Important Instructions:

1. When you are directed to open the Test Booklet, take out the Answer Sheet and fill in the particulars carefully.
2. The test is of 3 hours duration.
3. The Test Booklet consists of 90 questions. The maximum marks are 360 .
4. There are three parts in the question paper. The distribution of marks subjectwise in each part is as under for each correct response.
5. Candidates will be awarded marks as stated above in instructions No. 5 for correct response of each question. $1 / 4$ (one fourth) marks will be deducted for indicating incorrect response of each quest ion. No deduct ion from the total
score will be made if no response is indicated for an item in the answer sheet .
6. Use Blue/Black Ball Point Pen only for writing particulars/ marking responses on Side-1 and Side-2 of the Answer Sheet. Use of pencil is strictly prohibi ted.
7. Rough work is to be done on the space provided for this purpose in the Test Booklet only. This space is given at the bottom of each page.
8. Do not fold or make any stray marks on the Answer Sheet.
9. Cut off marks for each subject is 20% and you must score $\mathbf{4 0 \%}$ in aggregate for qualifying.

MOCK TEST

PHYSICS

1. A bead of mass m is fitted onto a rough rod of length $2 l$ and can move along it only. At the initial moment the bead is in the middle of the rod. The rod moves translationally in space with the constant acceleration a in a direction forming an angle α with rod.
The time when the bead will leave the rod, if the coefficient of friction between bead and rod is μ, is (Neglect the weight of the bead).
(a) $\sqrt{\frac{2 l}{\mathrm{a}(\mu \cos \alpha-\sin \alpha)}}$
(b) $\sqrt{\frac{2 l}{a(\cos \alpha-\mu \sin \alpha)}}$
(c) $\sqrt{\frac{2 l}{a \cos \alpha}}$
(d) $\sqrt{\frac{2 l}{\mu \mathrm{a}(\cos \alpha+\sin \alpha)}}$
2. Two blocks of masses m_{1} and m_{2} connected by an ideal un-deformed spring rests on a horizontal plane. The coefficient of friction between the blocks and the surface is equal to μ. What minimum constant force
has to be applied in the horizontal direction to the block of mass m_{1} in order to shift the other block? (given $m_{2}>m_{1}$)

(a) $g\left(m_{1}+\frac{m_{2}}{2}\right)$
(b) $\mu \mathrm{g}\left(\mathrm{m}_{1}+\frac{\mathrm{m}_{2}}{2}\right)$
(c) $\mu \mathrm{g}\left(\frac{\mathrm{m}_{1}}{2}+\mathrm{m}_{2}\right)$
(d) $\mu g\left(m_{1}+m_{1}\right)$
3. Two air bubbles in water
(a) attract each other
(b) repel each other
(c) do not exert any force on each other
(d) may attract or repel depending upon the distance between them
4. A cannon fires successively two shells with velocity u , the first at an angle θ_{1} and the second at an angle θ_{2} to the horizontal, the azimuth being the same. Neglecting the air drag, the time interval between firings leading to the collision of the shells will be
(a) $\frac{2 \mathrm{u}}{\mathrm{g}}\left[\frac{\sin \left(\theta_{1}-\theta_{2}\right)}{\cos \theta_{1}+\cos \theta_{2}}\right]$
(b) $\frac{2 \mathrm{u}}{\mathrm{g}} \frac{\sin \theta_{1}+\sin \theta_{2}}{\cos \theta_{1}+\cos \theta_{2}}$
(c) $\frac{2 \mathrm{u}}{\mathrm{g}}\left[\frac{\sin \left(\theta_{1}-\theta_{2}\right)}{\cos \left(\theta_{1}-\theta_{2}\right)}\right]$
(d) $\frac{2 \mathrm{u}}{\mathrm{g}}\left[\frac{\sin \left(\theta_{1}+\theta_{2}\right)}{\cos \left(\theta_{1}+\theta_{2}\right)}\right]$
5. A hemispherical bowl of radius R is set rotating about its axis of symmetry which is kept vertical. A small block kept in the bowl rotates with the bowl without slipping on its surface. If the surface of the bowl is smooth and the angle made by the radius through the block with the vertical is θ, find the angular speed at which the bowl is rotating.
(a) $\sqrt{\frac{g}{R} \cos \theta}$
(b) $\sqrt{\frac{g \sec \theta}{R}}$
(c) $\sqrt{\frac{g}{R} \tan \theta}$
(d) $\sqrt{\frac{\mathrm{g}}{\mathrm{R}} \cot \theta}$
6. In the circuit shown, the coil has inductance and resistance. When X is joined to Y , the time constant is τ during growth of current. When the steady state is reached, heat is produced in the coil at a rate P . X is now joined to Z .

