1
	The other end of the spring is fixed to the gro the base of the rod. The mass is released at (a`calcula'e he wor one'y he spring.	und at a horizonta a height of 1.5R	l distance 2R from	A
~ ~	(b) calculate the velocity of the ring as it read A -lab - for even $(-10 km)$ is not in	-		[4]
Q.9	A slab of mass m_2 (= 10 kg) is resting on a second mass m_1 (= 1kg) on its top. The coef m_1 and m_2 is $\mu = 0.1$. A horizontal force of lower block at t = 0.	ficient of friction	between	F=15N
(a) (b)	calculate the time required by the smaller bl What is the distance moved by m_2 in this time		stance of 0.5 m on the	bigger block. [5]
Q.10	The velocity of a particle when it is at its greater	• •		
	maximum height. Find the angle of projection	n and the velocity	vector angle at half the	maximum height. [5]

slip.

PHYSICS

U	Target IIT JEE 2	007	Daily Pract	ice Problems
CLAS	SS : XI (P, Q, R, S)	DATE : 25-26/07/2005	TIME : 1 Hour	DPP. NO36
Q.1	A car is moving on circut $t=0$ it starts from rest. T be	lar path of radius 100m such t he radial acceleration of car at	that its speed is increasing a the instant it makes one cor	at the rate of 5m/s ² . At nplete round trip, will
Q.2		-y plane with the velocity $\vec{v} = 0$ d total acceleration are		
Q.3		al circular road of radius R, th t between the road and the ty		
	·			12 ^S
Q.4		horizontal plane with a consta t P moves along the wall at a constant hen $\theta = 45^{\circ}$ is m/sec	distance of 3m. The	θ 3m
2.5	A point traversed half a quantities averaged ove	ircle of radius R = 160cm duri r that time:	ng time interval $\tau = 10.0$ s. C	alculate the following
a)	average speed			
b) c)	magnitude of average ve magnitude of average ac	locity celeration if the point moved v	with constant tangential acc	eleration.
Q.6		ng a circular path of radius R in I acceleration are equal. If at t=		
	particle after time $t = \frac{1}{2^{2}}$	<u>t</u> V ₀		
2.7	its acceleration is at an a	a circular path of radius 4m. At a ggle of 37° from the direction to cord of the particle increasing de of the acceleration?	o the centre of the circle as s	
2.8	string breaks and the stor	a horizontal circle 2m above he flies off horizontally and stri on of the stone while in circula	kes the ground 10m horizon	
9.9	A stone is thrown horizon of the stone in 1 second	ntally with the velocity 15m/s. I after it begins to move.	Determine the tangential and	normal accelerations
0.10		e with a tangential acceleratio es 1 m/s ² , find the angle in de		

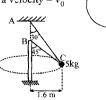
Target IIT JEE 2007

 \overline{CLASS} : XI (P, Q, R, S)

Daily Practice Problems TIME : 1 Hour

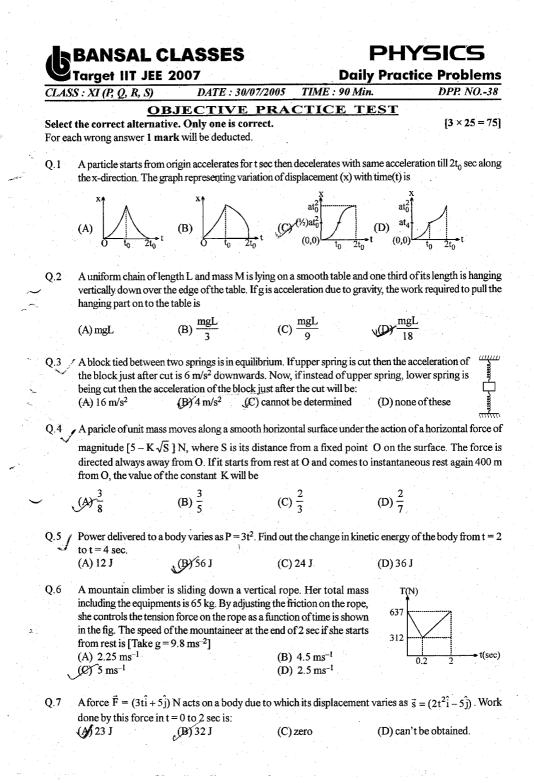
PHYSICS

DPP. NO.-37


A particle P of mass m kg moves on the smooth inner surface of a fixed hollow 0.1 hemisphere with centre O, radius a metres and axis vertical. The particle moves in a horizontal circle with centre C and radius r metres, and CP rotates with angular speed ω rad s⁻¹. The distance OC is h metres (see diagram).

DATE: 27-28/07/2005

- Evaluate "\u00f6" in terms of 'g' and 'h'? (a)
- Express the magnitude of the normal contact force between P and the surface in terms of m, g, a and h. (b)
- A new car model is tested first along a specially designed horizontal rough track. First, the car is driven O.2 along a straight stretch of the track of length r. If the car starts from rest at its maximum (constant) acceleration, it takes the amount of time t to cover distance r. The car is then brought to rest and is accelerated again along a circular loop of the track that has a radius r having same friction coefficient. Assuming that the car is speeding up at the maximum possible constant rate that allows it to remain on the track, how long would it take complete one revolution?
- 0.3 Aright -j----- j- find- ith its mis vertical and verter down. A marticle is in contact with its smooth inside surface and describes circular motion in a horizontal plane at a height of 20cm above the vertex. Find its velocity in m/s. c150
- A particle of mass m is attached to a vertical rod with two 0.4 inextensible strings of equal lengths l. The distance between the points of suspension is l. Determine the tension in each string.
- Particles of masses 3 kg and 5 kg are attached to the ends of a light string of length 1 m which passes Q.5 through a fixed ring at O. The lighter particle describes a horizontal circle about the heavier particle which remains stationary as centre. Prove that the two particles lie in a horizontal plane at a distance


 $\frac{3}{8}$ m below O and that the time period for one complete revolution is $\pi \sqrt{\frac{3}{2g}}$.

- Q.6 A heavy particle is tied to one end of a string 0.4m long, whose other end is fixed. The particle is projected horizontally from its lower position The string becomes slack when it makes an angle of 60° with the upward vertical. The velocity in m/s of the particle at that instant is
- Q.7 Two particles A and B each of mass m are connected by a massless string. A is placed on the rough ta le. The str ng passes over a sma, smooth peg. B s eff from a post on making an angle θ with the vertical. Find the minimum coefficient of friction between A and the table so that A does not slip duing the motion of mass
- A body is projected with a velocity 10 ms^{-1} at an inclination 45° to the horizontal. Minimum radius of Q.8 curvature of the trajectory described by the particle is
- 0.9 A wire ring of radius R is fixed in a gravity free region. A small bead having a hole through ts centre can sl de on the w rer ng. The coeffic ent of k netic fr ction between the bead and the wire ring is μ . At 't' = 0, the bead is imparted a velocity = v_0 tangentially along the ring, as shown. Find the speed of the bead A 11111 'v' and its angular displacement ' θ ' as function of time.
- O.10 Two light wires AC and BC are tied at C to a sphere which revolves at constant speed v in the horizontal circle shown in the figure. Determine the range of values of v for which both wires remain tight.

Q.8 Man A sitting in a car moving at 54 km/hr observes a man B in front of the car crossing perpendicularly the road of width 15 m in three seconds. Then the velocity of man B will be (A) $5\sqrt{10}$ towards the car \wedge (B) $5\sqrt{10}$ away from the car (C) 5 m/s perpendicular to the road (D) None Q.9 Two blocks, A and B, of same masses, are resting in equilibrium on an inclined plane having inclination with horizontal = α . The blocks are touching each other with block B higher than A. Coefficient of static friction of A with incline = 1.2 and of B = 0.8. If motion is not imminent, (D) (Friction)_A > (Friction)_B (D) (Friction)_A = (Friction)_B (A) $\alpha < 30^{\circ}$ $(C) \alpha < 45^{\circ}$ 0.10 The horsepower of a pump of efficiency 80%, which sucks up water from 10 m below ground and ejects it through a pipe opening at ground level of area 2 cm² with a velocity of 10 m/s, is about (A) 1.0 hp (B) 0.5 hp (C) 0.75 hp (D) 4.5 hp The position of a particle changes according to the equation $\vec{r} = (2\hat{i} - 4t^2\hat{j})$ m. Which of following is not Q.11 correct? (A) $\vec{v} = -8t\hat{i}$ (B) $\vec{s} = 4t^2\hat{i}$ (C) $\vec{a} = -8\hat{i}$ (D) None of these Q.12 The potential energy of a particle varies with x according to the relation $U(x) = x^2 - 4x$. The point x = 2 is a point of (A) stable equilibrium (B) unstable equilibrium (C) neutral equilibrium (D) none of above Q.13 Two blocks B1 & B2 of masses m, & m2 respectively are connected with the help of a pulley and string as shown. Upper surface of vehicle is smooth but vertical surface is rough. Given $a = g/7 \& m_1 = 7.5 m_2$. Blocks $B_1 \& B_2$ do not slide, then minimum coefficient of friction between block B, and side of vehicle is: (B)0.5 (A) 0.4 (C) 0.6 (D) 0.3 0.14 A stone is released from an elevator going up with an acceleration a. The acceleration of the stone after the release is (C) (g-a) downward (D) g downward (A) a upward (B) (g-a) upward Q. gy shown. Then force position graph can be As shown in the figure, M is a man of mass 60 kg standing on a block of mass 40 kg kept on ground. The Q.16 coefficient of friction between the feet of the man and the block is 0.3 and that between B and the ground is 0.2. If the person pulls the string with 125 N force, then the correct statements are I. B will slide on ground A and B will move together with acceleration 0.5 m/s-2 П Ш The friction force acting between A&B will be 40 N ĪV The friction force acting between A& B will be 180 N. (A)/& II (B) II & III (C) I and III (D) I, II and III

0.17 A particle is moving on x-axis has potential energy $U = 2 - 20 X + 5x^2$ Joules along x-axis. The particle is released at x = -3. The maximum value of 'x' will be [x is in meters and U is in joules] (C)7 m (A) 5 m (B) 3 m (D) 8 m Q.18 A motor boat is to reach at a point 30° upstream (w.r.t. normal) on other side of a river flowing with velocity 5m/s. Velocity of motorboat w.r.t. water is $5\sqrt{3}$ m/s. The driver should steer the boat at an angle (A) 120° w.r.t. stream direction (B) 30° w.r.t. normal to the bank (C) 30° w.r.t. the line of destination from starting point. (D) none of these 0.19 A varying horizontal force F = at acts on a block of mass m kept on a smooth horizontal surface. An identical block is kept on the first block. The coefficient of friction between the blocks is µ. The time after which the relative sliding between the blocks prevails is (B) 2umg/a (A) 2 mg/a(C) umg/a (D) None L 111111 K = 1000 N/m A bead of mass 5kg is free to slide on the horizontal rod AB. They are connected Q.20 to two identical springs of natural length h ms. as shown. If initially bead was at O & M is vertically below L then, velocity of bead at point N will be (A) 5h m/s(B) 40h/3 m/s (C) 8h m/s (D) none of these 0.21 Two blocks of masses $m_1 = 1$ kg and $m_2 = 2$ kg are connected by a non - deformed light spring. They are lying on a rough horizontal surface. The coefficient of friction between the blocks and the surface is 0.4. What minimum constant force F has to be applied in horizontal direction to the block of mass m, in order to shift the other block? ($g=10m/s^2$) FAT 8 N (C) 10 N (B) 15 N Consider the system of ideal pulley spring and block of mass m. When the system is released 0.22 from state of rest, the maximum distance moved by the block of mass 'm' is (B) $\frac{2mg}{k}$ (C) $\frac{mg}{k}$ (A) $\frac{\text{mg}}{2k}$ (D) $\frac{\text{mg}}{3k}$ A flexible chain of length $L = 20\sqrt{2}$ m and weight W = 10kg is initially Q.23 placed at rest on a smooth frictionless wedge surface ABC. It is given a slight jerk on one side so that it will start sliding on the side. Find the speed of the chain when nits on the will have the vertex of the weage: (A) $10\sqrt{2}$ m/s (D) $(10\sqrt{2})^{1/2}$ (B)10 m/s (C) 4 m/sThe tangential acceleration of a particle in a circular motion of radius 2 m is $a_t = \alpha t m/s^2$ (where α is a Q.24 constant) Initially the particle as rest. Total acceleration of the particle makes 45° with the radial acceleration after 2 sec. The value of constant q is : (A) 1/2 m/s³ $(B) 1 \text{ m/s}^3$ (C) 2 m/s^3 (D) data are insufficient Q.25 A particle of mass m is fixed to one end of a light spring of force constant k and unstretched length *l*. The system is rotated about the other end of the spring к e00000000009-m with an angular velocity a in gravity free space. The increase in length of the spring is (B) $\frac{\mathrm{mo}^2 \ell}{\mathrm{k} - \mathrm{mo}^2}$ (C) $\frac{\mathrm{mo}^2 \ell}{\mathrm{k} + \mathrm{mo}^2}$ (A) $\frac{m\omega^2 \ell}{l}$ (D) none of these

\mathbf{U}	Target IIT JEE	2007	D	aily Practice Proble
	S: XI (P, Q, R, S)	DATE : 1-2/	08/2005 TIME : 1	Hour DPP. NO
			PRACTICE	TEST
	the correct alternation wrong answer 1 m	tive. Only one is corr ark will be deducted.	rect.	[3 × 25
Q.1	Find the friction forc (A) 6N (C) 5N	e between the blocks i	n the adjacent figure (B) 18N (D) 12 N	μ=0.3 2Kg smooth 4Kg →F=15N
Q.2		essed by distance a and ed by a distance b. Du		The block again comes to rest
	(A) work done by the	ne spring on the block	$=\frac{1}{2}k(a-b)^2$	-
	(B) work done by th	e spring on the block	$=\frac{1}{2}k(a^2+b^2)$	
	(C) coefficient of fri	$\operatorname{ction} = \frac{\mathrm{k}(\mathrm{a}-\mathrm{b})}{2\mathrm{mg}}$		
	(D) coefficient of fri	$\operatorname{ction} = \frac{\mathrm{k}(\mathrm{a} + \mathrm{b})}{2\mathrm{mg}}$		
Q.3	A particle moves	in x-y coordinate s	ystem such that its p	oosition coordinates are give
	-	The path of the partic		
	(A) straight line	(B) parabola	(C) circular	(D) ellipse
Q.4	(A) Always acts in o (B) total work done		e applied force.	
Q.5	same potential energ	gy. The value of F_1/F_2	is	hed by forces F_1 and F_2 till the
Q.6	(A) 4 : 3 A body starts from re the body in last n see		(C) 16 : 9 ration. Its velocity after	(D) 9 : 16 2n second in v ₀ . The displacen
	5	(B) $\frac{v_0}{4n}$ (2n-1)	(C) $\frac{3v_0n}{4}$	$(D) \frac{3v_0 n}{2}$
Q.7				/4. If the mass of the bucket is sume the string to be massless
	(A) $\frac{1}{4}$ Mgd	$(B) - \frac{4}{2}$ Mgd	(C) $\frac{4}{3}$ Mgd	$(D) - \frac{3}{2} Mgd$

Three blocks lie on each other as shown. Horizontal force F (variable) is applied on block A. Choose O.8 the correct statements. ($g = 10 \text{ m/s}^2$) u=0.8 A 1kg L maximum acceleration of block B can be 2 m/s2. П slipping between B and C cannot take place. slipping between A and B starts when F is more than 8N ш IV maximum acceleration of block C can be 3 m/s². Ξ. (A) I & II (B) II & III (C) I and III (D) I, II and III Q.9 V-t graph of an object of mass 1 kg is as shown. Select the wrong statement (A) work done on the object in 30s is zero v(m/s) (B) the average acceleration of the object is zero (C) the average velocity of object is zero D t e orce act ng on part c e at t = 10 sec s 1 Newton. 30 i0 **2**0 t(s)→ The K.E. of a body moving along a straight line varies with time as shown in the figure. The force acting O.10 on the body is KE (A) zero (B) constant (C) directly proportional to velocity (D) inversely proportional to velocity The wedge is moved with constant horizontal acceleration a. For which of the Q.11 following values of a will the acceleration of the block be different from its acceleration in other three cases. (B) $\sqrt{3}$ g (C) g (D) $\frac{g}{10}$ (A) 2 g Q.12 A force of $(3\hat{i}-1,5\hat{j})$ N acts on a 5 kg body. The body is at a position of $(2\hat{i}-3\hat{j})$ m and is travelling at 4 ms⁻¹. The force acts on the body until it is at the position $(\hat{i} + 5\hat{j})m$. Assuming no other force does work on the body, the final speed of the body is (C) $\sqrt{20}$ ms⁻¹ (D) $\sqrt{10}$ ms⁻¹ $(A) 20 \text{ ms}^{-1}$ (B) 10 ms^{-1} A pendulum bob is swinging in a vertical plane such that its angular amplitude is less than 90°. At its 0.13 highest point, the string is cut. Which trajectory is possible for the bob afterwards, (C) (B) A load attached to the end of a spring and in equilibrium produces 9 cm extension of spring. If the spring Q.14 is cut into three equal parts and one end of each is fixed at 'O' and other ends are attached to the same load, the extension in cm of the combination in equilibrium now is: (D)9 (A) 1 (B)3 (C) 6 A 15 gm ball is shot from a spring gun whose spring has a force constant of 600 N/m. The spring is 0.15 compressed by 5 cm. The greatest possible horizontal range of the ball for this compression is $(g=10m/s^2)$ (A) 6.0 m (B) 12.0 m (C) 10.0 m (D) 8.0 m

. .

Three particles start from origin at the same time with a velocity 2ms⁻¹ along positive x-axis, the second 0.16 with a velocity $6ms^{-1}$ along negative y-axis. Find the velocity of the third particle along x = y line so that the three particles may always lie in a straight line

(A) $-3\sqrt{3}$ (B) $3\sqrt{2}$ $(C) = 3\sqrt{2}$ (D) $2\sqrt{2}$ The force required to stretch a spring varies with the distance as shown in the O.17 figure. If the experiment is performed with the above spring of half its natural length, the line OA will (A) rotate clockwise (B) rotate anticlockwise x (C) ----- it i-(D) b----- d---bl-i- le-gth

Power supplied to a particle of mass 2 kg varies with time as $P = \frac{3t^2}{2}$ watt. Here t is in second. If 0.18 velocity of particle at t = 0 is v = 0. The velocity of particle at time t = 2 s will be (D) $2\sqrt{2}$ m/s (A) 1 m/s(B) 4 m/s(C) 2 m/s

Q.19 The motion of a body falling from rest in a resisting medium is described by the equation $\frac{dv}{dt} = a - bv$ where a and b are constants. The velocity at any time t is

(A) $v_t = \frac{a}{b} \left(l - e^{-bt} \right)$ (B) $v_t = \frac{b}{a} e^{-bt}$ (C) $v_t = \frac{a}{b} \left(l + e^{-bt} \right)$ (D) $v_t = \frac{b}{a} e^{bt}$

A block of mass M = 4kg is kept on a smooth horizontal plane. A bar of 0.20 mass m = 1kg is kept on it. They are connected to a spring as shown & the spring is compressed. Then what is the maximum compression in the spring for which the bar will not slip on the block when released if coefficient of friction between them is 0.2 & spring constant k = 1000 N/m. (A) 1cm **(B)** 1m (C) 1.25 cm

-u=0.2 к =1000N/m <mark>М</mark> ЖЖЖТ М

- (D) 10cm
- Q.21 The potential energy in joules of a particle of mass 1 kg moving in a plane is given by U = 3x + 4y, the position coordinates of the point being x and y, measured in metres. If the particle is initially at rest at (6.4), then choose the correct statements
 - Ι its acceleration is of magnitude 5 m/s²
 - Π its speed when it crosses the y-axis is 10 m/s
 - Ш it crosses the y-axis (x = 0) at y = -4
 - ĪV it moves in a straight line passing through the origin (0,0)

(B) II & III

(A) I only (B)1&II (C) I. II and III (D) I. II. III and IV

Ap_il___ss_is___h__e_cl_is_yt_s_igs___ length l each. The separation AB=1. P rotates around the axis with an angular velocity ω . The tensions in the two strings are T₁ and T₂

I. $T_1^{1} + T_2^{2} = m\omega^2 l$ $T_1 - T_2^{2} = 2mg$ Π Ш

BP will remain taut only if $\omega \ge \sqrt{\frac{2g}{\ell}}$ (A) I only

īV

Q.___

(C) II, III and IV

Q.23 A skier plans to ski a smooth fixed hemisphere of radius R. He starts from rest from a curved smooth surface of height (R/4). The angle θ at which he leaves the hemisphere is

(A) $\cos^{-1}(2/3)$ (C) $\cos^{-1}(5/6)$

(B) $\cos^{-1}(5/\sqrt{3})$ (D) $\cos^{-1}(5/2\sqrt{3})$

Q.R.

 Q.24
 An object of mass m is released from rest at A to move along the fixed smooth circular track as in fig. The ratio of magnitudes of centripetal force and normal reaction of the track on the object at any point P at any angle θ would be:

 (A) 2/3sinθ
 (B) 3/2cs θ
 (C) 2/3
 (D) 3/2

Q.25 A simple pendulum is vibrating with an angular amplitude of 90° as shown in fig. For what value of α (angle between string and vertical) during its motion, the total acceleration is directly horizontally?

м

(A) 0 (B) 90° (C) $\cos^{-1}(1/\sqrt{3})$ (D) $\sin^{-1}(1/\sqrt{3})$

Taraet IIT JEE 2007

CLASS : XI (P, Q, R, S)

Daily Practice Problems TIME : 90 MIN

PHYSICS

۲60°

в

DPP. NO.-40

OBJECTIVE PRACTICE TEST Select the correct alternative. Only one is correct.

DATE : 03-04/08/2005

 $[3 \times 25 = 75]$

10kg

For each wrong answer 1 mark will be deducted.

Q.1 The potential energy of a particle of mass 5kg moving in the XY plane is given by V = -7x+24y joules, x and y being in metres. Initially at t=0 the particle is at the origin (0,0) moving with a velocity of

 $6[\hat{i}(2.4)+\hat{i}(0.7)]$ m/s. Then choose the correct statement

- T the magnitude of velocity of the particle at t = 4 sec is 25 m/s
- Π the magnitude of acceleration of the particle is 5m/s²

ш the direction of motion of the particle initially at t=0 is at right angles to the direction of acceleration

- IV the path of the particle is a circle.
- (A) I only (B) I & II (C) I, II and III (D) I, II, III and IV
- 0.2 A particle when projected in vertical plane moves along smooth surface with initial velocity 20m/s at an angle of 60°, so that its normal reaction on the surface remains zero throughout the motion. Then the slope of the tangent to the surface at height 5 m from the point of projection will be 'A` ^^° (~)

(D) $\tan^{-1}(\sqrt{2})$

0.3 A 10 kg ball attached to the end of a rigid massless rod of length 1 m rotates at constant speed in a horizontal circle of radius 0.5 m and period 1.57 sec as in fig. The force exerted by rod on the ball is (A) 1.28 N (B) 128 N (C) 10 N (D) 12.8 N

O.4

 ~ 1

- A small block slides with velocity $0.5\sqrt{\text{gr}}$ on the horizontal frictionless surface as shown in the Figure. The block leaves the surface at point C. The angle θ in the Figure is $(A) \cos^{-1}(4/9)$ (B) $\cos^{-1}(3/4)$ C cos-1/1/2 (D) ----e of the -bove
- Q.5 Each of the system shown below is initially at rest. Pulleys are massless and frictionless. Choose the correct statement(s).

20 kg 🗚 B 15 kg 25 kg A 15 kgA B 30 kg Fig. (1) Fig. (2) Fig. (3)

T Acceleration of block A in figure 1 is same as that in figure 2.

Π. Acceleration of block A in figure 1 is less than that in figure 2 and greater than that in figure 3.

ш The ratio of velocity of block A in figure 1 to that in fig. 2 after it has moved through 1 m is 1.

The ratio of velocity of block A in figure 1 to that in fig. 2 after it has moved through 1 m is $\frac{1}{\sqrt{2}}$. IV

(D) I. II. III and IV (A) I & Ilonly (B) 11 & III (C) I & IV

0.6 At a certain moment of time the angle between velocity and the acceleration of a particle, is greater than 90°. What can be inferred about its motion at that moment? (A) It is curvilinear and decelerated (B) It is rectilinear and accelerated (C) It is curvilinear and accelerated (D) It is rectilinear and decelerated Q.7 A uniform flexible chain of mass m and length 2/ hangs in equilibrium over a smooth horizontal pin of negligible diameter. One end of the chain is given a small vertical displacement so that the chain slips over pin. The speed of the chain when it leaves pin is (C) $\sqrt{g\ell}$ (D) $\sqrt{4\varrho\ell}$ (A) 39/ (B) $\sqrt{2g\ell}$ Two bodies A & B rotate about an axis, such that angle θ_A (in radians) covered by first body is proportional 0.8 to square of time, & θ_B (in radians) covered by second body varies linearly. At t = 0, $\theta_A = \theta_B = 0$. If A completes its first revolution in $\sqrt{\pi}$ sec. & B needs 4π sec. to complete half revolution then; angular velocity ω_A : ω_B at t = 5 sec. are in the ratio (A)4:1(B) 20:1 (C) 80 : 1 (D) 20:4 0.9 Two cars A and B start racing at the same time on a flat race track which consists of two straight sections each of length 100π and one circular section as in Fig. The rule of the race is that each car must travel at constant speed at all times without ever skidding (A) car A completes its journey before car B 100π (B) both cars complete their journey in same time (C) velocity of car A is greater than that of car B (D) car B completes its journey before car A. Q.10 A force F acting on a particle of mass 5 kg placed on a smooth horizontal surface. F = 40 Nt remains constant but its vector rotates in a vertical plane at an angular speed 2 rad/sec. If a t = 0, vector F is horizontal, find the velocity of block at $t = \pi/4\omega$ sec. (B) $\sqrt{2}$ m/s (D) $2\sqrt{2}$ m/s (C) 2 m/s(A) 1 m/sBlock A in the figure is released from rest when the extension in the spring is x_n Q.11 The maximum downwards displacement of the block is (A) $\frac{Mg}{2V} - x_0$ (B) $\frac{Mg}{2V} + x_0$ (C) $\frac{2Mg}{V} - x_0$ (D) $\frac{2Mg}{V} + x_0$ mmm Q.12 A ball is held in the position shown with string of length 1 m just taut & then projected horizontally with a velocity of 3 m/s. If the string becomes taut again when it is vertical, angle θ is given by (B) 30° (C) 45° (D) 37° (A) 53° Two particles of equal mass are attached to a string of length 2m as shown in figure. The string and 0.13 particles are then whirled in a horizontal circle about O. The ratio of the tension in string between P and O to and tension in the string between P and O is (B) $\frac{2}{2}$ (A) $\frac{1}{2}$ (C) $\frac{3}{7}$ (D) 2

S

2-

Q.14 Abloc. of mass m is projected on a smooth horizontal circular track with velocity v. What is average normal force exerted by the circular walls on the block during its motion from A to B.

