AIEEE - 2002 Physics and Chemistry

1.	Which statement is	s incorrect ?		
	(a) all reversible c	ycles have same efficie	ency	
		e has more efficiency th	-	
	(c) Carnot cycle is	-		
	•	as the maximum efficie	ncv in all cycles	
2.				ngth (wave length in cm) of a
<i>_</i> .	stationary wave pr			
	(a) 20	(b) 80	(c) 40	(d)120
3.	. ,			ance (L) connected in series
З.	and an angular vel	-		
	and an angular ver	-		
	(a) R/ωL	(b) $R/(R^2 + \omega^2 L^2)^{1/2}$	(c) ωL/R	(d) $R/(R^2 - \omega^2 L^2)^{1/2}$
4.	An astronomical te	elescope has a large ap	perture to	
	(a) reduce spheric	al aberration	(b) have high resolution	n
	(c) increase span	of observation	(d) have low dispersion	n
5.	The kinetic energy	v needed to project a b	ody of mass m from the	e earth surface (radius R) to
	infinity is			
	(a) mgR/2	(b) 2mgR	(c) mgR	(d) mgR/4
6.	If an ammeter is to	be used in place of a v	oltmeter, then we must o	connect with the ammeter a
	(a) low resistance	in parallel	(b) high resistance in p	arallel
	(c) high resistance	in series	(d) low resistance in se	eries
7.	If in a circular coil A	A of radius R, current I	is flowing and in another	coil B of radius 2R a current
	21 is flowing, then t	he ratio of the magneti	c fields $B_A^{}$ and $B_B^{}$, produ	ced by them will be
	(a) 1	(b) 2	(c) 1/2	(d) 4
8.	If two mirrors are k	ept at 60° to each othe	r, then the number of ima	ages formed by them is
	(a) 5	(b) 6	(c) 7	(d) 8
9.	A wire when conne	ected to 220 V mains su	pply has power dissipatio	on P_1 . Now the wire is cut into
	two equal pieces v	which are connected in	parallel to the same sup	ply. Power dissipation in this
	case is P ₂ . Then P	,: Ρ, is		
	(a) 1	(b) 4	(c) 2	(d) 3
10.		s required to ionize the h	hydrogen atom, then the e	energy required to remove an
	electron from $n = 2$	-		
	(a) 10.2 eV	(b) 0 eV	(c) 3.4 eV	(d) 6.8 eV
11.	. ,	nds open while tube B ł		erwise they are identical. The
		al frequency of tube A a		,
	(a) 1 : 2	(b) 1 : 4	(c) 2 : 1	(d) 4 : 1
12.				fork of frquency 288 cps. A
	-	•		its /sec. The frequency of the
	unknown fork is			
	(a) 286 cps	(b) 292 cps	(c) 294 cps	(d) 288 cps
	()	(,	(-)	(1)

13.	A wave $y = a \sin(\omega t - kx)$ on a string meet	ets with another wave prod	ucing a node at x = 0. Then
	the equation of the unknown wave is		J
	(a) $y = a \sin(\omega t + kx)$	(b) $y = -a \sin(\omega t + kx)$	
		(d) $y = -a \sin(\omega t - kx)$	
4.4	(c) $y = a \sin(\omega t - kx)$		on the notential difference
14.	On moving a charge of 20 coulombs by 2 between the points is	cm, 2 J of work is done, if	ien the potential difference
	(a) 0.1 V (b) 8 V	(c) 2 V	(d) 0.5 V
15.	If an electron and a proton having same n	nomenta enter perpendicul	ar to a magnetic field, then
	(a) curved path of electron and proton wil	I be same (ignoring the ser	nse of revolution)
	(b) they will move undeflected	d than that of the proton	
	(c) curved path of electron is more curved(d) path of proton is more curved	a than that of the proton	
16.	In a simple harmonic oscillator, at the mea	an position	
	(a) kinetic energy is minimum, potential e	nergy is maximum	
	(b) both kinetic and potential energies are		
	(c) kinetic energy is maximum, potential e		
47	(d) both kinetic and potential energies are		
17.	Initial angular velocity of a circular disc of	·	
	attached gently to diametrically opposite p velocity of the disc?	points on the edge of the dis	sc. What is the final angular
	$(a\left(\frac{M+m}{M}\right)\omega_{1}$ (b) $\left(\frac{M+m}{m}\right)\omega_{1}$	(c) $\left(\frac{M}{M+4m}\right)\omega_1$	(d) $\left(\frac{M}{M+2m}\right)\omega_1$
18.	The minimum velocity (in ms ⁻¹) with whi 150 m and coefficient of friction 0.6 to avo		erse a flat curve of radius
	(a) 60 (b) 30	(c) 15	(d) 25
19.	A cylinder of height 20 m is completely fil	led with water. The velocity	of efflux of water (in ms ⁻¹)
	through a small hole on the side wall of th	•	
20	(a) 10 (b) 20	(c) 25.5	(d) 5
20.	A spring of force constant 800 N/m has a from 5 cm to 15 cm is	an extension of 5 cm. The	work done is extending it
	(a) 16 J (b) 8 J	(c) 32 J	(d) 24 J
21.	Two identical particles move towards each		
	of centre of mass is		
	(a) v (b) v/3	(c) v/2	(d) zero
22.	If a current is passed through a spring the (a) expand (b) compress	en the spring will (c) remains same	(d) none of these
23.	Heat given to a body which raises its ter		עט ארטוו עט שווטוו נען
	(a) water equivalent (b) thermal capacity		(d) temperature gradient
24.	At absolute zero, Si acts as		
	(a) non metal (b) metal	(c) insulator	(d) none of these

