AIEEE 2003

PHYSICS & CHEMISTRY

1.	A particle of mass M and charge Q moving with velocity \vec{v} describe a circular path of radius R when
	subjected to a uniform transverse magnetic field of induction B. The work done by the field when the particle
	completes one full circle is

(a)
$$\left(\frac{Mv^2}{R}\right) 2\pi R$$
 (b) Zero (c) BQ2 πR (d) BQ v2 πR

- 2. A particle of charge -16×10^{-18} coulomb moving with velocity 10ms^{-1} along the x-axis enters a region where a magnetic field of induction B is along the y-axis, and an electric field of magnitude 10^4V/m is along the negative z-axis. If the charged particle continues moving along the x-axis, the magnitude of B is
 - (a) 10^3Wb/m^2 (b) 10^5Wb/m^2 (c) 10^{16}Wb/m^2 (d) 10^{-3}Wb/m^2
- 3. A thin rectangular magnet suspended freely has a period of oscillation equal to T. Now it is broken into two equal halves (each having half of the original length) and one piece is made to oscillate freely in the same field. If its period of oscillation is T', the ratio T' is
 - (a) $\frac{1}{2\sqrt{2}}$ (b) $\frac{1}{2}$ (c) 2
- 4. A magnetic needle lying parallel to a magnetic field requires W units of work to turn it through 60°. The torque needed to maintain the needle in this position will be
 - (a) $\sqrt{3}W$ (b) W (c) $\frac{\sqrt{3}}{2}W$ (d) 2W
- 5. The magnetic lines of force inside a bar magnet
 - (a) are from north-pole to south-pole of the magnet
 - (b) do not exist
 - (c) depend upon the area of cross-section of the bar magnet
 - (d) are from south-pole to north-pole of the magnet
- 6. Curie temperature is the temperature above which
 - (a) a ferromagnetic material becomes paramagnetic (b) a paramagnetic material becomes diamagnetic
 - (c) a ferromagnetic material becomes diamagnetic

 (d) a paramagnetic material becomes ferromagnetic
- 7. A spring balance is attached to the ceiling of a lift. A man hangs his bag on the spring and the spring reads 49 N, when the lift is stationary. If the lift moves downward with an acceleration of 5m/s², the reading of the spring balance will be
- (a) 24 N (b) 74 N (c) 15 N (d) 49 N
- 8. The length of a wire of a potentiometer is 100 cm, and the e.m.f. of its standard cell is E volt. It is employed to measure the e.m.f of a battery whose internal resistance is $0.5\,\Omega$. If the balance point is obtained at l=30 cm from the positive end, the e.m.f. of the battery is
 - (a) $\frac{30\,\mathrm{E}}{100.5}$ (b) $\frac{30\,\mathrm{E}}{(100-0.5)}$ (c) $\frac{30(\mathrm{E}-0.5\mathrm{i})}{100}$, where i is the current in the potentiometer wire (d) $\frac{30\,\mathrm{E}}{100}$
- 9. A strip of copper and another of germanium are cooled from room temperature to 80 K. The resistance of
- (a) each of these decreases (b) copper strip increases and that of germanium decreases
 - (c) copper strip decreases and that of germanium increases (d) each of these increases

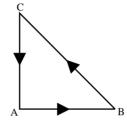
11.	The thermo e.m.f. of a thermo-couple is $25 \muV/^0C$ at room temperature. A galvanometer of 40 ohm resistance, capable of detecting current as low as 10^{-5} A, is connected with the thermo couple. The smallest temperature difference that can be detected by this system is				
	(a) 16° C	(b) 12° C	(c) 8°C	(d) 20° C	
12.	0.13 g in 30 min increase in the ma	utes. If the electrochem ass of the positive Cu po	ical equivalent of Zn and le in this time is	nt through a circuit, decreases in mass by and Cu are 32.5 and 31.5 respectively, the	
	(a) 0.180 g	(b) 0.141 g	(c) 0.126 g	(d) 0.242 g	
13.			e their usual meaning, a		
	(a) $[L^{-1}T]$	(b) $[L^{-2}T^2]$	(c) $[L^2 T^{-2}]$	(d) [LT ⁻¹]	
14.				ness t, and another disc Y of radius 4R is	
	made from an iro	n plate of thickness $\frac{t}{4}$.	Then the relation betwee	en the moment of inertia I_X and I_Y is	
	(a) $I_Y = 32 I_X$	(b) $I_{Y} = 16 I_{X}$	$(c) I_{Y} = I_{X}$	$(d) I_{Y} = 64 I_{X}$	
15.	The time period increased to 4 times	of a satellite of earth is nes the previous value, the	5 hours. If the separation new time period will be	ion between the earth and the satellite is become	
	(a) 10 hours	, ,	(c) 40 hours	` '	
16.		ning uniform circular mo ular momentum is	otion has angular frequer	ncy is doubled & its kinetic energy halved,	
	(a) $\frac{L}{4}$	(b) 2L	(c) 4 L	(d) $\frac{L}{2}$	
17.	Which of the follo	owing radiations has the	least wavelength?		
	(a) γ-rays	(b) β -rays	(c) α-rays	(d) X-rays	
18.	When a U ²³⁸ nucl speed of the resid	•	ecays by emitting an alp	oha particle having a speed 'u', the recoil	
	(a) $\frac{4u}{238}$	(b) $-\frac{4u}{234}$	(c) $\frac{4u}{234}$	(d) $-\frac{4u}{238}$	
		23 1	23 .	230	
19.	separation between the distance cover	en their centres equal to red by the smaller body	12 R. If they attract each just before collision is	vely are released in free space with initial other due to gravitational force only, then	
6 -	(a) 2.5 R	(b) 4.5 R	(c) 7.5 R	(d) 1.5 R	
20.	tially due to the d	ifference in the	-	a metal and a semiconductor arises essen-	
	(a) crystal structu			mber of charge carriers with temperature	
21.	(c) type of bondir	ŭ		ing mechanism with temperature after at least 6 m. If the same car is moving	
41.	_	tn a speed of 50 km/nr, ca km/hr, the minimum sto		artor at least 0 m. ii the same car is moving	
	(a) 12 m	(b) 18 m	(c) 24 m	(D) 6 m	

10. Consider telecommunication through optical fibres. Which of the following statements is **not** true?

(b) Optical fibres are subjective to electromagnetic interference from outside

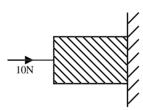
(d) Optical fibres may have homogeneous core with a suitable cladding.

(a) Optical fibres can be of graded refractive index


(c) Optical fibres have extremely low transmission loss

A boy playing on the roof of a 10 m high building throws a ball with a speed of 10m/s at an angle of 30° with the horizontal. How far from the throwing point will the ball be at the height of 10 m from the ground?

[g = 10m/s², sin30⁰ =
$$\frac{1}{2}$$
, cos30⁰ = $\frac{\sqrt{3}}{2}$]


- (a) 5.20m
- (b) 4.33m
- (c) 2.60m
- (d) 8.66m
- An ammeter reads up to 1 ampere. Its internal resistance is 0.81 ohm. To increase the range to 10 A the value 23. of the required shunt is
 - (a) 0.03Ω
- (b) 0.3Ω
- (c) 0.9Ω
- (d) 0.09Ω
- The physical quantities not having same dimensions are
 - (a) torque and work

- (b) momentum and Planck's constant
- (c) stress and Young's modulus
- (d) speed and $(\mu_n \epsilon_n)^{-1/2}$
- Three forces start acting simultaneously on a particle moving with velocity, \vec{v} . These forces are represented in magnitude and direction by the three sides of a triangle ABC. The particle will now move with velocity

- (a) less than \vec{v} (b) greater than \vec{v} (c) $|\vec{v}|$ in the direction of the largest force BC (d) \vec{v} , remaining unchanged
- If the electric flux entering and leaving an enclosed surface respectively is ϕ_1 and ϕ_2 , the electric charge inside the surface will be

 - (a) $(\phi_2 \phi_1) \varepsilon_0$ (b) $(\phi_1 + \phi_2) / \varepsilon_0$
- (c) $(\phi_2 \phi_1)/\epsilon_0$
- (d) $(\phi_1 + \phi_2) \varepsilon_0$
- A horizontal force of 10 N is necessary to just hold a block stationary against a wall. The co-efficient of friction between the block and the wall is 0.2. The weight of the block is

- (a) 20 N
- (b) 50 N
- (c) 100 N
- (d) 2 N
- 28. A marble block of mass 2 kg lying on ice when given a velocity of 6 m/s is stopped by friction in 10 s. Then the coefficient of friction is
 - (a) 0.02
- (b) 0.03
- (c) 0.04
- (d) 0.01

- 29. Consider the following two statements:
 - (A) Linear momentum of a system of particles is zero
 - (B) Kinetic energy of a system of particles is zero
 - Then (a) A does not imply B and B does not imply A
 - (b) A implies B but B does not imply A
 - (c) A does not imply B but B implies A
- (d) A implies B and B implies A