(A) $\frac{mv^2}{R}$ (B) $\frac{mv^2}{\pi R}$

Q.15 Two particles starts moving on the same circle of radius 2 m, from the same point P at t = 0, with constant tangential accelerations = 2 m/s² and 6 m/s², clockwise and anticlockwise, respectively. The point where they meet for the first time is Q. The smaller angle subtended by PQ at center of circle is (A) 120° (B) 60° (C) 135° (D) 90°

(C) $\frac{2mv^2}{r}$

Q.16 A stunt man jumps his car over a crater as shown (neglect air resistance)
 (A) during the whole flight the driver experiences weightlessness
 (B) during the whole flight the driver never experiences weightlessness

(D) $\frac{2mv^2}{r^2}$

- (C) during the whole flight the driver experiences weightlessness only at the highest point
- (D) the apparent weight increases during upward journey

Q.17 A single wire ACB passes through a smooth ring at C which revolves at a constant speed in the horizontal circle of radius r as shown in the fig. The speed of revolution is

(A) \sqrt{rg} (B) $\sqrt{2rg}$

- (C) $2\sqrt{2rg}$
- (D) $2\sqrt{rg}$ (D) $2\sqrt{rg}$
- Q.18 AB is the vertical diameter of a circle in a vertical plane. Another diameter CD makes an angle of 60⁶ with AB; then the ratio of the time taken by a particle to slide along AB to the time taken by it to slide along CD, is

(A) 1:1 (B) $\sqrt{2}$:1 (C) $3^{1/4}$: $2^{1/2}$ (D) 1: $\sqrt{2}$

Q.19 A body is thrown with a velocity of 10 m/s at an angle of 45° to the horizontal. The radius of curvature of its trajectory in $t = 1/\sqrt{2}$ see after the body began to move is : (A) 0 m (B) 2.5 m (C) 5 m (D) None

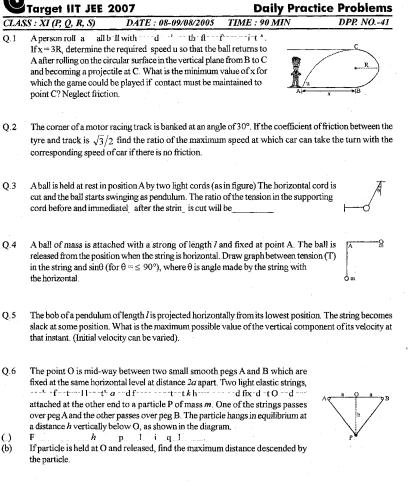
Q.20 On a particle moving on a circular path with a constant speed v, light is thrown from a projectors placed at the centre of the circular path. The shadow of the particle is formed on the wall. the velocity of shadow up the wall is (A) v sec² ϕ B) v cos² ϕ C) A) v cos ϕ (D)none

Q.21 The length of second's hand in a watch is 1 cm. The change in velocity of its tip in 15 sec is : (A) zero (B) $\pi/30\sqrt{2}$ cm/s (C) $\pi/30$ cm/s (D) $\pi\sqrt{2}/30$ cm/s

Q.22 A point P moves along a circle of radius r with constant speed v. Its angular velocity about any fixed point on the circle will be

(A) v/r (B) v/2r (C) v/r^2 (D) $v/2r^2$

Q.23 A heavy particle hanging from a string of length *l* is projected horizontally with speed \sqrt{gl} . The speed of the particle at the point where the tension in the string equals weight of the particle is:


(A) $\sqrt{2gl}$ (B) $\sqrt{3gl}$ (C) $\sqrt{gl/2}$ (D) $\sqrt{gl/3}$

- Q.24
 A particle of small mass m is joined to a very heavy body by a light sting passing over a light pulley. Both bodies are free to move. The total downward force on the pulley is nearly (A) mg
 (B) 2mg
 (C) 4mg
 (D)>> mg
- Q.25 The speed of a particle moving along a circular path is increasing at a constant rate a_0 . Identify the correct graph, which shows the variation of centripetal force F_n with time t.

7-

(B) **F** (C) F. F (D) (A)

PHYSICS

- Q.7 The end A of an inextensible light string of length *l* is attached to a fixed point, and an object of mass m is attached to the other end B. A light spring of natural length ¹/₄ I and stiffness ^{√3mg}/_I is attached to B and to a smooth pivot at the point O. The system rotates with angular speed ∞ about the vertical line OA. The arch OAB = 30° and OB is horizontal, as shown in the firmere.
 (a) Evaluate the tension in the string "AB" in terms of 'm' and 'g'.
 (b) Evaluate the tension in the spring OB in terms of 'm' and 'g'.
 (c) Find " ω " in terms of 'g' and 'P.
- Q.8 A particle P of mass m is attached by a light inextensible string of length 2a to a fixed point O. When vertically below O, P is given a horizontal velocity u. When OP becomes horizontal the string hits a small smooth peg, Q, distant a from O and the particle continues to rotate about Q as centre. If the particle just describes complete circles about the rail, find the value of u.
- Q.9 The potential energy in a conservative force field is given by $U = 3x^2 + 4y^2$.
- (a) Find work done by the conservative force in moving from a body from (0, 2) to (2, 0)
- (b) If mass of the body = 2 kg and its velocity at (4, 0) was 1 m/s find its velocity at (0, 0)
- Q.10 A small ball is tied to one end of an inelastic string the other end of which is attached to a fixed point O. It is held, with the string tight, at a point which is 1.5m above O and then let fall; if the length of the string be 3 m. Find its velocity immediately after the string again becomes tight.

PHYSICS Daily Practice Problems

m

CLASS : XI (P, Q, R, S)

Q.3

0.4

0.5

DATE : 10-11/08/2005 TIME : 90 MIN

DPP. NO.-42

1 m

- 1 A body of mass M=5kg is attached to a small body of mass m=1kg by a very long massless rope passing over a frictionless pulley. Mass M is held in contact with a vertical portion of a circular frictionless slope of radius 3m with its centre at C. Determine the velocity of both masses when M just reaches B on a horizontal base.
- Q.2 A uniform chain of length L is suspended from a strip of elastic rubber, of natural length h & is in equilibrium in the position shown. The chain is then cut at point A. Determine the length x, knowing that the remaining portion of the chain will rise sufficiently: (i) to allow rubber strip to become slack. (ii) to touch the ceiling.
 - A mass m is being lifted upward by means of a vertical spring of force constant k, with a uniform upward acceleration a. If at the instant its velocity is $v = (\sqrt{3\pi t/k})t$ the upper end of the spring is suddenly brought to rest, calculate the maximum compression in the spring.
 - A uniform chain of mass m and length *l* hangs from a hook. Determine the amount of work required to raise the middle link to the hook.
 - The ends of spring are attached to blocks of mass 3kg and 2kg. The 3kg block rests on a horizontal surface and the 2kg block which is vertically above it is in equilibrium producing a compression of 1 cm of the spring. The 2kg mass must be compressed further by at least _______, so that when it is released, the 3 kg block may be lifted off the ground.

- Q.7 A small block of mass m is projected horizontally from the top of the smoothhemisphere of radius r with speed u as shown. For values of u ≥ u₀, it does not slide on the hemisphere(i.e. leaves the surface at the top itself).
 (a) For u = 2u₀, it lands at point P on ground Find OP.
- (a) For u = 2u₀, it lands at point P on ground Find OP.
 (b) For u = u₀/3, Find the height from the ground at which it leaves the hemisphere.
 (c) Find its net acceleration at the instant it leaves the hemisphere.

Q.8 A p icle is 'ac'e' o one end of s ring 'e o'er en 'of w ic' is fixe'. 'e particle moves in vertical plane. The velocity at the lowest point is such that the particle can just complete the circle. The ratio of acceleration at A & B is_____.

Q.9 A light inextensible string AB has length 7a and breaking tension 4mg. A particle of mass m is fastened to the string at a point P, where AP=4a. The ends A and B are secured to fixed points, A being at a height 5a vertically above B. If the particle is revolving in a horizontal circle with both portions of the string taut,

s.o. _____ o. o. e. evolution lies _e. _en $3\pi \sqrt{\frac{a}{5g}} and 8\pi \sqrt{\frac{a}{5g}}$

Q.10 A small sphere B of mass m is released from rest in the position shown and swings freely in a vertical plane, first about O and then about the peg A after the cord comes in contact with the peg. Determine the tension in the cord.

(a) just before the sphere comes in contact with the peg,

(b) just after it comes in contact with the peg.

1.44

	C. VI (D O D C)	2007 DATE : 12-13/	an a	nly Praches Prob
	SS: XI(P, Q, R, S)	DAIL: 12-13/	08/2003 11ME: 9	OMIN DPP: N
Q.1	A uniform wire of len distance of its centra		hape of 'V' as shown.'	The $\Lambda \leq 160^{\circ}$
	(A) $l/2$ (B, $\frac{l}{d}$	$\frac{\sqrt{3}}{4} \qquad (C) \frac{l\sqrt{3}}{8}$	(D, none of these	c c
			14 J.	
Q.2			lar hole fradius 4R/5 i disc, from the centre of (B) R/3 (D) 16R/4	the original disc is
Q.3				e mass per unit length vr one end) is at the following c
	(A) 3L/4	(B) L/4	(C) 2L/3	(D) L/3
÷.				
Q.4	Two ice-skaters of mas			
Q.4				ed by the skater of mass 2001 (D) 6.0 m
Q.4 Q.5	 they push off from eac (A) 3.0 m A small rocket propel path of effective radius T from its rocket mot angle θ. If the vehicle s B and the magnitude 1 	h other, they are 8.0m (B) 4.0 m led vehicle of mass n s r under the action of or. Find the tangentia starts from rest at A, do N of the force exerted	apart. The distance mov	ed by the skater of mass 200 l (D) 6.0 m oth circular instant thrust function of in it reaches els jut prior
	 they push off from eac (A) 3.0 m A small rocket propel path of effective radius T from its rocket mot angle θ. If the vehicle s B and the magnitude 1 	h other, they are 8.0m (B) 4.0 m led vehicle of mass n s r under the action of or. Find the tangentia starts from rest at A, do N of the force exerted	apart. The distance mov (C) 5.0 m n travels down the smo its ownweight and a cor al acceleration of m as termine its speed v who by the path on the whe	ed by the skater of mass 200 l (D) 6.0 m oth circular instant thrust function of in it reaches els jut prior
	they push off from eac (A) 3.0 m A small rocket propel path of effective radius T from its rocket mot angle θ . If the vehicle s B and the magnitude 1 to reaching B and just A simple pendulum co	h other, they are 8.0m (B) 4.0 m led vehicle of mass n s r under the action of or. Find the tangentia starts from rest at A, de N of the force exerted after crossing B. Neg	apart. The distance mov (C) 5.0 m n travels down the smo its ownweight and a cor al acceleration of m as termine its speed v who by the path on the whe	ed by the skater of mass 200 l (D) 6.0 m oth circular astant thrust function of m it reaches els jut prior frocket.
Q.5	 they push off from eac (A) 3.0 m A small rocket propel path of effective radius T from its rocket mot angle 0. If the vehicle s B and the magnitude 1 to reaching B and just A simple pendulum co suspended from a peg below the first one at a 	h other, they are 8.0m (B) 4.0 m led vehicle of mass n sr under the action of or. Find the tangentia starts from rest at A, do N of the force exerted after crossing B. Neg onsists of a bob of mas P ₁ on the wall. A seco a distance 3R/7 from	apart. The distance mov (C) 5.0 m In travels down the smo- its ownweight and a con al acceleration of m as termine its speed v who by the path on the whe glect any loss of mass o s m and a string of lengt nd peg P ₂ is fixed vertice it. The pendulum is dra	ed by the skater of mass 200 h (D) 6.0 m oth circular istant thrust function of frocket.
Q.5	 they push off from eact (A) 3.0 m A small rocket proped path of effective radius T from its rocket mot angle θ. If the vehicles B and the magnitude I to reaching B and just A simple pendulum consuspended from a peg below the first one at a aside such that the string and the string str	h other, they are 8.0m (B) 4.0 m led vehicle of mass n sr under the action of or. Find the tangentia starts from rest at A, do N of the force exerted after crossing B. Neg onsists of a bob of mass P ₁ on the wall. A seco a distance 3R/7 from ng is horizontal and re	apart. The distance mov (C) 5.0 m In travels down the smo- its ownweight and a con al acceleration of m as termine its speed v who by the path on the whe glect any loss of mass o s m and a string of lengt nd peg P ₂ is fixed vertice it. The pendulum is dra	ed by the skater of mass 200 h (D) 6.0 m oth circular istant thrust function of frocket.

ŧ

- 2.8 Consider a uniform spring of mass M, unstretched length L, and spring constant k. It's one end is fixed and other end moving with speed v. Calculate the kinetic energy of the spring in terms of M and v.
- **2.9** If ρ_{min} is radius of curvature of trajectory of a projectile at highest point A, then find the radius of curvature ρ of the trajectory at B where it forms α angle with horizontal.

Q.10 Two particles A & B are projected tangentially from lowest point inside a smooth vertical circular track of radius 5 m with velocity $v = 10\sqrt{2}$ m/s in opposite directions. Find the coordinates of the point where A & B collide with respect to initial point of projection.

脉纹

BANSAL CLASSES PHYSICS **Daily Practice Problems** Target IIT JEE 2007 CLASS : XI (P, Q, R, S) DATE: 22-23/08/2005 TIME : 90 MIN

A pendulum consists of a wooden bob of mass m and length L. A bullet of mass m, is fired towards the 0.1pendulum with speed v_1 . The bullet comes out of the bob with speed $v_1/3$, the pendulum just completes motion along vertical circle. The velocity v, is

DPP. NO.-44

5m/s

(A)
$$\frac{3}{2} \frac{m}{m_1} \sqrt{5g\ell}$$
 (B) $\frac{m}{m_1} \sqrt{5g\ell}$ (C) $\frac{3}{2} \frac{m}{m_1} \sqrt{g\ell}$ (D) $\frac{3}{2} \frac{m_1}{m_1} \sqrt{5g\ell}$

0.2 A rock explodes breaking into three pieces. Two pieces fly off perpendicular to one another. One piece of mass 1 kg has velocity 12 m/s and the second of mass 2 kg has velocity 8m/s. If the third mass flies off at a velocity of 40 m/s. What is its mass

(A) 2 kg (B) 1 kg (C) 1/2 kg (D) 3 kg.

Q.3 A particle of mass m = 0.1 kg is released from rest from a point A of a wedge of mass M = 2.4 kg free to slide on a frictionless horizontal plane. The particle slides down the smooth face AB of the wedge. When the velocity of the wedge is 0.2 m/s the velocity of the particle in m/s relative to the wedge is (C) 7.5 (A) 4.8 (B) 5 (D) 10

Q.4

 \mathbb{R}

A ball of mass 1kg strikes a heavy platform, elastically, moving upwards with a velocity of 5m/s. The speed of the ball just before the collision is 10m/s downwards. Then the impulse imparted by the platform on the ball is (A) 15 N - s(B) 10 N - s (C) 20 N - s(D) 30 N - s

Q.5

² Q.6

Two blocks A(3 kg) and B(2 kg) resting on a smooth horizontal surface is connected by a spring of stiffness 480 N/m. Initially the spring is undeformed and a velocity of 2 m/s is imparted to A along the line of the spring away from B. The maximum extension in meters of the spring during subsequent motion is

(C) $\frac{1}{2\sqrt{15}}$

(D) 0.15

(A) $\frac{1}{10}$

Two particles, each of mass m, are connected by a light inextensible string of length 2*l*. Initially they lie on a smooth horizontal table at points A and B distant l apart. The particle at A is projected across the table with velocity u. Find the speed with which the second particle begins to move if the direction of uis, (a) along BA, (b) at an angle of 120° with AB, (c) perpendicular to AB. In each case calculate (in terms of *m* and *u*) the impulsive tension in the string.

- Q.7 A bullet of mass m moving with a velocity u strikes a block of mass M, which is free to move in the direction of motion of bullet, and is embedded in it. If the bullet is embedded into the block, by a distance b meters & the resistance of the block to the bullet is assumed to be uniform, find :
- (a) ratio of final & initial kinetic energy of the system.
- (b) time of penetration.
- distance moved by the block during the time of penetration. (c)

(B) $\frac{1}{2\sqrt{10}}$

Q.8 'n' elastic ball are placed at rest on a smooth horizontal plane which is circular at the end with radius R as shown in the figure. The masses of

- Q.9 In a circus act, a 4kg dog is trained to jump from B cart to A and then immediately back to the B cart. The carts each have a mass of 20kg and they are initially at rest. In both cases the dog jumps at 6m/s relative to the cart. If the cart moves along the same line with negligible friction calculate the final velocity of each cart with respect to the floor.
- Q.10 Two bodies A & B of masses m & 2m respectively are placed on a smooth floor. They are connected by a spring. A third body C of mass m moves with velocity v_o along AB and collides elastically with A. After collision at the instant of maximum compression of x_o , find common velocity and spring constant.

m on an am

CIAS	Target IIT JEE	DATE : 24-2;	5/08/2005 T	IME : 90 MIN	Practice P	PP. NO4
$\frac{\mathbf{Q}}{\mathbf{Q}}$		ss are dropped from t	·			· · · · · · · · · · · · · · · · · · ·
Q.1		ally. The second ball				
		es an impulse I2. The		in the motoppi	es un mpube to	100101
	(A) $I_2 = 2I_1$	(B) $I_2 = I_1/2^2$	(C) I ₂ =41	ί, ((D) $I_2 = I_1 / 4$	
			. 2			
Q.2	Two bodies of mass	1 kg and 2 kg move to	wards each othe	r in mutually ne	mendicular dire	tion with t
Q.2		2 m/s respectively. If the				
	(A)13 J	(B) 13/3 J	(C) 8 J	-	D) 7 J.	oraned mar
	· · · ·		(-)			
Q.3	A bead can slide on a	smooth straight wire	e and a particle o	f mass m attach	ed to	
	the bead by a light stri	ing of length L. The p	article is held in a	contact with the	wire , 2m	
	and with the string tau	ut and is then let fall. I	f the bead has ma	ass 2m then whe	m the	
		$e \theta$ with the wire, the		· · ·	xe 1 🗹	[n] F
	(A) L $(1 - \cos \theta)$	(B) $(L/2)(1-\cos \theta)$	(θ) (C) (L/3)	$(1-\cos\theta)$ (D) $(L/6)(1 - cc$	osθ).
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1					•
Q.4		npts to jump from the				an generate
		m/s between him and		•		•
	(A) 4 m/s	(B) 8 m/s	(C) 2 m/s	; (D) 3 m/s.	
Q.5	From the circular dis	o of radius AP two or	all dice of radiu	P ara out off	The control of mo	cc of the ne
Q.J	structure will be :		ian disc of faulu	is it are cut off.	The centre of the	55 01 uic ne
			· · ·	r		
	(A) i $\frac{r}{5} + j \frac{r}{5}$		$(\dot{B}) - i \frac{r}{5}$	$+j\frac{1}{5}$		(\mathbf{D})
•	5 5		5	5	· · · (
	(C) $-i\frac{r}{5}-j\frac{r}{5}$		(D) $\frac{-3r}{14}$	$\hat{i} - \frac{3r}{2}\hat{i}$	· (CIR Z
	$(C) = \frac{1}{5} - \frac{1}{5} = \frac{1}{5}$		14	14	1	\sim
Q.6		of equal mass are con				
		ited by a distance 1 r			ng on _K =	10 Nm ⁻¹
		ximum separartion di				m A
	(Neglect the friction	al force between the l	block and surfac	c).	. ײַמּמּ מּי	anindindi
	an 11 1 a .					\bigcirc
0.7	I wo block of mass [M and 3 M are conne				K.Y
Q.7		ev ac chown in the tio	ure The blocks	are released from	m rest and	
Q.7	light frictionless pull					1 1
Q.7	light frictionless pull	that $t = 0$. Find the ac				3M M
Q.7	light frictionless pull					<u>3M</u> M
Q.7 Q.8	light frictionless pull are at the same heigh		celeration of the	e centre of mass	5.	

A body of mass 8kg is travelling at 2m/s under the influence of no external agency. At a certain instant an internal explosion occurs, splitting the body into two pierces each of mass 4kg. 16J of KE is imparted to the two pieces by the explosion. They continue to move along their initial line of motion after explosion. Determine their speed and direction of motion of each piece after the explosion.

- Q.9 A smooth sphere A of mass 0.1 kg is moving with speed 5m/s when it collides head on with another smooth stationary sphere of same radius. If A is brought to rest by the impact and $e = \frac{1}{2}$, find the mass of B, its speed just after impact and magnitude of impulse during collision.
- Q.10 A plate in the form of a semicircle of radius a has a mass per unit area of kr where k is a constant and r is the distance from the centre of the straight edge. By dividing the plate into semicircular rings find the distance of the centre of mass of the plate from the centre of its straight edge.

Taraet IIT JEE 2007

0.1

Q.2

Q.4

0.5

(C) 3 : 2 : 2

(A) 1/2

BANSAL CLASSES

PHYSICS **Daily Practice Problems**

CLASS : XI (P, Q, R, S) DATE: 26-27/08/2005 TIME: 90 MIN DPP. NO.-46 A ball is thrown downwards with initial speed = 6 m/s, from a point at height = 3.2 m above a horizontal floor. If the ball rebounds back to the same height then coefficient of restitution equals to (B) 0.75 (C) 0.8(D) None Two particles A and B each of mass m are attached by a light inextensible string of length 21. The whole system lies on a smooth horizontal table with B initially at a distance I from

A. The particle at end B is projected across the table with speed u perpendicular to AB. Velocity of ball A just after the jurk, is (C) $\frac{u\sqrt{3}}{2}$ (D) $\frac{u}{2}$ (A) $\frac{u\sqrt{3}}{1}$ (B) $u\sqrt{3}$

0.3 The inclined surfaces of two movable wedges of same mass M are smoothly conjugated with the horizontal plane as shown in figure. A washer of mass m slides down the left wedge from a height h. To what maximum height will the washer rise along the right wedge? Neglect friction.

(B) $\frac{h_{-}}{(M+m)^2}$

D) $h\left(\frac{M}{M+m}\right)$

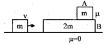
(A) $\frac{1}{(M+m)^2}$	
$-h\left(\frac{M}{M+m}\right)^2$	

In the figure i, ii, & iii, shown the objects A, B & are of same mass. String, spring & pulley are massless. C strikes B with velocity 'u' in each case and sticks to it. The ratio of velocity of B in case (i) to (ii) to (iii) is A.1:1:1 ()3:3:2

(D) none of these

A particle of mass m and momentum \vec{P} moves an a smooth horizontal table and collides directly and perfectly elastically with a similar particle (of mass m) having momentum $-2\vec{p}$. The loss (-) or gain (+) in the kinetic energy of the first particle in the collision is

(B) $-\frac{p^2}{4m}$ (C) $+\frac{3p^2}{2m}$ $(A) + \frac{p^2}{2m}$ (D) zero


0.6 A sphere A is released from rest in the position shown and strikes the block B which is at rest. If e = 0.75 between A and B and $\mu_e = 0.5$ between B and the support, determine

- (a) the velocity of A just after the impact
- the maximum displacement of B after the impact. (b)

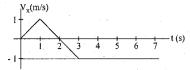
Q.7 In the figure shown, the left block of mass 1 kg is struck sharply with an impulse J, horizontal to the right. The spring of stiffness 200 N/m was initially in its natural state. The floor has friction coefficient $\mu = 1/4$ and the mass of the right block is 2 kg. Find the minimum value of 'J' if the heavier block is to move at all.

- Q.8 A block of mass m is projected with velocity v as shown. The ground is smooth but there is friction between A and B. If collision is elastic
- (a) Find the final common velocity of A & B.
- (b) Find total energy dissipated in friction. Assume that A does not fall off B.

- Q.9 A billiard ball, 200 g moving with a velocity of 2 m/s collides head on with another identical ball at rest. The collision is inelastic with a coefficient of resistitution 0.5. Calculate the loss in energy.
- Q.10 Two masses A & B each of 5 kg are suspended by a light inextensible string passing over a smooth massless pulley such that mass A rest on smooth table & B is held at the position shown. Mass B is now gently lifted up to the pulley and allowed to fall from rest. Determine up to what height will A rise for the ensuing motion.

BANSAL CLASSES Taraet IIT JEE 2007

PHYSICS


Daily Practice Problems

CLASS : XI (P, Q, R, S) TIME : 90 MIN DATE : 29-30/08/2005

DPP. NO.-47

This is the test paper of Class-XI (J-Batch) held on 28-08-2005.

Q.1 The velocity of a particle moving along the x-axis is shown. If the particle is located at x = 3.5 m at t = 0, what is the value of x for the particle at t = 3.0 s?

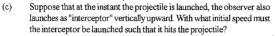
, 60'

A bus moves away from rest at a bus stop with an acceleration of 1 ms⁻². As the bus starts to move a Q.2 man who is 4 m behind the stop runs with a constant speed after the bus. If he just manages to catch the bus find his speed.

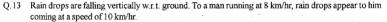
If a = 12 m, b = 16 m, $\alpha = 30^{\circ}$, $\beta = 145^{\circ}$, and $\vec{c} = \vec{a} - \vec{b}$, determine $|\vec{c}|$ 0.3

- Two particles are projected simultaneously at angles 60° and 30° with the 0.4 horizontal, from the same point and with the same initial speed. Find the angle after time t which the line joining the particle makes with the vertical.
- Q.5 If acceleration of wedge = 5 m/s^2 to the right. Find the magnitude of acceleration of the block B. The string is inextensible
- A uniform string of length 10 m and mass 20 kg lies on a smooth Q.6 frictionless inclined plane. A force of 200 N is applied as shown in the figure.
- Find the acceleration of the string. (a)
- (b) Find the tension in the string at 2m from end A
- Q.7 A police officer sits on a parked motorcycle. A car travelling at a constant speed of $v_0 = 40.0$ m/s passes by at t =0. At that instant, the officer accelerates the motorcycle at a constant rate, and at time $t_1 = 20.0$ s overtakes the speeder.
- (a) (i) Find the acceleration of the motorcycle.

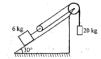
(ii) Find the speed of the motorcycle at the instant it overtakes the car.


- In the same graph, sketch the position-time graph of the car and that of the motorcycle. Label clearly. (b)
- Q.8 Two ports A and B are separated by a river of width D. Water in the river flows with speed V_w. A boat crosses the river from port A to port B. The speed

of the boat relative to water is $V_{\rm B}$. Given $V_{\rm w}{=}\sqrt{3}V_{\rm R}$


Find the angle "0" with AB in which the boat should start relative to water so that it moves along AB. (a) Find the time taken by the boat to reach the port B in terms of D and V_B. (b)

- Q.9 Given the setup shown in figure. A projectile is launched with initial speed $v_0 = 50$ m/s at a given angle $\alpha = 53^{\circ}$ above the horizontal. At a horizontal distance d = 30m from the launch point stands an observer. (Neglect the height of observer)
- (a) Find the height at which the projectile passes directly overhead of the observer.
- (b) Give the components of the projectile's velocity
 (i) at the highest point of its trajectory
 (ii) at the instant it is directly above the observer.


- Q.10 An object starts at rest at the origin at t = 0 and accelerates according to the graph shown. The motion is one dimensional.
- (a) Sketch a graph of velocity versus time. Show and clearly label all values
- (b) At what time (expressed in terms of t₀) does the object return to the origin?
- Q.11 The system is in equilibrium
- (a) Draw FBD of 10 kg block.
- (b) Draw FBD of 5 kg wedge.
- (c) Find "F" so that the system is in equilibrium Neglect friction
- Q.12 (a) Draw the FBD of 20 kg block.
 (b) Draw the FBD of 6 kg block.
 (c) Find the acceleration of the masses Neglect friction, masses of pulleys and strings. Strings are nextensible

- (a) Find the speed of rain w.r.t. ground.
- (b) Find the speed with which he should run so that the rain drops appear to him coming at an angle of 45° with vertical.
- Q.14 A man is riding a flatcar travelling with constant speed of 4 m/s. There is a stationary ring above the line of motion of the car. Height of the ring above man's hand is 7.2 m. He wishes to throw a ball through the ring in such a manner that the ball passes through the ring moving horizontally. He throws the ball with a speed of 20 m/s with respect to himself (car).
- (a) What must be the vertical component of the initial velocity of the ball?
- (b) How many seconds after he releases the ball will it pass through the ring?
- (c) When the ball leaves the man's hand, what is the direction of its velocity relative to the frame of reference of the flatcar?
- (d) At what horizontal distance in front of the ring must he release the ball?