(a) The total heat produced in the coil is $\mathrm{P} \tau$
(b) The total heat produced in the coil is $\frac{1}{2} \mathrm{P} \tau$
(c) The total heat produced in the coil is $2 \mathrm{P} \tau$
(d) The data given is not sufficient to reach the conclusion
7. The density of an electric field depends only on the
coordinates ' x ' and ' y ' as follows, $\vec{E}=\frac{a(x \hat{i}+y \hat{j})}{x^{2}+y^{2}}$
where, ' a ' is a constant and \hat{i} and \hat{j} are the unit vectors of the ' x ' and ' y ' axes. The charge within a sphere of radius ' R ' with the centre at the origin is
(a) $\varepsilon_{0} a R$
(b) $\frac{\mathrm{aR}}{4 \pi \varepsilon_{0}}$
(c) $2 \pi \varepsilon_{0} \mathrm{R}$
(d) $4 \pi \varepsilon_{0} \mathrm{R}$
8. Express which of the following set ups can be used to verify Ohm's law?
(a)

(b)

(c)

(d)

9. Figure below shows a cylindrical tube of volume V_{0} divided in two parts by a frictionless separator. The walls of the tube are adiabatic but the separator is conducting. Ideal gases are filled in the two parts. When the separator is kept in the middle, the pressures are P_{1} and P_{2} in the left part and the right part respectively. The separator is slowly slide and is released at a position where it can stay in equilibrium. Find the volumes of the two parts.

(a) $\frac{P_{1}}{P_{2}} V_{0}, \frac{P_{2}}{P_{1}} V_{0}$
(b) $\frac{P_{1} V_{0}}{P_{1}+P_{2}}, \frac{P_{2} V_{0}}{P_{1}+P_{2}}$
(c) $\left(1+\frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}\right) \mathrm{V}_{0},\left(1+\frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}\right) \mathrm{V}_{0}$
(d) $\frac{\left(P_{1}+P_{2}\right) V_{0}}{P_{1}}, \frac{\left(P_{1}+P_{2}\right) V_{0}}{P_{2}}$
10. The wavelength of incident radiation is increased from 300 nm to 301 nm in a photoelectric effect experiment. The corresponding change in stopping potential is [Planck's constant $\mathrm{h}=6.625 \times 10^{-34} \mathrm{Js}$].
(a) 0.0138 V
(b) -0.0138 V
(c) 0.0153 V
(d) 0.0152 V
11. In the circuit shown in the figure, switch S is closed at time $t=0$. Select the incorrect statement(s).

(a) rate of increase of charge is same in both the capacitors
(b) ratio of charge stored in capacitors C and 2 C at any time t would be $1: 2$
(c) time constants of both the capacitors are equal
(d) steady state charge in capacitors C and 2C are in the ratio of $1: 2$
12. The density of steel is measured by measuring the mass and side length of a steel cube. If the maximum errors in the measurement of mass and length are 2% and 3% respectively, the maximum error in the measurement of the density is
(a) 11%
(b) 7%
(c) 5%
(d) 2%
13. In the diagram shown, calculate the zero correction.

(a) +0.05 cm
(b) -0.05 cm
(c) 0 cm
(d) $\pm 0.05 \mathrm{~cm}$
14. Which is the correct form of the graph of angle of incidence vs angle of deviation for a triangular prism during the parallax method.
(a)

(b)

(c)

(d)

15. In Young's double-slit experiment, the separation between the slits is halved and the distance between the slits and the screen is doubled. The fringe width is
(a) unchanged
(b) halved
(c) doubled
(d) quadrupled
16. What happens when the applied load increases and upto breaking stress in the experiment to determine the Young's modulus of elasticity?
(a) The area of wire goes on decreasing and wire extends and breaks
(b) The area of wire goes on decreasing and wire breaks
(c) The wire extends and area remains constant
(d) The area remains same and wire length is also same
17. The magnetic moment of the loop as shown in figure by

(a) $\frac{\pi}{2}\left(a^{2}+b^{2}\right) I \hat{k}$
(b) $-\frac{\pi}{2}\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right) \hat{\mathrm{k}}$
(c) $\frac{\pi}{2}\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right) \mathrm{I} \hat{\mathrm{k}}$
(d) $-\frac{\pi}{2}\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right) \hat{\mathrm{k}}$
18. The figure shows a process ABCA performed on an ideal gas. The net heat given to the system during the process is
(a) $\operatorname{nRT}_{1} \ln \left(\frac{\mathrm{~V}_{2}}{\mathrm{~V}_{1}}\right)$
(b) $\mathrm{nRT}_{2} \ln \left(\frac{\mathrm{~V}_{2}}{\mathrm{~V}_{1}}\right)$