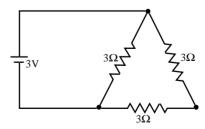
	(b) relative posi	tion and orientation	of the two coils	(c) the materials of the win	res of the coils.
	(d) the currents	in the two coils			
31.	A block of mass	M is pulled along a	horizontal frictionless	surface by a rope of mass m. If a for	rce P is applied
	at the free end o	of the rope, the force	e exerted by the rope or	the block is	
	Pm	Pm	() -	PM	
	$(a)\frac{Pm}{M+m}$	(b) ${M-m}$	(c) P	(d) $\frac{PM}{M+m}$	
32.		_		nt spring balance and a block of ma	ass M kg hangs
			statement about the sca	G	
				lower one reads M kg and of the t	upper one zero
				um of the reading will be M kg	
33.	` ´	lles read M/2 kg eac		d by attaching a waight of 200 N to	the legger and
33.				d by attaching a weight of 200 N to nergy stored in the wire is	the lower end.
	(a) $0.2 J$	(b) 10 J	(c) 20 J	(d) 0.1 J	
34.			ected vertically upward the vertical, the escape	s from the surface of earth is 11 km velocity will be	n/s. If the body
	(a) $11\sqrt{2} \text{ km/s}$	(b) 22 km/s	(c) 11 km/s	(d) $\frac{11}{\sqrt{2}}$ km/s	
35.	A mass M is sus	pended from a sprin	g of negligible mass. T	ne spring is pulled a little and then i	released so that
	the mass execut	es SHM of time per	iod T. If the mass is inc	reased by m, the time period become	mes $\frac{5T}{3}$. Then
	the ratio of $\frac{m}{M}$ is				
	3	25	16	5	
	(a) $\frac{3}{5}$	(b) ${9}$	(c) $\frac{16}{9}$	(d) $\frac{5}{3}$	
36.	"Heat cannot by or consequence		ody at lower temperatu	re to a body at higher temperature'	'is a statement
	(a) second law of	of thermodynamics	(b) conservation	n of momentum	
	(c) conservation	of momentum	(d) first law of t	hermodynamics	
37.				two massless springs of spring con, are equal, the ratio of amplitude	
	(a) $\sqrt{\frac{k_1}{k_2}}$	(b) $\frac{k_2}{k_1}$	(c) $\sqrt{\frac{k_2}{k_1}}$	(d) $\frac{\mathbf{k}_1}{\mathbf{k}_2}$	
38.	_		xecuting simple harmo endulum of increased le	nic motion is increased by 21%. T	The percentage
	(a) 11%	(b) 21%	(c) 42%	(d) 10%	
39.	The displaceme	ent y of a wave trave	elling in the x-direction	is given by $y = 10^{-4} \sin \left(600t - 2 \right)$	$(x + \frac{\pi}{x})$ metres
				\	3) metres
	where x is expre		t in seconds. The speed	of the wave-motion, in ms ⁻¹ , is	3) metres
	where x is expression (a) 300		t in seconds. The speed (c) 1200	(3) metes

30. Two coils are placed close to each other. The mutual inductance of the pair of coils depends upon

(a) the rates at which currents are changing in the two coils

- 40. When the current changes from +2A to -2A in 0.05 second, an e.m.f. of 8V is induced in a coil. The coefficient of self-induction of the coil is
 - (a) 0.2 H
- (b) 0.4 H
- (c) 0.8 H
- (d) 0.1 H
- 41. In an oscillating LC circuit the maximum charge on the capacitor is Q. The charge on the capacitor when the energy is stored equally between the electric and magnetic field is
 - (a) $\frac{Q}{2}$
- (b) $\frac{Q}{\sqrt{3}}$
- (c) $\frac{Q}{\sqrt{2}}$
- (d) Q
- 42. The core of any transformer is laminated so as to
 - (a) reduce the energy loss due to eddy currents

(b) make it light weight


(c) make it robust and strong

- (d) increase the secondary voltage
- 43. Let \vec{F} be the force acting on a particle having position vector \vec{r} and \vec{T} be the torque of this force about the origin. Then
 - (a) $\vec{r} \cdot \vec{T} = 0$ and $\vec{F} \cdot \vec{T} \neq 0$

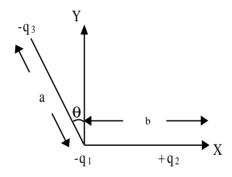
(b) $\vec{r} \cdot \vec{T} \neq 0$ and $\vec{F} \cdot \vec{T} = 0$

(c) $\vec{r} \cdot \vec{T} \neq 0$ and $\vec{F} \cdot \vec{T} \neq 0$

- (d) $\vec{r} \cdot \vec{T} = 0$ and $\vec{F} \cdot \vec{T} = 0$
- 44. A radioactive sample at any instant has its disintegration rate 5000 disintegrations per minute. After 5 minutes, the rate is 1250 disintegrations per minute. Then, the decay constant (per minute) is
 - (a) $0.4 \ln 2$
- (b) 0.2 ln 2
- (c) 0.1 ln 2
- (d) 0.8 ln 2
- 45. A nucleus with Z = 92 emits the following in a sequence:
 - $\alpha, \beta^-, \beta^-\alpha, \alpha, \alpha, \alpha, \alpha, \beta^-, \beta^-, \alpha, \beta^+, \beta^+, \alpha$. Then Z of the resulting nucleus is
 - (a) 76
- (b) 78
- (c)82
- (d)74
- 46. Two identical photocathodes receive light of frequencies f_1 and f_2 . If the velocities of the photo electrons (of mass m) coming out are respectively v_1 and v_2 , then
 - (a) $v_1^2 v_2^2 = \frac{2h}{m}(f_1 f_2)$
- (b) $v_1 + v_2 = \left[\frac{2h}{m} (f_1 + f_2) \right]^{1/2}$
- (c) $V_1^2 + V_2^2 = \frac{2h}{m}(f_1 + f_2)$
- (d) $v_1 v_2 = \left[\frac{2h}{m} (f_1 f_2) \right]^{1/2}$
- 47. Which of the following cannot be emitted by radioactive substances during their decay?
 - (a) Protons
- (b) Neutrinoes
- (c) Helium nuclei
- (d) Electrons
- 48. A 3 volt battery with negligible internal resistance is connected in a circuit as shown in the figure. The current I, in the circuit will be

- (a) 1 A
- (b) 1.5 A
- (c) 2A
- (d) 1/3 A
- 49. A sheet of aluminium foil of negligible thickness is introduced between the plates of a capacitor. The capacitance of the capacitor
 - (a) decreases
- (b) remains unchanged (c) becomes infinite
- (d) increases

	(a) -4	(b) 4	(c) $4\sqrt{2}$	(d) 8	
51.	A thin spherical c	conducting shell of radiu	s R has a charge q. Anot	her charge Q is placed at the centre of the	
	shell. The electrostatic potential at a point P a distance $\frac{R}{2}$ from the centre of the shell is				
	(a) $\frac{2Q}{4\pi\epsilon_0 R}$	$\text{(b) } \frac{2Q}{4\pi\epsilon_0 R} - \frac{2q}{4\pi\epsilon_0 R}$	(c) $\frac{2Q}{4\pi\epsilon_0 R} + \frac{q}{4\pi\epsilon_0 R}$	(d) $\frac{(q+Q)2}{4\pi\epsilon_0 R}$	
52.		n placing a charge of $8 \times$ e (b) 3.1×10^{-26} joule		enser of capacity 100 micro-farad is (d) 32×10^{-32} joule	
53.	The co-ordinates particle at time 't'		any time 't' are given b	by $x = \alpha t^3$ and $y = \beta t^3$. The speed of the	
	(a) $3t\sqrt{\alpha^2 + \beta^2}$	(b) $3t^2\sqrt{\alpha^2+\beta^2}$	(c) $t^2 \sqrt{\alpha^2 + \beta^2}$	(d) $\sqrt{\alpha^2 + \beta^2}$	
54.	•	ratio C_p/C_v for the gas is	•	e proportional to the cube of its absolute	
	(a) $\frac{4}{3}$	(b) 2	(c) $\frac{5}{3}$	(d) $\frac{3}{2}$	
55.	Which of the follo	owing parameters does n	ot characterize the thern	nodynamic state of matter?	
	(a) temperature	(b) Pressure	(c) Work	(b) Volume	
56.	A Carnot engine done by the engin		from a reservoir at 627%	C, and gives it to a sink at 27°C. The work	
	(a) $4.2 \times 10^6 \mathrm{J}$	(b) $8.4 \times 10^6 \mathrm{J}$	(c) $16.8 \times 10^6 \mathrm{J}$	(d) Zero	
57.		g constant 5×10^3 N/m is stretch it further by anot	• •	m from the unstretched position. Then the	
	(a) 12.50 N-m	(b) 18.75 N-m	(c) 25.00 N-m	(d) 6.25 N-m	
58.	supports 1 metre	apart. The wire passes at	t its middle point betwee	a tension of 10 kg-wt between two rigid in the poles of a permanent magnet, and it ency n. The frequency n of the alternating	
	(a) 50 Hz	(b) 100 Hz	(c) 200 Hz	(d) 25 Hz	
59.	beat frequency de	1 .	cond when the tension in	d with the vibrating string of a piano. The the piano string is slightly increased. The	
	(a) $256 + 2 \text{ Hz}$	(b) 256 - 2 Hz	(c) 256 - 5 Hz	(d) 256 + 5 Hz	
60.	energy (T.E) are i	measured as a function of	of displacement x. Which	(P.E), the kinetic energy (K.E) and total n of the following statements is true?	
	(a) K.E. is maxim		(b) T.E is zero when x		
	• •	um when x is maximum			
61.			•	pulsive potential energy between the two	
		J^{14} J, the temperature at nstant $k = 1.38 \times 10^{-23}$ J/		heated to initiate the reaction is nearly	
	(a) 10 ⁷ K	(b) 10^5 K	(c) 10 ³ K	(d) 10 ⁹ K	
	•	·	•		