25.	Electromagnetic waves are	transverse in na	ature is evident by	
	(a) polarization (b) int	erference (c) reflection	(d) diffraction
26.	Wires 1 and 2 carrying cu	rrents i_1 and i_2 re	espectively are inclined a	
	angle θ to each other. What	at is the force on a	a small element dI of wire	e2at (1) ②
	a distance of r from wire 1 (a	as shown in the fig	gure) due to the magnetic	field i
	of wire 1?		, 3	$i_1 \leftarrow r \rightarrow i_2$
	(A) $\frac{\mu_0}{2\pi r} i_1 i_2$ dltan θ	(b) $\frac{\mu_0}{2\pi r} i_{1_2} dlsin\theta$	D ^v dl
	1 $2\pi r^{12}$	($2\pi r^{2}$	V
	(c) $\frac{\mu_0}{2\pi r} i_1 i_2 dl \cos \theta$	((d) $\frac{\mu_0}{4\pi r} i_1 i_2$ dIsin θ	
	270		470	
27.	At a specific instant emiss	ion of radioactive	e compound is deflected	d in a magnetic field. The
	compound can emit			
	(i) electrons (ii) pro		iii) He ²⁺	(iv) neutrons
	The emission at instant car			
			(c) iv	(d) ii, iii
28.	Sodium and copper have v		3 eV and 4.5 eV respect	ively. Then the ratio of the
	wave lengths is nearest to			
	(a) 1 : 2 (b) 4 :			(d) 1 : 4
29.	Formation of covalent bond	-		
	(a) wave nature of electron		(b) particle nature of ele	ectron
	(c) both wave and particle			+ ++++++
30.	A conducting square loop o		•	
	with a uniform velocity v pe			
	induction B constant in time			
	the plane at the loop exists			ne + ++++++ + + ++++++
	field, as shown in figure. Th			
24	(a) zero (b) Ry		c) VBL/R	(d) VBL
31.	Infra red radiation is detect	-	a) nonomotor	(d) photomotor
22		·	c) nanometer	(d) photometer
32.	If N ₀ is the original mass of		$1_{1/2} = 5$	years, men me amount of
	substance left after 15 yea		(a) N /2	(d)NL /4
22	(a) $N_0/8$ (b) N_0 By increasing the temperat		0	(d)N ₀ /4
33.	By increasing the temperat (a) increases for both	-	b) decreases for both	
	(c) increases, decreases		d) decreases for both	
34.	If there are n capacitors in p			
57.				
	(a) CV (b) $\frac{1}{2}$	nCV² (c) CV ²	(d) $\frac{1}{2n}CV^2$
35.	Which of the following is m		lack body?	Z 11
50.	(a) black board paint (b) gre		c) black holes	(d) red roses
	(,	(3
				.

36.	The inductance between A and D is	_
27		D
37.	A ball whose kinetic energy is E, is projected at an	ha
	angle of 45° to the horizontal. The kinetic energy of the ball at the highest point of its flight will	be
	(a) E (b) $E/\sqrt{2}$ (c) $E/2$ (d) zero	
38.	From a building two balls A and B are thrown such that A is thrown upwards A and B downwar	ds
	(both vertically). If v_{A} and v_{B} are their respective velocities on reaching the ground, then	
	(a) $v_{B} > v_{A}$ (b) $v_{A} = v_{B}$	
	(c) $v_A > v_B$ (d) their velocities depend on their masses	
39.	If a body looses half of its velocity on penetrating 3 cm in a wooden block, then how much wil	l it
	penetrate more before coming to rest?	
	(a) 1 cm (b) 2 cm (c) 3 cm (d) 4 cm	
40.	If suddenly the gravitational force of attraction between Earth and a satellite revolving around	d it
	becomes zero, then the satellite will	
	(a) continue to move in its orbit with same velocity	
	(b) move tangentially to the originally orbit in the same velocity	
	(c) become stationary in its orbit (d) move towards the earth.	
41.	Cooking gas containers are kept in a lorry moving with uniform speed. The temperature of the	he
	gas molecules inside will	
	(a) increase (b) decrease	
	(c) remain same (d) decrease for some, while increase for others	
42.	When temperature increases, the frequency of a tuning fork	
	(a) increases (b) decreases	
	(c) remains same (d) increases or decreases depending on the mater	ial
43.	If mass-energy equivalence is taken into account, when water is cooled to form ice, the mass	
-	water should	-
	(a) increase (b) remain unchanged	
	(c) decrease (d) first increase then decrease	
44.	The energy band gap is maximum in	
	(a) metals (b) superconductors (c) insulators (d) semiconductors	
45.	The part of a transistor which is most heavily doped to produce large number of majority carriers	is
	(a) emmiter (b) base	
	(c) collector (d) can be any of the above three	
46.	Energy required to move a body of mass m from an orbit of radius 2R to 3R is	
	(a) $GMm/12R^2$ (b) $GMm/3R^2$ (c) $GMm/8R$ (d) $GMm/6R$	
47.	If a spring has time period T, and is cut into n equal parts, then the time period of each part will	be
	(a) $T\sqrt{n}$ (b) T/\sqrt{n} (c) nT E F	
48.	A charged particle q is placed at the centre O of cube of length L	
	(A B C D E F G H). Another same charge q is placed at a distance	q
	L from O. Then the electric flux through ABCD is $A = \begin{bmatrix} A \\ B \end{bmatrix}$	
	(a) $q/4\pi \in_0 L$ (b) zero (c) $q/2\pi \in_0 L$ (d) $q/3\pi \in_0 L$	+
	4	ノ

49.	If in the circuit, pow	er dissipation is 150 W	/, then R is	^	~~~~
	(a) 2Ω	(b) 6Ω			λγγ_2Ω
	(c) 5Ω	(d) 4Ω			
50.		used in an optical in tive resolving powers			and $\lambda_2 = 5000 \text{\AA}$, then
	(a) 16 : 25	(b) 9 : 1	(conespond) (c) 4 : 5	and λ_1 and	(d) 5 : 4
51.		()	()	up, then the tin	ne period of the swing will
	(a) increase	(b) decrease	(c) remair	ns same	
	(d) increases if the	child is tall and decrea	ases if the c	hild is short	
52.	A lift is moving down v	vith acceleration a. A ma	n in the lift dro	ops a ball inside tl	he lift. The acceleration of the
	ball as observed by th		-	-	ground are respectively
	(a) g, g	(b) g - a, g - a		-	(d) a, g
53.	•	t liberated on anode in		chemical cell d	•
	(a) (lt) ^{1/2}	(b) IT	(c) I/t		(d) l ² t
- 4	·	period, for which the o	•		
54.	At what temperature molecule at 47° C?	e is the r.m.s. velocity	of a hydro	gen molecule e	equal to that of an oxygen
	(a) 80 K		(c) 3 K		(d) 20 K
55.	The time period of a independent of its	charged particle unde	ergoing a cir	cular motion in	a uniform magnetic field is
	(a) speed	(b) mass	(c) charge	e	(d) magnetic induction
56.	-			-	inclined plane (frictionless)
				eleration down	the plane is for (no rolling)
	(a) solid sphere	(b) hollow sphere	(c) ring		(d) all same
57.		mber of turns in the p mary coil is 4A, then th			t in the secondary coil are
	· · · · ·	(b) 2 A		-	
58.	· · /	e cannot give 100% ef	. ,		
	(a) prevent radiation	•	-	eal sources	
	(c) reach absolute z	zero temperature	(d) elimina	ate friction	
59.	Moment of inertia o	f a circular wire of mas	ss M and ra	dius R about its	s diameter is
	(a) MR²/2	(b) MR ²	(c) 2MR ²		(d) MR²/4
60.	When forces F_1 , F_2	, $F_{_3}$ are acting on a p	article of m	hass m such th	at F_2 and F_3 are mutually
	perpendicular, then	the particle remains	stationary.	If the force F_1	is now removed then the
	acceleration of the				
	(a) F ₁ /m	(b) F ₂ F ₃ /mF ₁	(c) (F ₂ - F	₃)/m	(d) F ₂ /m
61.			÷		eir resultant is 12 N which
		the smaller force. Ther	-		
	(a) 12 N, 6 N	(b) 13 N, 5 N			(d) 16 N, 2 N
62.	-		-		he ratio of the respective
		he two cars are stopp		it instant is	
	(a) 1 : 1	(b) 1:4	(c) 1 : 8		(d) 1 : 16
					5