(c) $\mathrm{nR}\left[\mathrm{T}_{2} \ln \left(\frac{\mathrm{~V}_{2}}{\mathrm{~V}_{1}}\right)-\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)\right]$

Rough Work

(d) $\mathrm{nR}\left[\mathrm{T}_{2} \ln \left(\frac{\mathrm{~V}_{2}}{\mathrm{~V}_{1}}\right)-\mathrm{T}_{2}\right]$
19. For the determination of the focal length of a convex mirror, a convex lens is required because
(a) it is not possible to obtain the image produced by a convex mirror on the screen
(b) a convex lens has high resolving power so it helps to measure the focal length correctly
(c) a convex mirror always forms a real image which is diminished by the convex lens
(d) none of these
20. A binary star system consists of two stars A and B which have time period T_{A} and T_{B} and mass M_{A} and M_{B}. Then
(a) if $T_{A}>T_{B}$ then $R_{A}>R_{B}$
(b) if $T_{A}>T_{B}$ then $M_{A}>M_{B}$
(c) $\left(\frac{\mathrm{T}_{\mathrm{A}}}{\mathrm{T}_{\mathrm{B}}}\right)^{2}=\left(\frac{\mathrm{R}_{\mathrm{A}}}{\mathrm{R}_{\mathrm{B}}}\right)^{3}$
(d) $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{B}}$
21. Which of the following graph represents the plot of reverse bias voltage $\left(\mathrm{V}_{\mathrm{R}}\right)$ vs reverse-bias current $\left(\mathrm{I}_{\mathrm{R}}\right)$ of a junction diode in reverse-biased mode ?
(a)

(b)

(c)

(d)

22. Two different coils have self-inductances $\mathrm{L}_{1}=8 \mathrm{mH}$, $\mathrm{L}_{2}=2 \mathrm{mH}$. The current in one coil is increased at a constant rate. The current in the second coil is also
the power given to the two coils is same. At the time the current, the induced voltage and the energy stored in the first coil are $\mathrm{i}_{1}, \mathrm{~V}_{1}$ and W_{1} respectively. Corresponding values for the second coil at the same instant are i_{2}, V_{2} and W_{2} respectively. Then
(a) $\frac{\mathrm{i}_{1}}{\mathrm{i}_{2}}=\frac{3}{4}$
(b) $\frac{i_{1}}{i_{2}}=4$
(c) $\frac{\mathrm{W}_{1}}{\mathrm{~W}_{2}}=4$
(d) $\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}=\frac{1}{4}$
23. A variable force acts on a particle of mass ' m ' (initially at rest) from ' t ' $=0$ to ' t ' $=\mathrm{t}_{0}$. The plot of F versus t is a semicircle as shown in figure. Which of the following is incorrect?

(a) Impulse imparted to the particle is $\pi \mathrm{F}_{0}{ }^{2}$
(b) Impulse imparted to the particle is $\frac{1}{2} \pi \mathrm{~F}_{0}^{2}$
(c) The velocity acquired by the particle is $\frac{\pi \mathrm{F}_{0}^{2}}{2 \mathrm{~m}}$
(d) The momentum gain is $\frac{1}{2} \pi \mathrm{~F}_{0}^{2}$

Questions with Statement - 1 and Statement - 2

This section of Statement -1 and Statement -2 . Of the four choices given here, choose the one that best describe the two Statements
(a) Statement -1 is True, Statement -2 is True ; Statement -2 is a correct explanation for Statement -1
(b) Statement -1 is True, Statement -2 is True ; Statement -2 is not a correct explanation for Statement 1
(c) Statement -1 is True, Statement -2 is False
(d) Statement -1 is False, Statement -2 is True,
24. Statement - $\mathbf{1}$

A cloth covers a table. Some dishes are kept on it. The cloth can be pulled out without dislodging the dishes form the table.
Statement - 2
For every action there is an equal and opposite reaction
25. Statement - 1

A block of mass m starts moving on a rough horizontal surface with a velocity v. It stops due to friction between the block and the surface after moving through a certain distance. The surface is now tilted to an angle of 30° with the horizontal and the same block is made to go up on the surface with the same initial velocity v. The decrease in the mechanical energy in the second situation is smaller than that in the first situation.