50. The displacement of a particle varies according to the relation $x = 4(\cos \pi t + \sin \pi t)$. The amplitude of the

particle is

- 62. Which of the following atoms has the lowest ionization potential?
 - (a) ${}_{7}^{14}$ N
- (b) $^{133}_{55}$ Cs
- (c) $^{40}_{18}$ Ar
- (d) $^{16}_{9}$ O
- 63. The wavelengths involved in the spectrum of deuterium $\binom{2}{1}$ D are slightly different from that of hydrogen spectrum, because
 - (a) the size of the two nuclei are different (b) the nuclear forces are different in the two cases
 - (c) the masses of the two nuclei are different
 - (d) the attraction between the electron and the nucleus is different in the two cases
- 64. In the middle of the depletion layer of a reverse biased p-n junction, the
 - (a) electric field is zero

- (b) potential is maximum
- (c) electric field is maximum
- (d) potential is zero
- 65. If the binding energy of the electron in a hydrogen atom is 13.6eV, the energy required to remove the electron from the first excited state of Li++ is
 - (a) 30.6eV
- (b) 13.6 eV
- (c) 3.4 eV
- (d) 122.4 eV
- 66. A body is moved along a straight line by a machine delivering a constant power. The distance moved by the body in time 't' is proportional to
 - (a) $t^{3/4}$

- (d) $t^{1/2}$
- 67. A rocket with a lift-off mass 3.5×10^4 kg is blasted upwards with an initial acceleration of 10m/s². Then the initial thrust of the blast is
 - (a) 3.5×10^5 N
- (b) 7.0×10^5 N
- (c) 14.0×10^5 N
- (d) 1.75×10^5 N
- 68. To demonstrate the phenomenon of interference, we require two sources which emit radiation
 - (a) of nearly the same frequency
- (b) of the same frequency
- (c) of different wavelengths
- (d) of the same frequency and having a definite phase relationship
- Three charges $-q_1$, $+q_2$ and $-q_3$ are placed as shown in the figure. The x-component of the force on $-q_1$ is 69. proportional to

- (a) $\frac{q_2}{h^2} \frac{q_3}{a^2} \cos \theta$ (b) $\frac{q_2}{h^2} + \frac{q_3}{a^2} \sin \theta$
- (c) $\frac{q_2}{h^2} + \frac{q_3}{a^2} \cos \theta$ (d) $\frac{q_2}{h^2} \frac{q_3}{a^2} \sin \theta$
- 70. A 220 volt, 1000 watt bulb is connected across a 110 volt mains supply. The power consumed will be
 - (a) 750 watt
- (b) 500 watt
- (c) 250 watt
- (d) 1000 watt
- 71. The image formed by an objective of a compound microscope is
 - (a) virtual and diminished (b) real and diminished (c) real and enlarged (d) virtual and enlarged
- 72. The earth radiates in the infra-red region of the spectrum. The spectrum is correctly given by
 - (a) Rayleigh Jeans law

- (b) Planck's law of radiation
- (c) Stefan's law of radiation
- (d) Wien's law
- 73. To get three images of a single object, one should have two plane mirrors at an angle of
 - (a) 60°
- (b) 90°
- (c) 120°
- (d) 30°

74.	According to Newton's law of cooling, the rate of cooling of a body is proportional to $(\Delta\theta)^n$, where $\Delta\theta$ is
	the difference of the temperature of the body and the surroundings, and n is equal to
	(a) two (b) three (c) four (d) one
75.	The length of a given cylindrical wire is increased by 100%. Due to the consequent decrease in diameter the change in the resistance of the wire will be
	(a) 200% (b) 100% (c) 50% (d) 300%
76.	Which of the following could act as apropellant for rockets?
	(a) Liquid oxygen + liquid argon (b) Liquid hydrogen + liquid oxygen
	(c) Liquid nitrogen + liquid oxygen (d) Liquid hydrogen + liquid nitrogen
77.	The reaction of chloroform with alcoholic KOH and p-toluidine forms
	(a) H_3C — \bigcirc — N_2Cl (b) H_3C — \bigcirc — \bigcirc — $NHCHCl_2$ (c) H_3C — \bigcirc — \bigcirc NC (d) H_3C — \bigcirc — \bigcirc CN
78.	Nylon threads are made of (a) polyester polymer (b) polyamide polymer (c) polyethylene polymer (d) polyvinyl polymer
70	
79.	The correct order of increasing basic nature for the bases NH ₃ , CH ₃ NH ₂ and (CH ₃) ₂ NH is
	(a) $(CH_3)_2NH < NH_3 < CH_3NH_2$ (b) $NH_3 < CH_3NH_2 < (CH_3)_2NH$
	(c) $CH_3NH_2 < (CH_3)_2NH < NH_3$ (d) $CH_3NH_2 < NH_3 < (CH_3)_2NH$
80.	Bottles containing C ₆ H ₅ l and C ₆ H ₅ CH ₂ I lost their original labels. They were labelled A and B for testing A and B were separately taken in test tubes and boiled with NaOH solution. The end solution in each tube was made acidic with dilute HNO ₃ and then some AgNO ₃ solution was added. Substance B gave a yellow
	precipitate. Which one of the following statements is true for this experiment?
	(a) A and $C_6H_5CH_2I$ (b) B and C_6H_5I
	(c) Addition of HNO_3 was unnecessary (d) A was C_6H_5I
81.	The internal energy change when a system goes from state A to B is 40 kJ/mole . If the system goes from A to B by a reversible path and returns to state A by an irreversible path what would be the net change in internal energy? (a)> 40 kJ (b) < 40kJ (c) Zero (d) 40 kJ
82.	If at 298 K the bond energies of C-H, C-C, C = C and H-H bonds are respectively 414, 347, 615 and 435 kJ
	mol ⁻¹ , the value of enthalpy change for the reaction $H_2C = CH_2(g) + H_2(g) \rightarrow H_3C - CH_3(g)$ at 298 K will be (a) -250 kJ (b) + 125 kJ (c) -125 kJ (d) + 250 kJ
83.	The radionucleide $\frac{234}{90}$ Th undergoes two successive β -decays followed by one α -decay. The atomic num-
	ber and the mass number respectively of the resulting radionucleide are
	(a) 94 and 230 (b) 90 and 230 (c) 92 and 230 (d) 92 and 234
84.	The half-life of a radioactive isotope is three hours. If the initial mass of the isotope were 256 g, the mass of
	it remaining undecayed after 18 hours would be
o -	(a) 8.0 g (b) 12.0 g (c) 16.0 g (d) 4.0 g
85.	If liquids A and B form an ideal solution
	(a) the entropy of mixing is zero (b) the free energy of mixing is zero (c) the free energy of mixing is zero
86.	(c) the free energy as well as the entropy of mixing are each zero (d) the enthalpy of mixing is zero. The radius of La^{3+} (Atomic number of $La = 57$) is 1.06Å. Which one of the following given values will be
80.	closest to the radius of La^{-37} (Atomic number of $Lu = 71$)?
	(a) 1.40Å (b) 1.06Å (c) 0.85Å (d) 1.60Å
87.	Ammonia forms the complex ion $[Cu(NH_3)_4]^{2+}$ with copper ions in alkaline solutions but not in acidic solu-
07.	tions. What is the reason for it?
	(a) In acidic solutions protons coordinate with ammonia molecules forming NH ₄ ions and NH ₃ molecules
	are not available
	(b) In alkaline solutions insoluble Cu(OH) ₂ is precipitated which is soluble in excess of any alkali
	(c) Copper hydroxide is an amphoteric substance
	(d) In acidic solutions hydration protects copper ions