63.	1 mole of a gas with γ = 7/5 is mixed with 1 mole of a gas with γ = 5/3 , then the value of γ for
	the resulting mixture is
	(a) 7/5 (b) 2/5 (c) 24/16 (d) 12/7
64.	If a charge q is placed at the centre of the line joining two equal charges Q such that the system
	is in equilibrium then the value of q is
	(a) Q/2 (b) -Q/2 (c) Q/4 (d) -Q/4
65.	Capacitance (in F) of a spherical conductor with radius 1 m is
	(a) 1.1×10^{-10} (b) 10^{-6} (c) 9×10^{-9} (d) 10^{-3}
66.	A light string passing over a smooth light pulley connects two blocks of masses m_1 and m_2
	(vertically). If the acceleration of the system is g/8, then the ratio of the masses is
	(a) 8 : 1 (b) 9 : 7 (c) 4 : 3 (d) 5 : 3
67.	Two spheres of the same material have radii 1 m and 4m and temperatures 4000 K and 2000 K $$
	respectively. The ratio of the energy radiated per second by the first sphere to that by the second
	is
	(a) 1 : 1 (b) 16 : 1 (c) 4 : 1 (d) 1 : 9
68.	Three identical blocks of masses m = 2kg are drawn by a force
	F = 10.2 N with an acceleration of 0.6 ms ⁻² on a frictions surface, $C = B = A \rightarrow F$
	then what is the tension (in N) in the string between the blocks B
	and C ?
	(a) 9.2 (b) 7.8 (c) 4 (d) 9.8
69.	One end of a massless rope, which passes over a massless and frictionless
	pulley P is tied to a hook C while the other end is free. Maximum tension that c_{C}
	the rope can bear is 360 N. With what value of maximum safe acceleration (in
	ms ⁻²) can a man of 60 kg climb on the rope?
	(a) 16 (b) 6 (c) 4 (d) 8
70.	A particle of mass m moves along line PC with velocity v as shown. $^{\wedge}$
	What is the angular momentum of the particle about P?
	(a) mvL (b) mvl
	(c) mvr (d) zero
71.	Which of the following is used in optical fibres ?
	(a) total internal reflection (b) scattering (c) diffraction
	(d) refraction
72.	The escape velocity of a body depends upon mass as
	(a) m^0 (b) m^1 (c) m^2 (d) m^3
73.	Which of the following are not electromagnetic waves?
	(a) cosmic rays (b) gamma rays (c) β – rays (d) X- rays
74.	Identify the pair whose dimensions are equal
	(a) torque and work (b) stress and energy(c) force and stress (d) force and work
75.	If θ_i , is the inversion temperature, θ_n is the neutral temperature, θ_c is the temperature of the cold junction, then
	(a) $\theta_i + \theta_c = \theta_n$ (b) $\theta_i - \theta_c = 2\theta_n$ (c) $\frac{\theta_i + \theta_c}{2} = \theta_n$ (d) $\theta_c - \theta_i = 2\theta_n$
	6

76.	When H_2S is passed through Hg_2S we get
	(a) HgS (b) HgS + Hg ₂ S (c) Hg ₂ S (d) Hg ₂ S ₂
77.	Alum helps in purifying water by
	(a) forming Si complex with clay particles
	(b) sulphate part which combines with the dirt and removes it
	(c) coagulating the mud particles
70	(d) making mud water soluble
78.	A square planar complex is formed by hybridisation of which atomic orbitals ?
	(a) s, p_x , p_y , d_{yz} (b) s, p_x , p_y , $d_{x^2-y^2}$ (c) s, p_x , p_y , d_{z^2} (d) s, p_y , p_z , d_{xy}
79.	Polymer formation from monomers starts by
	(a) condensation reaction between monomers
	(b) coordinate reaction between monomers
	(c) conversion of monomer to monomer ions by protons
	(d) hydrolysis of monomers
80.	The type of isomerism present in nitropentamine chromium (III) chloride is
.	(a) optical (b) linkage (c) ionization (d) polymerisation
81.	Arrangement of $(CH_3)_3 - C$ -, $(CH_3)_2 - CH$ -, $CH_3 - CH_2$ - when attached to benzyl or an unsaturated
	group in increasing order of inductive effect is
	(a) $(CH_3)_3$ -C - < $(CH_3)_2$ - CH - < CH ₃ - CH ₂ (b) CH ₃ - CH ₂ - < $(CH_3)_2$ - < CH - < $(CH_3)_3$ - C - (a) $(CH_3)_3$ - C - (CH ₃) - C - (CH ₃)_2 - < CH ₃ - (CH ₃)_2 - < CH ₃ - (CH ₃)_3 - C - (CH ₃)_2 - < CH ₃ - < < < < CH ₃ - < < CH ₃ - < < < CH ₃ - < < < < CH ₃ - < < < < < < < < < < < < < < < < < <
0 2	(c) $(CH_3)_2 - CH - \langle (CH_3)_3 - C - \langle CH_3, -CH_2 (d) (CH_3)_3 - C - \langle CH_3 - CH_2 - (CH_3)_2 - CH_3 - C$
82.	CH ₃ - Mg - Br is an organo metallic compound due to (a) Mg - Br bond (b) C - Mg bond (c) C - Br bond (d) C - H bond
83.	1 M NaCl and 1 M HCl are present in an aqueous solution. The solution is
00.	(a) not a buffer solution with $pH < 7$ (b) not a buffer solution with $pH > 7$
	(c) a buffer solution with $pH < 7$ (d) a buffer solution with $pH > 7$
84.	Species acting as both Bronsted acid and base is
	(a) $(HSO_4)^{-1}$ (b) Na_2CO_3 (c) NH_3 (d) OH^{-1}
85.	Let the solubility of an aqueous solution of $Mg(OH)_2$ be x then its k_{sp} is
	(a) $4x^3$ (b) $108x^5$ (c) $27x^4$ (d) $9x$
86.	Units of rate constant of first and zero order reactions in terms of molarity M unit are respectively
	(a) sec ⁻¹ , Msec ⁻¹ (b) sec ⁻¹ , M (c) Msec ⁻¹ , sec ⁻¹ (d) M, sec ⁻¹
87.	In XeF ₂ , XeF ₄ , XeF ₆ the numebr of lone pairs of Xe are respectively
	(a) 2, 3, 1 (b) 1, 2, 3 (c) 4, 1, 2 (d) 3, 2, 1
88.	In which of the folloiwng species the interatomic bond angle is 109°28'?
	(a) NH_3 , $(BF_4)^{-1}$ (b) $(NH_4)^+$, BF_3 (c) NH_3 , BF_4 (d) $(NH_2)^{-1}$, BF_3
89.	For the reaction A + 2B \longrightarrow C, rate is given by R = [A] [B] ² then the order of the reaction is
	(a) 3 (b) 6 (c) 5 (d) 7
90.	RNA is different from DNA because RNA contains
	(a) ribose sugar and thymine (b) ribose sugar and uracil
	(c) deoxyribose sugar and thymine (d) deoxyribose sugar and uracil
	7