Statement - 2

The coefficient of friction between the block and the surface decreases with the increase in the angle of inclination.

Read the following Passages and Answer the Questions

 PASSAGES : 1A cylinder of radius R and height $\mathrm{H}=3 \mathrm{~m}$ is filled with a liquid. Initial of filled water was $\frac{2}{3} \mathrm{H}$ and $\mathrm{R}=1 \mathrm{~m}$. It is rotated at an unknown constant angular velocity ' ω '.
26. Section of the surface of the liquid by a vertical plane containing the axis is
(a) straight line
(b) parabola
(c) hyperbola
(d) any arbitrary curve
27. The speed of rotation when the water just starts spilling over the brim is
(a) $\sqrt{60} \mathrm{rad} / \mathrm{sec}$
(b) $\sqrt{80} \mathrm{rad} / \mathrm{sec}$
(c) $\sqrt{40} \mathrm{rad} / \mathrm{sec}$
(d) $\sqrt{50} \mathrm{rad} / \mathrm{sec}$
28. The speed of rotation when the point at the centre of the base is just exposed will be
(a) $\sqrt{60} \mathrm{rad} / \mathrm{sec}$
(b) $\sqrt{80} \mathrm{rad} / \mathrm{sec}$
(c) $\sqrt{40} \mathrm{rad} / \mathrm{sec}$
(d) $\sqrt{50} \mathrm{rad} / \mathrm{sec}$

PASSAGE 2

Consider a block P of mass 2 M placed on another block Q of mass 4 M lying on a fixed rough horizontal surface of coefficient of friction μ between this surface and the block Q. Surfaces of P and Q interacting with each other are smooth. A mass M is moving in the horizontal direction along a line passing through the centre of mass of block Q normal to the face. Speed of mass m is v_{o} when it solids elastically with the block Q at a height s from the rough surface. Both the blocks have same length 4 s . Velocity v_{o} is enough to make the block P topple.

29. Work done in moving the block Q through a distance 2 s is
(a) $6 \mu \mathrm{Mgs}$
(b) $12 \mu \mathrm{Mgs}$
(c) $18 \mu \mathrm{Mgs}$
(d) $24 \mu \mathrm{Mgs}$
30. When mass M is colliding with velocity v_{o} the K.E> acquired by block Q is
(a) $\frac{8}{25} \mathrm{Mv}_{0}^{2}$
(b) $\frac{25}{8} \mathrm{Mv}_{\mathrm{o}}^{2}$
(c) $\frac{1}{2} \mathrm{Mv}_{\mathrm{o}}^{2}$
(d) $\frac{3}{20} \mathrm{Mv}_{\mathrm{o}}^{2}$

CHEMISTRY

31. The gram equivalent volume of oxygen at STP is
(a) 5.6 L
(b) 11.2 L
(c) 22.4 L
(d) 16.8 L
32. The velocity of de-Broglie wave is given by
(a) $\frac{c^{2}}{v}$
(b) $\frac{\mathrm{h}}{\lambda \mathrm{m}}$
(c) $\frac{\mathrm{mc}^{2}}{\mathrm{~h}}$
(d) $v \lambda$

Turning Point
33. The amount of urea to be dissolved in 500 cc of water $\left(\mathrm{K}_{\mathrm{f}}=1.86\right)$ to produce a depression of 0.186 ${ }^{\circ} \mathrm{C}$ in the freezing point is
(a) 6 g
(b) 3 g
(c) 8 g
(d) 1 g
34. For the reaction

$$
\mathrm{A}(\mathrm{~s}) \longrightarrow \mathrm{B}(\mathrm{x})+\mathrm{C}(\mathrm{~s})
$$