88.		plex reacts with two		oles of ions on dissolution in water. One mole to yield two moles of AgCl (s). The structure			
	•		H_2 ₁ Cl ₂ Cl. NH ₂ (c) [0	$Co(NH_3)_4Cl]Cl_2 \cdot NH_3 $ (d) $[Co(NH_3)_5Cl]Cl_2$			
89	5 5	5	$(CN)_4$], the oxidation sta	2. 2 2 2 2			
	(a) 0	(b) +1	(c) +2	(d) -1			
90.	` '	` '	inkled from time to time.				
	(a) developing interlocking needle-like crystals of hydrated silicates						
		nd and gravel mixed v	•				
	. , •	and into silicic acid	(d) keeping it cool				
91.	•	e following statemen					
		14 for all aqueous so		(b) The pH of 1×10^{-8} M HCI is 8			
		ombs of electricity w		uSO ₄ solution deposits 1 gram equivalent of			
		te base of H ₂ PO ₄ is I	HPO ²⁻				
92.		= :	·	it with ultravioletlight, it forms only one			
/		nne. This alkane could					
	(a) pentane	(b) isopentane	(c) neopentane	(d) propane			
93.	Butene-1 may b	e converted to butane	by reaction with				
	(a) Sn - HCI	(b) Zn - Hg	(c) Pd/H_2	(d) Zn - HCI			
94.	What may be ex	spected to happen who	en phosphine gas is mixe	ed with chlorine gas?			
	(a) PCI ₃ and HC	(a) PCI ₃ and HCI are formed and the mixture warms up					
	5	CI are formed and the					
	2	rmed with warming u		(d) The mixture only cools down			
95.	<i>y</i> -		$1 = 10^{-1} = $	ion is			
	(a) 4	(b) 5	(c) 6	(d) 3			
96.	Concentrated hy	•	n kept in open air some	times produces a cloud of white fumes. The			
	(a) oxygen in air	r reacts with the emitt	ed HCI gas to form a clo	oud of chlorine gas			
		y of HCI gas for mios	•	ng of droplets of liquid solution which appears			
	_	gaffinity for water, co droplets of water and		acid pulls moisture of air towards it self. This			
	(d) concentrated	l hydrochloric acid en	nits strongly smelling HO	CI gas all the time.			
97.	An ether is more	e volatile than an alco	hol having the same mol	ecular formula. This is due to			
		(a) alcohols having resonance structures (b) inter-molecular hydrogen bonding in ethers					
		lar hydrogen bonding		(d) dipolar character of ethers			
98.	Graphite is a sof graphite	t solid lubricant extre	mely difficult to melt. The	ne reason for this anomalous behaviour is that			
		ic form of diamond	(b) has molecules o	f variable molecular masses like polymers			
	•			ound carbon atoms with weak interplate bonds			
		talline substance		1			

99. According to the Periodic Law of elements, the variation in properties of elements is related to their

(a) nuclear masses (b) atomic numbers (c) nuclear neutron-proton number ratios (d) atomic masses

100.	. Which one of the following statements is correct? (a) From a mixed precipitate of AgCl and AgI, ammonia solution dissolves only AgCl					
	(b) Ferric ions give a deep green precipitate on adding potassium ferrocyanide solution (c) On boiling a solution baying K^+ , Co^{2+} and HCO^- , ions we get a precipitate of K , $Co(CO^-)$					
	(c) On boiling a solution having K ⁺ , Ca ²⁺ and HCO ₃ ions we get a precipitate of K ₂ Ca(CO ₃) ₂ . (d) Manganese salts give a violet borax bead test in the reducing flame					
101	Glass is a	its give a violet bolax b	eau test III tile i	educing i	idile	
101.	(a) super-cooled li	iquid (b) gel	(c) polymeric	mivtura	(d) micro-crystalline solid	
	(a) super-cooled in	iquid (b) gei	(c) porymeric	IIIIXtuie	(d) finero-crystamme sond	
102.			etron revolving	in an orbi	t is given by $\sqrt{l(l+1)}$. $\frac{h}{2\pi}$. This momentum	
	for an s-electron w	will be given by				
	(a) zero	(b) $\frac{h}{2\pi}$	(c) $\sqrt{2}$ $\frac{h}{}$		$(d) + \frac{1}{2} + \frac{h}{2}$	
	(a) ZC10	2π	(c) $\sqrt{2\pi}$		(u) 2 2π	
103.	=	ells are present in a cube $Na = 23$, $Cl = 35.5$]	eshaped ideal o	crystal of l	NaCl of mass 1.00 g?	
	(a) 5.14×10^{21} unit	t cells	(b) 1.28×10^2	unit cell	s	
	(c) 1.71×10^{21} unit	t cells	(d) 2.57×10^2	unit cell	s	
104.	In the anion HCO	O ⁻ the two carbon-oxyg	en bonds are fo	ound to be	of equal length. What is the reason for it?	
	(a) The $C = O$ bor	nd is weaker than the C	-O bond			
	(b) The anion HC	OO- has two resonating	structures			
	(c) The anion is of	btained by removal of a	proton from the	ne acid mo	plecule	
	(d) Electronic orbi	itals of carbon atom are	hybridised			
105.	Which one of the f	following characteristic	es is not correct	for physic	cal adsorption?	
	(a) Adsorption inc	creases with incresae in	temperature			
	(b) Adsorption is s	spontaneous	(c) Both enth	alpy and	entropy of adsorption are negative	
	(d) Adsorption on	solids is reversible				
106.		n involving a two-electric rium constant of the rea	•		e.m.f. of the cell is found to be 0.295 V at	
	(a) 29.5×10^{-2}	(b) 10	(c) 1×10^{10}		(d) 1×10^{-10}	
107.	-				which only pressure-volume work is being y (dS), satisfy the criteria	
	-,-	-,-			$=0, (dG)_{T,P}>0$ $=(d)(dS)_{V,E}<0, (dG)_{T,P}<0$	
108.			-	10 ⁻⁵ mol L ⁻¹	¹ . Its solubility product number will be	
	(a) 4×10^{-10}	(b) 1×10^{-15}	(c) 1×10^{-10}		(d) 4×10^{-15}	
109.	elemental boron (a	atomic mass = 10.8) fro	m the reducti o		will be consumed in obtaining 21.6 g of n trichloride by hydrogen?	
	(a) 67.2 L	(b) 44.8 L	(c) 22.4 L		(d) 89.6 L	
110.		quilibrium $N_2O_4(g) \rightleftharpoons 10^{-2} \text{ mol L}^{-1} \text{ respective}$			ations of N_2O_4 and NO_2 at equilibrium are ne reaction is	
	(a) $3 \times 10^{-1} \text{ mol } L^{-1}$	1 (b) 3×10^{-3} mol L ⁻¹	(c) 3×10^3 mc	ol L ⁻¹	(d) $3.3 \times 10^2 \text{ mol L}^{-1}$	
111.		ion equilibrium 2SO ₂ (g) dition favourable for the			$H^0 = -198 \text{ kJ}$. On the basis of Le Chatelier's	
	-	perature as well as pres			temperature and increasing the pressure	
		emperature and pressure		•	temperature as well as pressure	
		-			[10]	