91.	Which of the following are arranged in an increasing order of their bond strengths ?
	(a) $O_2^- < O_2^+ < O_2^{2-}$ (b) $O_2^{2-} < O_2^- < O_2^+ < O_2^+$
	(c) $O_2^- < O_2^{2-} < O_2 < O_2^+$ (d) $O_2^+ < O_2 < O_2^- < O_2^{2-}$
92.	If an endothermic reaction is non-spantaneous at freezing point of water and becomes feasible at its boiling point, then
	(a) ΔH is – ve, ΔS is + ve (b) ΔH and ΔS both are + ve
	(c) ΔH and ΔS both are – ve (d) ΔH is + ve, ΔS is – ve
93.	A heat engine absorbs heat Q_1 at temperature T_1 and heat Q_2 at temperature T_2 . Work done by the engine is $J(Q_1 + Q_2)$. This data
	 (a) violates 1st law of thermodynamics (b) violates 1st law of thermodynamics if Q₁ is -ve (c) violates 1st law of thermodynamics if Q₂ is -ve (d) does not violate 1st law of thermodynamics
94.	Most common oxidation states of Ce (cerium) are
	(a) $+2$, $+3$ (b) $+2$, $+4$ (c) $+3$, $+4$ (d) $+3$, $+5$
95.	Arrange Ce ⁺³ , La ⁺³ , Pm ⁺³ and Yb ⁺³ in increasing order of their ionic radii
	(a) $Yb^{+3} < Pm^{+3} < Ce^{+3} < La^{+3}$ (b) $Ce^{+3} < Yb^{+3} < Pm^{+3} < La^{+3}$
	(c) $Yb^{+3} < Pm^{+3} < La^{+3} < Ce^{+3}$ (d) $Pm^{+3} < La^{+3} < Ce^{+3} < Yb^{+3}$
96.	KO ₂ (potassium super oxide) is used in oxygen cylinders in space and submarines because it
	(a) absorbs CO_2 and increases O_2 content (b) eliminates moisture
	(c) absorbs CO ₂ (d) produces ozone.
97.	A similarity between optical and geometrical isomerism is that
	(a) each forms equal number of isomers for a given compound
	(b) If in a compound one is present then so is the other
	(c) both are included in stereoisomerism (d) they have no similarity
98.	Which of the following does not show geometrical isomerism?
	(a) 1, 2-dichloro - 1- pentene (b) 1, 3 - dichloro - 2- pentene
00	(c) 1, 1- dichloro - 1- pentene (d) 1, 4 - dichloro - 2- pentene
99.	In case of nitrogen, NCl ₃ is possible but not NCl ₅ while in case of phosphorous, PCl ₃ as well as PCl ₅ are possible. It is due to
	(a) availability of vacant d orbitals in P but not in N
	(b) lower electronegativity of P than N
	(c) lower tendency of H - bond formation in P than N
	(d) occurrence of P in solid while N in gaseous state at room temperature
100.	For an ideal gas, number of moles per litre in terms of its pressure P, gas contant R and
	temperature T is
	(a) PT/R (b) PRT (c) P/RT (d) RT/P
101.	The formation of gas at the surface of tungsten due to adsorption is the reaction of order
	(a) 0 (b) 1 (c) 2 (d) insufficient data
102.	The solubility of $Mg(OH)_2$ is S moles/litre. The solubility product under the same condition is
	(a) $4S^3$ (b) $3S^4$ (c) $4S^2$ (d) S^3
	8