The entropy change at 298 K and 1 atm if absolute entropies of A, B and C are 112,180 and $132 \mathrm{~J} \mathrm{~K}^{-1}$ mol^{-1} respectively is
(a) $86 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
(b) $100 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
(c) $180 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
(d) $200 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
35. Which of the following is acidic buffer solution?
(a) $\mathrm{NaCl}+\mathrm{HCl}$
(b) $\mathrm{NaNO}_{2}+\mathrm{HNO}_{2}$
(c) $\mathrm{NH}_{4} \mathrm{NO}_{2}+\mathrm{HNO}_{2}$
(d) $\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{NH}_{4} \mathrm{OH}$
36. Hybridisation of P in POCl_{3} is
(a) sp
(b) sp^{3}
(c) sp^{2}
(d) $\mathrm{sp}^{3} \mathrm{~d}$
37. Which of the following is inorganic graphite ?
(a) BN
(b) SiC
(c) $\mathrm{B}_{3} \mathrm{~N}_{3} \mathrm{H}_{6}$
(d) $\mathrm{B}_{2} \mathrm{H}_{6}$
38. Which of the following is correct for $\left(\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$?
(a) It is tetrahedral and diamagnetic complex
(b) It is square-planar and diamagnetic complex
(c) It is square-planar and paramagnetic complex
(d) It is tetrahedral and paramagnetic complex
39. Which of the following contains two electrons and three centre bonds ?
(a) $\mathrm{C}_{2} \mathrm{H}_{6}$
(b) $\mathrm{B}_{2} \mathrm{H}_{6}$
(c) $\mathrm{B}(\mathrm{OH})_{3}$
(d) $\mathrm{Al}_{2} \mathrm{Cl}_{6}$
40. Zinc on reaction with concentrated HNO_{3} gives
(a) $\mathrm{NH}_{4} \mathrm{NO}_{3}$
(b) NO_{2}
(c) $\mathrm{N}_{2} \mathrm{O}$
(d) N_{2}
41. Both geometrical and optical isomerisms are shown by
(a) $\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]^{+}$
(b) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]^{2+}$
(c) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$
(d) $\left[\mathrm{Cr}(\mathrm{OX})_{3}\right]^{3-}$
42. $\mathrm{H}_{2} \mathrm{O}_{2}$ on reaction with titanium salt gives
(a) yellow colour
(b) red colour
(c) white colour
(d) black colour
43. Which of the following is not an acidic oxide ?
(a) CO_{2}
(b) $\mathrm{N}_{2} \mathrm{O}$
(c) NO_{2}
(d) SO_{2}
44. Which of the following is Saline hydride ?
(a) CaH_{2}
(b) CH_{4}
(c) AlH_{3}
(d) BH_{3}
45. Which of the following is formed when carbon dioxide is passed through a brine solution saturated with ammonia ?
(a) $\mathrm{NH}_{4} \mathrm{HCO}_{3}$
(b) NaHCO_{3}
(c) $\mathrm{Na}_{2} \mathrm{CO}_{3}$
(d) $\mathrm{H}_{2} \mathrm{CO}_{3}$
46. The oxidation states of chlorine in CaOCl_{2} is
(a) $-1,-1$
(b) $+1,+1$
(c) $+1,-1$
(d) $+5,-1$
47. For decolourization of 1 mole of KMnO_{4}, the moles of $\mathrm{H}_{2} \mathrm{O}_{2}$ required is
(a) $1 / 2$
(b) $3 / 2$
(c) $5 / 2$
(d) $7 / 2$
48. Which of the following is correct order of stability of carbocations ?
(a) $\mathrm{CH}_{3}-\stackrel{\oplus}{\mathrm{C}} \mathrm{H}_{2}>\mathrm{CH}_{2}=\stackrel{\oplus}{\mathrm{C}} \mathrm{H}>\mathrm{CH} \equiv \stackrel{\oplus}{\mathrm{C}}$
(b) $\mathrm{CH}_{2}=\stackrel{\oplus}{\mathrm{C}} \mathrm{H}>\mathrm{CH} \equiv \stackrel{\oplus}{\mathrm{C}}>\mathrm{CH}_{3}-\stackrel{\oplus}{\mathrm{C}} \mathrm{H}_{2}$
(c) $\mathrm{CH}_{3}-\stackrel{\oplus}{\mathrm{C}} \mathrm{H}_{2}>\mathrm{CH} \equiv \stackrel{\oplus}{\mathrm{C}}>\mathrm{CH}_{2}=\stackrel{\oplus}{\mathrm{C}} \mathrm{H}$
(d) $\mathrm{CH}_{2}=\stackrel{\oplus}{\mathrm{C}} \mathrm{H}>\mathrm{CH}_{3}-\stackrel{\oplus}{\mathrm{C}} \mathrm{H}_{2}>\mathrm{CH} \equiv \stackrel{\oplus}{\mathrm{C}}$
49. o-Nitrophenol and p-nitrophenol can be separated by
(a) vacuum distillation
(b) fractional distillation
(c) steam distillation
(d) simple distillation
50. Which is produced on reduction of an aromatic nitro compound with Zn and HCl ?
(a) Oxime
(b) Benzene
(c) Aniline
(d) Amide
51. Which of the following having highest heat of hydrogenation?
(a) 2, 3-Dimethylbut-2-ene (b) Propene
(c) Ethene
(d) But-2-ene
52.