112.	Which one of the	following is an amphoto	eric oxide?		
	(a) Na ₂ O	(b) SO ₂	(c) B_2O_3	(d) ZnO	
113.	3. A red solid is insoluble in water. However it becomes soluble if some KI is added to water. Heating the resolid in a test tube results in liberation of some violet coloured fumes and droplets of a metal appear on to cooler parts of the test tube. The red solid is				
	(a) HgI_2	(b) HgO	(c) Pb_3O_4	(d) $(NH_4)_2 Cr_2 O_7$	
114.	reducing, powers	of these metals are		e respectively +0.5 V, -3.0 V & -1.2 V. The	
			(c) A > C > B		
115.		•	as the highest proton affin	•	
	2	3	(c) PH ₃	L	
116.	the freezing point	of the solution will be r	nearest to	nization is 0.3. Taking k_f for water as 1.85,	
	(a) -0.360° C	(b) -0.260° C	$(c) +0.480^{\circ}C$	(d) -0.480° C	
117.		etrolysis of a solution of silver deposited on the c		of charge pass through the electroplating	
	(a) 10.8 g	(b) 21.6 g	(c) 108 g	(d) 1.08 g	
118.	For the redox read	etion $Zn(s) + Cu^{2+}(0.1 \text{ M})$	$\mathbf{I}) \rightarrow \mathbf{Z} n^{2+}(1\mathbf{M}) + \mathbf{C}\mathbf{u}(\mathbf{s}) \mathbf{t}$	aking place in a cell, E_{cell}^0 is 1.10 volt. E_{cell}	
		(RT)			
		$2\left(2.303\frac{RT}{F} = 0.0591\right)$			
	(a) 1.80 volt	(b) 1.07 volt	(c) 0.82 volt	(d) 2.14 volt	
119.	In respect of the ed	quation $k = Ae^{-E_a/RT}$ in	chemical kinetics, which	one of the following statements is correct?	
	(a) A is adsorption		(b) E _a is energy of activ		
	(c) R is Rydberg's		(d) k is equilibrium con		
120.	_		n atomic number is a cha		
	(A) d-block	(b) f-block	(c) radioactive series	(d) high atomic masses	
121.		e of CH ₃ COCH(CH ₃) ₂ i		, , ,	
		5 5 2		yl-2-butanone (d) Isopropylmethyl ketone	
122.			h LiAlH ₄ , the compound		
	_		-		
	(c) CH ₂ - CH ₂ - C	CHO	(b) CH ₃ - CH ₂ - CH ₂ O (d) CH ₃ - CH ₂ - COOH	I	
123.				two successive collisions a gas molecule	
	(a) in a wavy path	(b) in a straight line	path (c) with an accelera	ated velocity (d) in a circular path	
124.	The general form	ula C _n H _{2n} O ₂ could be for	or open chain		
	(a) carboxylic acid	ds	(b) diols	(c) dialdehydes (d) deketones	
125.	Among the follow	ving four structures I to	IV.		
	CH ₃	O CH ₃ H - C	, CH_3 , C_2H_5 - CH - C_2H_5 (iv)		
	C_2H_5 - CH - C_3H_7	CH ₃ -C - CH-C ₂ H ₅	, C_2H_5 - $\dot{C}H$ - C_2H_5 .	It is true that	
	(i)	(ii) Ii (iii)	(iv)		
	(a) only I and II ar	re chiral compounds	(b) only III i a chiral co	mpound	
	(c) only II and IV	are chiral compounds	(d) all four are chiral co	ompounds	

126.	What would happen when a solution of potassium chromate is treated with an excess of dilute nitric a			ated with an excess of dilute nitric acid?			
	(a) $\operatorname{Cr_2O^{2-}}_7$ and $\operatorname{H_2}$	O are formed	(b) CrO ² -4 is reduced to	+3 state of Cr			
	(c) CrO ² - ₄ is oxidi	zed to +7 state of Cr	(d) Cr^{3+} and Cr_2O^{2-} are	formed			
127.			f float glass are used. They before glass. The meta	ese are obtained by floating molten glass I used can be			
	(a) tin	(b) sodium	(c) magnesium	(d) mercury			
128.	The substance not	likely to contain CaCC	o_3 is				
	(a) calcined gypsu	m (b) sea shells	(c) dolomite	(d) a marble statue			
129.	Complete hydroly	sis of cellulose gives					
	(a) D-ribose	(b) D-glucose	(c) L-glucose	(d) D-fructose			
130.	Which one of the	following nitrates will le	eave behind a metal on s	trong heating?			
	(a) Copper nitrate	(b) Manganese nitrate	(c) Silver nitrate	(d) Ferric nitrate			
131.	During dehydratio	on of alcohols to alkenes	s by heating with conc. H	I ₂ SO ₄ the initiation step is			
	(a) formation of ca	rbocation	(b) elimination of water	•			
	(c) formation of an	nester	(d) protonation of alcoh	ool molecule			
132.	The solubilities of	carbonates decrease do	wn the magnesium grou	p due to a decrease in			
	(a) hydration energ	(a) hydration energies of cations (b) inter-ionic attraction					
	(c) entropy of solu	tion formation	(d) lattice energies of so	olids			
133.	When rain is acco	mpanied by a thunderst	orm, the collected rain w	vater will have a pH value			
	(a) slightly higher than that when the thunderstorm is not there						
	(b) uninfluenced b	y occurence of thunders	storm				
	(c) which depends	(c) which depends on the amount of dust in air					
	(d) slightly lower	than that of rain water w	ithout thunderstorm				
134.	The reason for do	uble helical structure of	DNA is operation of				
	(a) dipole-dipole i	nteraction (b) hydrogen	bonding (c) electrostati	c attractions (d) van der Waals' forces			
135.		<u> </u>	on titration with a 0.1 momentum may be solution was	olar solution of hydrochloric acid gave a			
	(a) 0.14	(b) 0.28	(c) 0.35	(d) 0.07			
136.	The correct relation K_c is	onship between free ene	rgy change in a reaction	and the corresponding equilibrium con-			
	(a) $-\Delta G = RT ln$	K_c (b) $\Delta G^0 = RT \ln K_c$	(c) $-\Delta G^0 = RT In K$	(d) $\Delta G = RT \ln K_c$			
137.		A and halving the conce		on by Rate = $k[A]^n$ [B] ^m On doubling the of the new rate to the earlier rate of the			
	(a) (m+n)	(b) (n - m)	(c) $2^{(n-m)}$	(d) $\frac{1}{2^{(m+n)}}$			
138.	Ethyl isocyanide o	on hydrolysis in acidic n	nedium generates				
	(a) propanoic acid	and ammonium salt	(b) ethanoic acid and ar	nmonium salt			
	(c) methylamine s	alt and ethanoic acid	(d) ethylamine salt and	methanoic acid			
139.	The enthalpy char	nge for a reaction does n	ot depend upon				
	(a) use of differen	t reactants for the same	product (b) the	e nature of intermediate reaction steps			
	(c) the differences	in initial or final temper	ratures of involved substa	ances			
	, ,	ates of reactants and pro					

140.). A pressure cooker reduces cooking time for food because	
	(a) boiling point of water involved in cooking is increased	
	(b) the higher pressure inside the cooker crushes the food material	
	(c) cooking involves chemical changes helped by a rise in temperature	
	(d) heat is more evenly distributed in the cooking space	
141.	1. For the reaction system: $2NO(g) + O_2(g) \rightarrow 2NO_2(g)$ volume is suddenly reduce to half its value by inciding the pressure on it. If the reaction is of first order with respect to O_2 and second order with respect to the rate of reaction will	
	(a) diminish to one-eighth of its initial value	
	(b) increase to eight times of its initial value	
	(c) increase to four times of its initial value	
	(d) diminish to one-fourth of its initial value	
142.	2. Several blocks of magnesium are fixed to the bottom of a ship to	
	(a) make the ship lighter	
	(b) prevent action of water and salt	
	(c) prevent puncturing by under-sea rocks	
	(d) keep away the sharks	
143.	3. Which one of the following pairs of molecules will have permanent dipole moments for both members	?
	(a) NO_2 and CO_2 (b) NO_2 and O_3 (c) SiF_4 and CO_2 (d) SiF_4 and NO_2	
144.	4. Which one of the following groupings represents a collection of isoelectronic species? (At. nos,: 55, B	r:35)
	(a) N^{3-} , F^{-} , Na^{+} (b) Be, Al^{3+} , Cl^{-} (c) Ca^{2+} , Cs^{+} , Br (d) Na^{+} , Ca^{2+} , Mg^{2+}	
145.	5. Which one of the following processes will produce hard water?	
	(a) Saturation of water with MgCO ₃	
	(b) Saturation of water with CaSO ₄	
	(c) Addition of Na ₂ SO ₄ to water	
	(d) Saturation of water with CaCO ₃	
146.	5. Which one of the following compounds has the smallest bond angle in its molecule?	
	(a) OH_2 (b) SH_2 (c) NH_3 (d) SO_2	
147.	7. The pair of species having identical shapes for molecules of both species is	
	(a) XeF_2 , CO_2 (b) BF_3 , PCl_3	
4.40	(c) PF_5 , IF_5 (d) CF_4 , SF_4	
148.	3. The atomic numbers of vanadium (V), Chromium (Cr), manganese (Mn) and iron (Fe) are respective 24, 25 and 26. Which one of these may be expected to have the highest second ionization enthalpy?	ly 23,
	(a) Cr (b) Mn (c) Fe (d) V	
149.	9. In Bohr series of lines of hydrogen spectrum, the third line from the red end corresponds to which one following inter-orbit jumps of the electron for Bohr orbits in an atom of hydrogen	of the
	(a) $5 \rightarrow 2$ (b) $4 \rightarrow 1$ (c) $2 \rightarrow 5$ (d) $3 \rightarrow 2$	
150.	 The de Broglie wavelength of a tennis ball of mass 60 g moving with a velocity of 10 metres per second approximately 	ond is
	(a) 10^{-31} metres	
	(b) 10^{-16} metres	
	(c) 10^{-25} metres	
	(d) 10^{-33} metres Planck's constant, $h = 6.63 \times 10^{-34}$ Js.	