114.	Freezing point of an aqueous solution is (-0 is $K_b = 0.512 \ ^{\circ}C$, $K_f = 1.86 \ ^{\circ}C$, find the incr		g point of the same solution
	(a) $0.186 ^{\circ}\text{C}$ (b) $0.0512 ^{\circ}\text{C}$		(d) 0.2372 °C
115	EMF of a cell in terms of reduction potenta		()
	(a) $E = E_{left} - E_{right}$ (b) $E = E_{left} + E_{right}$	•	
116.	Uncertainity in position of a minute particle	0	5
	in its velocity (in ms ⁻¹) ? (h = 6.6×10^{-34} J	÷ .	
	(a) 2.1×10^{-34} (b) 0.5×10^{-34}		(d) 0.5×10^{-23}
117.	Which of these will not react with acetyler		
	(a) NaOH (b) ammonical AgNO		(d) HCI
118	Change in volume of the system does no	0	()
	equilibria?		Ŭ
	(a) $N_2(g) + O_2(g) = 2 NO(g)$	(b) PCl _ε (g) 🚤 PCl	_ (g) + Cl ₂ (g)
	(c) $N_{2}(g) + 3H_{2}(g) \implies 2NH_{2}(g)$	0	0 E
119.	For the reactions,	2 2 101 1	2.0. 2.0.
	$C+O_2 \longrightarrow CO_2$; $\Delta H = -393J$		
	$2Zn+O_2 \longrightarrow 2ZnO$; $\Delta H = -412J$		
	(a) carbon can oxidise Zn	(b) oxidation of carbon is	not feasible
	(c) oxidation of Zn is not feasible	(d) Zn can oxidise carbor	า
120.	Which of the following ions has the maxim	um magnetic moment?	
	(a) Mn ⁺² (b) Fe ⁺²	(c) Ti ⁺²	(d) Cr ⁺²
121.	In which of the following species is the un	derlined carbon having sp ³	³ hybridisation?
	(a) CH ₃ <u>C</u> OOH (b) CH ₃ <u>C</u> H ₂ OH	(c)CH ₃ COCH ₃	(d) $CH_2 = \underline{C}H - CH_3$
122.	Racemic mixture is formed by mixing two		
	(a) isomeric compounds	(b) chiral compounds	
	(c) meso compounds	(d) optical isomers	
123.	The differential rate law for the reaction H	$_2 + I_2 \rightarrow 2HI$ is	
	(a) $-\frac{d[H_2]}{dt} = -\frac{d[I_2]}{dt} = -\frac{d[H]}{dt}$	(b) $\frac{d[H_2]}{dt} = \frac{d[I_2]}{dt} = \frac{1}{2} \frac{d[H_2]}{dt}$	<u>l]</u>
	dt dt dt		
	(c) $\frac{1}{2} \frac{d[H_2]}{dt} = \frac{1}{2} \frac{d[I_2]}{dt} = -\frac{d[HI]}{dt}$	(d) $-2\frac{d[H_2]}{dt} = -2\frac{d[I_2]}{dt} =$	<u>d[HI]</u>
		dt dt	dt
124.	Number of sigma bonds in P_4O_{10} is		
405	(a) 6 (b) 7	(c) 17	(d) 16
125.		(a) any Avagadra's law	(d) all of these
100	(a) only Boyle's law (b) only Charles' law		
120.	A metal M readily forms its sulphate MSO		
	becomes inert on heating. It forms an insolution. Then M is		WINCH IS SOUDIE IN INDUT
	(a) Mg (b) Ba	(c) Ca	(d) Be
407			
127.	, , , , , , , , , , , , , , , , , , ,		
	(a) $E_{cell}^{\scriptscriptstyle 0} = \varphi_{right} - \varphi_{left}$ (b) $E_{cell}^{\scriptscriptstyle 0} = \varphi_{left} + \varphi_{right}$	(c) $E_{cell}^{0} = \phi_{left} - \phi_{right}$	(d) $E_{cell}^{0} = -(\phi_{left} + \phi_{right})$
			(10)
			_

139.	plotting		$\mathbf{C}_{_0}$ - log $\mathbf{C}_{_t}$. The straight	
	(a) time vs log C_t	(b) $\frac{1}{\text{time}}$ vs C _t	(c) time vs C _t	(d) $\frac{1}{\text{time}}$ vs $\frac{1}{C_{t}}$
140.		wing reactions, increa f moles at equilibrium	use in the volume at consta	ant temperature does not
	(a) $2NH_3 \rightarrow N_2 + 3I_3$	H ₂	(b) $C(g) + (1/2)O_2(g) \rightarrow 0$	CO(g)
	(c) $H_2(g) + O_2(g) -$	\rightarrow H ₂ O ₂ (g)	(d) none of these	
141.	When the sample o	f copper with zinc imp	urity is to be purified by ele	ectrolysis, the appropriate
	electrodes are			
	cathode	anode	cathode	anode
	· / ·	pure copper	(b) impure sample	pure copper
142	The most stable ion	impure sample	(d) pure copper	impure sample
172.		(b) [Fe(Cl) ₆] ³⁻	(c) [Fe(CN) ₆] ³⁻	(d) [Fe(H ₂ O) ₆] ³⁺
143.	β - particle is emitte	ed in radioactivity by		
	(a) conversion of pr	oton to neutron	(b) from outermost orbit	
	(c) conversion of ne	eutron to proton	(d) β -particle is not emitt	ed
144.	In mixture A and B	component show -ve o	deviation as	
	(a) $\Delta V_{mix} > 0$		(b) $\Delta H_{mix} < 0$	
	(c) A - B interaction	is weaker than A - A a	and B - B interaction	
	(d) A - B interaction	is stronger than A - A	and B - B interaction	
145.	The heat required to	o raise the temperature	e of body by 1 K is called	
	(a) specific heat		(c) water equivalent	(d) none of these
146.		in the unit cell of their	be crystals respectively, the	en the number of atoms of
	(a) 4 and 2	(b) 9 and 14	(c) 14 and 9	(d) 2 and 4
147.	. ,	. ,	of Fe = 55.85 g mol ⁻¹) is	(a) 2 and 1
	(a) twice that in 60 g	•	(b) 6.023×10^{22}	
	(c) half that in 8g He	Э	(d) 558.5 \times 6.023 \times 10 $^{\scriptscriptstyle 23}$	
148.	•		and ultimately forms [Mn	0
			in each case respectively i	
1/0	(a) 4, 3, 1, 5 Which of the followi	(b) 1, 5, 3, 7 ng is a redox reaction	(c) 1, 3, 4, 5	(d) 3, 5, 7, 1
140.		-		
	(a) NaCI+KNO $_3$ –	\neq indinU ₃ + rUl	(b) $CaC_2O_4 + 2HCI \rightarrow$	$\rightarrow \bigcirc \bigcirc$
	(c) Mg(OH) ₂ + 2NH	$I_4CI \rightarrow MgCI_2 + 2NH_4C$	DH (d) $Zn+2AgCN \rightarrow 2A$	$Ag + Zn(CN)_2$
150.	For the reaction CC	$D(g) + (1/2)O_2(g) = CC$	$D_{2}(g), K_{p}/K_{c}$ is	
	(a) RT	(b) (RT) ⁻¹	(c) (RT) ^{-1/2}	(d) (RT) ^{1/2}
				12