Rough Work

(a) d and l isomers
(b) cis and trans isomers
(c) functional isomers
(d) position isomers
53. Which of these is not stabilized by resonance?
(a) CO_{3}^{2-}
(b) BF_{4}^{-}
(c) NO_{3}^{-}
(d) $\mathrm{C}_{6} \mathrm{H}_{6}$

Questions with Statement - 1 and Statement - 2

This section of Statement -1 and Statement -2 . Of the four choices given here, choose the one that best describes the two Statements.
(a) Statement -1 is True, Statement -2 is True; Statement -2 is a correct explanation for Statement -1
(b) Statement -1 is True, Statement -2 is True; Statement -2 is not correct explanation for Statement -1
(c) Statement -1 is True, Statement -2 is False
(d) Statement -1 is False, Statement -2 is True
54. Statement -1

In a hexagonal close packed structure of spheres the fraction of the volume occupied by the sphere is equal to the fraction of the volume occupied by the sphere in ccp.

Statement -2 :

Packing fraction increases with coordination number.
55. Staement - 1 :

The phenomenon of imbibition shows that gel is a three dimensional network with void space inside where the liquid
Statement - 2 : The extent of swelling varies with pH of the medium and is minimum and the isoelectric point

Read the following Passages and Answer the Questions :

Passage :

The branch of science which deals with dual behaviour of matter is said to be quantum mechanics. The fundamental equation of quantum mechanics is Schrodinger wave equation. The important features of quantum mechanics are
(i) The energy of electron is quantized as a result of wave like properties of electrons.
(ii) The position and momentum of an electron cannot
be determined simultaneously. The path of electron cannot be determined. We can only talk of probability of finding electron.
(iii) An atomic orbital is represented by wave function ' Ψ ' for an electron. ' R ' is radial wave function whose value varies with distance from the nucleus. Ψ^{2} determines total probability (angular and radial) whereas R^{2} is called radial probability.
All information about electron in an atom is stored in orbital wave function Y. ' R ' is radial wave function.
(iv) R can be +ve or -ve but R^{2} is always +ve. Similarly, Ψ can be +ve or -ve but Ψ^{2} is always $+\mathrm{ve} . \Psi^{2}$ can be equal to zero.
56. The region or space where $\Psi^{2}=0$ are called
(a) nodes
(b) antinodes
(c) orbitals
(d) energy levels
57. Hamiltonian operator represents
(a) kinetic energy
(b) potential energy
(c) total energy
(d) probability of finding electron
58. Which of the following probability distribution curves represents 2 s orbital for H -atom ?
(a)

(b)

(d)

PASSAGE - 2

Dicarboxylic acids contain two carboxylic acid groups. Acidity of carboxylic depends upon stability of intermediate formed. The α hydrogen present in carboxylic acid is labile. Dicarboxylic acids on decarboxylation form monocarboxylic acids, alkanes and cyclic ketones depending upon conditions. Greater the

Rough Work

symmetry, higher will be the melting point.
(a) $(8+\sqrt{2})^{1 / 3}$
(b) no such a exists
59. Sodium adipate on electrolysis gives
(a) But-2-ene
(b) But-1-ene
(c) Cyclobutane
(d) Cyclobutene
60. Maleic acid on reaction with alkaline KMnO_{4} gives
(a) $d(+)$ tartaric acid
(b) $1(-)$ tartaric acid
(c) racemicmixture of tartaric acid
(d) Meso tartaric acid

MATHEMATICS

61. The equation of the common tangent to the parabolas $y^{2}=4 a x$ and $x^{2}=4 a y$ is
(a) $x+y+a=0$
(b) $x+y=a$
(c) $x-y=a$
(d) none of these
62. If $\vec{a}, \vec{b}, \vec{c}$ are three noncoplanar vectors represented by concurrent edges of a parallelopiped of volume 4 then $(\vec{a}+\vec{b}) \cdot(\vec{b} \times \vec{c})+(\vec{b}+\vec{c}) \cdot(\vec{c} \times \vec{a})+(\vec{c}+\vec{a}) \cdot(\vec{a} \times \vec{b}) \quad$ is equal to
(a) 12
(b) 4
(c) 0
(d) ± 12
63. If $\phi(x)=\int \cot ^{4} x d x+\frac{1}{3} \cot ^{3} x-\cot x$ and $\phi\left(\frac{\pi}{2}\right)=\frac{\pi}{2}$ then $\phi(x)$ is
(a) $\pi-x$
(b) $x-\pi$
(c) $\frac{\pi}{2}-x$
(d) none of these
64. The number of all the possible selections which a student can make for answering one or more questions out of eight given questions in a paper, when each question has three alternative is
(a) 6561
(b) 256
(c) 6560
(d) none of these
65. If $x=a+b, y=a \omega+b \omega^{2}, z=a \omega^{2}+b \omega$, then $x^{3}+y^{3}+z^{3}=$
(a) $3\left(a^{3}-b^{3}\right)$
(b) 0
(c) $3\left(a^{3}+b^{3}\right)$
(d) $a^{3}+b^{3}+c^{3}-3 a b c$
66. The value of a for which the area of the region bounded by the curve $y=8 x^{2}-x^{5}$, the straight line $x=0$ and $x=a$ and the x-axis is equal to $16 / 3$, is
(c) $(8-4 \sqrt{2})$
The greatest
$\left[-\frac{1}{2}, \frac{1}{2}\right]$ is
(a) $-\frac{3}{8}$
(b) $\frac{3}{8}$
(c) $\frac{1}{2}$
(d) $-\frac{1}{2}$
67. If α, β and γ are real numbers, then