AIEEE 2003

MATHEMATICS

1.	Let $\frac{d}{dx}F(x) =$	$\left(\frac{e^{\sin x}}{x}\right), x > 0.$	If $\int_{1}^{4} \frac{3}{x} e^{\sin x^3} dx = F(k) - F(1)$ then one of the possible values of k, if
----	--------------------------	---	--

- (a) 64
- (b) 15
- (c) 16
- (d) 63

2. The median of a set of 9 distinct observations is 20.5. If each of the largest 4 observations of the set is increased by 2, then median of the new set

(a) remains the same as that of the original set

(b) is increased by 2

(c) is decreased by 2

(d) is two times the original median

3.
$$\lim_{n \to \infty} \frac{1 + 2^4 + 3^4 + \dots n^4}{n^5} - \lim_{n \to \infty} \frac{1 + 2^3 + 3^3 + \dots n^3}{n^5}$$

- (b) $\frac{1}{20}$

The normal at the point (bt₁², 2bt₁) on a parabola meets the parabola again in the point (bt₂², 2bt₂), then

- (a) $t_2 = t_1 + \frac{2}{t_1}$ (b) $t_2 = -t_1 \frac{2}{t_1}$ (c) $t_2 = -t_1 + \frac{2}{t_1}$ (d) $t_2 = t_1 \frac{2}{t_1}$

If the two circles $(x-1)^2 + (y-3)^2 = r^2$ and $x^2 + y^2 - 8x + 2y + 8 = 0$ intersect in two distinct point, then 5.

- (a) r > 2
- (b) 2 < r < 8

The degree and order of the differential equation of the family of all parabolas whose axis is X-axis, are respectively.

- (a) 2, 3
- (b) 2, 1
- (c) 1.2

The foci of the ellipse $\frac{x^2}{16} + \frac{y^2}{b^2} = 1$ and the hyperbola $\frac{x^2}{144} - \frac{y^2}{81} = \frac{1}{25}$ coincide. Then the value of b^2 is 7.

- (a) 9
- (b) 1

(c)5

(d)7

If $f(y) = e^y$, g(y) = y; y > 0 and $F(t) = \int_{0}^{t} f(t - y)g(y)$, then

- (b) $F(t) = 1 te^{-t} (1 + t)$ (c) $F(t) = e^{t} (1 + t)$ (d) $F(t) = te^{t}$.

The function $f(x) = \log \left(x + \sqrt{x^2 + 1} \right)$, is

(a) neither an even nor an odd function

(b) an even function

(c) an odd function

(d) a periodic function

10. If the sum of the roots of the quadratic equation $ax^2 + bx + c = 0$ is equal to the sum of the squares of their

- reciprocals, then $\frac{a}{c}$, $\frac{b}{a}$ and $\frac{c}{b}$ are in
- (a) Arithmetic Geometric Progression
- (b) Arithmetic Progression
- (c) Geometric Progression
- (d) Harmonic Progression

11. If the system of linear equations

$$x + 2ay + az = 0$$

$$x + 3by + bz = 0$$

$$x + 4cy + cz = 0$$

has a non-zero solution, then a, b, c

- (a) satisfy a + 2b + 3c = 0
- (b) are in A.P.
- (c) are in G.P.
- (d) are in H.P.

	(c) $y(\cos\alpha + \sin\alpha)$	$(x) + x(\sin\alpha - \cos\alpha) = a$	(d) $y(\cos\alpha + \sin\alpha) +$	$x(\sin\alpha + \cos\alpha) = a.$
13.	If the pair of straid between the other		$= 0 \text{ and } x^2 - 2pxy - y^2 =$	0 be such that each pair bisects the angle
	(a) $pq = -1$	(b) $p = q$	(c) $p = -q$	(d) pq = 1
14.	Locus of a centric parameter, is	od of the triangle whose	vertices are (a cos t, a sin	n t), (b sin t, -b cost) and $(1, 0)$, where t is a
	(a) $(3x + 1)^2 + (3x + 1)^2 +$	$(y)^2 = a^2 - b^2$	(b) $(3x - 1)^2 + (3y)^2 = 3$ (d) $(3x + 1)^2 + (3y)^2 = 3$	$a^2 - b^2$
	(c) $(3x - 1)^2 + (3y - 1)^2$	$(a^2)^2 = a^2 + b^2$	(d) $(3x + 1)^2 + (3y)^2 =$	$a^2 + b^2$
15.	If $\lim_{x \to 0} \frac{\log(3+x) - \log(3+x)}{x}$	$\frac{\log(3-x)}{\log(3-x)} = k$, the value of	f k is	
	(a) $-\frac{2}{3}$	(b) 0	(c) $-\frac{1}{3}$	(d) $\frac{2}{3}$
16.		ouple thus formed is \vec{H}		i. If \vec{P} is turned through a right angle the are turned through an angle α , then the
	(a) $\vec{H}\sin\alpha - \vec{G}\cos\alpha$	(b) $\vec{G}\sin\alpha - \vec{H}\cos\alpha$	(c) $\vec{H}\sin\alpha + \vec{G}\cos\alpha$	(d) $\vec{G}\sin\alpha + \vec{H}\cos\alpha$
17.	The resultant of fo	orces \vec{P} and \vec{Q} is \vec{R} . If \vec{Q} is	is doubled then R is dou	bled. If the direction of \vec{Q} is reversed, then
	R is again double	ed. Then $P^2: Q^2: R^2$ is		
	(a) 2:3:1		(c) 2:3:2	(d) 1:2:3
18.	The mean and var $(X = 1)$ is	iance of a random varia	ble X having binomial d	distribution are 4 and 2 respectively, then P
	(a) $\frac{1}{4}$	(b) $\frac{1}{32}$	(c) $\frac{1}{16}$	(d) $\frac{1}{8}$
19.	If $f(x) = x^n$, then t	he value of $f(1) - \frac{f'(1)}{1!} +$	$\frac{f''(1)}{2!} - \frac{f'''(1)}{3!} + \dots \frac{(-1)^{n}}{n!}$	$\frac{-1)^n f^n(1)}{n!}$ is
	(a) 1	(b) 2 ⁿ	(c) $2^n - 1$	(d) 0
20.	Let $\vec{\mathbf{u}} = \hat{\mathbf{i}} + \hat{\mathbf{j}}$, $\vec{\mathbf{v}} = \hat{\mathbf{i}} - \hat{\mathbf{j}}$	\hat{j} and $\vec{w} = \hat{i} + 2\hat{j} + 3\hat{k}$. If \hat{n}	is a unit vector such tha	at $\vec{u} \cdot \hat{n} = 0$ and $\vec{v} \cdot \hat{n} = 0$, then $ \vec{w} \cdot \hat{n} $ is equal to
	(a) 3	(b) 0	(c) 1	(d) 2
21.	A particle acted of the forces is	on by constant forces 4i	$+\hat{j}-3\hat{k}$ and $3\hat{i}+\hat{j}-\hat{k}$ to the	e point $5\hat{i} + 4\hat{j} - \hat{k}$. The total work done by
	(a) 50 units	(b) 20 units	(c) 30 units	(d) 40 units
22.	The vectors $\overrightarrow{AB} = 3$ A is	$3\hat{i} + 4\hat{k} & \overrightarrow{AC} = 5\hat{i} - 2\hat{j} + 4\hat{k}$	are the sides of a triangle	le ABC. The length of the median through
	(a) $\sqrt{288}$	(b) $\sqrt{18}$	(c) $\sqrt{72}$	(d) $\sqrt{33}$
23.	The area of the re	gion bounded by the cu	x = x - 1 and $ x = x - 1 $	x is
	(a) 6 sq. units	(b) 2 sq. units	(c) 3 sq. units	(d) 4 sq. units
				15

12. A square of side a lies above the x-axis and has one vertex at the origin. The side passing through the origin

(a) $y(\cos \alpha + \sin \alpha) + x(\cos \alpha - \sin \alpha) = a$ (b) $y(\cos \alpha - \sin \alpha) - x(\sin \alpha - \cos \alpha) = a$

through the origin is

makes an angle $\alpha \left(0 < \alpha < \frac{\pi}{4}\right)$ with the positive direction of x-axis. The equation of its diagonal not passing

	www.estudehillenlegsted by educationobserver.com/fc				
24.	The shortest distance from the plane $12x + 4y + 3z = 327$ to the sphere $x^2 + y^2 + z^2 + 4x - 2y - 6z = 155$ is				
	(a) 39 (b) 26	(c) $11\frac{4}{13}$	(d) 13		
25.	The two lines $x = ay + b$, $z = cy + d$ and $x = a'y + b'z = c'y + d'$ will be perpendicular, if and only if				
	(a) $a a' + c c' + 1 = 0$	(b) $aa' + bb' + cc' +$	1=0		
	(c) $aa' + bb' + cc' = 0$	(d)(a + a')(b + b') +	(c + c') = 0		
26.	The lines $\frac{x-2}{1} = \frac{y-3}{1} = \frac{z-4}{-k}$ and $\frac{x-1}{k}$	$= \frac{y-4}{1} = \frac{z-5}{1} \text{ are copl}$	anar if		
	$\langle a \rangle 1_{2} = 2$ or $2 = \langle 1_{2} \rangle 1_{2} = 0$ or 1	(a) 1, 1 am 1	(d) 1, 0 an 2		