		Target IIT JEE 2007 Daily Practice Problem S: XI (P, Q, R, S) DATE: 31/08/2005 TIME: 90 MIN DPP. NO4
*	Q.1	A stone of mass 1 kg tied to a light inextensible string of length $L = 10/3$ m is whirling in a circular path radius L in a vertical plane. If the ratio of the maximum tension in the string to the minimum tension in t string is 4 and if g is taken to be 10 m/sec ² , the speed of the stone at the highest point of the circle is
		(A) 20 m/sec (B) $10\sqrt{3}$ m/s (C) $5\sqrt{2}$ m/sec (D) 10 m/sec.
	Q.2	Tangential acceleration of a particle starting from rest and moving in a circle of radius 1 metre varies with time as in graph. Time after which total acceleration of particle makes an angle of 30° with radiacceleration is: (A) 4 sec (B) 4/3 sec (C) $2^{2/3}$ sec (D) $\sqrt{2}$
	Q.3	Two blocks of masses 20 kg and 50 kg are lying on a horizontal floor (coefficient of friction $\mu = 0.5$). Initially string is just taut and blocks are at rest. Now two forces 235-N and 150N is applied on two blocks as shown in figure. What is acceleration of 20 kg block (g = 10 m/s ²) (A) 0.5 m/s ² (B) zero (C) 2.5 m/s ² (D) cannot be determined
	Q 4	A ball is dropped on to a fixed horizontal surface from a height h, the coefficient of restitution is The average speed of the ball from the instant it is dropped till it goes to maximum height after fin impact with ground
•		(A) $\frac{(1+e)\sqrt{2gh}}{(1-e)}$ (B) $\frac{(1+e^2)}{(1+e)}\sqrt{\frac{gh}{2}}$ (C) $\frac{(1-e^2)\sqrt{2gh}}{(1+e)^2}$ (D) $\frac{(1-e)\sqrt{2gh}}{(1+e)}$
ີ້	Q.5	The masses of five balls at rest in a straight line form a geometrical progression whose ratio is 2. The coefficients of restitution are each $2/3$. If the first ball be started towards the second with a velocity find the velocity communicated to the fifth ball.
	Q.6	A quarter-circular tracks of radius R is carved in a block so that the mass of the r m ining li i 4m. A y m ' ' l fr m th p h track, as shown in the figure above, so that it slides down the track. Find the velocity of the disc with respect to Earth when it leaves the track. Also find the recoil velocity of the track. All surfaces are frictionless.
	Q.7	A particle travelling horizontally strikes a smooth fixed spherical surface as shown. If coefficient of restitution is $e = 1/3$, what should be angle θ so that it rebounds vertically.
	Q.8	A ball of mass 1 kg moving with 5 m/s strikes a massive wall moving with velocity of 5 m/s. The ball approaching the wall & coefficient of restitution between them is $e = 1/2$. Find the impulse exerted by t wall on the ball during collision.
\sim	Q.9	A sphere, of mass m, impinges obliquely on a sphere, of mass M, which is at rest. Show that, $m = eM$, the directions of motion of the spheres after impact are at right angles.
	Q.10	In a carrom board play Queen at C is to be shot after rebound from edge AB into hole D. Find the distance x from centre of edge AB at which it should strike if coefficient of restitution is 0.5.

	SS: XI(P, Q, R, S)	DATE : 02-	03/09/2005	TIME : 90 M	y Practico	DPP NO4
Q.1	A ball is thrown verti					
	ground it just reaches					-
	(A) 1/√2	(B) 1/2	(C) 1		(D) √2	
Q.2	A ball falls vertically restitution is 3/4, find (A) 3 seconds		es before it ag			
Q.3	A simple pendulum h is given the minimum suspension. When the (A) mg	horizontal speed	necessary fo al the net force	r it to move in a		
0.4				Ų		
Q:4	A h i i la contains a heavy flex shown. Assuming a sl	tible chain of leng ight disturbance to i ill .m. ge	th π r and v start the chair m p.n en	veight $W\pi r$ as in motion, the B h. u	s	
	(A) $\frac{4\text{gr}}{\pi}$	(B) $\frac{2gr}{\pi}$	(C)	$2 \operatorname{gr}\left(\frac{2}{\pi} + \pi\right)$	(D) $\sqrt{2gr}$	$\left(\frac{2}{\pi}+\frac{\pi}{2}\right)$
Q.5	A small ball thrown at a moving towards it at a Determine the time t fro	horizontal velocity	v and is bounce	ed elastically to th	e point from w	hich it was throw
Q.6	Two particle P of mas		s mare subject			
(a) (b)	on them. At time $t = 0$, a later instant when t Find in terms of m and At the instant $t = T$, im values $\cap J$ and K.	= T before any coll I u the total work d	ed O and Q is o ision has take one by the for	lirectly moving a n place Q is mov ces of attraction	tway from O w ing towards O during the tim	with a speed 5 u. with speed u. e interval $0 \le t \le t$
• •	a later instant when t Find in terms of m and At the instant $t = T$, im	T before any coll to the total work d apulses of magnitud ral triangular wedges smooth sphere of n ces the wedges sym	ed O and Q is of ision has taken one by the for de J and K are ges of mass M hass m moving umetrically. If t	lirectly moving a n place Q is mov ces of attraction applied to P and rest on a smooth g vertically down the coefficient of	way from O w ing towards O during the tim Q bringing the	with a speed 5 u. with speed u. e interval $0 \le t \le$ m to rest. Find t
(b)	a later instant when t Find in terms of m and At the instant $t = T$, im val···s $\cap J$ and K. Two identical equilate horizontal surface. As with a velocity v_0 strik restitution is e find the	= T before any coll a u the total work d upulses of magnitud ral triangular wedg smooth sphere of n tes the wedges sym- e velocities of the s n & length 1 is relea s with a block of n ne block stops 1 second south a south a sout	ed O and Q is c ision has taken one by the for de J and K are ges of mass M hass m moving unterically. If the phere and that used when it m hass 3m, elast cond after the 0.5. Find the le	lirectly moving a n place Q is mov ces of attraction applied to P and rest on a smooth vertically down the coefficient of t of the wedges akes an angle of tically, kept at the collision & coeffi- ength of the	way from O w ing towards O during the tim Q bringing the M 60° with e lowest icient of	with speed 5 u. with speed u. interval $0 \le t \le$ interval $0 \le t \le t \le$ interval $0 \le t \le $
(b) Q.7	a later instant when t Find in terms of m and At the instant $t = T$, im val s $\cap J$ a $\neg d$ K. Two identical equilate horizontal surface. As with a velocity v ₀ strik restitution is e find the just after collision. A pendulum of mass m the vertical. It collide position of its path. Th friction between the b	= T before any coll lu the total work d pulses of magnitud ral triangular wedg smooth sphere of n ces the wedges sym velocities of the s n & length l is relea s with a block of n he block storps l sec block & surface is (ngle hich the sing wi a veloci y o al as shown. The col he minimum friction	ed O and Q is G ision has taken one by the for de J and K are ges of mass M ass m moving unetrically. If i phere and that used when it m ass 3m, elast cond after the 0.5. Find the le maesit w '5m/s s rikes re lision between	lirectly moving a n place Q is mov. ces of attraction applied to P and rest on a smooth y vertically down the coefficient of t of the wedges akes an angle of t cally, kept at the collision & coeff ength of the ertical after the o pugh groun a an the ball & ground ween the	way from O wing towards O during the tim Q bringing the UN Q bringing the GO with a lowest licient of collision.	with speed 5 u. with speed u. interval $0 \le t \le$ interval $0 \le t \le t \le$ interval $0 \le t \le $

< .

	BANSAL CI Target IIT JEE 2			-	PHYSICS Practice Problems
	$\frac{1}{S:XI(P,Q,R,S)}$	DATE : 5-6/09	/2005 T	IME : 90 MI	
040 10		DPP OF	THE V	VEEK	
Q.1	with initial velocity of 5	0m/s. After its collisi	on with wall	& then once w estitution for bo	an angle of 37° with horizontal ith ground find at what distance oth collisions is equal to 1/2. (D) none
Q.2	A simple pendulum swi the tension in its extrem	ngs with angular amp ne position. Then, co	blitude θ . The θ is equal to	e tension in the	string when it is vertical is twice
Q.3	touches a horizontal su	rface, is released from	n rest at tim	in vertical post e t = 0. Assumi	(D) 3 / 4 ition such that its lower end jus ng that any part of chain which lying on horizontal surface does
	not from any heap, the	height of its centre	of mass abo	ve surface at a	any instant $t = 1/\sqrt{5}$ (before i
Q.4	completely comes to re (A) 1 m A ball impinges on and perpendicular to its own impact being perpendic the coefficient of restitur is turned through an any	(B) 0.5 m ther equal ball movies the line joining the ular to the direction of tion, show that the direction	centres of th	e speed in a di e balls at the in the second ball	stant of ; if e be
Q.5	A pan of mass 2 kg is re A 0.5 'g 'ump o c 'ay i velocity and sticks to it. from its initial position?	s re ease 5 m a ov	e 'e pan so	'ai`is`e	pan wi some
Q.6					rebounds at the same angle and the ball. The coefficient of
Q.7	The simple condulum A of mass $m_{\rm B}$. If the syste $v_{\rm B}$ of the trolley and tern negligible.	m is released from re	est at $\theta = 0$, d	etermine the v	elocity
Q.8	Two smooth sphere ma "it" an an oblique impa- are also s own. The imp 	ct as s own in fig. T bact force is along the	e initial velo	cities of the main their centres.	$\sum_{n=1}^{2m} \sum_{n=1}^{n-1} \frac{1}{4/8}$
	the impact and the loss i	n kinatia anarow			
	•				v≈5m/s
Q.9	A particle is projected fr the wall. The initial veloc	om point O on level g city of the particle is 3 l the wall is e. Find th	ground towar 0m/s at 45° to e distance fr	the horizontal	and the coefficient of restitution
Q.9 .10	A particle is projected fr the wall. The initial veloc between the particle and	om point O on level g city of the particle is 3 th I the wall is e. Find th = 0, (b) $e = 1$, (c) $e =$ ntall_from a cliff 10	ground towar Om/s at 45° to e distance fr = ½ m hi_h with	o the horizontal om O of the po a velocity of	$\sqrt{10}$ mtical wall 50m from O and hits and the coefficient of restitution int at which the particle hits the

ľ

4

6	BANSAL C		PHY Daily Practic	SICS
CLAS	5S : XI (P, Q, R, S)	DATE : 07-08/09/2005	the second se	DPP. NO51
Q.1	A slender rod of mass its density is nonunif	orm and varies linearly from h he rod, about the rotation axis j	an end to swing freely in a verti inged end to the free end, dou passing through the hinge point	bling its value. The
	$(A) \frac{2ML^2}{9}$	(B) $\frac{3ML^2}{16}$ (C)	$\frac{7 \mathrm{ML}^2}{18}$ (D) None	
Q.2		lentical rods each of length L a l the M.I. of the system abou ds (XY)		x C B
	$(A) \frac{ML^2}{12}$	(B) $\frac{ML^2}{6}$ (C) $\frac{ML^2}{3}$	(D) $\frac{4\mathrm{ML}^2}{3}$	D Y
Q.3	lying on the xy-plane that about O is	iform rod lying along the x-axis about which the moment of in	nertia of the rod is same as	
	(A) an ellipse	(B) a circle (C) a parab	ola (D) a straight line	0 x
Q.4	about the specified ax		a	
	(A) $\frac{7}{12}$ Ma ²	(B) $\frac{5}{12}$ Ma ² (C)	$\frac{1}{3}$ Ma ² (D) $\frac{1}{12}$ Ma ²	455
Q.5			rm a rigid equilateral triangle. I cular to the plane of the triang	
Q.6	frame. Three axes A. shown in the figure. (i) The moment of ine	e joined together to form an eq A', BB' and CC' lie in the plan rtia is least about the axis .r.ia is maximm about .he axi	ne of the frame as B	A'
Q.7		s λ =ax where a is a constant and	re of mass and perpendicular t d x is the position of an elemer	
Q.8	remaining plate is M,	cut from a solid sphere of radiu then moment of inertia of the lar to plane is		R O R2
Q.9	the xy plane, with its ce	ntre at the origin and the sides pa	bined to form a rigid square fram arallel to the x and y axes. Its more e z-axes and passing through a	ment of inertia about
Q.10		ertia of thin semicircular wire of	1	/ /

below. Mass of wire = m. The axis of rotation is perpendicular to the plane of the wire.

R

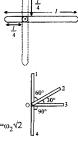
BANSAL CLASSES Target IIT JEE 2007

0.1

PHYSICS **Daily Practice Problems**

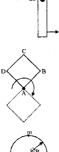
TIME : 90 MIN DPP. NO.-52 CLASS : XI (P, O, R, S) DATE : 12-13/09/2005 A cone of radius r and height h rests on a rough horizontal surface, the coefficient of friction between the cone and the surface being u. A gradually increasing horizontal force F is applied to the vertex of the cone. The largest value of µ for which the cone will slide before it topples is (B) $\mu = \frac{2r}{5h}$ (D) $\mu = \sqrt{\frac{r}{r}}$ (C) $\mu = \frac{r}{L}$ (A) $\mu = \frac{r}{2r}$ Four oint masses are fastened to the corners of a frame of ne li ible ¢y-axis

.2 mass lying in the xy plane. Let w be the angular speed of rotation. Then (A) rotational kinetic energy associated with a given angular speed depends on the axis of rotation.


(B) rotational kinetic energy about v-axis is independent of m and its value is $Ma^2\omega^2$.

(C) rotational kinetic energy about z-axis depends on m and its value is $(Ma^2 + mb^2)\omega^2$. (D) rotational kinetic energy about z-axis is independent of m and its value is $Mb^2\omega^2$.

- Q.3 A rod is placed on a horizontal floor and imparted an angular velocity about a vertical axis passing through its mid-point. The mass of the rod is M, length L and friction coefficient with the surface is u. Then, the total retarding torque of friction forces, assuming that the normal reaction is placed uniformly over the length of the rod, is (A) µmgL (B) μ mgL/2 (C) μ mgL/4 (D) μ mgL/8
- Q.4 For the pivoted slender rod of length l as shown in figure, the angular velocity as the bar reaches the vertical position after being released in the horizontal position is
 - (A) $\sqrt{\frac{g}{1}}$ (B) $\sqrt{\frac{24g}{10i}}$ (D) $\sqrt{\frac{4g}{r}}$ (C) $\sqrt{\frac{24g}{7t}}$


Q.5 A thin rod free to rotate about a horizontal axis through one end O is initially in unstable equilibrium position 1 and falls due to gravity on being displaced infinitesimally. In positions 2,3 and 4 it makes 60°, 90° and 180° with the upward vertical. Let ω_2, ω_3 , and ω_4 be angular velocities of the rod in theses positions then $(\mathbf{B}) \omega_4 = 2\omega_2$ $(C) \omega_2 = 1.5 \omega_2$ $(A) \omega_4 = 2\omega_3$ (D) $\omega_2 = \omega_2 \sqrt{2}$

0.6 An elastic string of natural length $3l_0$ is cut into two parts so that their natural lengths are 2lo and lo respectively. They are attached to points P and Q the vertical distance between P and Q being lo and the horizontal distance being 12cm. A uniform rod CD=40cm is in equilibrium supported by the string at A and B. If the rod CD is horizontal then the lengths of the parts CA and BD in cms are (A) 12,16 (B) 14,14 (D) 10.18 (C) 16.12

- Q.7 A uniform rod of length 2a can turn freely about a horizontal axis passing through one end. What angular velocity must be imparted to it so that it may make a complete revolution in the vertical plane.
- Q.8 Four uniform rods of equal length *l* and mass m are rigidly joined together at their ends to form a square framework ABCD. The framework is free to rotate in a vertical plane about a fixed smooth horizontal axis passing through A. The framework is slightly diapleed from its position of unstable equilibrium. Find the maximum angular velocity reached in subsequent motion.
- Q.9 A solid will der of wass M = 1 kw addres R = 0.5 w is vivot d at its centre p has three particles of mass m = 0.1 kg mounted at its perimeter as shown in the figure. The system is originally at rest. Find the angular speed of the cylinder, when it has swun throu h 90° in anticlockwise direction.
- Q.10 A block of dimensions a \times a \times 2a is kept on an inclined plane of inclination 37°. The longer side is perpendicular to the plane. The coefficient of friction between the block and the plane is 0.8. Find whether the block will topple or not.

Target IIT JEE 2007

PHYSICS Daily Practice Problems

 CLASS: XI (P, Q, R, S)
 DATE: 14-15/09/2005
 TIME: 90 MIN
 DPP. NO.-53

 Q.1
 A body is in equilibrium under the influence of a number of forces. Each force has a different line of

- action. The minimum number of forces required is
 - (A) 2, if their lines of action pass through the centre of mass of the body.
 - (B) 3, if their lines of action are not parallel
 - (C) 3, if their lines of action are parallel.
 - (D) 4, if their lines of action are parallel and all the forces have the same magnitude.
- Q.2 A uniform cylinder of mass m can rotate freely about its own axis which is horizontal. A particle of mass m_o hangs from the end of a light string wound round the cylinder which does not slip over it. When the system is allowed to move, the acceleration of the descending mass will be

 $(A)\frac{2m_{\circ}g}{m+2m_{\circ}} \qquad (B)\frac{m_{\circ}g}{m+m_{\circ}} \qquad (C)\frac{2m_{\circ}g}{m+m_{\circ}} \qquad (D)\frac{m_{\circ}g}{2m+m_{\circ}}$

- Q.3 A uniform rod of length l, hinged at the lower end is free to rotate in the vertical plane. If the rod is held vertically in the beginning and then released, the angular acceleration of the rod when it makes an angle of 45° with the horizontal ($I = ml^2/3$)
 - (A) $\frac{3g}{2\sqrt{2}l}$ (B) $\frac{6g}{\sqrt{2}l}$ (C) $\frac{\sqrt{2}g}{l}$ (D) $\frac{2g}{l}$

Q.4 A thin rod of linear mass density λ at right angle at its mid point (C) and fixed to points A and B such that it can rotate about an axis passes through AB. The moment of inertia about an axis passing through AB is

Q.5 Two persons of equal height are carrying a long uniform wooden beam of length *l*. They are at distance *l*/4 and *l*/6 from nearest end of the rod. The ratio of normal reaction at their heads is
(A) 2 : 3 (B) 1 : 3 (C) 4 : 3 (D) 1 : 2

- Q.6 A uniform cube of side a & mass m rests on a rough horizontal table. A horizontal force F is applied normal to one of the faces at a point that is directly above the centre of the face, at a height 3a/4 above the base. Find the minimum value of F for which the cube begins to tip about an edge. (assume that cube does not slide).
- Q.7 A uniform meter scale balances at the 40-cm mark when weights of 10g and 20g are suspended from the 10-cm and 20-cm marks. The weight of the meter scale is _____.

A spherical ball of mass m = 5.0 kg is resting on a plane with angle of Q.8 inclination 30° with respect to horizontal as shown in the figure. The bal is held in place by a rope attached horizontally to the top of the ball and to the slope. Frictional; force acting on the ball is _

mininterester

- In the figure shown on the right, the rod is uniform and has a mass m, length L. Q.9 Find the minimum value of friction coefficient between the lower end of rod and the vertical wall for the rod to be in equilibrium. The horizontal thread is connected to the rod at a point L/3 from lower end and angle between rod and wall is 60° .
- Q.10 In figure the uniform gate weighs 300N and is 3m wide and 2m high. It is supported by a hinge at the bottom left corner and a horizontal cable at the top left corner, as shown. Find, (a) the tension in the cable and (b) the force that the hinge exerts on the gate (magnitude and direction)

	Target IIT JEE		Z /00 /0002			e Problem
	$\frac{SS: XI(P, Q, R, S)}{A \text{ smooth rod of leng}}$	DATE : 16-1		TIME : 90		DPP. NO54
Q.1	figure. What should b					A A
	equilibrium with resp		of the troney	so mat the rou		Ĵ <u>. O</u> .
	(A) g tan θ	(B) $g \cos\theta$	(C) g	sinθ	(D) $g \cot \theta$	
			()0		()0	
Q.2	A uniform ladder of l	ength 5m is placed a	against the w	all as shown ir	the figure. If	
	coefficien o friction	µ is 'h same for bo'	h 'he walls, v	vha' is 'he mini	mum value of	Æ
	µ for it not to slip?					5m €4m
	1	$(B) \mu = \frac{1}{4}$		1		3m
	$(A) \mu = \frac{1}{2}$	(B) $\mu = \frac{1}{4}$	(C) μ	$=\frac{1}{3}$	$(D) \mu = \frac{1}{5}$	mmmm
2.3	Find minimum height	of obstacle so that t	the sphere ca	n stav in equilil	nium	Ē
	•		-			$\left(\int_{\mathbb{R}} \right)$
	(A) $\frac{R}{1+\cos\theta}$		(B) $\frac{1}{1}$	$\frac{R}{+\sin\theta}$		Thi
	$(C) R (1 - \sin\theta)$		-	$+\sin\theta$ $(1-\cos\theta)$	· · · · ·	.
	$(\mathbf{C})\mathbf{K}(\mathbf{I}-\mathbf{SIIO})$			(1 - 0080)	-	
Q.4	The two spheres eac					
	M = 8t Nm, where t is a speed of 3 m/s start		ed to the rod	Find the value	e of time when e	each sphere attain
	1	ing nom rest.		_	Me Im	
	(A) $\sqrt{2}$ sec			$5\sqrt{2}$ sec		∉ ″
	(C) $\sqrt{-}$ sec		(D) 3	√_ c		ЩМ
Q.5	The moment of inertia	of the pulley system	n as shown in	the figure is 4	kgm ² . The	
	radii of bigger and		and 1m rep	psectively. Th	e angular	the l
	acceleration of the pu	lley system is		_		
	(A) 2.1 rad/s^2			.2 rad/s ²		4kg
	(C) 1.2 rad/s^2		(D) 0	.6 rad/s ²		5kg
		16 0.56 0.5		0.501	. 1	
2.6	A box of dimensions with the smaller face of		om and mas	s 250kg rests	on a truck	· · · · ·
i)	Assuming that the frid		ah sa that the	how does not	lin what	
9	is the maximum accel	0,	~		A /	
	If the acceleration of the				•	tion coefficient fo
ii)						

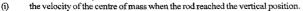
Q.7 A solid homogeneous cylinder of height h and base radius r is kept vertically on a conveyer belt moving horizontally with an increasing velocity $v=a+bt^2$. If the cylinder is not allowed to slip find the time when the cylinder is about to topple.

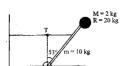
Q.8 In the figure A & B are two blocks of mass 4 kg & 2 kg respectively attached to the two ends of a light string passing over a disc C of mass 40 kg and radius 0.1 m. The disc is free to rotate about a fixed horizontal axes, coinciding with its own axis. The system is released from rest and the string does not slip over the disc. Find:

(i) the linear acceleration of mass B.

(ii)the number of revolutions made by the disc at the end of 10sec. from the start: (iii)the tension in the string segment supporting the block A.

- Q.9 A mass m is attached to a pulley through a cord as shown in the fig. The pulley is a solid disk with radius R. The cord does not slip on the disk. The mass is released from rest at a height h from the ground and at the instant the mass reaches the ground, the disk is rotating with angular velocity ω. Find the mass of the disk.
- Q.10 Two identical uniform spheres are placed inside a smooth cylinder of inner radius R as in figure. The radius r of each sphere is the same and is within the range (R/2)<r<R. All surfaces are smooth. Draw a free body diagram for the bottom sphere indicating the magnitude of each force in terms of the weight W of each sphere and the radii r and R.




\sim	Target IIT JEE 2007	Daily Practice Proble
CLAS		TIME : 90 MIN DPP. NO.
Q.1	A $\neg v \neg t d \nabla v \neg t d \neg v \neg t d \neg v \neg t w uniform boards eac vsame length and makes an angle 30° with the vertical as s' ostatic frictional force that acts on each \neg t ue l \neg wer e \neg d \neg t \neg t ue l \neg wer e \neg d \neg t \neg t ue l \neg wer e \neg d \neg t \neg t ue l \neg wer e \neg d \neg t \neg t ue l \neg wer e \neg d \neg t \neg t ue l \neg wer e \neg d \neg t \neg t ue l \neg wer e \neg d \neg t \neg t ue l \neg wer e \neg d \neg t \neg t ue l \neg wer e \neg d \neg t \neg t ue l \neg wer e \neg d \neg t \neg t ue l \neg wer e \neg d \neg t \neg t ue l ∩ wer e \neg d \neg t ue l ∩ wer e \neg d \neg t ue l ∩ wer e \neg d \neg t u = 0$	own in figure. T' e magni u ' f'''' t'e V is
	$A, \frac{100}{\sqrt{3}}$. $B, 1, \sqrt{2}$. $C, \frac{20}{\sqrt{3}}$	
Q.2	For a car taking a turn on a horizontal surface, let N_1 an inner and outer wheels respectively. (A) N_1 is always greater than N_2 (B) N_2 is always greater than N_1 . (C) N_1 is always equal to N_2 . (D) Either (A) or (B) depending on the speed of the car	-
Q.3	A uniform cube of mass 'm' and side 'a' is resting in eq distance of the point of application of normal reaction n (A) zero (B) $a/3$ (C) $a/$	neasured from the lower edge of the cube
Q.4	A rectangular plate of mass 20kg is suspended from y shown. If pin B is removed determine the initial angular rad/s ²) of plate. (g=10 m/s ²) (A) 48 (B) 20 (C) 30	ar acceleration (in
Q.5	The moment of inertia of a body about a given axis is 1.7 produce a rotational kinetic energy of 1500 Joules, an a applied about that axis for a duration of: (A) 4 sec (B) 2 sec (C) 8 s	angular acceleration of 25 radian/sec ² mu
Q.6	A thin uniform rigid rod of length <i>l</i> is hinged at one end plane by rotating about a horizontal axis through upper sharp blow and made to acquire a linear velocity v_0 . Find the lower end can rise.	r end. The lower end is given a
Q.7 (a)	A uniform beam of length L and mass m is supported a cable suddenly breaks, determine; the acceleration of end B. (b) the reaction at	t the pin support.
Q.8	A 0.6m radius drum carrying the load A is rigidly atta carrying the load B as shown. At the time $t = 0$, the loa 2m/s (downward) and a constant acceleration of $3m/s^2$ (do $0 \le t \le 2s$, determine the number of revolutions executed by the pulley.	ached to a 0.9m radius pulley d B moves with a velocity of wmward). Over the time interval
(ii)	the displacemen. of the loa. A.	B
Q.9	A uniform rod of mass m, hinged at its upper end, is relea it passes through the vertical position, the force on the hi angle 30° with the horizontal force exerted by the ro is	inge is If it is released from rest
Q.10	Figure shows a vertical force F that is applied tangentially of weight W. The coefficient of static friction between the c is 0.5. Find in terms of W. the maximum force that can b causing the cylinder to rotate.	cylinder and all surfaces

PHYSICS BANSAL CLASSES Target IIT JEE 2007 **Daily Practice Problems** DATE : 23-24/09/2005 DPP. NO.-56 CLASS : XI (P, Q, R, S) TIME : 90 MIN 0.1 A-unmour ABCD in a new int a figure. The sides of the rhomous can rotate about vertex A, B, C & D. The vertex C is moving with a velocity of 6 m/s in horizontal direction. Determine the velocity of vertex A. (-)5 m s(_).....s A) 4.8 s ,B) 4.5 s A sphere is placed rotating with its centre initially at rest in a corner as shown in figure (a) & (b). Coefficient Q.2 of friction between all surfaces and the sphere is $\frac{1}{3}$. Find the ratio of the frictional force $\frac{f_a}{f_c}$ by ground in situations (a) & (b). (B) $\frac{9}{10}$ (A) 1 (C) $\frac{10}{9}$ (JD) none Q.3 A rigid body can be hinged about any point on the x-axis. When it is hinged such that the hinge is at x, the moment of inertia is given by $I = 2x^2 - 12x + 27$ The x-coordinate of centre of mass is (C) x = 1(D) x = 3(A) x = 2(B) x = 0A uniform thin bar of mass 6m and length 2l is bent to make a regular hexagon. Its moment of inertia ~ 0.4 about an axis passing through the centre of mass and perpendicular to the plane of hexagon is : (A) $\frac{5}{0}$ ml² (D) $\frac{1}{12}$ ml² $(C) 4ml^2$ (B) 6ml² Q.5 A uniform rod of length L and weight W is suspended horizontally by two vertical ropes as shown. The first rope is attached to the left end of the rod while the second rope is attached a distance L/4 from the right end. The tension in the second rope is (D) $\frac{2W}{3}$ (C) $\frac{W}{2}$ $(A)\frac{W}{2}$ (B) $\frac{W}{4}$ Q.6 ABC is a triangular frame of three uniform rods each of mass m and length 21. It is free to rotate in its own plane about a smooth horizontal axis through A which is perpendicular to ABC. If it is released from rest when AB is horizontal & C is above AB, find the maximum velocity of C in the subsequent motion. Q.7 Two separate cylinders of masses m (=1kg) and 4m and radii R(=10cm) and 2R rotating in clockwise direction with ω_1 =100rad/sec and ω_2 =200rad/sec. Now they are held in contact with each other as in fig. Determine their angular velocities after the slipping between the cylinders stops.