$$
\Delta\left|\begin{array}{ccc}
1 & \cos (\beta-\gamma) & \cos (\gamma-\alpha) \\
\cos (\alpha-\beta) & 1 & \cos (\gamma-\beta) \\
\cos (\alpha-\gamma) & \cos (\beta-\gamma) & 1
\end{array}\right| \text { is equal to }
$$

(a) $\cos \alpha \cdot \cos \beta \cdot \cos \gamma$ (b) -1
(c) $\cos \alpha+\cos \beta+\cos \gamma$ (d) 0
69. If the system of equations $a x+y+z=0, x+b y$ $+\mathrm{z}=0$ and $\mathrm{x}+\mathrm{y}+\mathrm{cz}=0(\mathrm{a}, \mathrm{b}, \mathrm{c} \neq 1)$ has a non-trival solution then the value of $\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}$ is
(a) -1
(b) 0
(c) 1
(d) none of these
70. The number of values of k for which the equation $x^{2}-3 x+k=0$ has two distinct roots lying in the interval $(0,1)$ are
(a) no values of k satisfies the requirement
(b) two
(c) three
(d) infinitely many
71. If $\left[\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right] \mathrm{A}\left[\begin{array}{cc}-3 & 2 \\ 5 & -3\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, then the matrix A equals

Rough Work

(a) $\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$
(b) $\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]$
(a) $\frac{1}{4}$
(b) $\frac{2}{3}$
(c) $\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$
(d) $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$
(c) $\frac{1}{3}$
(d) $\frac{1}{2}$
72. If the cube roots of unity are $1, \omega, \omega^{2}$, then the roots of equation $(x-1)^{3}+8=0$ are
(a) $-1,1-2 \omega, 1-2 \omega^{2}(b)-1,-1,-1$
(c) $-1,1+2 \omega, 1+2 \omega^{2}$
(d) none of these
73. The angles of elevation of the top of a tower at the top and the foot of a pole of height 10 meters are 30° and 60° respectively. The height of the tower is
(a) 10 metres
(b) 15 metres
(c) 20 metres
(d) none of these
74. The set of all x in $(-\pi, \pi)$ satisfying $|4 \sin x-1|<$ $\sqrt{5}$ is given by
(a) $\left(\frac{-\pi}{10}, \frac{3 \pi}{10}\right)$
(b) $\left(\frac{\pi}{10}, \frac{-3 \pi}{10}\right)$
(c) $\left(\frac{\pi}{10}, \frac{3 \pi}{10}\right)$
(d) none of these
75. If the fourth term in the expansion of $\left\{\sqrt{\frac{1}{x^{\frac{1}{\log x+1}}}}+x^{1 / 12}\right\}^{6}$ is equal 200 and $x>1$, then x
78. The amplitude of $\frac{1+i \sqrt{3}}{\sqrt{3}+1}$ is
(a) $\pi / 4$
(b) $\pi / 3$
(c) $\pi / 6$
(d) none of these
79. A person predicts the outcome of 20 cricket matches of his home team. Each match can result either in a win, loss or tie for the home team. Total number of ways in which he can make the predictions so that exactly 10 predictions are correct, is equal to
(a) ${ }^{20} \mathrm{C}_{10} .2^{20}$
(b) ${ }^{20} \mathrm{C}_{10} \cdot 3^{20}$
(c) ${ }^{20} \mathrm{C}_{10} \cdot 3^{20}$
(d) ${ }^{20} \mathrm{C}_{10} \cdot 2^{10}$
80. A student is allowed to select at most n books from a collection of $(2 n+1)$ books. If the total number of ways in which he can select one book is 63 , then the value of n is
(a) 3
(b) 4
(c) 2
(d) none of these
81. The set of all values of a for which
$f(x)=\left(\frac{\sqrt{a+4}}{1-a}-1\right) x^{5}-3 x+\log 5$ decreases for all is equal to
(a) 10^{4}
(b) $10^{\sqrt{2}}$
(c) 10
(d) none of these
76. The number of terms common to two A.P.s. 3, 7, 11, \qquad 407 and $2,9,16$, 709 is
(a) 21
(b) 28
(c) 14
(d) none of these
77. A bag contains 3 white, 3 black and 2 red balls one by one three balls are drawn without replacing them. The probability that the third ball is red, is
values of real x, is
(a) $\left[-3, \frac{1}{2}\{5-\sqrt{27}\}\right] \cup(2, \infty)$
(b) $(-\infty, \infty)$
(c) $(1, \infty)$
(d) $\left[-4, \frac{1}{2}\{3-\sqrt{21}\}\right] \cup(1, \infty)$
82. Let $f: R \rightarrow R: f(x)=\tan x$. Then $f^{-1}(1)$ is equal to
(a) $\frac{\pi}{4}$
(b) $\left\{n \pi+\frac{\pi}{4}: n \in Z\right\}$
(c) does not exist
(d) none of these