27. If
$$f(a + b - x) = f(x)$$
 then $\int_a^b x f(x) dx$ is equal to

(a)
$$\frac{a+b}{2} \int_{a}^{b} f(a+b-x) dx$$
 (b) $\frac{a+b}{2} \int_{a}^{b} f(b-x) dx$ (c) $\frac{a+b}{2} \int_{a}^{b} f(x) dx$ (d) $\frac{b-a}{2} \int_{a}^{b} f(x) dx$

A body travels a distance s in t seconds. It starts from rest and ends at rest. In the first part of the journey, it moves with constant acceleration f and in the second part with constant retardation r. The value of t is given by

(a)
$$\sqrt{2s\left(\frac{1}{f} + \frac{1}{r}\right)}$$
 (b) $2s\left(\frac{1}{f} + \frac{1}{r}\right)$ (c) $\frac{2s}{\frac{1}{f} + \frac{1}{r}}$ (d) $\sqrt{2s(f+r)}$

Two stones are projected from the top of a cliff h metres high, with the same speed u, so as to hit the ground at the same spot. If one of the stones is projected at an angle θ to the horizontal then the θ equals

(a)
$$u\sqrt{\frac{2}{gh}}$$
 (b) $\sqrt{\frac{2u}{gh}}$ (c) $2g\sqrt{\frac{u}{h}}$ (d) $2h\sqrt{\frac{u}{g}}$

30. If 1, ω , ω^2 are the cube roots of unity, then $\Delta = \begin{bmatrix} 1 & \omega^n & \omega^{2n} \\ \omega^n & \omega^{2n} & 1 \\ \omega^{2n} & 1 & \omega^n \end{bmatrix}$ is equal to

(a)
$$\omega^2$$
 (b) 0 (c) 1 (d) ω

The sum of the radii of inscribed and circumscribed circles for an n sided regular polygon of side a, is

(a)
$$\frac{a}{4}\cot\left(\frac{\pi}{2n}\right)$$
 (b) $a\cot\left(\frac{\pi}{n}\right)$ (c) $\frac{a}{2}\cot\left(\frac{\pi}{2n}\right)$ (d) $a\cot\left(\frac{\pi}{2n}\right)$

32. If x_1, x_2, x_3 and y_1, y_2, y_3 are both in G.P. with the same common ratio, then the points $(x_1, y_1), (x_2, y_2)$ and (x_3, y_2) and (x_4, y_2) and (x_5, y_2) are both in G.P. with the same common ratio, then the points $(x_1, y_1), (x_2, y_2)$ and (x_3, y_2) and (x_4, y_2) and (x_5, y_2) and (x_5, y_2) are both in G.P.

(a) are vertices of a triangle (b) lie on a straight line (c) lie on an ellipse (d) lie on a circle

If z and ω are two non-zero complex numbers such that $|z\omega|=1$ and $\operatorname{Arg}(z)-\operatorname{Arg}(\omega)=\frac{\pi}{2}$, then $\overline{z}\omega$ is equal to

34. Let Z_1 and Z_2 be two roots of the equation $x^2 + aZ + b = 0$ being complex. Further, assume that the origin, Z_1 and Z₂ form an equilateral triangle. Then

(a)
$$a^2 = 4b$$
 (b) $a^2 = b$ (c) $a^2 = 2b$ (d) $a^2 = 3b$

35.	The solution of the differential equation $(1+y^2) + (x - e^{\tan^{-1}y}) \frac{dy}{dx} = 0$, is						
	(a) $xe^{2 tan^{-1} y} = e^{tan^{-1} y}$	(a) $xe^{2\tan^{-1}y} = e^{\tan^{-1}y} + k$ (b) $(x-2) = ke^{2\tan^{-1}y}$ (c) $2xe^{\tan^{-1}y} = e^{2\tan^{-1}y} + k$ (d) $xe^{\tan^{-1}y} = \tan^{-1}y + k$					
36.	Let f(x) be a func	Let $f(x)$ be a function satisfying $f'(x) = f(x)$ with $f(0) = 1$ and $g(x)$ be a function that satisfies $f(x) + g(x) = x^2$					
	Then the value of the integral $\int_{0}^{1} f(x)g(x)dx$, is						
	(a) $e + \frac{e^2}{2} + \frac{5}{2}$	(b) $e - \frac{e^2}{2} - \frac{5}{2}$	(c) $e + \frac{e^2}{2} - \frac{3}{2}$	(d) $e - \frac{e^2}{2} - \frac{3}{2}$			
37.	The lines $2x - 3y = 5$ and $3x - 4y = 7$ are diameters of a circle having area as 154 sq. units. Then the equation of the circle is						
	(a) $x^2 + y^2 - 2x +$	2y = 62	(b) $x^2 + y^2 + 2x - 2y = 0$	62			
	(c) $x^2 + y^2 + 2x$ -	2y = 47	(d) $x^2 + y^2 - 2x + 2y =$	47			
38.	Events A, B, C are mutually exclusive events such that $P(A) = \frac{3x+1}{3}$, $P(B) = \frac{x-1}{4}$ and $P(C) = \frac{1-2x}{4}$. The						
	set of possible values of x are in the interval.						
	(a) [0, 1]	$(b) \left[\frac{1}{3}, \frac{1}{2} \right]$	$(c)\left[\frac{1}{3},\frac{2}{3}\right]$	$(d) \left[\frac{1}{3}, \frac{13}{3} \right]$			
39.	Five horses are in a race. Mr. A selects two of the horses at random and bets on them. The probability that Mr. A selected the winning horse is						
	(a) $\frac{2}{5}$	(b) $\frac{4}{5}$	(c) $\frac{3}{5}$	(d) $\frac{1}{5}$			
40.	The value of 'a' for which one root of the quadratic equation $(a^2 - 5a + 3)x^3 + (3a - 1)x + 2 = 0$ is twice as large as the other is						
	(a) $-\frac{1}{3}$	(b) $\frac{2}{3}$	(c) $-\frac{2}{3}$	(d) $\frac{1}{3}$			
41.			the expansion of $(1 + x)^2$				
	(a) 6th term	(b) 7th term	(c) 5th term	(d) 8th term			
42.	The number of in	The number of integral terms in the expansion of $(\sqrt{3} + 8\sqrt{5})^{256}$ is					
	(a) 35	(b) 32	(c) 33	(d) 34			
43.	If ${}^{n}C_{r}$ denotes the number of combination of n things taken r at a time, then the expression ${}^{n}C_{r+1} + {}^{n}C_{r-1} + 2x^{n}C_{r}$ equals						
	111	(b) $^{n+2}C_r$	111	(d) $^{n+1}C_r$			
44.	Two particles start simultaneously from the same point and move along two straight lines, one with uniform						
	velocity \vec{u} and the other from rest with uniform acceleration \vec{f} . Let α be the angle between their directions of motion. The relative velocity of the second particle w.r.t. the first is least after a time.						
	(a) $\frac{u\cos\alpha}{f}$	(b) $\frac{\text{usin}\alpha}{f}$	(c) $\frac{f\cos\alpha}{u}$	(d) $u \sin \alpha$.			

45. The upper $\frac{3}{4}$ th portion of a vertical pole subtends an angle $\tan^{-1}\frac{3}{5}$ at a point in the horizontal plane through its foot and at a distance 40 m from the foot.

(a) $80 \, \text{m}$

(b) 20 m

(c) $40 \, \text{m}$

(d) 60 m

- 46. In a triangle ABC, medians AD and BE are drawn. If AD = 4, $\angle DAB = \frac{\pi}{6}$ and $\angle ABE = \frac{\pi}{3}$, then the area of the $\triangle ABC$ is
 - (a) $\frac{64}{3}$ (b) $\frac{8}{3}$
- (c) $\frac{16}{2}$
- (d) $\frac{32}{3}$
- 47. If in a triangle ABC a $\cos^2\left(\frac{C}{2}\right) + c\cos^2\left(\frac{A}{2}\right) = \frac{3b}{2}$, then the sides a, b and c
 - (a) satisfy a+b=c (b) are in A.P.
- (c) are in G.P.
- (d) are in H.P.
- $\vec{a}, \vec{b}, \vec{c}$ are 3 vectors, such that $\vec{a} + \vec{b} + \vec{c} = 0$, $|\vec{a}| = 1$, $|\vec{b}| = 2$, $|\vec{c}|$ then $\vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a}$ is equal to
 - (a) 1
- (b) 0

- (c) 7
- (d)7

- The value of the integral $I = \int_{0}^{1} x(1-x)^{n} dx$ is
 - (a) $\frac{1}{n+1} + \frac{1}{n+2}$ (b) $\frac{1}{n+1}$
- (c) $\frac{1}{n+2}$
- (d) $\frac{1}{n+1} \frac{1}{n+2}$