AIEEE - 2002 Mathematics

1.	If $\alpha \neq \beta$ but $\alpha^2 = 5\alpha^2$ (a) $3x^2 - 19x + 3 = 0$		en the equation having α / (b) $3x^2 + 19x - 3 = 0$	p and p/α as its roots is
	(a) $3x^2 - 19x + 3 = 0$ (c) $3x^2 - 19x - 3 = 0$		(b) $3x^2 + 19x - 3 = 0$ (d) $x^2 - 5x + 3 = 0$	
		$d^2 v$	dv.	
2.	If $y = (x + \sqrt{1 + x^2})^n$,	then $(1+x^2) \frac{d^2y}{dx^2} + x \frac{d^2y}{dx^2}$	dx is	
	(a) n²y	(b) -n²y	(c) -y	(d) 2x ² y
3.		$g_3 (4.3^{x} - 1)$ are in A.P.		
4.	(a) $\log_3 4$ A problem in mathem		(c) 1 - $\log_4 3$ e students A, B, C and the	(d) $\log_4 3$ ir respective probability of
	solving the problem	is $\frac{1}{2}$, $\frac{1}{3}$ and $\frac{1}{4}$. Proba	ability that the problem is so	blved is
	3	1	2	1
	(a) $\frac{3}{4}$	(b) $\frac{1}{2}$	(c) $\frac{2}{3}$	(d) $\frac{1}{3}$
5.	The period of $\sin^2 \theta$	is		
	(a) π^2	(b) π	(c) 2π	(d) π/2
				A 1
			all positive, then log l positive, then	2 1 2 1 .
6.	I, m, n are the p^m , q^m	[™] and r [™] term of a G.P.	all positive, then logn i	r 1
	(a) -1	(b) 2	(c) 1	(d) 0
7.	$\lim_{x\to 0} \frac{\sqrt{1-\cos 2x}}{\sqrt{2}x}$ is			
	(a) 1	(b) -1	(c) zero	(d) does not exist
8.		ces (4, 0), (-1, -1), (3, 4		
	(a) isosceles and rig(c) right angled but r		(b) isosceles but not right(d) neither right angled no	e e e e e e e e e e e e e e e e e e e
9.			bys whose average marks	
	-	-	2, then what is the average	-
	(a) 73	(b) 65	(c) 68	(d) 74
10.		$n^{-1}(\sqrt{\cos\alpha}) = x$, then s	sinx =	
	(a) $\tan^2\left(\frac{\alpha}{2}\right)$	(b) $\cot^2\left(\frac{\alpha}{2}\right)$	(c) tanα	(d) $\cot\left(\frac{\alpha}{2}\right)$
				13

The order and degree of the differential equation $\left(1+3\frac{dy}{dx}\right)^{2/3} = 4\frac{d^3y}{dx^3}$ are 11. (a) $(1, \frac{2}{2})$ (b) (3, 1) (c) (3, 3) (d) (1, 2) A plane which passes through the point (3, 2, 0) and the line $\frac{x-4}{1} = \frac{y-7}{5} = \frac{z-4}{4}$ is 12. (b) x + y + z = 5 (c) x + 2y - z = 1 (d) 2x - y + z = 5(a) x - y + z = 1The solution of the equation $\frac{d^2y}{dx^2} = e^{-2x}$ 13. (a) $\frac{e^{-2x}}{4}$ (b) $\frac{e^{-2x}}{4} + cx + d$ (c) $\frac{1}{4}e^{-2x} + cx^2 + d$ (d) $\frac{1}{4}e^{-4x} + cx + d$ 14. $\lim_{x \to \infty} \left(\frac{x^2 + 5x + 3}{x^2 + x + 3} \right)^{\frac{1}{x}}$ (a) e⁴ (b) e² (c) e³ (d) 1 15. The domain of $\sin^{-1} [\log_3 (x/3)]$ is (a) [1, 9] (b) [-1,9] (c) [-9, 1] (d) [-9, -1] The value of $2^{1/4}$, $4^{1/8}$, $8^{1/6}$ + ∞ is 16. (b) 2 (a) 1 (c) 3/2 (d) 4 17. Fifth term of a GP is 2, then the product of its 9 terms is (a) 256 (b) 512 (c) 1024 (d) none of these $\int^{10\pi} |\sin x| dx is$ 18. (a) 20 (b) 8 (c) 10 (d) 18 19. $I_n = \int_{0}^{\pi/4} \tan^n x \, dx$ then $\lim_{n \to \infty} n[I_n + I_{n-2}]$ equals (a) $\frac{1}{2}$ (b) 1 (C) ∞ (d) zero 20. $\int_{1}^{\sqrt{2}} [x^2] dx$ is (b) $2 + \sqrt{2}$ (c) $\sqrt{2} - 1$ (a) $2 - \sqrt{2}$ (d) $\sqrt{2} - 2$ 21. $\int_{-\pi}^{\pi} \frac{2x(1+\sin x)}{1+\cos^2 x} dx$ is (a) $\frac{\pi^2}{\Lambda}$ (d) $\frac{\pi}{2}$ (b) π^2 (c) zero 14