Q.8 A un form, thin rod of length L and mass M is free to rotate on a fr ctionless hinge and is initially held at rest at an angle θ with respect to the vertical as shown in the figure. The rod is then released. Find:

- (ii) the force exerted by the hinge on the rod at the instant the rod reaches the vertical position.
- Q.9 A uniform, thin, cylindrical beam of length 3m and mass 10 kg is y fr g w i t fig. The beam has a sphere of radius 20 cm and mass 2 kg attached to its end and is supported by a horizontial cable attached to the wall and to the midpoint of the beam. The beam is initially at rest at an angle of 53° with respect to the vertical. Find:

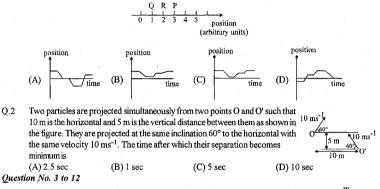
- (i) t_e_en_i_nint_e ca_le
- (ii) the initial angular acceleration of the beam with sphere attached to it just after the cable is cut
- (iii) the angular velocity of the beam when it reaches a horizontal position. (Take sin $37^\circ = 0.6$)
- Q.10 A cube of mass M rests tilted against the wall as shown in the diagram. There is no friction between the wall and thecube, but the friction between the cube and floor is just sufficient to keep the cube from slipping. When $0 < \theta < 45^\circ$, find the ______ coe___cie_t _____ ictio__ as a ______ to____.

PHYSICS Daily Practice Problems

CLASS : XI (P. Q, R, S)

DATE : 26-27/09/2005

DPP. NO.-57


TIME : 1 HOUR

DAIE: 20-2//09/2003

MAX. MARKS: 69

[Deduct one mark for each wrong Answer in the following question in which only one is correct] [23×3=69]

Q.1 A person initially at point P in the illustration stays there for some time and then moves along the axis to Q and stays there for some time. She then returns quickly to R, stays there for some time, and then strolls slowly back to P. Circle the position vs. time graph below that best represents this motion?

A pendulum bob has mass m. The length of pendulum is l. It is initially at rest. A particle P of $\frac{m}{2}$ moving

horizontally along -vex-direction with velocity $\sqrt{2gI}$ collides with the bob and comes to rest. When the bob comes to rest, another particle Q of mass m moving horizontally along y direction collides with the bob and sticks to it. It is observed that the bob now moves along a horizontal circle. There is horizontal floor 2/ distance below the point of suppression of the principle.

- Q.3
 For the first collision which quantity is conserved:

 (A) Only mechanical energy
 (B) Only momentum

 (C) Both
 (D) None
- Q 4 T._si n __s ring i___e_iate y after ____rs. __lis.__

(B) mg

(B) $\frac{\text{mg}}{1}$

Tension in string just before the second collision

(A) 2mg

(A) $\frac{3}{4}$ mg

(C) $\frac{3}{2}$ mg

(C) $\frac{\text{mg}}{\sqrt{2}}$

 $(D) \frac{5}{2} mg$

(D) $\frac{\sqrt{3}}{2}$ mg

21

Q.6 The height of the circular path above the floor is:

0.5

Q.7

(A)
$$\frac{3l}{2}$$
 (B) $\frac{4l}{3}$ (C) $\frac{5l}{4}$ (D) Data not sufficient

Which of the following is a possible value of the speed of particle Q just before its collision with the bob:

(A)
$$\sqrt{\frac{3lg}{4}}$$
 (B) $\sqrt{\frac{7lg}{4}}$ (C) $\sqrt{\frac{7lg}{3}}$

(D) None

Time period of the circular motion: Q.8

(A)
$$2\pi \sqrt{\frac{l}{g}}$$
 (B) $2\pi \sqrt{\frac{\sqrt{7} l}{4g}}$ (C) $2\pi \sqrt{\frac{\sqrt{7} l}{3g}}$ (D) $2\pi \sqrt{\frac{3}{4g}}$

Q.9 Magnitude of the net force on the particle during its circular motion

(A)
$$\frac{2\sqrt{7}}{3}$$
 mg (B) $\frac{2\sqrt{7}}{4}$ mg (C) $\frac{8}{3}$ mg (D) none

0.10 Magnitude of average acceleration during half part of its circular motion

(A)
$$\frac{2\sqrt{7}g}{4\pi}$$
 (B) $\frac{2\sqrt{7}g}{3\pi}$ (C) $\frac{\sqrt{7}g}{4\pi}$ (D) none

0.11 If the string breaks during the circular motion, the bob will hit the floor after a time:

(A)
$$\sqrt{\frac{51}{2g}}$$
 (B) $\sqrt{\frac{41}{2g}}$ (C) $\sqrt{\frac{41}{g}}$ (D) none

Q.12 Distance of the point where the particle hits the floor from the vertical line through the point of suspension.

(A)
$$\sqrt{\frac{13}{3}}l$$
 (B) $\sqrt{\frac{10}{3}}l$ (C) $\sqrt{\frac{91}{48}}l$ (D) none

Question No. 13 to 17

In the figure shown a long cart moves on a smooth horizontal surface due to an external constant force of magnitude F. Initial mass of the cart is M₀ and velocity is zero. At t = 0 sand starts falling from a stationary hopper on to the cart with negligible velocity at constant rate µ kg/s and sticks to the cart. After time to the sand starts leaking from the bottom at the same constant rate µ kg/s. Eventually at time $t = 2t_0$ the sands stops falling from the hopper on to the cart and force F also stops acting.

Q.13 The velocity of the cart at time t ($< t_0$)

(A)
$$\frac{Ft}{M_0}$$
 (B) $\frac{Ft}{M_0} e^{\mu t}$
(C) $\frac{Ft}{M_0 + \mu t} e^{\mu t}$ (D) $\frac{Ft}{M_0 + \mu t}$ (D) $\frac{Ft}{M_0 + \mu t}$

Q.14 In the same model of the above question if the cart is to be moved with constant velocity v, then the power supplied by external agent applying that force is

(A) 2µv

 $(C) \mu v^2$

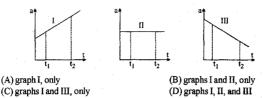
(D) $\frac{1}{2} \mu v^2$

÷

Q.15 In the above question the rate of increase of the kinetic energy of the cart (with sand) is

(A)
$$2 \mu v^2$$
 (B) μv (C) μv^2 (D) $\frac{1}{2} \mu v^2$

Q.16 In the above model (for $t_0 \le t \le 2t_0$) what extra force is required to move the cart with the speed acquired at to (D) µv towards left


(A) uv towards right (B) 2uv towards right (C) zero

(B) µv

Q.17 In the above model at $t = 3t_0$ the momentum of cart and remaining sand in the cart is

(A)
$$\frac{Ft_0}{M_0 + 2\mu t_0} (M_0 + \mu t_0)$$
 (B) $2Ft_0$
(C) $\frac{Ft_0 M_0}{(M_0 + 3\mu_0)}$ (D) $\frac{2Ft_0}{M_0 + 2\mu t_0} (M_0 + \mu t_0)$

Q.18 Each of the three graphs represents acceleration versus time for an object that already has a positive velocity at time t1. Which graphs show an object whose speed is increasing for the entire time interval between t1 and t2?

Q.19 A wheel comprises of a ring having mass 2m and two rods (mass m and length l) along two diameters as shown. Find moment of inertia of the wheel about an axis passing through point P and perpendicular to the plane of wheel.

(A) $\frac{2}{3}$ m/² (B) $\frac{5}{3}$ m/² (C) $\frac{7}{3}$ m/²

Q.20 A square of side L/2 is removed from one corner of a square sandwich that has sides of length L. The center of mass of the ramainder of the sandwich moves from C to C. The displacement of the x-coordinate of the center of mass (from C to C) is y_{ϕ}

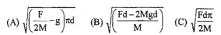
A)
$$\frac{1}{12}$$
L (B) $\frac{\sqrt{2}}{12}$ L (C) $\frac{1}{6}$ L

Q.21 Two cars start at the same point, but travel in opposite directions on a circular path of radius R, each at speed v. While each car travels a distance less than $(\pi/2)$ R, (one quarter circle) the center of mass of the two cars

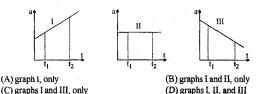
(A) remains at the initial point

(B) travels along a diameter of the circle at speed $\leq v$

- (C) travels along a diameter of the circle at speed = v
- (D) travels along a diameter of the circle at speed > v
- Q.22 The graph shows position as a function of time for two trains running on parallel tracks. Which statement is true?
 - (A) At time t_R, both trains have the same velocity.
 - (B) Both trains have the same velocity at some time after t_B
 - (C) Both trains have the same velocity at some time before t_p.



(D) $\sqrt{\frac{Fd \frac{\pi}{2} - 2Mgd}{T}}$


position

(D) $\frac{\sqrt{2}}{2}L$

Q.18 Each of the three graphs represents acceleration versus time for an object that already has a positive velocity at time t. Which graphs show an object whose speed is increasing for the entire time interval between t₁ and t₂?

Q.19 A wheel comprises of a ring having mass 2m and two rods (mass m and length l) along two diameters as shown. Find moment of inertia of the wheel about an axis passing through point P and perpendicular to the plane of wheel.

(A) $\frac{2}{3}$ m/² (B) $\frac{5}{3}$ m/² (C) $\frac{7}{3}$ m/²

Q.20 A square of side L/2 is removed from one corner of a square sandwich that has sides of length L. The center of mass of the ramainder of the sandwich moves from C to C'. The displacement of the x-coordinate of the center of mass (from C to C) is y_↓

(A)
$$\frac{1}{12}$$
L (B) $\frac{\sqrt{2}}{12}$ L (C) $\frac{1}{6}$ L

Q.21 Two cars start at the same point, but travel in opposite directions on a circular path of radius R, each at speed v. While each car travels a distance less than $(\pi/2)$ R, (one quarter circle) the center of mass of the two cars

(A) remains at the initial point

(B) travels along a diameter of the circle at speed < v

- (C) travels along a diameter of the circle at speed = v
- (D) travels along a diameter of the circle at speed > v
- Q.22 The graph shows position as a function of time for two trains running on parallel tracks. Which statement is true?
 - (A) At time t_p, both trains have the same velocity.
 - (B) Both trains have the same velocity at some time after t_B
 - (C) Both trains have the same velocity at some time before tp.

(D) Somewhere on the graph, both trains have the same acceleration.

Q.23 End A of a vertical uniform light rod, is attached to a frictionless pivot and a sphere of mass 2M hangs at other end B. At some instant of time a strong wind begins to apply a constant horizontal force to B. As a result, the dumbbell rotates about A in a vertical plane. The speed of B at the instant when the dumbbell is horizontal is

(A) $\sqrt{\left(\frac{F}{2M}-g\right)\pi d}$ (B) $\sqrt{\left(\frac{Fd-2Mgd}{M}\right)}$ (C) $\sqrt{\frac{Fd\pi}{2M}}$

(D) $\frac{\sqrt{2}}{2}$ L

	BANSAL C					SICS
	Target IIT JEE					e Problem
CLAS	SS : XI (P, Q, R, S)	DATE : 28-29	/09/2005	<i>TIME : 90 M</i>	<u>IN</u>	DPP. NO58
Q.1	A straight rod AB of m constant magnitude F a the force. The initial ac	nd a fixed direction celeration of end B	starts acting	at the end A. Th	e rod is initial	
	(A) zero	(B) 2F/M	(C) 41	:/M	(D) None	
Q.2	Two identical disks are disk is rota.ing at angul initially at rest. It is allow kinetic energy of the sys	ar velocity ω_0 and we to fall and sticks t stem after the collision	as rotational o the bottom on is	kinetic energy ₀ disk. The change	The top disk in the rotation	is _
	(A) $\frac{k_0}{2}$	$(B) - \frac{k_0}{2}$	(C) –	$\frac{\mathbf{k}_0}{4}$	(D) $\frac{k_0}{4}$	\frown
Q.3	A uniform circular disc rest at A on the edge du walking anticlockwise. will be	e east of O. The ma	ss of the dis he point A aft	c is 22 times the er completing or	mass of the m	an. The man start
	(A) due east of O (C) 60° east of south)° east of north)° south of east.		•
Q.4	Two insects P and Q a more insects A and B an about a vertical axis th crawl to the opposite e	re firmly sitting at th rough its centre as	e bottom of shown in the	the wire. The wire figure. Mass of	e is given an a each insect is	ngulār velocity a M. Now A and I
	(A) $\frac{\omega_0}{4}$	(B) $\frac{\omega_0}{2}$	(C))	(D) 2 ω ₀	Axis of rotation
Q.5	A non uniform rod OA suspended from ceiling figure. Find the angular	with hinge joint O	& light string	g as shown in		A Representation of the second
	(A) $\frac{2g}{L}$	(B) $\frac{g}{L}$	(C) $\frac{4}{3}$	<u>g</u> L	(D) none of	`these
Q.6	A uniform square plate one edge. It is initially a of the plate with velocit velocity of the plate jus	t rest. A particle of n y u. It collides with	1ass 'm' is m	oving horizontal	ly and perpend	ficular to the plan
Q.7	A uniform rod of mass $l/4$ from one end as sh	own in the figure. ed from horizontal j	The rod is f position. Fin	ree to rotate in a	a vertical	<u> </u>
Q. /	plane. The rod is releas hinge, when kinetic ene	ergy of the rod is ma	ximum.			
. .,		rgy of the rod is ma	ximum.	: :		
.		rgy of the rod is ma	ximum.			

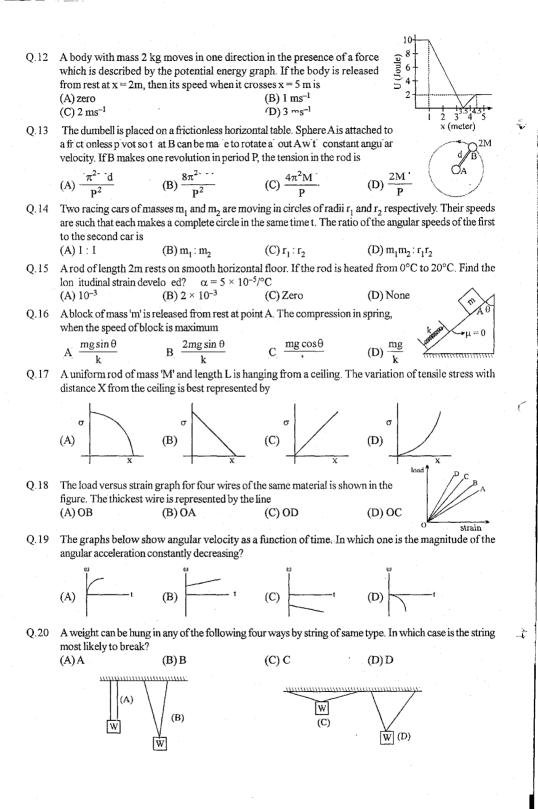
--- Q.8 A particle is projected horizontally along the interior of a smooth hemispherical bowl at rest of radius r and at angle θ_0 with vertical. Find the initial speed V_0 required for the particle to just reach the top of the bowl.

- Q.9 A uniform rod of mass 3m and length 2a is free to rotate in a horizontal plane about a smooth fixed vertical axis passing through the midpoint O of the rod. Two small smooth rings of each of mass m are free to slide on the rod. At time t = 0, the rings are on opposite sides of O and are at a distance of a/2 from O. The rod is given an initial angular velocity 2 (g/a)^{1/2}. The rings being initially at rest relative to the rod. Find the angular velocity of the rod when the rings are about the slip off and the speed of either at this instant. The point O is at a height a above the horizontal plane. Find the distance between the points where the rings strike the plane.
- Q.10 The end 'A' of a uniform rod AB of length / touches a horizontal smooth fixed surface. Initially the rod make an angle of 30° with the vertical. Find the magnitude of displacement of the end B just before it touches the ground after the rod is released.

-	Target IIT JEE 2			y Practic	e Problem
CLAS	SS : XI (P, Q, R, S)	DATE : 30/09/2	005 TIME : 90 MI	N	DPP. NO59
Q.1	A conical conduition cons				t ^ƙ
	mass executes a circle of				
	mass is at position $R\hat{i}$ a	ind has velocity \mathbf{v}_{j} . A	t time t, the angular mo	mentum	
	vector of the mass M abo	out the point from whic	h the string suspended is	:	R
	(A) $MvR\hat{k}$		(B) Mv/ k		\bigvee
	(C) $\operatorname{Mvl}\left[\frac{\sqrt{l^2-n^2}}{l}\hat{i}+\right]$	$\left[\frac{\mathbf{R}}{l}\hat{\mathbf{k}}\right]$	$(D) - Mv l \left[\frac{\sqrt{l^2 - R}}{l} \right]$	$\left[\frac{\hat{\mathbf{z}}}{\hat{\mathbf{i}}} + \frac{\mathbf{R}}{l}\hat{\mathbf{k}}\right]$	ĵ Mar Aj
Q.2	A particle parallel to x-a	tis as shown in the figur	e such that at all instants		
	the y-axis component of	fits position vector is	constant and is equal to	n i ľ	
	'b'. The angular velocity	of the particle about t	0	.1 /	•> V
	(A) remains constant		(B) continuously inci	reases 📲 🔬	> X
	(C) continuously decrea	ases	(D) oscillates.		
.3	A ladder AP of len_th 5 m	is inclined to a vertical	wall is sli in over a b	nizontal	
	surface with velocity of				P
	the velocity of C.M. at the				
	(A) 1.25 m/s	B) 0 m/s	(C) 1 m/s	D) 2 m/s	2m/s
		• • • • •			Alter 3m
Q.4	A rigid horizontal smoo				
	can rotate freely about a		0 1		
	Two rings each of mass from O on either side o			1.	υ
	angular velocity of 30 ra			A /C	D ₁ B
	along the length of the ro			L-{	
	(A) 3 (B) 2	(C) 1	(D) 0.5		
Q.5	A disc of radius 10 cm is				
	flat horizontal surface. A				Then, the distance
	of a point on the disc (fro				
	(A) 5 cm	(B) 10/3 cm	(C) 5/3 cm	(D) 2.5 cm	
Q .6	A thin rod AB of length a	a has variable mass per	unit length $\rho_0 \left(1 + \frac{x}{a} \right)$	where x is the	distance measured
	from A and ρ_0 is a const	ant.			
(a)	Find the mass M of the				
(b)	Find the position of cent				
(c)	Find moment of inertia o				
	pivoted at A and is hangi	ng in equilibrium when	it is struck by a horizon	tal impulse of	magnitude P at the
	point B. Find the angular velocity		-		
(d)					

Section 201

Q.7 A large circular disc shaped platform of mass M and radius R with a man A of mass. M/2 standing on it, is free to rotate in the horizontal plane about a vertical axis through its center O. Another man B of mass M/4 jumps to the point P on the platform with a velocity V as shown in the figure. Now both the man move towards the center O such that their separation finally becomes 3R/4 while their CM lies at O. Determine the moment of inertia of the whole system about vertical axis passing through O and angular velocity of the platform.

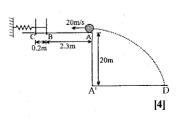

- (a) Just after B jumped on to it and
- (b) after their separation reduces to 3R/4.
- Q.8 A uniform rod of length 2r and mass m is rotating in a horizontal plane about a fixed pivot through centre at a steady speed of o rad/sec. A particle of mass m moving with speed or/4 strikes an end of the rod perpendicularly. The rod and the particle are moving towards each other and the coefficient of restitution is 1/2. Compute the impulsive reaction at the pivot and the new speed of the rod.
- Q.9 Four identical uniform rods of mass m and length *l* are joined together to form a rigid square frame ABCD which is hinged about O on a smooth horizontal floor. The frame is stationary initially. Two particles each of mass m hit the vertices B & D with velocities v and 2v directed along DA & BC respectively as shown. After impact, these particles strick to the frame

Ŧ

- (a) Calculate Moment of Inertia of the frame about an axis passing through O perpendicular to its plane before & after the collision.
- (b) Calculate the loss in kinetic energy of the system in the above collision process.
- Q.10 A circular disc of mass 300 gm and radius 20 cm can rotate freely about a vertical axis passing through its centre of O. A small insect of mass 100 gm is initially at a point a on the close (which is initially stationary) the insect starts walking from rest along the rim of the disc with such a time varying relative velocity that the disc rotates in the opposite direction with a constant angular acceleration = 2π rad/s². After some time T, the insect is back at the point A. By what angle has the disc rotated till now; as seen by a stationary earth observer? Also find the time T.

	BANSAL CLASSE		PHYSICS
	SS : XI (P, Q, R, S)	Da DATE : 03/10/2005	ily Practice Problem
	is the test paper of Class-XI (J-Batch)	· · · · · · · · · · · · · · · · · · ·	and the second
	<u> </u>	PART-A	
	y one alternative is correct. e is <i>NEGATIVE</i> marking. For each wro	ong answer 0.5 mark will be c	$[20 \times 1 = 2]$
	For Q. 1 to Q.5 refer figure-1.		
Q.1	When $F = 2N$, the frictional force bet	· · · ·	
	(A) 2N (C) 8 N	(B) 0 (D) 10 N	μ=0.3 Fig. 1
Q.2	When $F = 2N$, the frictional force be		
~ .~	(A) 2N (B) 15 N	(C) 10 N	(D) None
Q.3	The maximum "F" which will cause n	notion of any of the blocks.	
	(A) 10 N (B) 15 N	(C) data insufficient	t (D) None
Q.4	The maximum acceleration of 5 kg bl $(A) 1 \text{ m/s}^2$ $(B) 3 \text{ m/s}^2$	ock (C) 0	(D) None
Q.5	The acceleration of 10 kg block whe		
Q.J	(A) 2 m/s^2 (B) 3 m/s^2	(C) 1 m/s^2	(D) None
Q.6	The P.E. of a certain spring when str amount of work in joule that must be 0.15 m will be	e done on this spring to stretcl	
_	(A) 10 J (B) 20 J	(C) 7.5 J	(D) 12.5 J
Q.7	A particle of mass 1 kg is acted upor shown in the figure. If initial velocity maximum velocity attained by the par (A) 210 ms ⁻¹ (C) 100 ms ⁻¹	of the particle is 10 ms ⁻¹ , the	$\begin{array}{c c} 20N \\ \hline 10 \\ 10N \end{array}$
Q.8	A 1.0 kg block collides with a horizo 2.75 Nm^{-1} as shown in figure. The block rest position. If the coefficient of kinetic surface is 0.25, the speed of the block (A) 0.4 ms ⁻¹ (B) 4 ms ⁻¹	ock compresses the spring 4.0 r c friction between the block and	in from the 🛁
Q.9	Suppose a player hits several basebal (A) The one with the farthest range. (C) The one with the greatest initial ve	(B) The one which a	e air for the longest time? reaches maximum height. rebat at 45° with respect to the grou
	A hollow vertical cylinder of radius R i		
Q.10	1		
Q.10	 <i>ω</i> about an axis through its center. Wh of static friction necessary to keep th inside of the cylinder as it rotates? 		
Q.10	of static friction necessary to keep the	he mass M suspended on the	Side view

One or more than one alternative(s) is/are correct. There is NO NEGATIVE marking.


5

44

There	is NO NEGATIVE marking.
Q.21	An iron sphere weighing 10 N rests in a V shaped smooth trough whose sides form an angle of 60° as shown in the figure. Then the reaction forces are (A) $R_A = 10 N \& R_B = 0$ in case (i) (B) $R_A = 10 N \& R_B = 10 N$ in case (ii) (C) $R_A = \frac{20}{\sqrt{3}} N \& R_B = \frac{10}{\sqrt{3}} N$ in case (iii) (D) $R_A = 10 N \& R_B = 10$ N in all the three cases (i) (i) (ii) (iii)
Q.22	A spring block system is placed on a rough horizontal floor. The block is pulled towards right to give spring some elongation and released. (A) The block may stop before the spring attains its mean position. (B) The block must stop with spring having some compression. (C) The block may stop with spring having some compression. (D) It is not possible that the block stops at mean position.
Q.23	In the above situation the block will have maximum velocity when (A) the spring force becomes zero (B) the frictional force becomes zero (C) the net force becomes zero (D) the acceleration of block becomes zero
Q.24	 A ball is rolled off along the edge of a horizontal table with velocity 4 m/s. It hits the ground after time 0.4 s. Which of the following are correct? (A) The height of the table is 0.8 m (B) It hits the ground at an angle of 60° with the vertical (C) It covers a horizontal distance 1.6 m from the table (D) It hits the ground with vertical velocity 4 m/s
Q.25	A particle of mass <i>m</i> is at rest in a train moving with constant velocity with respect to ground. Now the particle is accelerated by a constant force F_0 acting along the direction of motion of train for time t_0 . Agirl in the train and a boy on the ground measure the work done by this force. Which of the following are INCORRECT ? (A) Both will measure the same work (B) Boy will measure higher value than the girl (C) Girl will measure higher value than the boy (D) Data are insufficient for the measurement of work done by the force F_0
	PART-B
Q.1	A ball is fired from point P, with an initial speed of 50 m/s at angle of 53°, with the horizontal. At the same time, a long wall AB at 200 m from point P, starts moving towards P with a constant speed of 10 m/s. Find the time when the ball collides with wall AB.
(b)	Find the coordinate of point C, where the ball collides. Taking point P as origin? [3]
Q.2	Two light inextensible strings AB and BC each of length L are attached to a particle of mass m at B. The other ends A and C are fixed to two points in a vertical line such that A is distant L above C. The particle describes a horizontal circle with constant angular velocity ω . Find (a) the tension in AB
	b the least value of ω so that both strin s shall be taut. [3]

 $[5 \times 2 = 10]$

- Q.3 A circular race track is banked at 45° and has a radius of 40 m. At what speed does a car have no tendency to slip? If the coefficient of friction between the wheels and the track is 1/2, find the maximum speed at which the car can travel round the track without skidding. [3]
- Q.4 An elastic rod of mass 10 kg and 10m length is hanging from ceiling. The area of cross-section of rod is 10^{-3} m². The young's modulus of the material is Y = 10^{10} N/m²
- Find the stress at point A, which is 6 m below the ceiling. (a)
- **(b)** A very small element of length 1mm is analysed at point A. Find approximate strain in this element?
- Find energy per unit volume stored in this element? (c)
- Q.5 A small bucket of mass "m" rests at the bottom of a pit that has a depth h. A motor with an elastic cord is used to lift the bucket out of the pit. One end of the cord is attached to the bucket; the other end is attached to the shaft of the motor. There is a mark on the cord at the height 0.8h from the bottom of the pit. The cord is vertical and relaxed but taut. The motor begins to rotate slowly. It is noticed that the bucket loses contact with the ground just as the mark on the cord reaches the shaft.
- Find the elastic constant of the cord in terms of m. g and h. (a)
- Calculate the work done by the motor till that moment? (b)
- Q.6 A stone is launched upward at 45° with speed v₀. Abee follows the trajectory of the stone at a constant speed equal to the initial speed of the stone.
- (a) Find the radius of curvature at the top point of the trajectory.
- What is the acceleration of the bee at the top point of the trajectory? For the stone, neglect the air (b) resistance. [3]
- Q.7 A smooth bead B of mass 0.6 kg is threaded on a light inextensible string whose ends are attached to two identical rings, each of mass 0.4 kg. The rings can move on a fixe 's raig' horizon al wire. T' e sys em res s in equilibrium wi each section of the string making an angle θ with the vertical, as shown in the iag a___
- Find the magnitude of the normal contact force exerted on each ring by the wire. (a)
- (b) Find, in terms of θ , the magnitude of the frictional force on each ring.
- Given that the coefficient of friction between each ring and the wire is 0.3, find the greatest possible value (c) of θ for the system to be in equilibrium. [4]
- One end of a light inextensible string is attached to a ceiling. The string passes Q.8 under a smooth light pulley carrying a weight C and then over a fixed smooth light pulley. To the free end of the string is attached a light scale pan in which two weights A and B are placed with A on top of B as shown. The portions of the string not in contact with the pulleys are vertical. Each of the weights A and B has a mass M and the weight C has a mass 5M. If the system is released from rest
- (a) find the acceleration of the movable pulley?
- (b) the tension in the string.
- the reaction force between the weights A and B. (c)
- Q.9 A small ball is thrown towards the spring with a speed of 20 m/s. The horizontal surface AC is rough with a friction coefficient $\mu=0.1$. It comes in contact with spring at point B and then compresses the spring by 0.2 m and returns back to point A. After that the ball leaves the horizontal plane and follows the path of a projectile.
- (a) Find the speed of ball when it returns back to A.
- (b) Find the Range A' D of the ball.