Turning Point
83. Let $\mathrm{A}=\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}, \mathrm{B}=(\mathrm{u}, \mathrm{v}, \mathrm{w}\}$ and $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ be defined by $f(x)=u, f(y)=v, f(z)=w$, then f is
(a) surjective but not injective
(b) bijective
(c) injective but not surjective
(d) none of these

Questions with Statement - 1 and Statement - 2
This section of Statement -1 and Statement -2 . Of the four choices given here, choose the one that best describes the two Statements.
(a) Statement -1 is True, Statement -2 is True ; Statement - 2 is a correct explanation for Statement - 1
(b) Statement -1 is True, Statement -2 is True ; Statement -2 is not a correct explanation for Statement - 1
(c) Statement -1 is True, Statement -2 is False
(d) Statement -1 is False, Statement -2 is True
84. Statement - 1

$$
\lim _{x \rightarrow 0} \frac{\cos ^{-1}(1-x)}{\sqrt{x}}=\sqrt{2}
$$

85. Statement - 1

The straight line $2 x+3 y=4$ intersects the hyperbola $4 x^{2}-9 y^{2}=36$ in exactly one point.
Statement - 2
The line is parallel to an asymptote of the hyperbola. Read the following Passage and Answer the Question PASSAGE 1
Let L_{1} is the line passes through $A(1,0)$ and make angle 135° with positive x-axis in anticlockwise direction. L intersect y-axis at point B.C and D are the points on the line $A B$ such that C and D divides $A B$ in the ratio $1: 2$ and $2: 1$. Another line L_{2} which is parallel to L_{1} and passes
through origin. Another two lines L_{3} and L_{4} which passes through C and D respectively and perpendicular to $\mathrm{L}_{2} . \mathrm{L}_{2}$ intersects L_{3} and L_{4} at E and F respectively.
86. The distance between L_{1} and L_{2} is (in units)
(a) $\frac{1}{2}$
(b) $\frac{1}{\sqrt{2}}$
(c) $\sqrt{2}$
(d) 2
87. The distance between L_{3} and L_{4} is
(a) $\frac{1}{\sqrt{2}}$
(b) $\frac{\sqrt{2}}{3}$
(c) $\frac{1}{3}$
(d) 3
88. E and F points are mirror image with respect to
(a) x -axis
(b) Origin
(c) y-axis
(d) none of these

Passage - 2

From a point P on a radius OA of circle (radius r) produced beyond the circle, a tangent PT is drawn to the circle touching it at T . Draw $\mathrm{TN} \perp \mathrm{OA}$.
89. As P tends to A , then $\frac{\mathrm{NA}}{\mathrm{AP}}$ tends to
(a) 1
(b) $1 / 2$
(c) $1 / \sqrt{2}$
(d) none of these
90. As P tends to A, then $\frac{\mathrm{AN}}{(\operatorname{arc} \mathrm{AT})^{2}}$ tends to
(a) $1 / 2 \mathrm{r}$
(b) $2 / \mathrm{r}$
(c) $4 / \mathrm{r}$
(d) None of these

Rough Work

For Solution Contact :

TURNING POINT INSTITUTE PVTLTD