22.	Let $f(x) = 4$ and $f'(x) = 4$. Then $\lim_{x \to 2} \frac{xf(2) - 2f(x)}{x - 2}$ is given by
	(a) 2 (b) - 2 (c) - 4 (d) 3
23.	z and w are two non zero complex no.s such that $ z = w $ and Arg z + Arg w = π then z equals
	(a) \overline{W} (b) $-\overline{W}$ (c) w (d) - w
24.	If z-4 < z-2 , its solution is given by
	(a) $\text{Re}(z) > 0$ (b) $\text{Re}(z) < 0$ (c) $\text{Re}(z) > 3$ (d) $\text{Re}(z) > 2$
25.	The locus of the centre of a circle which touches the circle $ z - z_1 = a$ and $ z - z_2 = b$ externally
	(z, z_1 and z_2 are complex numbers) will be
	(a) an ellipse (b) a hyperbola (c) a circle (d) none of these
26.	Sum of infinite number of terms of GP is 20 and sum of their square is 100. The common ratio of
	GP is
	(a) 5 (b) 3/5 (c) 8/5 (d) 1/5
27.	$1^3 - 2^3 + 3^3 - 4^3 + \dots + 9^3 =$
	(a) 425 (b) - 425 (c) 475 (d) - 475
28.	Difference between the corresponding roots of $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ is same and
	$a \neq b$, then
	(a) $a + b + 4 = 0$ (b) $a + b - 4 = 0$ (c) $a - b - 4 = 0$ (d) $a - b + 4 = 0$
29.	Product of real roots of the equation $t^2x^2 + x + 9 = 0$
	(a) is always positive (b) is always negative
	(c) does not exist (d) none of these
30.	If p and q are the roots of the equation $x^2 + px + q = 0$, then
	(a) $p = 1, q = -2$ (b) $p = 0, q = 1$ (c) $p = -2, q = 0$ (d) $p = -2, q = 1$
31.	If a, b, c are distinct +ve real numbers and $a^2 + b^2 + c^2 = 1$ then $ab + bc + ca$ is
	(a) less than 1 (b) equal to 1 (c) greater than 1 (d) any real no.
32.	Total number of four digit odd numbers that can be formed using 0, 1, 2, 3, 5, 7 (using repetition allowed) are
	(a) 216 (b) 375 (c) 400 (d) 720
33.	Number greater than 1000 but less than 4000 is formed using the digits 0, 1, 2, 3, 4 (repetition
	allowed) is
	(a) 125 (b) 105 (c) 375 (d) 625
34.	Five digit number divisible by 3 is formed using 0, 1, 2, 3, 4, 6 and 7 without repetition. Total
	number of such numbers are
	(a) 312 (b) 3125 (c) 120 (d) 216
35.	The sum of integers from 1 to 100 that are divisible by 2 or 5 is
	(a) 3000 (b) 3050 (c) 3600 (d) 3250
36.	The coefficients of x^p and x^q in the expansion of $(1+x)^{p+q}$ are
	(a) equal (b) equal with opposite signs
	(c) reciprocals of each other (d) none of these
37.	If the sum of the coefficients in the expansion of $(a + b)^n$ is 4096, then the greatest coefficient in
	the expansion is
	(a) 1594 (b) 792 (c) 924 (d) 2924

38.	The positive integer just greater than (1+0.0001) ¹⁰⁰⁰⁰ is (a) 4 (b) 5 (c) 2 (d) 3					
39.	r and n are positive integers r > 1, n > 2 and coefficient of $(r + 2)^{th}$ term and $3r^{th}$ term in the expansion of $(1+x)^{2n}$ are equal, then n equals					
	(a) 3r (b	o) 3r + 1	(c) 2r	(d) 2r + 1		
			a ba	x+b		
40.	If a > 0 discriminant of	ax ² + 2bx + c is -ve	, then $\begin{vmatrix} a & b & a \\ b & c & b \\ ax+b & bx+c \end{vmatrix}$	0 is		
	(a) +ve (b	o) (ac - b²) (ax² + 2b	x + c) (c) -ve	(d) 0		
41.	If $a_n = \sqrt{7 + \sqrt{7 + \sqrt{7 + \dots}}}$ having n radical signs then by methods of mathematical induciton					
	which is true					
			(c) $a_n < 4 \forall n \ge 1$			
42.		are 3x + 4y, 4x+37) obtuse angled	and 5x + 57 where x, y > (c) equilateral	0 then the triangle is (d) none of these		
43.	Locus of mid point of th	Locus of mid point of the portion between the axes of $x \cos \alpha + y \sin \alpha = p$ where p is constant				
	is					
	(a) $x^2 + y^2 = \frac{4}{p^2}$ (b)	b) $x^2 + y^2 = 4p^2$	(c) $\frac{1}{x^2} + \frac{1}{y^2} = \frac{2}{p^2}$	(d) $\frac{1}{x^2} + \frac{1}{y^2} = \frac{4}{p^2}$		
44.	If the pair of lines $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ intersect on the y - axis then					
		(a) $2fgh = bg^2 + ch^2$ (b) $bg^2 \neq ch^2$ (c) $abc = 2fgh$ (d) none of these				
45.			$y + (a^2 - 2)y^2 = 0$ and perper			
	(a) two values of a (b		(c) for one value of a			
46.	If the chord $y = mx + 1$ of the circle $x^2 + y^2 = 1$ subtends an angle of measure 45^0 at the major segment of the circle then value of m is					
	(a) $2 \pm \sqrt{2}$ (b)	b) $-2 \pm \sqrt{2}$	(c) $-1 \pm \sqrt{2}$	(d) none of these		
47.	The centres of a set of point in the set is	circles, each of rac	lius 3, lie on the circle x ² +	y ² = 25. The locus of any		
	(a) $4 \le x^2 + y^2 \le 64$ (b)	b) $x^2 + y^2 \le 25$	(c) $x^2 + y^2 \ge 25$	(d) $3 \le x^2 + y^2 \le 9$		
48.	The centre of the circle passing through (0, 0) and (1, 0) and touching the circle $x^2 + y^2 = 9$ is					
	(a) $\left(\frac{1}{2}, \frac{1}{2}\right)$ (b)	$\left(\frac{1}{2},-\sqrt{2}\right)$	(c) $\left(\frac{3}{2},\frac{1}{2}\right)$	(d) $\left(\frac{1}{2},\frac{3}{2}\right)$		
49.	The equation of a circle with origin as a centre and passing through equilateral triangle whose					
	median is of length 3a i (a) $x^2 + y^2 = 9a^2$ (b		(c) $x^2 + y^2 = 4a^2$	(d) $x^2 + y^2 = a^2$		
				(16)		
				–		