ే

PHYSICS

 ${}^{\mathbf{k}_{n_{1}}}$

U	Target IIT JEE	2007	Da	ily Practice Problems
CLA	SS : XI (P, Q, R, S)		TE : 05-06/10/2005	DPP. NO61
Q.1	frictionless horizontal Then, the value of nor (A) 4mg/7	l floor. At the initial n mal reaction from th (B) 5mg/9	noment, the rod is inclined te floor just after released, (C) 2mg/5	(D) none
Q.2	In the above problem,	, the initial accelerati	on of the lower end of the	rod will be
	(A) $g\sqrt{3}/4$	(B) $g\sqrt{3}/5$	(C) $3g\sqrt{3}/7$	(D) none
Q.3	A hollow spherical ba Coefficient of static fr (A) friction acts up alo (C) friction acts down	iction between ball a ong the incline	bush up an incline of inclin nd incline = m. During its (B) $\mu \ge 2 \tan \alpha/5$ (D) $\mu \ge 2 \tan \alpha/7$	ation angle a. The ball rolls purely. upward journey,
Q.4		ane with $\theta = 37^{\circ}$ having	tating (at $t=0$) with $\omega_0 = 5$ ng friction coefficient $\mu = 0$ (B) 1. ' sec (D) 1.8 sec	
Q.5	and angular velocity or	$b_0 = 0$ along an incline tion between disc &	projected at $t = 0$, with vert ed plane having inclination inclined is $\mu = \frac{1}{2} \tan \theta$. Fin	$tangle \theta$, (δ)
Q.6 (⁻) (b) (c)	a certain instant, the v is10 rad/s. The lowest th 1 it f i t C	elocity of its center i t contact point is O. I). meous center of rotati		
Q.7	a0. A point A on the w	heel is at a distance θ and the velocit	g and its centre O has an ac r from O. For given value y v ₀ of the wheel for which	es of a_0, R $\left(\begin{array}{c} 0 \\ \searrow 0 \end{array} \right) \xrightarrow{R} V_0 \\ \Rightarrow a_0$
Q.8	square and the corners	are then welded to a	n are welded at their ends a light metal hoop of radiu to roll down the incline, d ii_hl p.	s R. If the
Q.9	For the system shown Calculate	n in figure , $M = 1$	kg, m = 0.2 kg, r = 0.2 n	h. Hoop
(a) (b) (c)	the linear acceleration the angular acceleration the tension in the rope Neglect the mass of sm the pulley and string or	on of the hoop of max all pulley and the frid		the horizontal surface. Masses of I surface ar negligible.
Q.10		when A is at distance	cal wall is slipping over a e 3m from ground. What i	

		CLASSES		
	Target IIT JE		<u>тррр Dс</u> ТЕ :07-08/10/2005	aily Practice Problems
Q.1	A wheel is made to wrapped round a c string should be pu 3 /s?	o roll without slipping, to oaxial spool as shown it lled so that the centre of	owards right, by pulling a n figure. With what veloc the wheel moves with a v	city the elocity g_{1m} string
Q.2	(A) on the cyclinde(B) is directed opp(C) is directed up to	er is zero throughout the	i journey he centre of mass throug bjourney	(D) 2 m/s d then rolls back. The force of friction shout the journey
Q.3	On a solid sphere l mass. The acceler	ying on a horizontal sur ation of a point at the to	face a force F is applied p of the sphere is (there i	at a height of R/2 from the centre o s no slipping at any point)
	(A) $\frac{15F}{7M}$	(B) $\frac{15F}{14M}$	(C) $\frac{30 \text{ F}}{7 \text{ M}}$	(D) $\frac{F}{M}$
Q.4	train with angular a			floor of train along the width of the e acceleration of the top point of bal
	(A) 10 m/s ²	(B) $10\sqrt{14} \text{ m/s}^2$	(C) 100 m/s ²	(D) $\sqrt{1396}$ m/s ²
Q.5	The frictional forc	e on the disk due to surf (B) 3/2 ma	ace of the plane is : (C) ma	nclined plane with an acceleration a (D) 1/2 ma
Q.6	shown in the figure		about its axis as $\frac{mR^2}{3}$, c. 2F is appli toug of the spool and the force	
Q.7		ng wrapped around as sl		s is being pulled along a horizonta ng between the reel and the surface
(a)	Find the angular sy string is being pull	bee. ω of the reel at the ed at speed v.	instant when the end of	((· · ·) · · · · · · · · · · · · · ·
(b)	If the end of the str	0 01	onstant acceleration 'a' f	ind
Q.8	about an axis passi spool. A thread wo with a constant for	ng through its geometri udn on the inner surfac ce = Mg. Find the accel	3 R has a moment of ine c centre, where M is the e of the spool is pulled h eration of the point on th yol rolls purely on the floo	mass of the orizontally he thread
Q.9	surface and W is a		n the figure. H is a horizon ne rod is released from th st after the release.	
Q.10	frictionless. The ma surface of the wedge	ass of the solid sphere is ge and the sphere is suff	M and incline angle 37°. also M. Friction between icient to prevent any slid urface of the wedge. Find	The floor is the incline ding so that

PHYSICS

Daily Practice Problems

CLASS : XI (P, Q, R, S)

DATE : 10-11/10/2005

DPP. NO.-63

Q.1 One ice skater of mass m moves with speed 2v to the right, while another of the same mass m moves with speed v toward the left, as shown in figure I. Their paths are separated by a distance b. At t=0, when they are both at x = 0, they grasp a pole of length b and negligible mass. For t>0, consider the system as a rigid body of two masses m separated by distance b, as shown in figure II. Which of the following is the correct formula for the motion after t=0 of the skater initially at y = b/2?

(A) x = 2vt, y = b/2

- (B) $x = vt + 0.5b \sin(3vt/b), y = 0.5b \cos(3vt/b)$
- (C) $x = 0.5vt + 0.5b \sin(3vt/b), y = 0.5b \cos(3vt/b)$
- (D) $x = 0.5vt + 0.5b \sin(6vt/b), y = 0.5b \cos(6vt/b)$
- Q.2 A solid cone hangs from a frictionless pivot at the origin O, as shown. If \hat{i} , \hat{j} and \hat{k} are unit vectors, and a, b, and c are positive constants, which of the following forces F applied to the rim of the cone at a point P results in a torque τ on the cone with a negative ...mp.ne.t τ_{z} ?

(A)
$$F = a\hat{k}$$
, P is (0,b,-c)
(B) $F = -a\hat{k}$, P is (0,-b,-c)
(C) $F = a\hat{j}$, P is (-b,0,-c)
(D) None

- Q.3 The work done by the force $\vec{F} = x^2\hat{i} + y^2\hat{j}$ around the path shown in the figure is (A) $\frac{2}{3}a^3$ (B) zero (C) a^3 (D) $\frac{4}{3}a^3$ (D) $\frac{4}{3}a^3$
- Q.4 A thin rod of mass M and length L is struck at one end by a ball of clay of mass m, moving with speed v as shown in figure. The ball sticks to the rod. After the collision, the angular momentum of the clay-rod system about A, the midpoint of the rod, is

Q.5

A small particle of mass m is given an initial high velocity in the horizontal plane and win is s cor aroun i e fixe ver (a is a o ra us a. A mo on occurs essen a y n horizontal plane. If the angular velocity of the cord is ω_0 when the distance from the particle to the tangency point is r_0 , then the angular velocity of the cord ω after it has turned through an angle θ is

(A)
$$\omega = \omega_0$$
 (B) $\omega = \frac{a\omega_0}{r_0}$ (C) $\omega = \frac{\omega_0}{1 - \frac{a\theta}{r_0}}$ (D, $\omega = r_0\theta$

- A small sphere is moving at a constant speed in a vertical circle. Below is a list of quantities that could be used to describe some aspect of the motion of the sphere.
 - I kinetic energy
 - II gravitational potential energy
 - III-momentum

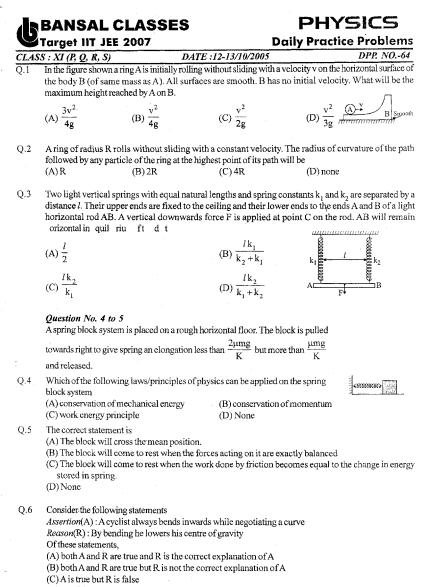
Which of these quantities will change as this sphere moves around the circle?(A) I and II only(B) I and III only(C) III only(D) II and III only

Q.7 Starting from the rest, at the same time, a ring, a coin and a solid ball of same mass roll down an incline without slipping. The ratio of their translational kinetic energies at the bottom will be
 (A) 1:1:1
 (B) 10:5:4
 (C) 21:28:30
 (D) None

Question No. 8 to 10

Q.8 A small block of mass m is placed on a wedge of mass M as shown, which is initially at rest. All the surfaces are frictionless. The spring attached to the other end of wedge has force constant k. If a' is the acceleration of m relative to the wedge as it starts coming down and A is the acceleration acquired by the wedge as the block starts coming down, then

(D) None


(A)
$$\frac{a'}{\sqrt{2}} < A < a'$$
 (B) $A < \frac{a'}{\sqrt{2}}$ (C) $A > a'$

(A)
$$\sqrt{2gh}$$
 (B) $\sqrt{\frac{2ghm}{m+M}}$ (C) $\sqrt{\frac{2m^2gh}{mM+M^2}}$ (D) None

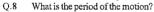
Q.10 Maximum retardation of M is:

(A)
$$\sqrt{\frac{2 \text{mghk}}{M^2}}$$
 (B) $\sqrt{\frac{2 \text{kgh}}{M}}$ (C) $\sqrt{\frac{2 \text{kgh}}{m}}$ (D) None

Q.6

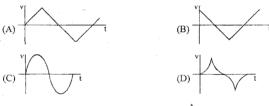
New An Internet State Backback - Arrests processing and the state of the second state of the second state of the

(D) A is false but R is true


7 Consider the following statements:

Assertion(A): A table cloth can be pulled from a table without dislodging the dishes Reason(R): To every action there is equal and opposite reaction (A) both A and R are true and R is the correct explanation of A (B) both A and R are true but R is not the correct explanation of A (C) A is true but R is false (D) A is false but R is true

Ouestion No. 8 to 10


A particle of mass m is constrained to move on x-axis. A force F acts on the particle. F always points toward the position labeled E. For example, when the particle is to the left of E, F points to the right. The magnitude of F is a constant F except at point E where it is zero.

The system is horizontal. F is the net force acting on the particle. The particle is displaced a distance A towards left from the equilibrium position E and released from rest at t=0.

Q.9 Velocity - time graph of the particle is

Q.10 Find minimum time it will take to reach from $x = -\frac{A}{2}$ to 0.

(A)
$$\frac{3}{2}\sqrt{\frac{mA}{F}}(\sqrt{2}-1)$$
 (B) $\sqrt{\frac{mA}{F}}(\sqrt{2}-1)$ (C) $2\sqrt{\frac{mA}{F}}(\sqrt{2}-1)$ (D) None

0.7

		CLASSES			SICS
	Target IIT JE S : XI (PQRS)	E 2007 DATE : 17-18/10/200		Daily Practic	Problems
Q.1		a spring (K) is syonymous t			
	(A) $\frac{YA}{L}$	(B) $\frac{\text{YL}}{\text{A}}$	(C) $\frac{AL}{Y}$	(D)ALY	
Q.2	The amount of wor modulus is 8×10^8 (A) 20000 J	rk done in increasing the ler 'N/m ² will be : (B) 40000 J	ngth of a 1 m long (C) 80000 J	wire through 1 cm (D) data ins	-
Q.3	Wire of different ra properties of a give			wire of larger te anticlockwise	Straio
Q.4		a maximum load of W. If th ad it can now support. (B) 2W	he wire is cut in 2 e (C) W/2	equal parts and join (D) 4W	ed in parallel, what
Q.5	when subjected to s $(Y = 2.0 \times 10^{11} \text{ Nm})$	volume and radii of a unifor some suitable force. Longit m ²) $^{-2}$ (B) 3.2 × 10 ⁷ Nm ⁻²	udinal tensile stress	s acting on the wire	eis
Q.6	and area A. The co copper are in the ra (A) the extension p (B) the extension in (C) the stress appli	onsists of a steel rod of leng omposite rod is subjected to atio 2 : 1. roduced in copper rod will on copper and steel parts will ed to the copper rod will be ill be produced in the steel i	to an axial load F. I be more . Il be in the ratio 2 : e more.	If the Young's mo	
Q.7	(Young's modulus become slack) and i is 1.1×10^9 N/m ² .	0.5kg is hung from the end = 2×10^{11} N/m ²). The object is then dropped so that the v What is the largest possible al to strain throughout the m	ct is lifted through a wire receives a sudd le value of h if the	a distance h (thus al len jerk. The ultima	llowing the wire to ate strength of steel
Q.8		in the volume of an elastic u is is Y and poisson ratio is σ		th l under the action	n of a force F when
Q.9	velocity w in a horiz	per rod of length 1 and area of contal plane about a vertical a cion of the distance r from the	axis passing throug	h one of its end. De	termine the tension

PHYSICS

Daily Practice Problems

CLA	SS : XI (PQRS)	DATE : 19-20/10/200	5 MAX. TIME : 60) Min.	DPP. NO66
Q.1	<i>l</i> . Which of the follow (A) Work done by th (B) Some heat is pro- (C) The elastic poten	wing statements is not corn be external force is F1. Induced in the wire in the p initial energy of the wire is is	orocess.		ength increases by
Q.2	container. A massles	s piston of area A floats o	of bulk modulus K is surrou on the surface of the liquid al change in the radius of the (C) mg/A	l. When a m	assmis placed or VR is
Q.3	[Density of cylinder (a) Find the elastic d	od of length <i>l</i> and radius - p, Young's modulus of eformation energy U of th of tensile strain $\Delta l/l$ of the	ne rod.	rom the ceili	ing.
Q.4		modulus = 2×10^{11} Nm ⁻² stretched it axially. The e (B) 5×10^{-3} m) has an area of cross-sect longation of the rod is (C) 10 ^{.3} m	ion 3 × 10 ⁻⁴ (D) 5 × 10 ⁻⁴	-
Q.5	when the same tension (A) Length = 50 cm		e material. Which of these (B) Length = 100 cm a: (D) Length = 300 cm a	nd diameter	= 1 mm
Q.6		of radius r and cross-sectional area A is fitted on to a wooden disc of radius R odulus be Y, then the force with which the steel ring is expanded is			radius R (R≥r). I
	(A) AY $\left(\frac{R}{r}\right)$	(B) AY $\left(\frac{R-r}{r}\right)$	(C) $\frac{Y}{A} \left(\frac{R-r}{r} \right)$	(D) $\frac{Yr}{AR}$	
Q.7		eter breaks if the tension be of diameter 2 cm is (B) 250 N	in it exceeds 500 N. The (C) 1000 N	maximum to (D) 2000 N	-
2.8	$\mu = \pi/10$ is stretched	by a force of 100 N. Its			
	(A) 0.99998 mm	(B) 0.99999 mm	(C) 0.99997 mm	(D) 0.9999	5 mm
) .9	of elongation of the u	pper half of the wire to the	elongates due to its own we elongation of the lower ha	alf of wire is	tio
	(A) 4 : 1	(B) 3 : 1	(C) 3 : 2	(D) None	IJ

PHYSICS

	Target IIT JEE		Daily Practice	
	S : XI (PQRS)	DATE : 24-25/10/2005	MAX.TIME : 60 Min.	DPP. NO67
Q.1	γ_2 are respectively. I	f the temperature of both me	of volume expansion of metal and r rcury and metal are increased by netal submerged in mercury chang	an amount ∆T, by
Q.2	Another rod B of a di A third rod C of 50	fferent metal of length 40 cm cm length is made up of pie	n, when its temperature is raised fr expands by 0.04 cm for the same ri ces of rod A and B placed end to ngths of each portion of the comp	se in temperature. end expands by
Q.3		lic pendulum in 5 sec fast eac . Find α for the pendulum me	h day at a temperature of 15°C an tal.	d 10 sec slow at a
Q.4	unfilled part of vessel		when both are heated together, a ture. Find the initial volume of me 0 C; $\gamma_{Hg} = 18 \times 10^{-5/\circ}$ C]	
Q.5	expansion $\alpha = 20 \times 10^{-10}$ suspended from the α temperature rises to elevator vertically to	10^{-4} (C°) ⁻¹ and a heavy particle ceiling of an elevator at rest. T 51.2°C, the elevator operat	ery thin isotropic string of thermal c le attached to one end. The free e 'he pendulum keeps correct time a or of 60 kg being a student of Ph pparent weight of the operator w	end of the string is at 20°C. When the sysics accelerates
Q.6	of the volume of the b	ody is submerged in the liquid	0°C being completely submerged i after its cooling to $t_0 = 0$ °C, if the c d of the liquid $\gamma_t = 8 \times 10^{-5}$ °C ⁻¹ .	
Q.7	rod of length 2.0 m. Young's modulus 3 >	The metal of one rod has co 10^{10} N/m ² . The other metal must be applied to the ends of	section and length (1.0 m each) are efficient of linear thermal expan has the values 2×10^{-5} and 10^{10} N the composite rod to prevent its ex-	sion 10 ⁻⁵ /°C and I/m ² respectively.
Q.8	of negligible tensic temperature = 20° C.	we wire of length 2 m and cross-sectional area = 2 mm^2 is fixed between two rigid supports in a state egligible tension. If wire is stretched and tied firmly between two rigid supports, at a perature = 20° C. At this moment, the tension in the wire is 200 N. At what temperature will the on become zero? [Given : Y = 200 GPa, $\alpha = 10^{-5/\circ}$ C]		
Q.9	of length <i>l</i> is tied to sp natural length. The wi Young's modulus Y. I	ohere. The other end of the wi re has coefficient of linear exp	a horizontal surface. A metallic win re is fixed to a ceiling. The wire is ansion a, area of cross-section A ar re sphere, find out the decrease in the surface.	in

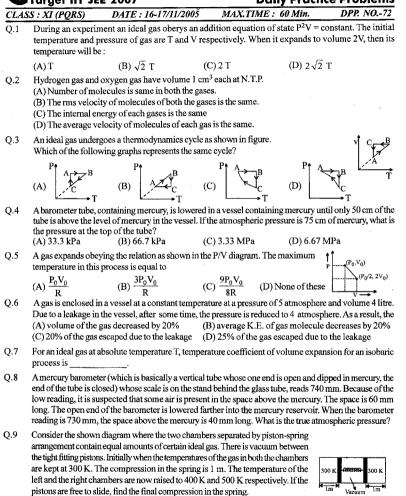
PHYSICS

U	Target IIT JEE 2007	Daily Practice Problems		
CLA		MAX.TIME : 60 Min.	DPP. NO68	
Q.1 (a)	A square plate of a metal has a circular hole with cent length of plate is a and radius of hole is $a/2$. Now ter changed by ΔT . Coefficient of linear expansion for m Find the new area of hole.	mperature of the plate is naterial of plate is α .		
(e rat o o t e area of ole an plate in na si ua ior	1.		
Q.2	Two vessels connected by a pipe with a sliding plug con- column is 39.2 cm and its temperature is 0°C, while ir and its temperature is 100°C. Find the coefficient of c connecting pipe should be neglected.	the other, the height of mer	cury column is 40cm	
Q.3	A thermometer has stem of internal diameter 0.8 mm a the thermometer rises by 11.9 mm where the temperatu of cubical expansion of the liquid. ($\gamma_{gl} = 1 \times 10^{-5}$ °C ⁻	re changes from 0°C to 40°	C. Find the coefficient	
Q.4	A box measured with a vernier caliper is found to measurement is 10°C. What will the measurement er graduated at a temperature of 20°C? The coeff vernier = 11×10^{-6} °C ⁻¹ .	rror be if the scale of the ver	nier caliper has been	
Q.5	Three rods A, B and C having identical shape and size triangle. Rods A and B are made of same material $\alpha_1 = 11 \times 10^{-6}$ /°C while that of material of rod C is α_2 system of rods be heated to increase the angle opport	having coefficient of linea = 16×10^{-6} /°C. By how ma	r thermal expansion ny kelvin must be the	
Q.6	The system shown consists of 3 springs & two rods. If of the rods is increased by ΔT , calculate the force exer wall. Neglect friction & Thermal stress & take the cos expansion of the material of rods equal to α .	ted by springs on 1	2K 1/2 3K	
Q.7	A hollow steel sphere, weighing 200 kg is floating on order to submerge when the temperature is 20°C. How increases to 25°C? Given : $\gamma_{water} = 1.5 \times 10^{-4}$ °C, α_s	much less weight is to be place		
Q.8	A bar of uniform cross-section and of length 90cm is three materials A, B & C. Their lengths are 40cm, 30 20cm respectively. The coefficients of their thermal co are in the ratio $2:3:4$. The ends are maintained at 1 sides of the bar. When the rod is in steady state, find t	cm and 100°C A onductivities 40 cm 00°C & 30°C & there is no		
Q.9	A composite rod is made by joining two rods of differe the composite rod is 100 cm in length, out of which the length of the composite rod increases by 2.1 mm. When	the length of the first rod is	40 cm. At 135°C the	

the composite rod is 100 cm in length, out of which the length of the first rod is 40 cm. At 135°C the length of the composite rod increases by 2. Imm. When the composite rod is not allowed to expand by holding it between teo rigid walls it is found that the lengths of the two constituents do not change with rise in temperature. Young's modulus of the first rod is 1.2×10^{11} dyne/cm² and its coefficient of linear expansion is 1.5×10^{-5} /°C. Find the young's modulus and coefficient of linear expansion of the second rod.

	BANSAL			PHYSICS	
	Target IIT JEI			ly Practice Proble	
	SS : XI (PQRS)	DATE : 09-10/11/20		60 Min. DPP. NO. nted flask. Small amount of i	
Q.1		to Figure 13°C is contain x. The fraction of water fi (B) 6/35		(D) 2/35	
Q.2	A 2100 W continuo flows out at the rate (A) 20°C	us flow geyser (instant g of 20 g/sec. The outlet t (B) 30°C	eyser) has water inlet ter emperature of water mu (C) 35°C	nperature = 10°C while the v st be about (D) 40°C	vater
Q.3	$1.7 \times 10^{-5} (C^{\circ})^{-1}$. We when its temperature	/hat hydrostatic pressur e is increased from 20°C	e is necessary to preven C to 30°C?	ficient of linear expansion t a copper block from expan	
Q.4	(A) 6.0×10^5 Pa The specific heat of T is the absolute T = 1 K to T = 2 K	temperature. The heat	(C) 5.2×10^6 Pa ures varies according to energy needed to rais	(D) 40 atm $S = aT^3$ where a is a constant e unit mass of the metal is	t and from
	(A) 3 a	(B) $\frac{15a}{4}$	(C) $\frac{2a}{3}$	(D) $\frac{12a}{5}$	
Q.5		ficient of expansion 0.1 les to it. Then the cubica	$3 \times 10^{-8/\circ}$ C in one direct	tion and $2.31 \times 10^{-7/\circ}$ C in e	very
Q.6	coefficient of volum		γ_c . What is the coefficient	s C and in a silver vessel is S. at of linear expansion of silver (D) $\frac{(C - \gamma_c - S)}{3}$	
Q .7		mixed with 10 gm of ste nixing is done in a calori		nal temperature and compos at 13 gm, initially at 0°C.	ition
Q.8	bucket is brought int is immediately mean fig. The specific hear fusion of ice is 340 k	mixture of water and ic o room after which the te sured. The obtained $T(\tau)$ t of water is $c_W = 4.2 kJ/k$ J/kg. Determine the mass rought in the room neglet	emperature of the mixtur dependence is plotted i g-K and the latent heat of ss m _{ice} of ice in the bucket	$ \begin{array}{c} $	
Q.9	heat s is entering at or is 50°C. In bath anot	passing through a bath. A e end of tube. Rate of flow ner liquid having specific kg/s. Find the exit temp state condition)	w of liquid is 1 kg/s and ex c heat 2s and inlet tempe	it temperature rature 20°C is	
10					

PHYS	
------	--


CLAS	SS : XI (PQRS)	DATE : 11-12/11/2005	MAX.TIME :	60 Min.	DPP. NO70
Q.1	and B are mixed, th	ee liquids A, B and C have he mixture has a tempera . If A and C are mixed, the (B) 20°C	ture of 15°C. If B and	l C are mixed,	Crespectively. If A the mixture has a
Q.2	The temperature of mean square velocit (A) More in case (i)				
Q.3	The temperature of masses are mixed. V (A) 5/6 th (C) whole of it will b	ice is -10°C (specific hea What part of the ice will be be melted	t = 0.5 K cal/kg°C) an melted? (Latent heat (B) 11/16 th (D) 5/11 th	d that of water of fusion of ice	60°C. Their equa = 80 Kcal/kg)
Q.4	and cross sectional magnitude 5×10^4 N	h 2m and cross section are area 1 cm ² . The compound at its ends. If the elongation n^2 , $Y_{steel} = 2 \times 10^{11} \text{ N/m}^2$ (B) 1.8 m	d rod is subjected to each of the two rods are a	qual and oppos	site tensile force of
Q.5	The density of a mat	erial A is 1500 kg/m ³ and 8 volumes of A is equal to	that of another materia	al B is 2000 kg/	
Q.6		the test supplied to decrease the test supplied to decrease the test of test		ater mixture by (D) none of	
Q.7	and placed on two la (h_A/h_B) of their maxi	al masses, one made of m arge blocks of ice at 0°C. I mum depth of penetration $()^{-1}$; $\rho_A = 2.7$ g cm ⁻³ ; S _H	f both the cylinders ha in the ice. Assume that	we the same he no heat is lost t	eight, find the ration of the surroundings
Q.8	of the liquid is	er equivalent 20 gm contai $\frac{\theta}{00}$ cal/gm-°C	n a liquid of mass 100 j	gm at 30°C. Sp	ecific heat capacity
(a) b)	where θ is temperate m gm of ice at -10°C is 10°C. Specific	re in degree Celsius. It is put in the calorimeter so heat capacity of water Latent heat of fusion= 80 d	$r S_{w} = 1 cal/gm^{-c}$	C, specific l	neat capacity of
Q.9	specific heat 0.2 cal	meters A and B contain eq g^{-1} (C°) ⁻¹ is dropped int 2°C and B is 23°C. The ini al g^{-1} (C°) ⁻¹ is	o A and a 5g piece of	metal Y into B	. The equilibrium
Q.10	water and the volum	of ice is 0.92. A metal of m e of mixture is found to b of metal assuming the spe 80cal/gm.	e reduced by 0.1 cm ³	without chang	e of temperatures.