- 50. The value of $\lim_{x\to 0} \frac{\int_{0}^{x^2} \sec^2 t dt}{x \sin x}$ is
 - (a) 0
- (b) 3

(c)2

(d) 1

The radius of the circle in which the sphere

$$x^2 + y^2 + z^2 + 2x - 2y - 4z - 19 = 0$$
 is cut by the plane $x + 2y + 2z + 7 = 0$ is

(c)2

- 52. A tetrahedron has vertices at O(0, 0, 0), A(1, 2, 1) B(2, 1, 3) and C(-1, 1, 2). Then the angle between the faces OAB and ABC will be
 - (a) 90°
- (b) $\cos^{-1}\left(\frac{19}{35}\right)$ (c) $\cos^{-1}\left(\frac{17}{31}\right)$
- 53. Let f(a) = g(a) = k and their nth derivatives $f^n(a)$, $g^n(a)$ exist and are not equal for some n. Further if $\lim_{x\to a} \frac{f(a)g(x) - f(a) - g(a)f(x) + f(a)}{g(x) - f(x)} = 4 \text{ then the value of } k \text{ is}$
 - (a) 0
- (b) 4

(c)2

(d) 1

- 54. $\lim_{x \to \frac{\pi}{2}} \frac{\left[1 \tan\left(\frac{x}{2}\right)\right] \left[1 \sin x\right]}{\left[1 + \tan\left(\frac{x}{2}\right)\right] \left[\pi 2x^3\right]} \text{ is}$
 - (a) ∞
- (c)0

- If the equation of the locus of a point equidistant from the point (a_1, b_1) and (a_2, b_2) is $(a_1 - b_2)x + (a_1 - b_2)y + c = 0$, then the value of 'c' is
 - (a) $\sqrt{a_1^2 + b_1^2 a_2^2 b_2^2}$

(b) $\frac{1}{2}a_2^2 + b_2^2 - a_1^2 - b_1^2$

(c) $a_1^2 - a_2^2 + b_1^2 - b_2^2$

(d) $\frac{1}{2} \left(a_1^2 + a_2^2 + b_1^2 + b_2^2 \right)$

56.	If $\begin{vmatrix} a & a^2 & 1+a^3 \\ b & b^2 & 1+b^3 \\ c & c^2 & 1+c^3 \end{vmatrix} =$	0 and vectors (1, a, a ²),	(a, b, b^2) and (a, c, c^2) are	non-coplanar, then the product abc equals		
	(a) 0	(b) 2	(c) -1	(d) 1		
57.	The number of re	eal solutions of the equa	tion $x^2 - 3 x + 2 = 0$ is			
	(a) 3	(b) 2	(c) 4	(d) 1		
58.	If the function $f(x) = 2x^2 - 9ax^2 + 12a^2x + 1$, where $a > 0$, attains its maximum and minimum at p and correspectively such that $p^2 = q$, then a equals					
	(a) $\frac{1}{2}$	(b) 3	(c) 1	(d) 2		
59.	If $f(x) = \begin{cases} xe^{-\left(\frac{1}{ x }^{+}\right)} \\ 0 \end{cases}$	$\left(\frac{1}{x}\right)$, $x \neq 0$ then $f(x)$ is $x = 0$				
	(a) discontinuous(c) continuous for	s every where or all x but not differentia	` '	nous as well as differentiable for all x differentiable nor continuous at $x = 0$		
60.	Domain of definition of the function $f(x) = \frac{3}{4-x^2} + \log_{10}(x^3 - x)$, is					
	(a) $(-1, 0) \cup (1,$	2) \cup (2, ∞) (b) (0,	2) (c) (-1, 0)	(0,2) $(0,2)$ $(0,2)$ $(0,2)$		
61.	If f: R \rightarrow R satisfies $f(x + y) = f(x) + f(y)$, for all x, $y \in R$ and $f(1) = 7$, then $\sum_{r=1}^{n} f(r)$ is					
	(a) $\frac{7n(n+1)}{2}$	(b) $\frac{7n}{2}$	$(c) \frac{7(n+1)}{2}$	(d) $7n+(n+1)$		
62.	The real number	x when added to its inve	erse gives the minimum	value of the sum at x equal to		
	(a) -2	(b) 2	(c) 1	(d) -1		
63.	1 2	spectively be the maximizontal plane. Then R_1 , I		an inclined plane and R be the maximum		
	(a) H.P	(b) A.G.P	(c) A.P	(d) G.P.		
64.	In an experiment	with 15 observations or	x, the following results	were available: $\Sigma x^2 = 2830$, $\Sigma x = 170$		
	One observation that was 20 was found to be wrong and was replaced by the correct value 30. The corrected variance is					
	(a) 8.33	(b) 78.00	(c) 188.66	(d) 177.33		
65.	A student is to answer 10 out of 13 questions in an examination such that he must choose at least 4 from the first five questions. The number of choices available to him is					
	(a) 346	(b) 140	(c) 196	(d) 280		
66.	If $A = \begin{bmatrix} a & b \\ b & a \end{bmatrix}$ are	and $A_2 = \begin{bmatrix} \alpha & \beta \\ \beta & \alpha \end{bmatrix}$, then				
	(a) $\alpha = 2ab, \beta = a^2 + b^2$ (b) $\alpha = a_2 + b_2, \beta = ab$ (c) $\alpha = a^2 + b^2, \beta = 2ab$ (d) $\alpha = a^2 + b^2, \beta = a^2 - b^2$					
67.		ways in which 6 men an		a found table if no two women are to sit		

(c) 30

(d) 5×4

(a) 7×5

(b) 6×5

- Consider points A, B, C and D with position vectors $7\hat{i} 4\hat{j} + 7\hat{k}$, $\hat{i} 6\hat{j} + 10\hat{k}$, $-\hat{i} 3\hat{j} + 4\hat{k}$ and $5\hat{i} \hat{j} + 5\hat{k}$ respectively. Then ABCD is a
 - (a) parallelogram but not a rhombus
- (b) square
- (c) rhombus
- (d) rectangle
- If \vec{u} , \vec{v} and \vec{w} are three non-coplanar vectors, then $(\vec{u} + \vec{v} \vec{w}) \cdot (\vec{u} \vec{v}) \times (\vec{v} \vec{w})$ equals
 - (a) $3\vec{u}.\vec{v}\times\vec{w}$
- (b) 0

- (c) $\vec{\mathbf{n}} \cdot \vec{\mathbf{v}} \times \vec{\mathbf{w}}$
- (d) $\vec{\mathbf{u}} \cdot \vec{\mathbf{w}} \times \vec{\mathbf{v}}$
- The trigonometric equation $\sin^{-1} x = 2\sin^{-1} a$ has a solution for

 - (a) $|a| \ge \frac{1}{\sqrt{2}}$ (b) $\frac{1}{2} < |a| < \frac{1}{\sqrt{2}}$ (c) all real values of a (d) $|a| < \frac{1}{2}$
- Two system of rectangular axes have the same origin. If a plane cuts them at distances a,b,c and a',b',c' from

 - (a) $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} \frac{1}{a'^2} \frac{1}{b'^2} \frac{1}{c'^2} = 0$ (b) $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} + \frac{1}{a'^2} + \frac{1}{b'^2} + \frac{1}{c'^2} = 0$
 - (c) $\frac{1}{a^2} + \frac{1}{b^2} \frac{1}{c^2} + \frac{1}{a'^2} + \frac{1}{b'^2} \frac{1}{c'^2} = 0$ (d) $\frac{1}{a^2} \frac{1}{b^2} \frac{1}{c^2} + \frac{1}{a'^2} \frac{1}{b'^2} \frac{1}{c'^2} = 0$

- 72. If $\left(\frac{1+i}{1-i}\right)^x = 1$ then
 - (a) x = 2n+1, where n is any positive integer
- (b) x = 4n, where n is any positive integer
- (c) x = 2n, where n is any positive integer

- (d) x = 4n+1, where n is any positive integer
- A function f from the set of natural numbers to integers defined by $f(n) = \begin{cases} \frac{n-1}{2}, & \text{when n is odd} \\ \frac{n}{2}, & \text{when n is even} \end{cases}$
 - (a) neither one-one nor onto
- (b) one-one but not onto
- (c) onto but not one-one
- (d) one-one and onto both.
- Let f(x) be a polynomial function of second degree. If f(1) = f(-1) and a, b, c are in A.P, then f'(a), f'(c) are
 - (a) Arithmetic-Geometric Progression
- (b) A.P.
- (c) G.P.
- (d) H.P.

- The sum of the series $\frac{1}{12} \frac{1}{23} + \frac{1}{34}$up to ∞ is equal to
 - (a) $\log_e \left(\frac{4}{e}\right)$ (b) $2\log_e 2$
- $(c) \log_e 2-1$
- $(d) \log_a 2$