Two common tangents to the circle $x^2 + y^2 = 2a^2$ and parabola $y^2 = 8ax$ are 50. (a) $x = \pm (y + 2a)$ (b) $y = \pm (x + 2a)$ (c) $x = \pm (y + a)$ (d) $y = \pm (x + a)$ 51. In a triangle with sides a, b, c, $r_1 > r_2 > r_3$ (which are the ex- radii) then (b) a < b < c (a) a > b > c(c) a > b and b < c(d) a < b and b > c52. The number of solution of $\tan x + \sec x = 2\cos x$ in $[0, 2\pi)$ is (a) 2 (b) 3 (c) 0 (d) 1 Which one is not periodic 53. (a) $|\sin 3x| + \sin^2 x$ (b) $\cos \sqrt{x} + \cos^2 x$ (c) $\cos 4x + \tan^2 x$ (d) $\cos 2x + \sin x$ $\underset{n \to \infty}{\text{Lim}} \frac{1^{p} + 2^{p} + 3^{p} + \dots + n^{p}}{n^{p+1}} \text{ is }$ 54. (b) $\frac{1}{1-p}$ (c) $\frac{1}{p} - \frac{1}{p-1}$ (a) $\frac{1}{p+1}$ (d) $\frac{1}{p+2}$ $\lim_{x\to 0} \frac{\log x^n - [x]}{[x]}, n \in \mathbb{N}$ ([x] denotes greatest integer less than or equal to x) 55. (c) has value 1 (a) has value -1 (b) has value 0 (d) does not exist If f(1) = 1, f'(1) = 2, then $\lim_{x \to 1} \frac{\sqrt{f(x) - 1}}{\sqrt{x} - 1}$ is 56. (a) 2 (c) 1 (b) 4 (d) 1/2 57. f is defined in [-5, 5] as f(x) = x if x is rational and = -x is irrational. Then (a) f(x) is continuous at every x, except x = 0(b) f(x) is discontinuous at every x, except x = 0(c) f(x) is continuous everywhere (d) f(x) is discontinuous everywhere f(x) and g(x) are two differentiable functions on [0, 2] such that f''(x) - g''(x) = 058. f'(1)=2g'(1)=4f(2)=3g(2)=9 then f(x) - g(x) at x = 3/2 is (a) 0 (b) 2 (c) 10 (d) 5 If f(x + y) = f(x). $f(y) \forall x.y$ and f(5) = 2, f'(0) = 3 then f'(5) is 59. (c) 6 (d) 2 (a) 0 (b) 1 The maximum distance from origin of a point on the curve x = a sin t - b sin $\left(\frac{at}{b}\right)$ 60. y = a cos t - b cos $\left(\frac{at}{b}\right)$, both a, b > 0 is (c) $\sqrt{a^2 + b^2}$ (d) $\sqrt{a^2 - b^2}$ (a) a - b (b) a + bIf 2a + 3b + 6c = 0 (a,b, $c \in R$) then the quadratic equation $ax^2 + bx + c = 0$ has 61. (a) at least one root in [0, 1] (b) at least one root in [2, 3] (c) at least one root in [4, 5] (d) none of these 62. If y = f(x) makes +ve intercept of 2 and 0 unit on x and y axes and encloses an area of 3/4 square unit with the axes then $\int_{a}^{b} x f'(x) dx$ is (a) 3/2(c) 5/4 (d) -3/4 (b) 1 17

63.	The area bounded by the curves $y = \ln x$, $y = \ln x $, $y = \ln x $ and $y = \ln x $ is (a) 4 sq. units (b) 6 sq. units (c) 10 sq. units (d) none of these					
64.	If $ \vec{a} =4$, $ \vec{b} =2$ and the angle between \vec{a} and \vec{b} is $\pi/6$ then $(\vec{a}\times\vec{b})^2=2$ is equal to					
	(a) 48	(b) 16	(c) ā	(d) none of these		
65.	If $\vec{a}, \vec{b}, \vec{c}$ are vectors such that $[\vec{a} \ \vec{b} \ \vec{c}] = 4$ then $[\vec{a} \times \vec{b} \ \vec{b} \times \vec{c} \ \vec{c} \times \vec{a}] =$					
	(a) 16	(b) 64	(c) 4	(d) 8		
66.	If $\vec{a}, \vec{b}, \vec{c}$ are vectors such that $\vec{a}+\vec{b}+\vec{c}=0$ and $ \vec{a} =7, \vec{b} =5, \vec{c} =3$ then angle between					
	vector \vec{b} and \vec{c} is					
	(a) 60	(b) 30°	(c) 45º	(d) 90º		
67.	If $ a =5$, $ b =4$, $ c =3$ thus what will be the value of $ a.b+b.c+c.a $, given that $\vec{a}+\vec{b}+\vec{c}=0$					
	(a) 25	(b) 50	(c) - 25	(d) - 50		
68.	$3\lambda \vec{c} + 2\mu(\vec{a} \times \vec{b}) = 0$ then					
	(a) $3\lambda + 2\mu = 0$	(b) $3\lambda = 2\mu$	(c) $\lambda = \mu$	(d) $\lambda + \mu = 0$		
69.	$\vec{a} = 3\hat{i} - 5\hat{j}$ and $\vec{b} = 6\hat{i} + 3\hat{j}$ are two vectors and \vec{c} is a vector such that $\vec{c} = \vec{a} \times \vec{b}$ then					
	ā : b : c					
	(a) $\sqrt{34}: \sqrt{45}: \sqrt{35}$	$\overline{9}$ (b) $\sqrt{34}$: $\sqrt{45}$: 39	(c) 34 : 39 : 45	(d) 39 : 35 : 34		
70.	If $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{c}$	\vec{a} then $\vec{a} + \vec{b} + \vec{c} =$				
	(a) abc	(b) -1	(c) 0	(d) 2		
71.	A and B are events such that $P(A \cup B) = 3/4$, $P(A \cap B) = 1/4$, $P(\overline{A}) = 2/3$ then $P(\overline{A} \cap B)$ is					
72.	(a) 5/12 A die is tossed 5 tin		(c) 5/8 Imber is considered a succ	(d) 1/4 cess. Then the variance of		
	A die is tossed 5 times. Getting an odd number is considered a success. Then the variance of distribution of success is					
70	(a) 8/3	(b) 3/8	(c) 4/5	(d) 5/4		
73.	The d.r. of normal to the plane through $(1, 0, 0)$, $(0, 1, 0)$ which makes an angle $\pi/4$ with plane $x + y = 3$ are					
	(a) 1, √2,1	(b) 1, 1, $\sqrt{2}$	(c) 1, 1, 2	(d) $\sqrt{2}$, 1, 1		
74.	The sum of two forces is 18 N and resultant whose direction is at right angles to the smaller					
	(a) 13, 5	nagnitude of the two fo (b) 12, 6	(c) 14, 4	(d) 11, 7		
75.	A bead of weight w can slide on smooth circular wire in a vertical plane. The bead is attach					
	by a light thread to the highest point of the wire and in equilibrium, the thread is taut and make					
	•		f the thread and reaction o (b) T = 2w $\cos \theta$	f the wire on the bead are R = w		
	(c) $T = w$	-	(d)T = w sin θ	$R = w \cot \theta$		
				18		