PHYSICS

	Target IIT JE			Daily Practic	
	$\frac{SS:XI(PQRS)}{S=100}$	DATE : 14-15/	the second s	<u>1E: 60 Min.</u>	DPP. NO71
Q.1		that the temperatur	.1 kg of water contained e of the calorimeter and (C) 0.260		
Q.2	The ratio of densitie capacities per unit v (A) 1:1		4 and the ratio of their spe (C) 9:16	ccific heats is 4:3. Th (D) 16:9	ne ratio of their hea
Q.3	4°C and at another (A) the level remain (B) water overflow (C) water overflow	time it is decreased ns constant in each is in both the cases is in the latter case, w	At one time the temperat by few degrees below 4 case while come down in the p hile in later case its level	°C. One shall obser previous case	
Q.4	-		C. When mixed in equal fic heats of A and B is (C) 1:1	masses the tempera	ture of the mixture
Q.5	kg of a substance a		t change in the temperatu a constant rate of 42 kJ 1 substance is :		20 25 30 35 40 45 50 time (min) →
Q.6	between fixed wal	ls separated by 100	t of linear expansion α = 1 1 mm. The Young's mo the stress developed in t (B) 10 ⁸ (D) cannot be ca	odulus of the rod is he rod is (in N/m ²)	aced symmetrically 10^{11} N/m ² . If the
Q.7	When the temperat (A) Percentage rise (B) Percentage rise (C) Percentage rise	in the area of a face in the thickness is 0 in the volume is 0.6	is raised by 80°C, its dia e is 0.4 %	ameter increases by	
Q.8	end to end with an cross-sectional are	aluminium alloy $= 0.5 \text{ mm}^2$. The fr ligible tension. The	$\sqrt{5}/K$ of length 1 m and cr wire (Y = 100 GPa, α = ee ends of the composit in the temperature of the t i ?	= 2×10^{-5} /K) of l e wire are fixed or	length 50 cm and rigid supports at
Q.9		. The change in tem What are their meltin		er 1 80	$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $
Q.10	heat is supplied to th	ese calorimeters at s emperatures are 12°	ively 100g of water, 140g ame constant rate, it is for (C, 9°C and 16°C. Find (iquid X.	und that after a give	n time interval, the

PHYSICS **BANSAL CLASSES** Target IIT JEE 2007

Daily Practice Problems

- Q.10 A 20 litre vessel is filled with air at a pressure of 0.4MPa and connecting to another vessel from which all the air has been pumped out. The pressure in the two vessels equalise at 1×10^5 Pa. Assuming the process to be isothermal, find the volume of the second vessel.
- Q.11 A vessel of volume V = 30 litre contains an ideal gas at temperature T = 27° C. Keeping temperature constant, a part of gas is allowed to escape from the vessel causing the pressure to fall down by $\Delta P = 0.5$ atm. Find the mass of gas released. It's density under normal condition is $\rho = 1.25$ g/litre.

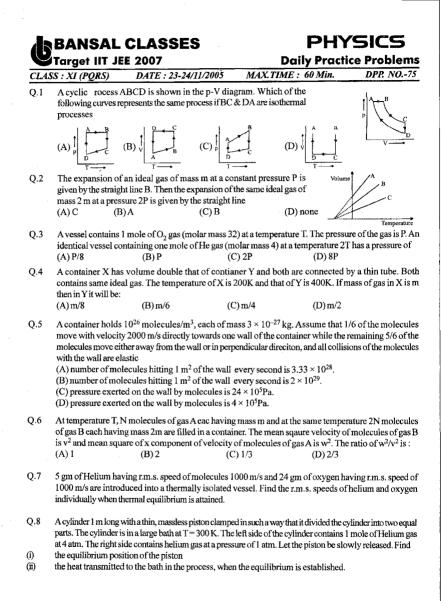
PHYSIC BANSAL CLASSES **Daily Practice Problems** Target IIT JEE 2007 DPP. NO.-73 MAX.TIME: 60 Min. CLASS : XI (PORS) DATE : 18-19/11/2005 N(<100) molecules of a gas have velocities1, 2, 3 N/km/s respectively. Then 0.1 (A) rms speed and average speed of molecules is same. (B) ratio of rms speed to average speed is $\sqrt{(2N+1)(N+1)/6N}$ (C) ratio of rms speed to average speed is $\sqrt{(2N+1)(N+1)/6}$ (D) ratio of rms speed to average speed of a molecule is $2/\sqrt{6} \times \sqrt{(2N+1)/(N+1)}$ A cyclic process ABCA is shown in PT diagram. When presented on PV, it would 0.2 $\begin{bmatrix} B \\ C \\ C \end{bmatrix} = \begin{bmatrix} C \\ C \end{bmatrix} \begin{bmatrix} B \\ C \\ C \end{bmatrix} = \begin{bmatrix} C \\ C \end{bmatrix}$ Q.3 A vessel with open mouth contains air at 60°C. When the vessel is heated upto temperature T, one fourth of the air goes out. The value of T is (C) 333°C (D) 444°C (A) 80°C (B) 171°C Five particles have speeds 1, 2, 3, 4, 5 m/s, the average velocity of the particles is (in m/s) 0.4 (C) 2.5 (D) cannot be calculated. (A)3 (B)0 During an experiment, an ideal gas is found to obey a condition VP² = constant. The gas is initially at a 0.5 temperature T, pressure P and volume V. The gas expands to volume 4V. (A) The pressure of gas changes to $\frac{P}{2}$ (B) The temperature of gas changes to 4T (C) The graph of above process on the P-T diagram is parabola (D) The graph of above process on the P-T diagram is hyperbola. During an experiment, an ideal gas is found to obey a condition $\frac{1}{2}$ 0.6 = constant [p = density of the gas].

 ρ The gas is initially at temperature T, pressure P and density ρ . The gas expands such that density changes to $\rho/2$.

(A) The pressure of the gas changes to $\sqrt{2}$ P

(B) The temperature of the gas changes to $\sqrt{2}$ T

(C) The graph of above process on the P-T diagram is parabola

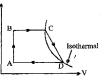

(D) The graph of the above process on the P-T diagram is hyperbola.

- Q.7 A vessel of volume V=5litre contains m = 1.4gm of nitrogen at a temperature T = 1800K. Find the gas pressure, taking into account that $\eta = 30\%$ of nolecules are dissociated into atoms at this temperature.
- Q.8 Consider an ideal gas whose pressure varies with volume according to relation $p = p_o aV^2$, where p_o and a are positive constant. If we subject the gas to different pressures what is the maximum temperature that the gas may attain.
- Q.9 The r.m.s. speed of a molcule of oxygen at 127°C is half that of a molecule hydrogen at
- Q.10 Two identical containers joined by a small pipe initially contain the same gas at pressure p_0 and absolute temperature T_0 . One container is now maintained at the same temperature while the other is heated to $2T_0$. The common pressure of the gases will be
- Q.11 In the previous problem, let V_0 be the volume of each container. All other details remain the same. The number of moles of gas in the container at temperature $2T_0$ will be_____.

PHYSICS

U	Target IIT JEE	2007	Dai	ily Practic	e Problems
CLA	SS : XI (PQRS)	DATE : 21-22/11/2			DPP. NO74
Q.1 Q.2	that due to leakage in The quantity of N ₂ ga (A) 11/20 gm Two monoatomic ide	the flask, the pressur is that leaked out is (B) 20/11 gm al gas at temperature 7 vo gases are m ₁ and m	pressure of 10 atm and a re is reduced to half and (C) 5/63 gm f_1 and T_2 are mixed. Ther f_2 and number of their mod	(D) 63/5 gr e is no loss of et	e reduced to 27°C. m nergy. If the masses
			(C) $\frac{n_2 T_1 + n_1 T_2}{n_1 + n_2}$		
Q.3			lydrogen and 8 gm of H Pa, the density of the mix (C) 2 g/litre		
Q.4	In case of hydrogen at (A) average momentu (C) kinetic energy per	m per molecule	vhich of the following qu (B) average kinetic o (D) kinetic energy p	energy per mole	
Q.5	pressure by a piston of	of cross sectional area r maintained at origin	ed into two parts of equa 10.85 cm ² . The gas in o tal temperature. The pisto inge in temperature? (C) 0.5 cm	ne part is raised	d in temperature to perfect insulators.
Q.6			n ³ at a temperature of 7°C . What is the temperature (C) 1200K		
Q.7	and weight can be co	nsidered negligible is is 4m below the surfa	and 50cm long whose wall s entered open end (top) ace. What force is require rmal.	first, into 🚦	Air
Q.8	quasistatically from st B 15.8 atm and volum	ate A at pressure 18 at e 8.4 lit. as shown in th	er a piston is transferre m and volume 4 lit. to stat he fig. (a) Draw the proces mperature of the gas durin	te A	в
.9	Explain whether (a) (c) $V_2 > V_1$ or otherw which represent isother is_ci. v.ocess res _r	vise in fig. A, B and rmal, isobaric and	$ \begin{array}{c} \mathbf{P}_{1} \\ \mathbf{C} \\ \mathbf{C} \\ (A) \\ \begin{array}{c} \mathbf{P}_{1} \\ \mathbf{T}_{2} \\ \mathbf{T}_{1} \\ \mathbf{B} \end{array} $	P2 P1	P V ₂ (C) V ₁
Q.10	Assuming the molecu collisions per second vessel is next thermall	les to be moving with which the molecuels y insulated and move	ne atmospheric pressure v_{nns} equally in all direct make against one square d with a speed v_0 . It is the by $\Delta T = 1^{\circ}C$. Calculate t	tion⊥to wall, i metre of the ve en suddenly sto	find the number of essel wall. (ii) The
Q.11	Two ideal monoatomic	e & diatomic gases are	mixed with one another	to form an ideal	gas mixture. The

Q.11 Two ideal monoatomic & diatomic gases are mixed with one another to form an ideal gas mixture. The equation of the adiabatic process of the mixture is PV^{γ} = constant, where $\gamma = 11/7$. If $n_1 \& n_2$ are the number of moles of the mono atomic & diatomic gases in the mixture respectively, find the ratio n_1/n_2 .



- Q.9 One mole of an ideal mono-atomic gas is contained in a piston-cylinder arrangement as shown in the figure. The gas is initially at a pressure of 1 atom and temperature 27°C. The piston has cross-sectional area 0.005 m² and is connected to an undeformed spring of force constant 10⁴ Nm⁻¹. How much heat must be added to the gas to increase the pressure to 3 atm.
- Q.10 One mole of an ideal monoatomic gas performs a cyclic process as shown in the figure.
 - $A \rightarrow B$: isochoric heating
 - $B \rightarrow C$: isobaric expansion
 - $C \rightarrow D$: straight line from C to D

 $D \rightarrow A$: isobaric compression

The temperatures in the states A, B and C are T_0 , $2T_0$ and $4T_0$ respectively. Points C and D lie on the same isotherm. Find the work done by the gas during the cycle.

Q... T..o mole. of ... ideal mole...omic g.s u.d. rgoss a cyclic process as shown in the figure. The temperature in different states are $6T_1 = 3T_2 = 2T_4 = T_3 = 1800$ K. Determine the work done by the gas during the cycle.

(6	BANSAL C		·	PHYSICS y Practice Problem
CLAS	Target IIT JEE SS : XI (PQRS)	DATE : 25-26/11/200		
Q.1	An ideal gas of Mola	ally upwards with acceler		H, closed at both ends. The tub of pressure at the bottom and th (D) MgH/RT
Q.2	A → B is isobaric, I process. The followi	dynamics cycle shown on $B \rightarrow C$ is isochoric and C ng internal energy and hear -4 . I $Q_{B \rightarrow \gamma} = -4$ process $Q_{C \rightarrow A}$ is :	$\mathbb{C} \rightarrow \mathbf{A}$ is a straight line at are given :	
	(A) - 20 kJ	(B) + 25 kJ	(C) – 25 kJ	(D) Data are insufficient
Q.3	second kind of expar		en the initial and final st	expanded between two states. ate which requires a heat input of (D) 13 kJ
Q.4	A vessel contains an it. Then the work do		ich expands at constant	pressure, when heat Q is given t
	(A) Q	$(B) \frac{3}{5}Q$	(C) $\frac{2}{5}$ Q	(D) $\frac{2}{3}$ Q
Q.5	One mole of an ide P/V = constant. If the	cal monoatomic gas at t e final temperature is $2 T_0$	emperature T ₀ expand , heat supplied to the ga	ls slowly according to the lav as is :
	(A) 2 R T ₀	(B) $\frac{3}{2}$ R T ₀	(C) R T ₀	(D) $\frac{1}{2}$ R T ₀
Q.6	One mole of a gas ex when the temperatur		ccording to the relation	$V = kT^{2/3}$. What is the workdom
	(A) 10R	(B) 20R	(C) 30R	(D) 40R
Q.7	$AB \rightarrow$ adiabatic pro- BC \rightarrow isothermal pro- CD \rightarrow isobaric proc- AB \rightarrow adiabatic roo	ocess ess cess by the gas and also chang		$\begin{pmatrix} P \\ P_0 \\ (8/27)P_0 \\ (4/27)P_0 \\ V_0 \\ V_0 \\ V_0 \\ V \\ $
Q.8	$1 \rightarrow 4 \rightarrow 3 \rightarrow 2 \rightarrow 1$ sho	rk W done by an idea own in the Figure if p $V_1 = 10l$, and segments 4	$p_1 = 10^5 Pa, p_0 = 3 \times 10^5 Pa$	10 ⁵ Pa,

 V_1

- Q.9 One mole of a mono-atomic ideal gas is to be taken from state $A(P_0, V_0)$ to the state $B(P_0/2, V_0)$. The transfer of state is done in two different ways :
- The gas first expands from A isobarcally and then compressed to B in such a manner that its pressure is directly proportional to volume.
- [2] The gas first undergoes an isothermal expansion from A & then is compressed to B through an isobaric process.
- (a) Draw the P-V diagrams for both process 1 & 2.
- (b) Calculate the work done $W_1 \& W_2$ for each process.
- (c) Calculate the ratio Q_1/Q_2 where $\tilde{Q_1}$ = heat transfer in process 1 and Q_2 -heat transfer in process 2.
- Q.10 n moles of an ideal gas having adiabatic exponent y undergoes a thermodynamic cycle shown in figure. Calculate its efficiency.

Q.11 3 moles of a diatomic ideal gas is enclosed in an adiabatic vertical cylinder fitted with a smooth, li ht adiabatic piston. The piston is connected to massless s ring as shown having spring constants $k_1 = 300$ N/m and $k_2 = 200$ N/m. Area of cross-section of the cylinder is 20 cm². Initially both the springs were at their natural length and the temperature of the gas is 300 k. Atmospheric pressure 100 kPa. The gas is heated slowly using a heating coil as shown so as to move the piston by 20 cm. Find the

- (a) work done by the gas
- (b) final temperature of the gas
- (c) heat supplied by the heater.

PHYSICS

CLAS	Target IIT JEE SS : XI (PQRS)	DATE : 30/11	/2005 7	MAX.TIME :	aily Pract		PP. NO78
Q.1	A metallic rod of cros heat loss, has one end through the rod melts (A) 330 Wm ⁻¹ K ⁻¹	ss-sectional area 9 immersed in boili	0 cm ² and le ng water and of 1 gm for e	the other in ice	-water mixtur he thermal cor	e. The he iductivity	at conducted y of the rod is
Q.2	Two sheets of thickneside is A, and on the arithmetic progressing (A) 1:3	side of the thicke	r sheet is C. 7	The interface the of th	temperature is	s B. A, B er sheet	and C are in
Q,3	A hollow sphere of inr surrounded by anothe thermal conductivity I at 100°C. The system (A) 50°C	er hollow sphere c K. The inside of sm	of inner radius naller sphere is The temperat	2R and outer maintained at	radius 3R ma 0°C and the o	de of san utside of	ne material of
Q.4	A cylindrical rod with per second. If the rod i thermal conductivity c (A) 3.2	is replaced by anot	her with half t	he length and a at of first, the ra	louble the radi	us of the	first and if the
Q.5	Three identical rods points of AB and Cl 0°C, 100°C, 30°C an (A) from P to Q	D respectively. E d 60°C respective	nds A, B, C ely. The direc (B)	and D are ma tion of heat fl from Q to P	aintained at ow in PQ is	0°C A P	Q
2.6	 (C) heat does not flow In a 10-meter-deep la at -4°C. The thermal freezing, the maximum 	ke, the bottom is a conductivity of ic	it a constant t e is 3 times th		4°C. The air to		
2.7	Three rods AO, BO section are connected and C are 30°C, 60°C rods AO, BO and CO of junctin O?	as shown in the fig and 90° respectiv	ure. The tem ely. The ther	perature of eno	ds A, B ities of A		о В
2.8	One end of a uniform other end is in perfect free end of this rod is l been reached, it is fou given that the thermal	thermal contact w kept in melting ice nd that 360gm of i	ith another ro and when the ice melt per h	od of identical composite ro our. Calculate	cross-section d is well lagge the thermal co	and leng d and ste onductivi	th 10cm. The adv state has
).9	One end of a uniform ice. A point P on the ro per second is equal to specific latent heat of	od is maintained at the mass of ice m	a constant te nelted per sec	mperature of 8 ond. If specifi	300°C. The ma	iss of ste	am produced
Q .10	An electric heater is us inside when the outsid is of wood of thickness of brick of thickness 1 power of the heater. T	e temperature is – s 2 cm, the middle 0 cm. Assuming th	10°C. The wa layer is of ce hat there is no	alls have three ment of thick loss of heat fr	different layer, ness 1 cm and om the floor a	s. The ini the outer nd the ce	nermost layer most layer is iling, find the

PHYSICS

	Target IIT JE	E 2007	-			ice Problems
CLAS	SS : XI (PQRS)	DATE : 05-06/12	2/2005	MAX.TIME :	60 Min.	DPP. NO80
Q.1	The clock used to r	maintain Indian Stand				
	(A) Pendulum cloc	k (B)CesiumAton	nie Clock(C) (Juartz clock	(D) Nor	
Q.2		beamed at moon take				r orbit around earth is
	(A) 3.84 × 10 ⁵ km			1.92×10^5 km		3 × 104 km
Q.3		s released from rest a				
		es a 'is ance ' along				T Cm
		al distance h. Let v a				h 🗙 🤉
		eleration, respectively		position 2. Wh	iich of the	1 a C
	01	s is valid for this situat		$1 = (1/2)_{a+2}$	(D) mah	$l = (1/2)mv^2$
~ 1	(A) h = vt	(B) $h = (1/2)gt^2$ sushed into a metal cyl	(C) ($l = (1/2)at^2$		
Q.4		Austred into a merai cyl	inder contain	ing an ideal gas.	which of the	e tonowing statements
	is incorrect?	felas cas in ana soc				
		of the gas increases the molecules per uni	it volume inc	-		
		beed of gas molecules		cases		
		of collision of the gas		ith the niston in	creases	
Q.5		wing statements is not				n ideal gas?
Q		f a collision is negligi				
		have negligible attrac				
		have negligible mome			th the contain	ner walls
		l kinetic energy chang				
	of the containe		·		¢	
Q.6	A closed container	is fully insulated from	1 outside. One	half of it is fille	ed with an	
	ideal gas X separate	ed by a plate P from the	e other half Y	which contains	a vacuum	X Y
	as shown in figure.	When P is removed, >	K moves into `	Y. Which of the	following	gas vacuum
	statements is corre	ct?				р
	(A) No work is do	ne by X	(B) X	C decreases in to	emperature	
	(C) X increases in i			K doubles in pre		
Q.7		ermodynamics can t	be written as	$\Delta U = \Delta Q + \Delta V$	W for an ide	al gas. Which of the
	following statemen					
		ero when no heat ent				
		k done by the gas in th				
		en heat is supplied and			tant	
~ °		en the temperature ir				tate at the second of
Q.8	Which statement is	the potential energy	v for two ne	ignoouring ato	ms varies w	ith their separation r.
		n equilibrium at separ	ation OX			νţ,
		curve at Z is related		1117		
		en atoms is repulsive				
		en atoms is repulsive				
Q.9		uly the force . b	•	0		
2.9		ion r. Which statemen			in a solica l	
	[1] OQ is the equili		its are correct	-1		
	[2] Hooke's law is					
		ergy of the atoms is t	he ra ient	f_p	D S	$ \vee$
		eparate the atoms con				d below the axis of r
	((,			(12) 1,2,	2 ving
	(A) 1 and 2 only	(B) 2 and 4 only	y (C) 1	and 3 only	(D) 1, 2,	3 only

- Q.10 An experiment is perfomed to measure the specific heat of copper. A lump of copper is heated in an oven, then dropped into a beaker of water. To calculate the specific heat of copper, the experimenter must know or measure the value of all of the quantities below EXCEPT the (A) heat capacity of water and beaker (B) original temperature of the copper and the water (C) final (equilibrium) temperature of the copper and the water (D) time taken to achieve equilibrium after the copper is dropped into the water , f g . T all s first released from Q.11 1 ls a p rest from P and then later from Q. Which of the following statement is/ are correct? 2h (i) The ball takes twice as much time to roll from Q to O as it does to h roll from P to O. (ii) T..e acceleration of t.e ball at Q is t., ice as large as the accelerat...n at P. (iii) The ball has twice as much K.E. at O when rolling from Q as it does when rolling from P. (D) iii only (A) i, ii only (B) ii, iii only (C) i only Q.12 Consider the following statements Assertion (A): The moment of inertia of a rigid body reduces to its minimum value as compared to any other parallel axis when the axis of rotation passes through its centre of mass. Reason (R): The weight of a rigid body always acts through its centre of gravity. Of these statements: (A) both A and R are true and R is the correct explanation of A (B) both A and R are true but R is not a correct explanation of A
 - (C) A is true but R is false

(D) A is false but R is true

- Q.13 A ball is projected vertically upwards. Air resistance & variation in g may be neglected. The ball rises to its maximum height H in a time T, the height being h after a time t
 - [1] The graph of kinetic energy E_{ν} of the ball against height h is shown in figure 1
 - [2] The graph of height h against time t is shown in figure 2
 - [3] The graph of gravitational energy E, of the ball against height h is shown in figure 3

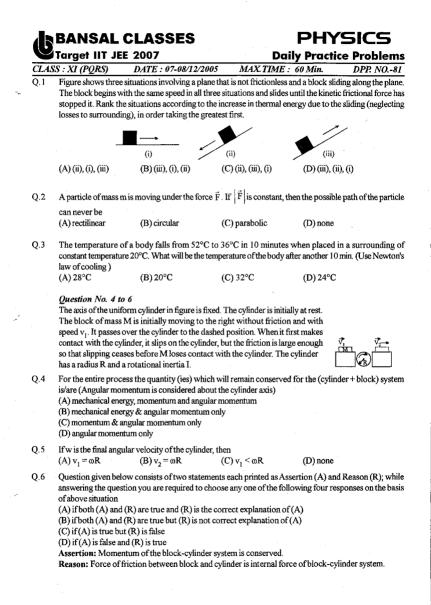
Which of A, B, C, D, E shows the correct answers?(A) 3 only(B) 1, 2(C) 2, 3

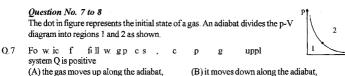
(D) 1 only

(D) $4 \text{ kg} \cdot \text{m/s}$

 Q.14
 A 4-kilogram disk slides over level ice toward the east at a velocity of lmeter per second, as shown. The disk strikes a post and rebounds toward the north at the same speed. The change in the magnitude of the eastward component of the momentum of the disk is

 (A)-4 kg·m/s
 (B)-1 kg·m/s
 (C) 0 kg·m/s



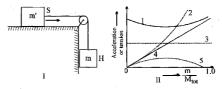

20 15

10

Q.15 The force (F) - extension (e) graph of figure shows that the work done by external agent in slowly streching the material under test for an extension of 4 m is greater than
 (A) 100 J
 (B, 8)
 (C, 6)
 (D, 100 J

.

(C) it moves to anywhere in region 1,


(D) it moves to anywhere in region 2.

Q.8 As the gas moves down along the adiabatic, the temperature (A) increases (B) decreases (C) remains constant (D) variation depends on type of gas

Question No. 9 to 11

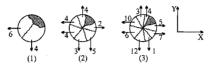
Two containers of sand H are arranged like the blocks figure I. The containers alone have negligible mass; the sand in them has a total mass M_{tot} the sand in the hanging container H has mass m. You are to measure the magnitude a of the acceleration of the system in a series of experiments where m varies from experiment to experiment but M_{tot} does not; that is, you will shift sand between the containers before

each trial. $\frac{m}{M_{tot}}$ is taken on the horizontal axis for all the plots.

Q.9 The plot in figure II which gives the acceleration magnitude of the containers (taken on y-axis) as a

function of ratio $\left(\frac{m}{M_{tot}}\right)$ is: (A) 1 (B) 3 (C) 4 (D) 5

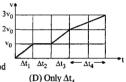
Q.10 The curve which gives tension in the connecting string (taken on y-axis) as a function of ratio $\left(\frac{M}{M_{tot}}\right)$ is:


(A) 1 (B) 2 (C) 4 (D) 5

Q.11 The curve which gives the magnitude of net force, on container H (taken on y-axis) as a function of ratio

$$\left(\frac{m}{M_{tot}}\right)$$
 is:
(A) 1 (B) 2 (C) 4 (D) 5

Question No. 12 to 13


Figure shows top views of three two-dimensional explosions in which a stationary object is blown by a small friecracker into three pieces, seven pieces, and nine pieces. The pieces then slide over a frictionless floor. For each situation, figure also shows the directions and magnitudes of (linear) momentum vectors of all except one piece which is darkened in the figures; that piece has momentum \vec{P}^{i} . The numbers next to the vectors are the magnitudes of the momentum (in kilogram-meters per second). Take coordinate axes x and y as shown.

- Q.12 The magnitude of momentum P is: (A) Maximum for situation (1) (C) Maximum for situation (3)
- Q.13 y-component of momentum P² is: (A) Maximum for situation (1) (C) Maximum for situation (3)
- (B) Maximum for situation (2)(D) Same for all situations
- (B) Maximum for situation (2)(D) Same for all situations

Question No. 14 to 15

Figure gives the velocity v versus time t graph of a carriage of constant mass being moved along an axis by applying force. The time axis shows four time periods, with $\Delta t_1 = \Delta t_2 = \Delta t_3$ and $\Delta t_4 = 2\Delta t$,

- Q.14 The work done by the force is maxmum during which time period (A) Δt_3 and Δt_4 (B) Δt_1 , Δt_3 and Δt_4 (C) Only Δt_3
- Q 15 The rate at which work done is maximum (A) Only Δt_1 (B) Δt_1 and Δt_3

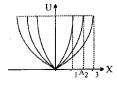
(C) Only Δt_3

(D) Only Δt_{A}

PHYSICS

	E 2007	Daily Practice Problems			
XI (PQRS)	DATE : 17/12/2005	MAX.TIME : 60 Min.	DPP. NO82		
			e radius were halved		
e temperature of	blackbody is increased by 1%.	The amount of radiation emitted by	it increases by		
terial and have e	qual masses then determine v				
emissive power wer is found to d	being 8000 Wm ⁻² . When the				
	hich intensity of emission in	maximum at the temperature T.			
reasing its temp roundings are at	erature to T_2 , the maximum 300 K, if the rate of loss of c	n energy is radiated for wavelen energy by the body at temperature	gth of 2000 Å. The		
n fig. The cross- of 0.25 cm/sec	ectional area of the cylinder	is 2.5 cm ² . The piston is falling at a	a [] [] [.		
		$(L_V = 2.25 \times 10^6 \text{ J/kg})$	Steam Water		
			°C. What will be its		
de a chamber wh	ose walls are at almost 0K.	Calculate the time required for the			
the planet. Find	S.	-	U		
nber. A parallel h uming surface o	eam of electromagnetic radia of the sphere to be perfectly	tion having uniform intensity I is in black and its temperature at $t = 0$	cident on its surface.		
	d the temperature of l e temperature of l iphere, a cube an terial and have en e cools the slowe e energy radiated emissive power wer is found to d temperature T wave length at w a temperature T_1 , reasing its temp roundings are at apperature T_1 , find ylinder fitted with n fig. The cross-se of 0.25 cm/sec d cody cools from 5 perature 5 minut old copper spher de a chamber wh ere to drop to 10 solar constant fo the planet. Find te: Solar constart ighly conducting nber. A parallel b uming surface co	pherical black body with a radius of 12 cm radiate if the temperature doubled, the power radiate e temperature of blackbody is increased by 1%. phere, a cube and a thin circular plate are hea- terial and have equal masses then determine we e cools the slowest? e energy radiated by a black body at 2300 K is emissive power being 8000 Wm ⁻² . When the wer is found to decrease to 500 Wm ⁻² . Find: temperature T wave length at which intensity of emission in a temperature T ₁ , a body radiates maximum reasing its temperature to T ₂ , the maximum reasing its temperature to T ₂ , the maximum reasing its temperature to T ₂ the maximum reasing its temperature to T ₁ and T ₂ ylinder fitted with a metal piston contains wate n fig. The cross-sectional area of the cylinder of 0.25 cm/sec. The density of steam unded a tate of condensation of steam rate with which heat is leaving the chamber. In ody cools from 50° C to 40°C in 5 minutes. The perature 5 minutes after reading 40°C? Use a plid copper sphere (density ρ , specific heat C) de a chamber whose walls are at almost 0 K. ere to drop to 100K. Negleet the effect of the solar constant for a planet is S. The surface tee the planet. Find S. te: Solar constant is rate at which radiations a ighly conducting solid sphere of radius R, (nber. A parallel beam of electromagnetic radia uming surface of the sphere to be perfectly	pherical black body with a radius of 12 cm radiates 450W power at 500K. If the d the temperature doubled, the power radiated in watts would be		

CT 4	Target IIT JE	DATE : 19-20/12/2		aily Practice Problem E : 60 Min. DPP. NO
	SS : XI (PQRS) Question No. 1 to		WAN MAN TIM	E: 00 MM. DFF. NO
		ses 3 kg and 6 kg rest or	on a horizontal frictio	nless
		block is attached to a s		
		h is compressed 2 m in		
		g mass is released, it st	rikes the 6 kg mass and	
0.1	two stick together.	ity of the blocks after co	ligion is	position
Q.1	(A) 10 m/s	(B) 30 m/s	(C) 15 m/s	(D) 2 m/s
Q.2	. ,	sulting oscillation after t		()
Q.2		-		
	(A) $\frac{1}{\sqrt{2}}$ m	(B) $\frac{1}{\sqrt{3}}$ m	(C) $\sqrt{2}$ m	(D) $\sqrt{3}$ m
		v S		
	Question No. 3 to		t angle $\Omega = 60^{\circ}$ with the	horizontal at time t = 0. At time 't'
				tion of velocity of projection.
Q.3	Its tangential accele		F	······································
-	(A) 10 m/s^2	(B) $5\sqrt{3}$ m/s ²	(C) 5 m/s^2	(D) zero
Q.4	Its radius of curvati	() - (-	(0)0 100	
	(A) $\frac{1}{\sqrt{3}}$ km	(B) $\frac{2}{3\sqrt{3}}$ km	(C) 2 km	(D) $\sqrt{2}$ km
	Two particles A & I	B of masses m and 2m	respectively are conn	ected through a spring in its nat
		ojected directly away fi		pring with the same speed.
Q.5	length. They are pro At the moment of m	aximum distance betwe	rom each other along s een them	pring with the same speed.
Q.5	At the moment of m (A) The particles are	aximum distance betwee e moving with same sp	rom each other along s een them eed in opposite directio	pring with the same speed.
Q.5	At the moment of m (A) The particles an (B) The particles are	aximum distance betwe e moving with same spe e moving with same spe	rom each other along s een them eed in opposite directio	pring with the same speed.
Q.5	length. They are provide the moment of m (A) The particles and (B) The particles are (C) Both the particle	aximum distance betwe e moving with same spe e moving with same spe	rom each other along s een them eed in opposite directio	pring with the same speed.
	length. They are provided the moment of m (A) The particles are (B) The particles are (C) Both the particl (D) None of these	aximum distance betwa e moving with same spe e moving with same spe es are at rest	om each other along s een them eed in opposite direction eed in same direction	pring with the same speed.
Q.5 Q.6	length. They are provided the moment of m (A) The particles are (B) The particles are (C) Both the particl (D) None of these	aximum distance betwe e moving with same spe e moving with same spe es are at rest I speed of the particles a	om each other along s een them eed in opposite direction eed in same direction	pring with the same speed.
	length. They are provided the moment of m (A) The particles are (B) The particles are (C) Both the particl (D) None of these Minimum individual	aximum distance betwe e moving with same spe moving with same spe es are at rest I speed of the particles a zero	rom each other along s een them eed in opposite direction eed in same direction we	pring with the same speed. on : B zero
	length. They are provided the moment of m (A) The particles and (B) The particles are (C) Both the particl (D) None of these Minimum individual (A) A zero & B non (C) A & B both non An elastic string with	aximum distance betwe e moving with same spe e moving with same spe es are at rest I speed of the particles a zero -zero nich obeys Hooke's lav	om each other along s een them sed in opposite directio eed in same direction (B) A non-zero & (D) A & B both z w is found to extend b	pring with the same speed. on E B zero ero y 1 cm when a mass is hung on it
Q.6	length. They are provided the moment of m (A) The particles are (B) The particles are (C) Both the particl (D) None of these Minimum individua (A) A zero & B non (C) A & B both non An elastic string wile extends by another 1	aximum distance betwe e moving with same spe e moving with same spe es are at rest I speed of the particles a zero -zero nich obeys Hooke's lay cm when the attached n	om each other along s een them sed in opposite directio red in same direction (B) A non-zero & (D) A & B both z w is found to extend b nass uniformly moves i	pring with the same speed. on E B zero ero y 1 cm when a mass is hung on it
Q.6	length. They are provided the moment of m (A) The particles and (B) The particles are (C) Both the particl (D) None of these Minimum individual (A) A zero & B non (C) A & B both non An elastic string will extends by another 1 pendulum. The incli	aximum distance betwe e moving with same spe e moving with same spe es are at rest al speed of the particles e zero -zero nich obeys Hooke's law cm when the attached n nation of the string with	om each other along s een them sed in opposite direction ed in same direction (B) A non-zero & (D) A & B both z w is found to extend b tass uniformly moves i the vertical is	pring with the same speed. on E B zero ero y 1 cm when a mass is hung on it n a horizontal circle forming a coni
Q.6 Q.7	length. They are provided the moment of m (A) The particles and (B) The particles are (C) Both the particl (D) None of these Minimum individual (A) A zero & B non (C) A & B both non An elastic string will extends by another 1 pendulum. The inclin (A) 30°	aximum distance betwe e moving with same spe es are at rest I speed of the particles a zero -zero nich obeys Hooke's lav cm when the attached n nation of the string with (B) 45°	om each other along s een them sed in opposite direction (B) A non-zero & (D) A & B both z w is found to extend b hass uniformly moves in the vertical is (C) 60°	pring with the same speed. on E B zero ero y 1 cm when a mass is hung on it
Q.6 Q.7	length. They are provided the moment of m (A) The particles and (B) The particles are (C) Both the particles are (C) Both the particle (D) None of these Minimum individual (A) A zero & B non (C) A & B both non An elastic string will extends by another 1 pendulum. The incline (A) 30° Perpendicular axis to the set of th	aximum distance betwe e moving with same spe es are at rest al speed of the particles e zero -zero nich obeys Hooke's lav cm when the attached n nation of the string with (B) 45° heorem can't be applied	om each other along s een them sed in opposite direction ed in same direction (B) A non-zero & (D) A & B both z w is found to extend b tass uniformly moves it the vertical is (C) 60° l for	pring with the same speed. on ero y 1 cm when a mass is hung on it a horizontal circle forming a coni (D) 90°
Q.6 Q.7 Q.8	length. They are provided in the moment of m (A) The particles and (B) The particles are (C) Both the particle (D) None of these (D) None of these (A) A zero & B non (C) A & B both non An elastic string where the stands by another 1 pendulum. The included (A) 30° Perpendicular axis to (A) ring	aximum distance betwe e moving with same spe es are at rest al speed of the particles e zero -zero nich obeys Hooke's lav cm when the attached n nation of the string with (B) 45° heorem can't be applied (B) cone	om each other along s een them eed in opposite direction eed in same direction (B) A non-zero & (D) A & B both z v is found to extend b hass uniformly moves in the vertical is (C) 60° l for (C) disc	pring with the same speed. on ero y 1 cm when a mass is hung on it a horizontal circle forming a coni (D) 90° (D) rectangular plane
Q.6 Q.7	length. They are pro- At the moment of m (A) The particles an (B) The particles are (C) Both the particl (D) None of these Minimum individua (A) A zero & B non (C) A & B both non An elastic string wh extends by another 1 pendulum. The inclii (A) 30° Perpendicular axis t (A) ring The specific heat of	aximum distance betwe e moving with same spe es are at rest al speed of the particles e zero -zero nich obeys Hooke's lav cm when the attached n nation of the string with (B) 45° heorem can't be applied (B) cone 'the same substance is	om each other along s een them eed in opposite direction eed in same direction (B) A non-zero & (D) A & B both z v is found to extend b hass uniformly moves in the vertical is (C) 60° l for (C) disc	pring with the same speed. on ero y 1 cm when a mass is hung on it a horizontal circle forming a coni (D) 90° (D) rectangular plane
Q.6 Q.7 Q.8	length. They are provided in the moment of m (A) The particles and (B) The particles are (C) Both the particle (D) None of these (D) None of these (D) None of these (A) A zero & B non (C) A & B both non An elastic string will extends by another 1 pendulum. The inclui (A) 30° Perpendicular axis t (A) ring The specific heat of which of the following the string will be the specific heat of theat of the speci	aximum distance betwe e moving with same spe es are at rest al speed of the particles a zero -zero nich obeys Hooke's lav cm when the attached n nation of the string with (B) 45° heorem can't be applied (B) cone 'the same substance is- ng relation is true?	om each other along s een them eed in opposite direction eed in same direction (B) A non-zero & (D) A & B both z w is found to extend b tass uniformly moves in the vertical is (C) 60° I for (C) disc expressed in two units	pring with the same speed. on E B zero ero y 1 cm when a mass is hung on it n a horizontal circle forming a coni (D) 90° (D) rectangular plane ; C ₁ cal/gm°C & C ₂ cal/gm°F. Th
Q.6 Q.7 Q.8 Q.9	length. They are provided the moment of m (A) The particles are (B) The particles are (C) Both the particle (D) None of these (D) None of these (D) None of these (A) A zero & B non (C) A & B both non (C) A & B both non An elastic string where the strained by another 1 pendulum. The incluit (A) 30° Perpendicular axis t (A) ring The specific heat of which of the followin (A) C ₁ > C ₂	aximum distance betwee e moving with same spe es are at rest al speed of the particles a zero -zero nich obeys Hooke's lav cm when the attached n nation of the string with (B) 45° heorem can't be applied (B) cone the same substance is- ng relation is true? (B) $C_1 = C_2$	tom each other along s ten them ted in opposite direction ted in same direction (B) A non-zero & (D) A & B both z w is found to extend b tass uniformly moves in the vertical is (C) 60° If for (C) disc expressed in two units (C) $C_1 < C_2$	pring with the same speed. on t B zero ero y 1 cm when a mass is hung on it n a horizontal circle forming a coni (D) 90° (D) rectangular plane t; C ₁ cal/gm°C & C ₂ cal/gm°F. Th (D) C ₁ & C ₂ canrot becompa
Q.6 Q.7 Q.8	length. They are provided the moment of m (A) The particles are (B) The particles are (C) Both the particles are (C) Both the particle (D) None of these Minimum individua (A) A zero & B non (C) A & B both non An elastic string where the strends by another 1 pendulum. The incline (A) 30° Perpendicular axis t (A) ring The specific heat of which of the followin (A) $C_1 > C_2$ A & B are two identi	aximum distance betwee e moving with same spe es are at rest al speed of the particles a zero -zero nich obeys Hooke's lav cm when the attached n nation of the string with (B) 45° heorem can't be applied (B) cone the same substance is- ng relation is true? (B) $C_1 = C_2$	tom each other along s ten them ted in opposite direction ted in same direction (B) A non-zero & (D) A & B both z w is found to extend b tass uniformly moves in the vertical is (C) 60° If for (C) disc expressed in two units (C) $C_1 < C_2$ ulb of A is spherical &	pring with the same speed. on t B zero ero y 1 cm when a mass is hung on it n a horizontal circle forming a coni (D) 90° (D) rectangular plane t; C ₁ cal/gm°C & C ₂ cal/gm°F. Th (D) C ₁ & C ₂ canrot becompar
Q.6 Q.7 Q.8 Q.9	length. They are provided the moment of m (A) The particles are (B) The particles are (C) Both the particles are (C) Both the particle (D) None of these Minimum individua (A) A zero & B non (C) A & B both non An elastic string where the strends by another 1 pendulum. The incline (A) 30° Perpendicular axis t (A) ring The specific heat of which of the followin (A) $C_1 > C_2$ A & B are two identi	aximum distance betwee e moving with same spe es are at rest al speed of the particles a zero -zero inch obeys Hooke's lav cm when the attached n nation of the string with (B) 45° heorem can't be applied (B) cone the same substance is- ng relation is true? (B) $C_1 = C_2$ cal thermometers but b	tom each other along s ten them ted in opposite direction ted in same direction (B) A non-zero & (D) A & B both z w is found to extend b tass uniformly moves in the vertical is (C) 60° If for (C) disc expressed in two units (C) $C_1 < C_2$ ulb of A is spherical &	pring with the same speed. on ero y 1 cm when a mass is hung on it a horizontal circle forming a conid (D) 90°


BANSAL CLASSESPHYSICSTarget IIT JEE 2007Daily Practice ProblemsCLASS : XI (PQRS)DATE : 21-22/12/2005MAX.TIME : 60 Min.DPP. NO.-84Q.1Consider the following statements

A particle executing uniform circular motion have

- I. tangential velocity
- II. radial acceleration
- III tangential acceleration
- IV radial velocity
- of these statements
- (A) I and II are correct
- (C) II and IV are correct

(B) I and III are correct(D) III and IV are correct

Q.2 The potential energy, U of three simple harmonic oscillations varies with di-l-----t'X' from unconstruction as s own in t e figure. There oscillators have the same mass but different amplitudes A_1, A_2 and A_3 . Their characteristic frequencies v_1, v_2 and v_3 are related to each other as

[I] $\frac{v_1}{A_1} = \frac{v_2}{A_2} = \frac{v_3}{A_3}$ [III] $v_1 > v_2 > v_3$ (A) [I] & [II] are correct (C) [II] & [III] are correct

[IV] $v_1 < v_2 < v_3$ (B) [I] & [III] are correct

[II] $v_1 A_1 = v_2 A_2 = v_3 A_3$

- (D) [II] & [IV] are correct
- Q.3 Three metal rods A, B and C of same length and cross-section are placed end to end and a temperature difference is maintained between the free ends of A and C. If the thermal conductivity of $B(K_B)$ is twice that of $C(K_C)$ and half that of $A(K_A)$, then the effective thermal conductivity of the system will be

(A)
$$\frac{K_A}{7}$$
 (E

 $3) \frac{6K_{B}}{7} \qquad (C) \frac{7K_{B}}{3}$

(D) 7K_C

- Q.4 Small beads of mass 4.5 g each are dropped from height h = 20 m on to a floor at a constant rate of 1000 beads per second. If the collision is perfectly inelastic, the force acting on the floor due to the beads at t = 10 second after they start hitting the floor (g = 10m/s²) is
 (A) 450 N
 (B) 90 N
 (C) 540 N
 (D) 630 N
- Q.5 The total work done on a particle is equal to the change in its kinetic energy (A) always
 (B) only if the forces acting on the body are conservative
 - (C) only if the forces acting on the body are gravitational
 - (D) only if the forces acting on the body are elastic
- Q.6 PQ is a smooth inclined plane whose angle of inclination θ can be varied in such a way that point Q remains fixed & P can move on a vertical line PR. A particle slides from rest from point P. At different values of θ time for descent t_d from P to ______ is noted. The followin_____ statement is true about t_d :

(A) minimum value of t_d is $2\sqrt{\frac{l}{g}}$

(B) t_d is minimum when θ approaches 90°

(C) t_d decreases continuously as θ is increased. (D) t_d first increases then decreases as θ is increased

AB is a strin, whose one end A is fixed at the highest oint of a ring placed in 0.7 vertical plane. C is the centre of the ring. At other end B of the string, is attached a bead of mass m, which can slide along the ring. If the bead is in equilibrium at B & string is taut then the tenson in the string is (A) mgsin2 θ (B) mgcos θ (C) 2mgcosθ D none of hese

Q.8 Two strings support a uniform rod as shown. String at end B is cut. Which of the following is true just after cut шонна

[I] initial acceleration of A is vertical [II] initial acceleration of A is horizontal [III] initial acceleration of centre of mass of rod is vertical [IV] i-iti-1----1---ti---f------f---di-h--iz---t-1 (C) [III] & [IV] (A) []] & []]] (B) [II] & [III]

(D) [] & [IV]

Q.9 A uniform circular disc with the hole lies over a smooth horizontal surface, C is centre of the disc and A is - p-i-t-- th-- i-- - f th- disc -s sh-w-. As th- t--- p--- tu-- is i-c---s-4.

(A) C remains at rest& A to right

(B) Both A & C move to right

(C) Both remain at rest

D C moves to left & A to ri ht

- Q.10 Which one of the following is a set of dimensionless physical quantities? (A) strain, specific gravity, angle (C) work, angle, specific gravity
 - (B) strain, work, couple

(D) work, energy, frequency

		BANSAL CLASSES		PHYSICS
	-	Target IIT JEE 2007 S: XI (PORS) DATE: 23-24/12/2005	MAX.TIME: 6	Practice Problem
	Q.1	For a particle executing S.H.M., x = displacement and a = acceleration at any instant, then (A) v-x graph is a circle (C) a-x graph is a straight line		sition, v = velocity at any insta
	Q.2	A small mass executes linear SHM about O with time T/8 after passing through O is: (A) $a/8$ (B) $a/2^{1/2}$		•
	Q.3	A particle performs SHM with a period T and a time interval during which it travels a distance a (A) 2a/T (B) 3a/T	amplitude a. The mean	velocity of the particle over t
	Q.4	A particle executes SHM of period 1.2 sec and a the positive extremity of its oscillation. (A) 0.28 sec (B) 0.32 sec	mplitude 8 cm. Find the	time it takes to travel 3cm fro (D) 0.42 sec
	Q.5	A particle executes SHM on a straight line p displacement of the particle from the mean position is equal to the numerical value of magnitude of	ath. The amplitude of n is 1 cm, the numerical v	oscillation is 2 cm. When the alue of magnitude of acceleration
		(A) $2\pi\sqrt{3}$ (B) $2\pi/\sqrt{3}$	(C) $\sqrt{3}/(2\pi)$	(D) $1/(2\pi\sqrt{3})$
	Q.6	A particle of mass 4 kg moves between two po	ints A and B on a smoo	th horizontal surface under th
		action of two forces such that when it is at a point is released from rest at A, find the time it takes the form $\pi/2$ s (B) $\pi/3$ s		
	Q.7	A stone is swinging in a horizontal circle 0.8 m in of the stone to be formed on a nearly vertical w motion for the shadow of the stone are (A) $0.4 \text{ m}, 4 \text{ s}$ (B) $0.2 \text{ m}, 2 \text{ s}$		
	Q.8	A particle moves along the x-axis according to :	• • • •	
		t = 0 and t = $2.5\pi/\omega$? (A) 4A (B) 6A	(C) 5A	(D) None
	Q.9	A spring has natural length 40 cm and spring cor end of the spring and other end of the spring is at where the spring has length 45 cm. (A) the block will perform SHM of amplitude 5	tached to ceiling. The b	
		(B) the block will have maximum velocity $30\sqrt{3}$		
an an An Anna		(C) the block will have maximum acceleration 1 (D) the minimum potential energy of the spring v		n an An an an Anna Anna An Anna Anna Ann
	Q.10	A mass at the end of a spring executes harmonic A. Its speed as it passes through the equilibrium the mass passing through the equilibrium positio	position is V. If extende	
		(A) 2V (B) 4V	(C) $\frac{V}{2}$	(D) $\frac{V}{4}$

PHYSICS BANSAL CLASSES Taraet IIT JEE 2007 **Daily Practice Problems** CLASS : XI (PORS) DATE : 26-27/12/2005 MAX.TIME : 60 Min. DPP NO. - 86 (in cm/s) The figure shows a graph between velocity and displacement (from mean position) of a particle performing SHM: (A) the time period of the particle is 1.57s (in cm) (B) the maximum acceleration will be 40 cm/s^2 (C) the velocity of particle is $2\sqrt{21}$ cm/s when it is at a distance 1 cm from the mean position. (D) none of these

A man of mass 60 kg standing on a plateform executing S.H.M. in the vertical plane. The displacement 0.2 from the mean position varies as $y = 0.5 \sin (2\pi ft)$. The minimum value of f, for which the man will feel weight less ness at the highest point is : (y is in metres)

(A)
$$\frac{g}{4\pi}$$
 (B) $4\pi g$ (C) $\frac{\sqrt{2g}}{2\pi}$ (D) $2\pi\sqrt{2g}$

0.3 A particle starts from a point P at a distance of A/2 from the mean position O & travels towards left as shown in the figure. If the time period of SHM, executed about O is T and amplitude A then the equation of motion of particle is :

$$(A) x = A \sin\left(\frac{2\pi}{T}t + \frac{\pi}{6}\right) (B) x = A \sin\left(\frac{2\pi}{T}t + \frac{5\pi}{6}\right) (C) x = A \cos\left(\frac{2\pi}{T}t + \frac{\pi}{6}\right) (D) x = A \cos\left(\frac{2\pi}{T}t + \frac{\pi}{3}\right) (D) x = A \cos\left(\frac{\pi}{T}t + \frac{\pi}{3}\right) (D) x = A \cos\left(\frac{\pi}{3}\right) (D) x = A \cos\left(\frac{\pi}$$

0.1

A system of two identical rods (L-shaped) of mass m and length l are resting on a peg P as shown in the figure. If the system is displaced in its plane by a small angle θ , find the period of oscillations:

(A)
$$2\pi \sqrt{\frac{\sqrt{2l}}{3g}}$$
 (B) $2\pi \sqrt{\frac{2\sqrt{2l}}{3g}}$ (C) $2\pi \sqrt{\frac{2l}{3g}}$ (D) $3\pi \sqrt{\frac{l}{3g}}$

Q.5 A circular disc has a tiny hole in it, at a distance z from its center. Its mass is M and radius R (R>z). A horizontal shaft is passed through the hole and held fixed so that the disc can freely swing in the vertical plane. For small disturbance, the disc performs SHM whose time period is minimum for z =

(C) $R/\sqrt{2}$ (D) $R/\sqrt{3}$ (A)R/2(B) R/3 0.6 A platform is executing simple harmonic motion in a vertical direction with an amplitude of 5 cm and a frequency of $10/\pi$ vibrations per seconds. A block is placed on the platform at the lowest point of its path.

- (a) At what height above the lowest point will the block leave the platform?
- (b) How far will the block rise above the highest point reached by the platform?
- Q.7 Find the time period of small oscillations of the spring loaded pendulum. The equilibrium position is vertical as shown. The mass of the rod is negligible and treat mass as a particle.
- Q.8 A particle is doing SHM of amplitude 0.5 m and period π seconds. When in a position of instantaneous rest, it is given an impulse which imparts a velocity of 1 m/s towards the equilibrium position. Find the new amplitude of oscillation and find how much less time will it take to arrive at the next position of instantaneous rest as compared to the case if the impulse had not been applied.
- Q.9 A block of mass 1kg hangs without vibrating at the end of a spring with a force constant 1N/cm attached to the ceiling of an elevator. The elevator is rising with an upward acceleration of g/4. The acceleration of the elevator suddenly ceases. What is the amplitude of the resulting oscillations.
- A particle is oscillating in a straight line about a centre of force O, towards which when at a distancex the force Q.10 is mn²x where m is the mass, n a constant. The amplitude is a = 15 cm. When at a distance $a\sqrt{3}/2$ from O the particle receives a blow in the direction of motion which generates extra velocity na. If the velocity is away from O, find the new amplitude. What is the answer if the velocity of block was towards origin.

PHYSICS

	Target IIT JE	E 2007		Daily I	Practice	Problems
CLAS	SS : XI (PQRS)	DATE :: 28-29/12/		ME: 60.		DPP. NO 87
Q.1	a particular instan	lergo SHM along paralle tt, one particle is at its ex direction. They will cros (B) 3T/8	streme position whil	e the other urther time	is at its mea	
Q.2	(A) Only one of the	$\cos^2 \omega t$ and $y = A(\sin \omega)$ nese is S.H.M. mum speeds is $1 : 1$	$t + \sqrt{3} \cos \omega t$) repro- (B) Ratio of m (D) Ratio of m	naximum s	peeds is 2 : 1	L
Q.3	sphere is now imm	ere is hung from a light sp nersed in a non-viscous in vertical S.H.M., its po (B) (9/10) ² T	liquid with a density	7 1/10th the		
Q.4	block remains para SHM when displa (A) the maximum	k of density ρ is partially allel to the surface of the ced from its mean posit amplitude is 20 cm. d will be $2\pi/7$ seconds.	liquid. The height of	fthe block i ²]	s 60 cm. Th	
Q.5	total energy is 9 jo (A) 1.5	rgy of a harmonic oscilla ules when the amplitude (B) 3.14 gy = U (0) + $1/2 \text{ kA}^2$]		iod of the		
Q,6	constant k. These M/4 moving with s	mass 3M/4 and M, are masses are initially at res speed v along the line join M/4. Find the amplitude	st L apart on a horizo ning the two connected	ntal friction ed masses,	nless table. A collides with	particle of mas and sticks to the
Q.7	being such that the projected with vel	es are connected by an e weight of either particle ocity u directly away fro string first return to its n	e would produce in it om the other, calculat	an extensi	on a If one	of the particles i
Q.8	A particle is execu	ting SHM on a straight	line. A and B are tw	o points at	which its ve	elocity is zero. I

Q.8 A particle is executing SHM on a straight line. A and B are two points at which its velocity is zero. It passes through a certain point P (AP<PB) at successive intervals of 0.5 and 1.5 sec with a speed of 3m/s. Determine the maximum speed and also the ratio AP/PB.</p>

Q.9 A uniform rod AB of mass m and length 4/ is free to rotate in a vertical plane about a smooth horizontal axis through a point P, distant x from the centre of the rod of the rod and performs small oscillations about its equilibrium position find period of oscillation and also find the value of x for which time period is minimum.

Q.10 A container of empty mass m is pulled by a constant force in which a second block of same mass m is placed connected to the wall by a mass less spring of constant k. Initially the spring is in its natural length. Calculate the velocity of the container at the instant the compression in the spring is maximum for the first time.

	BANSAL CLASSES		PHYSICS		
	Target IIT JE			ily Practice F	_
CLAS	S : XI (PQRS)	DATE : 30-31/12/2005	MAX. TIME :	60 Min. D	PP. NO 8
Q.1	of the spring is fixed again after descend (A) x=mg/k (B) x=2mg/k	attached to the lower end of i. The ball is released from re- ing through a distance x. ve no acceleration at the po	est with the spring at it	s normal length, and	l comes to re
		ve an upward acceleration e			
Q.2		00 gm attached to a spring s moved to compress the sp priod of motion is			
	(A) 0.2 sec (C) 0.155 sec		(B) 0.1 sec (D) 0.133 sec	-603000	80 <u>5cm</u>
Q.3	A wire frame in the	shape of an equilateral trian	gle is hinged at one ve	ertex so that it can sy	wing freely i
	vertical plane, with	the plane of the Δ always re	maining vertical. The	side of the frame is	$1/\sqrt{3}$ m.T
	time period in secon	nds of small oscillations of t	he frame will be		
÷	(A) $\frac{\pi}{\sqrt{2}}$	(B) $\pi\sqrt{2}$	(C) $\frac{\pi}{\sqrt{6}}$	(D) $\frac{\pi}{\sqrt{5}}$	
Q.4		d to a light inextensible threa s a simple pendulum. The th			34
	O of a vertical rigid 1	rod of length $\frac{3l}{4}$ (as in figure)	If now the pendulum	performs periodic	
	oscillations in this a	rangement, the periodic tim	e will be		A
	(A) $\frac{3T}{4}$	(B) $\frac{T}{2}$	(C) T	(D) 2T	
Q.5		nple harmonic oscillations a gies at B and D are each one			
	(A) $\frac{\sqrt{3} R}{2}$ (B)	$\frac{R}{\sqrt{2}} \qquad (C) \sqrt{3} R$	(D) $\sqrt{2}$ R	A B C	DE
Q.6		has an amplitude of A& particle reaches the extre			
Q.7	AB & CD are two r	em is kept on a horizontal s igid elastic walls. Separatio		'n	
()		um velocity that can be imp e wall CD such that time pe		a .	C
	under the action of	spring force, is $2\pi\sqrt{m/k}$	sec where K is the	B 000000	
(ii)	If the velocity impart	ne ideal massless spring. ted to the block is twice this r ations of the spring block sy		ie	ii d d

- Q.8 Suppose the mass m is attached to a long uniform spring of length L and observed to oscillate at a frequency f_0 . Now the spring is cut into two pieces of lengths xL and (1-x)L. Mass m is divided into two pieces in this same ratio with $m_1 = xm$ and $m_2 = (1-x)m$. The larger mass is attached to the shorter spring and the smaller mass to the larger spring. Find the frequency of oscillation for each of the two spring.
- Q.9 A block of mass M=1kg resting on a smooth horizontal surface, is connected to a horizontal light spring of spring constant K=6N/m whose other end is fixed to a vertical wall. Another block of mass m=0.5kg is mounted on the block M. If the coefficient of friction between the two blocks is μ =0.4, find the maximum kinetic energy that the system can have for simple harmonic oscillations under the action of the spring.

щщ

enninnen m

Q.10 A block of mass m is attached to a vertical springs as shown. The block is held such that initial elongation in spring is $\frac{3mg}{K}$. The block is released from this position. Find the displacement of the block from its initial position as a function of time & plot graph of block's v yw ______n ____n ____n ____n fte__ele_se.

	BANSAL	CLASSES		PHYS	
U	Target IIT JE	E 2007	Dail	y Practice	Proble
CLAS	S : XI (PQRS)	DATE : 02-03/01/2006	MAX.TIME :	60 Min. 1	DPP. NO.
Q.1	Two particles exect same equilibrium p radians is	ute SHM of same amplitude o oosition. The maximum distan	of 20 cm with same per the between the two is	riod along the sam 20 cm. Their pha	e line abou se differer
	(A) $\frac{2\pi}{3}$	(B) $\frac{\pi}{2}$	(C) $\frac{\pi}{3}$	(D) $\frac{\pi}{4}$	с 1
Q.2	A particle executes	SHM with time period T and	l amplitude A. The ma	ximum possible a	verage vel
	in time $\frac{T}{4}$ is				
	(A) $\frac{2A}{T}$	(B) $\frac{4A}{T}$	$(C) \frac{8A}{T}$	(D) $\frac{4\sqrt{2}A}{T}$	
Q.3	same line about the	d Q describe simple harmon e same equilibrium position C	When P and Q are o	n opposite sides o	of O at the
		ey have the same speed of 1.2 e the same speed of 1.6 m/s is			
	(A) 2.8	(B) 2.5	(C) 2.4	(D) 2	
Q 4	frequency 'f' and s	nd B perform SHM along the same equilibrium position 'C at of time they have the same di	'. The greatest distant	ice between them	is found
	(A) a/2	(B) $a\sqrt{7}/4$	(C) $\sqrt{3} a/2$	(D) 3a/4	
Q.5		<i>m</i> moves in a one-dimension ints. The angular frequency			
	energy is equal to	in na tangan tang Tangan tangan t			
	(A) $\pi \sqrt{\frac{a}{2b}}$	(B) $2\sqrt{\frac{a}{m}}$	(C) $\sqrt{\frac{2a}{m}}$	(D) $\sqrt{\frac{a}{2m}}$	
Q.6		t shown, the spring of force			
	and that between th	on. The coefficient of friction he lower block & ground sur	face is zero. If both th	e blocks	00N/m 2kg
(a)		ly and released, the system e their oscillation if they do no			2kg 4kg
(b)		um amplitude of the oscilla			
Q.7		n' is interconnected to a blo			¥↑ _↑F
	A constant force 'F	stant 'k', as shown. The upper ' starts acting on the upper bl	ock at a certain instant	t of time, $t = 0$. If	
	F = mg, find 'y' as a	a function of time 't' where y	= upward displacement	nt of 'm' from its	3
	lp .	1 · · · ·			minan

Q.8 In the figure shown a light spring of spring constant 'k' is attached at the ends of two uniform identical rods of mass 'm' and length 'P' each. The rods can rotate about other ends. They are rotated by same and small angles in opposite direction in the plane of the figure and released. Neglecting the effect of gravity, find the frequency of oscillation of the rods.

- Q.9 In the figure shown the spring is relaxed. The spring is compressed by 2 A and released. Mass m attached with the spring collides with the wall & loses two third of its kinetic energy & returns. Find the time after which the spring will have maximum compression first time after releasing. (Neglect Friction)
- (i) period of SHM block P
- (ii) Amplitude of its SHM
- (iii) Total energy of oscillation of the system

	Target IIT JE	CLASSES			'SICS ce Problems
	SS : XI (PQRS)	DATE : 30-31/01/2		ME: 60 Min.	DPP. NO 99
Q.1		e bottom of a tank of wat evel of water is lowered b (B) (13/5) P			the tank will now be
Q.2	above the surface of	lensity ρ is immersed in voting of water up to which the	ball will jump out of		eased. The height H
	(A) $\frac{\sigma h}{\rho}$	$(\mathbf{B})\left(\frac{\boldsymbol{\sigma}}{\rho}-\mathbf{l}\right)\mathbf{h}$	(C) h	(D) zero	
Q.3	float if it were set f	f mass M and radius r is i ree. The sphere is tied to as shown in the figure. T	the bottom of the tan	k by two wires whi). The sphere would ich makes angle 45°
	(A) $\frac{\frac{4}{3}\pi R^{3}\rho_{w}g}{\sqrt{2}}$		(B) $\frac{2}{3}\pi R^3 \rho_w g$	-Mg	
	(C) $\frac{\frac{4}{3}\pi R^{3}\rho_{w}g-1}{2}$	Mg	$(D) \frac{4}{3}\pi R^3 \rho_w g$	+Mg	T1 435 435
<u>)</u> .4	when weighed dire	nsity 7800 kg/m ³ is susp ctly on a balance and 1.5 netal ball is approximately (B) 30 %	kg less when immers	number of cavitie ed in water . The fr (D) 11 %	es . It weighs 9.8 kg action by volume of
Q.5		r ca gate o ra us sp re holding liquid of dens is equal to			
	() 2π ³ ρg	(B) 2pg ³ l	(C) $\frac{2R^2l\rho g}{2}$,D)esc	THE REPORT OF
.6	A cube of wood sup 2 cm. What is the s	porting 200 g mass just t ize of the cube?	J		ed, the cube rises by
.7		a simple pendulum is Τ. Ι s ρ, what will be the new			lensity o. If density
.8		om a spring balance. Th and 24 N when the objec ther liquid?			
.9		s in a vessel with water a			

- level of the interface change after the whole of ice melts? What will be the change in the total level of liquid in the vessel?
 0.10 Two bodies of the same volume but of different misses are in equilibrium on a lever. Will the equilibrium
- Q.10 Two bodies of the same volume but of different masses are in equilibrium on a lever. Will the equilibrium be violated if the lever is immersed in water so that the bodies are completely submerged?

PHYSICS

U	Target IIT JEE	2007	Dai	ly Practic	e Problems
CLAS	SS : XI (PQRS)	DATE : 01-02/01/200	6 MAX.TIME :	60 Min.	DPP. NO 100
Q .1			relative density o has a c value of the ratio R/r w		ty of radius r. It just
	$(A)\left(\frac{\sigma}{\sigma-1}\right)^{1/3}$	$(\mathbf{B})\left(\frac{\sigma-1}{\sigma}\right)^{1/3}$	$(\mathbf{C})\left(\frac{\sigma+1}{\sigma}\right)^{1/3}$	(D) $\left(\frac{\sigma-1}{\sigma+1}\right)$.) ^{1/3}
Q.2	cross-section A and h area 'a' and the walls of	eight h. The upper part	ions. The lower part is is a conical vessel of he at an angle 30° with the s atmospheric pressure.	ight h with ba	se area 'A' and top
	(A) The force F exert	ed by the liquid on the l	pase of the vessel is 2hp	$g\frac{(A+a)}{2}$	30×10
	(B) the pressure P at t	the base of the vessel is	$2hpg \frac{A}{a}$		
			the force exerted by the force (F-W) on the liqu		base
Q.3		the liquid is d(>p). C	ched to the bottom of a container has a constant $(C) V (d-\rho) g$		
Q.4	with its vertex submer height, the cone floats	rged. When another liq	one-third of its height in uid of relative density p ght. The height of the co is given by (C) 2.1	is filled in it u	pto one-third of its
Q.5		nd density 500 kg/m ³ is	latform of a spring bala immersed in water with (C) 1 kg		
Q.6 (a) (b)	A rod of length 6m ha What weight must be	s a mass 12 kg. It is hin attached to the other en d direction of the force	ged at one end at a dista ad of the rod so that 5m exerted by the hinge on	ance of 3m bel of the rod is s	
Q.7	ρ_3 . If the first to U-tube then they stand	cible liquids of densitie two liquids are to like fig(i). When all the ley stand like fig(ii). Find ree liquids.	three liquids the ratio of $\frac{3}{4}$ H_1 P_1	$P_2 = \frac{H_2}{2}$ $g_2(i)$	$ \begin{array}{c c} $

1

1

- Q.8 A cylindrical block of density ρ is partially immersed in a liquid of density 3ρ . The plane surface of the block remains parallel to the surface of the liquid. The height of the block is 60 cm. The block performs SHM when displaced from its mean position. find [Use $g = 9.8 \text{ m/s}^2$]
- (a) the maximum amplitude
- (b) the time period
- Q.9 A wooden block (having cross-sectional area A), with a coin (having volume V and density d) placed on its top floats in water as shown in figure. If the coin is lifted and then dropped into water, find
- (a) change in the submerged length (1) of the block.
- (b) change in the water level (h) in container. Cross sectional area of the container is A_1 & density of water is ρ .
- Q.10 A liquid of density 2p is filled in a cylindrical vessel, whose cross-sectional area is 2A. A wooden cylinder of height H, cross-sectional area A and density p is floating in the liquid at equilibrium with its axis vertical. The cylinder is pushed down by a s_al_ista_exfb__seq_ili_ps__s_F_i_i_i

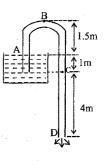
*

÷

	Target IIT JEE 2007			Daily Practice Probl		
CLA	SS : XI (PQRS)	DATE : 03-04/01/2	006 MAX.1	TIME: 60 Min.	DPP. NO	
Q.1	1.0 gram/centimet arm. An immiscible	tube of uniform cross-se er ³) standing initially 20 e liquid of density 4.0 gra meters high forms, as sh	centimeters from t ms/ centimeter ³ is	ne bottom in each added to one arm	h,	
	(A) 3/1	g elq (B) 5/2	w ? (C) 2/1	(D) 3/2		
Q.2		be inside a block of ice of pletely and metal falls in	the water. Water le (B) Falls			
Q.3	liquid A and B with height of liquid A is Then the length pa	linder of density 0.8 g/cm h its axis vertical. The de $h_A = 1.2$ cm and the leng rt of the cylinder in air is	nsities of liquid A th of the part of cy	and B are 0.7 g/cm linder immersed in l	³ and 1.2 gm/o liquid B is h _B =	
	(A) 0.21 cm	(B) 0.25 cm	(C) 0.35 cm	(D) 0.4	cm	
Q.4	placed in a liquid o a spring and comp	k of area of cross-section fdensity one-third of der ression in the spring is or o gravity is g, the spring o (B) 2ρAg	sity of block. The l e–third of the leng	block compresses	g/3	
Q.5	the table. The who cone's base has a v	one of radius R and heigh ole volume inside the co vatertight seal with the t oheric pressure find the t (B) $(1/3)\pi R^2h\rho g$	ne is filled with w able's surface and	ater of density ρ . The top apex of the	The circular r cone has a sn n the cone is	
Q.6		v cone, of height H and r. d.Neglect atmosphere p.		k, is filled completed	y with	
(a)		mponent of the force wh		rs on		
(b)		wnward component of	the thrush force du	e to water pressure	which the liqu	
Q.7	in liquid of densi smaller density p ₂	length 2L and density ρ_1 , it a depth 2h be is added on the top of t orium, the rod is just co	elow the surface. he first liquid, if in vered by the liqui	A liquid of the inclined	θ	

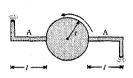
Q.8 A parabolic smooth wire frame of equation $y = x^2$ is fixed inside water as shown. A small bead of specific gravity 0.5 is threaded on wire and is kept at the origin at rest. When it is pushed gently towards + ve x-axis, it moves on the wire frame.

E.


- (a) What is the velocity of the ball when it reaches the surface of the water?
- (b) What are the coordinates of the ball when it hits water after leaving the surface at A? Neglect effects of viscosity.
- Q.9 A liquid of density 2p is filled in a cylindrical vessel, whose cross-sectional area is 2A. A wooden cylinder of height H, cross-sectional area A and density p is floating in the liquid at equilibrium with its axis vertical. Find the minimum work which external agent has to do to pull the cylinder completely out of the liquid.
- Q.10 A hollow cylinder of radius R open at the top contains some liquid spins about its vertical axis.
- (a) Calculate the height of vessel so that the liquid just reaches the top of the vessel and begins to uncover the base at angular speed o.
- (b) If the speed is now increased to 20. What area of the base will be uncovered?

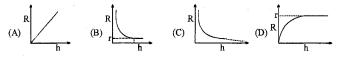
CLA	SS : XI (PQRS)	DATE : 06-07/02/200	6 MAX. TIME :	60 Min.	DPP: NO 1
Q.1		ds on a table of height h. If a esultant stream of water stri in the barrel is			
	(A) $\frac{R}{2}$	(B) $\frac{R^2}{4h}$	(C) $\frac{R^2}{h}$	(D) $\frac{h}{2}$	
Q.2	10 kg, and filled wit	sel of cross-sectional area h water completely. A small ower surface of the piston. (B) 3.4 m/s	hole of cross-sectional	area 10 mm ² is op	ened at a poir
Q.3		flowing vertically down fro cross-section area of the str must be about (B) 4.9 litre/min			etric flow rat
Q.4	A horizontal right	angle pipe bend has cross he force on the pipe bend du (B) 400 N	sectional area = 10 c	m ² and water flo	ws through
Q.5	of height h from the	a height h with a liquid and is ground. To get maximum ra ce of y from the free surfac	ange x _m a small hole is	h t	y k mmmmmmm I x _n 1
Q.6 (i) (ii) (ii)	holds three immisci 3ρ each of height H (having pressure P _d of the container at a the initial speed of e the horizontal distant	large uniform cross sectional ble, non-viscous and incomp /3 as shown. The liquid with $_3$). A tiny hole of area S (S < a height h (h < H/3). Determ afflux of the liquid through t ince x travelled by the liquid b) at which the hole should b	pressible liquids of den a lowest density is open < < A) is punched on the nine he hole initially	isities p, 2p and to atmosphere he vertical side	H/3 P H/3 2ρ H/3 3ρ h x
^{~~} Q.7	an incline of angle 3	of height 10m filled with wat 0°. At height x from botton stream coming out from ho ormally Find x	n a small hole is made a		X 30°

- Q.8 A tank containing gasoline is sealed and the gasoline is under pressure P_0 as shown in figure. The stored gasoline has a density of 660 kg m⁻³. A sniper fires a rifle bullet into the gasoline tank, making a small hole 53 m below the surface of the gasoline. The total height of gasoline is 73 m from the base. The jet of gasoline shooting out of the hole strikes the ground at a distance of 80m from the tank initially. Find the pressure P_0 above the gasoline surface. The local atmospheric pressure is 10^5Nm^{-2} .
- 53 m 20 m 30 m



- Q.9 Two identical orifices are made on one side of an open tank along same vertical line. The height of water above the upper orifice is 3 m. If the jets of water from the two orifices intersect at a horizontal distance 8 m from the tank.
 (a) Estimate the vertical distance between the two orifices.
- (b) Also calculate the vertical distance of the point of intersection of the jets from the water level in the tank.
- Q.10 A siphon tube is discharging a liquid of specific gravity 0.9 from a reservoir as shown in fig. find
 - (a) find the velocity of the liquid coming out of siphon at D
 - (b) find the pressure at the highest point B
 - (c) find the pressure at point C, here $g = 10 \text{ m/s}^2$.

CLA.	SS : XI (PQRS) DATE : 08-09/02/2006 MAX.TIME : 60 Min. DPP. NO.
Q.1	Equal volumes of two immiscible liquids of densities ρ and 2ρ are filled in a vessel as shown in figure. Two small holes are punched at depth h/ 2 and 3h/2 from the surface of lighter liquid. If v_1 and v_2 are the velocities of a flux at these two holes, then v_1/v_2 is : (A) $\frac{1}{2\sqrt{2}}$ (B) $\frac{1}{2}$ (C) $\frac{1}{4}$ (D) $\frac{1}{\sqrt{2}}$
Q.2	A horizontal pipe line carries water in a streamline flow. At a point along the tube where the cross-see area is 10^{-2} m ² , the water velocity is 2 ms ⁻¹ and the pressure is 8000 Pa. The pressure of we another point where the cross-sectional area is 0.5×10^{-2} m ² is : (A) 4000 Pa (B) 1000 Pa (C) 2000 Pa (D) 3000 Pa
Q.3	Water coming out of a horizontal tube at a speed v strikes normally a vertically wall close to the soft he tube and falls down vertically after impact. When the speed of water is increased to 2v. (A) the thrust exerted by the water on the wall will be doubled (B) the thrust exerted by the water on the wall will be four times (C) the energy lost per second by water strikeup the wall will also be four times (D) the energy lost per second by water striking the wall be increased eight times.
Q.4	A cylindrical vessel is filled with a liquid up to height H. A small hole is made in the vessel at a dist below the liquid surface as shown in figure. The liquid emerging from the hole strike the gro distance x (A) if y is increased from zero to H, x will decrease and then increase (B) x is maximum for $y = \frac{H}{2}$ (C) the maximum value of x is $\frac{H}{2}$ (D) the maximum value of x increases with the increases in density of the liquid
Q.5	A steady flow of water passes along a horizontal tube from a wide section X to the narrower sections see figure. Manometers are placed at P and Q at the sections. Which of the statements A, B, C, I most correct? (A) water velocity at X is greater than at Y (B) the manometer at P shows lower pressure than at Q (C) kinetic energy per m ³ of water at X = kinetic energy per m ³ at Y (D) the manometer at P shows greater pressure than at Y
~ Q.6	A cylindrical vessel open at the top is 20 cm high and 10 cm in diameter. A circular hole cross-sectional area 1 cm ² is cut at the centre of the bottom of the vessel. Water flows from a tube it into the vessel at the rate 100 cm ³ s ⁻¹ . Find the height of water in the vessel under steady state (Take $g = 1000 \text{ cm s}^{-2}$)


- Q.7 A cylindrical vessel filled with water upto height of H stands on a horizontal plane. The side wall of the vessel has a plugged circular hole touching the bottom. The coefficient of friction between the bottom of vessel and plane is µ and total mass of water plus vessel is M. What should be minimum diameter of hole so that the vessel begins to move on the floor if plug is removed (here density of water is p)?
- Q.8 Shows the top view of a cylindrical can mounted on a turntable. The can is filled with water. At a depth h below the water surface are two horizon a' u' es of 'eng' *l* and cross-sec iona' area a, with right-angle bends at their ends. Show that, as the water jets emerge from the tubes, there is a torque τ exerted on the system given by the expression $t = 4\rho gh (r + l)a$, where ρ is the density of t..e water.
- Q.9 Av.ss. IA filled ... it... ter communicates with the atmosphere through a narrow glass tube A passing through the throat of the vessel as in the given figure. A hole F is $h_c = 2$ cm from the bottom of the vessel.
- (a) Find the velocity with which the water flows out of the hole F if the distance between the end of the tube and the bottom of the vessel is h, = 10cm
- b) Also find the time in which the water level in vessel falls b 5 cm. Given area of cross section of vessel is 1000 times the area of hole.
- Q.10 In a cylindrical vessel of base area 0.01 m², a hole is made on side walls and water is found to emerge with a velocity of 10 m/s. Find the velocity of water coming out if a block of wood of mass 1 kg is gently floated on same water surface. Assume that the hole is of negligible cross section area and the total volume of water is same in both the cases.

PHYSICS BANSAL CLASSES Target IIT JEE 2007 **Daily Practice Problems** CLASS : XI (PORS) DATE : 10-11/02/2006 MAX.TIME: 60 Min. DPP. NO.- 104 A long capillary tyube of radius 'r' is initially just vertically completely imerged inside a liquid of angle of contact 0°. If the tube is slowly raised then relation between radius of curvature of of miniscus inside the capillary tube and displacement (h) of tube can be represented by

0.2

A soap bubble has radius R and thickness d (<< R) as shown. It colapses into a spherical drop. The ratio of excess pressure in the drop to the excess pressure inside the bubble is

- (B) $\left(\frac{R}{64}\right)^{\frac{1}{3}}$ (C) $\left(\frac{R}{244}\right)^{\frac{1}{3}}$ (A) $\left(\frac{\mathbf{R}}{2t}\right)^{\frac{2}{3}}$

(D) None

0.3 When an air bubble rises from the bottom of a deep lake to a point just below the water surface, the pressure of air inside the bubble (A) is greater than the pressure outside it

(C) increases as the bubble moves up

- (B) is less than the pressure outside it
- (D) decreases as the bubble moves up

(B) $\cos^{-1}\left(\frac{R-h}{p}\right)$

(D) $\sin^{-1}\left(\frac{R-h}{P}\right)$

A liquid is filled in a scherical container of radius R till a height h. At this positions 0.4 the liquid surface at the edges is also horizontal. The contact angle is

(A) 0

(C)
$$\cos^{-1}\left(\frac{h-R}{R}\right)$$

- 0.5 A cylinder with movable piston contains in it air under pressure P1 and a soap bubble of radius r. Surface tension is T and temperature is maintained constant. Determine the pressure P2 to which the air should be compressed by moving piston into cylinder for the soap bubble to reduce its radius to r/2.
- Q.6 The figure shows an inverted U like tube with straight limbs of unequal radii $r_1 = 0.25$ mm and $r_2 = 0.50$ mm. Both the open ends of the tube are immersed below the free surface of water. The air is pumped into the upper part of the tube at such pressure so that the water in the wider tube is at level with the water outside. Find the height h of water in the other limbs. Take angle of contact as zero and surface tension of water = 7×10^{-2} N/m.
- 0.7 A soap film is formed on a vertical equilateral triangular frame ABC. Side BC can move vertically always remaining horizontal. If m is the mass of rod BC, and T is surface tension of soap film find
- (a) the length of BC in equilibrium.
- the time period of small oscillations about the equilibrium position. (b)

Q.8 There is an air bubble of radius R inside a drop of water of radius 3R. Find the ratio of gauge pressure at point A to the gauge pressure at point B.

٤.,

- $Q.9 A long vertical capillary of radius R is dipped in a liquid having surface tension T. Find the gauge pressure at the mid point of the liquid column in the capillary. Take angle of contact <math>\theta$.
- Q.10 A U tube has 2 tubes of radius 1 mm and 1.5 mm what will be the difference in water level in two limbs?
 Given : Contact angle q = 0°, surface tension = 7.5 × 10⁻² N/m.

CLAS	SS : XI (PQRS)	DATE : 13-14/02/			DPP. NO 105
Q .1		ick layer of glycerine b sity of glycerine is 1.0 k	etween a flat plate of are g/m-s then how much for		
	(A) 3.5 N	(B) 0.7 N	(C) 1.4 N	(D) None	e
Q.2	force of magnitude of the sphere and l statements about t (A) Its kinetic ener (B) Its kinetic ener (C) Its speed incre (D) Its speed incre	eng, the sphere experie b is a constant. Assume he sphere is correct? gy decreases due to the gy increases to a maxim ases to a maximum, the ases monotonically, ap	a a stationary viscous mea ences a retarding force of that the buoyant force is e retarding force. num, then decreases to z en decreases back to a fir proaching a terminal spe proaching a terminal spe	magnitude bv, s negligible. Wi ero due to the r tal terminal spe ed that depend	where v is the speed hich of the following etarding force. eed. s on b but not on m.
Q.3	The displacement of option	of a ball falling from rest	in a viscous medium is pl	atted against tin	ne. Choose a possible
		(B) (B)	(C)	(D)	
Q.4		wing is the <i>incorrect</i> gr locity v = 0 and displac	aph for a sphere falling in ement $x = 0$.)	a viscous liqui	d?
	(A) (A)	(B) (B)	(C)	(D)	
Q.5		nd radius r is gently rele m'. The terminal veloc	ased in a viscous liquid. T ity is proportional to	The mass of the	liquid displaced by it
	(A) $\frac{m-m'}{r}$	$(B) \frac{m+m'}{r}$	(C) $\frac{(m+m')}{r^2}$	(D) (m -	m') r ²
Q.6	and bottom of the	plate are μ_1 and μ_2 resp	rfaces h cm apart such th ectively. Determine the p e thin plate is minimum.	osition of the th	in plate such that the
Q.7		sity of the oil is 0.08 N-	of 20 cm diameter is fille s/m ² . Calculate the torqu		

Q.8 Two equal drops of water fall through air with a steday velocity of 10 cm/s. If the drops coalesce. What will be the new terminal velocity.

Q.9 A sphere of having radius r and density ρ is projected vertically downwards into a liquid of density 2ρ and viscosity η with a velocity v_{0} . Find the time when the sphere is at its lowest position in terms of v_{0} .

and g. (Given $v_0 = \frac{2\rho r^2 g}{9\eta}$).

Q.10 Two balls of same material of density ρ but radius r_1 and r_2 are joined by a light inextensible vertical thread and released from a large height in a medium of coefficient of viscosity = η . Find the terminal velocity acquired by the balls. Also find the tension in the string connecting both the balls when both of them are moving with terminal velocity. Neglect buoyancy and change in acceleration due to gravity.