fIITJE
 SOLUTION TO AIEEE-2005

CHEMISTRY

76. Which of the following oxides is amphoteric in character?
(1) CaO
(2) CO_{2}
(3) SiO_{2}
(4) SnO_{2}
77. (4)
$\mathrm{CaO} \longrightarrow$ basic
$\mathrm{SiO}_{2} \& \mathrm{CO}_{2} \longrightarrow$ acidic
$\mathrm{SnO}_{2} \longrightarrow$ amphoteric
78. Which one of the following species is diamagnetic in nature?
(1) He_{2}^{+}
(2) H_{2}
(3) H_{2}^{+}
(4) H_{2}^{-}
79. (2)
$\mathrm{H}_{2} \sigma 1 \mathrm{~s}^{2} \sigma^{*} 1 \mathrm{~s}^{0}$, no unpaired so diamagnetic
80. If α is the degree of dissociation of $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the vant Hoff's factor (i) used for calculating the molecular mass is
(1) $1+\alpha$
(2) $1-\alpha$
(3) $1+2 \alpha$
(4) $1-2 \alpha$
81. (3)
$\mathrm{Na}_{2} \mathrm{SO}_{4} \rightleftharpoons 2 \mathrm{Na}^{+}+\mathrm{SO}_{4}^{-2}$
$1-\alpha \quad 2 \alpha \quad \alpha$
Total moles $=1+2 \alpha$
82. The oxidation state of Cr in $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$is
(1) +3
(2) +2
(3) +1
(4) 0
83. (1)
$\left(\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right)^{+}$
$X+4 \times 0+2 x-1=1$
$X=+3$
84. Hydrogen bomb is based on the principle of
(1) Nuclear fission
(2) Natural radioactivity
(3) Nuclear fusion
(4) Artificial radioactivity
85. (3)
86. An ionic compound has a unit cell consisting of A ions at the corners of a cube and B ions on the centres of the faces of the cube. The empirical formula for this compound would be
(1) $A B$
(2) $A_{2} B$
(3) $A B_{3}$
(4) $A_{3} B$
87. (3)

A $=\frac{1}{8} \times 8=1$
(Corner)
$B=\frac{1}{2} \times 6=3$
(Face centre)
$\therefore \mathrm{AB}_{3}$
82. For a spontaneous reaction the ΔG, equilibrium constant (K) and $E_{\text {cell }}^{\circ}$ will be respectively
(1) -ve, >1, +ve
(2) $+\mathrm{ve},>1$, -ve
(3) -ve, <1, -ve
(4) -ve, >1, -ve
82. (1)
83. Which of the following is a polyamide?
(1) Teflon
(3) Nylon - 66
(3) Terylene
(4) Bakelite
$83 \quad$ (2)

Amide \longrightarrow Nylon 66
84. Which one of the following types of drugs reduces fever?
(1) Analgesic
(2) Antipyretic
(3) Antibiotic
(4) Tranquiliser
84. (2)
85. Due to the presence of an unpaired electron, free radicals are:
(1) Chemically reactive
(2) Chemically inactive
(3) Anions
(4) Cations
85. (1)
86. Lattice energy of an ionic compounds depends upon
(1) Charge on the ion only
(2) Size of the ion only
(3) Packing of ions only
(4) Charge on the ion and size of the ion
86. (4)
87. The highest electrical conductivity of the following aqueous solutions is of
(1) 0.1 M acetic acid
(2) 0.1 M chloroacetic acid
(3) 0.1 M fluoroacetic acid
(4) 0.1 M difluoroacetic acid
87. (4)
88. Aluminium oxide may be electrolysed at $1000^{\circ} \mathrm{C}$ to furnish aluminium metal (Atomic mass = $27 \mathrm{amu} ; 1$ Faraday $=96,500$ Coulombs). The cathode reaction is $\mathrm{Al}^{3+}+3 \mathrm{e}^{-} \longrightarrow \mathrm{Al}^{\circ}$
To prepare 5.12 kg of aluminium metal by this method would require
(1) $5.49 \times 10^{7} \mathrm{C}$ of electricity
(2) $1.83 \times 10^{7} \mathrm{C}$ of electricity
(3) $5.49 \times 10^{4} \mathrm{C}$ of electricity
(4) $5.49 \times 10^{1} \mathrm{C}$ of electricity
88. (1)
$Q=\frac{\mathrm{mFZ}}{\mathrm{M}}=\frac{5.12 \times 10^{5} \times 96500 \times 3}{27}$
$=5.49 \times 10^{7} \mathrm{C}$
89. Consider an endothermic reaction, $X \longrightarrow Y$ with the activation energies E_{b} and E_{f} for the backward and forward reactions, respectively. In general
(1) $E_{b}<E_{f}$
(2) $E_{b}>E_{f}$
(3) $E_{b}=E_{f}$
(4) There is no definite relation between E_{b} and E_{f}
89. (1)
$\Delta H=E_{f}-E_{b}$
For $\Delta \mathrm{H}=$ Positive, $\mathrm{E}_{\mathrm{b}}<\mathrm{E}_{\mathrm{f}}$
90. Consider the reaction: $\mathrm{N}_{2}+3 \mathrm{H}_{2} \longrightarrow 2 \mathrm{NH}_{3}$ carried out at constant temperature and pressure. If $\Delta \mathrm{H}$ and $\Delta \mathrm{U}$ are the enthalpy and internal energy changes for the reaction, which of the following expressions is true?
(1) $\Delta \mathrm{H}=0$
(2) $\Delta \mathrm{H}=\Delta \mathrm{U}$
(3) $\Delta \mathrm{H}<\Delta \mathrm{U}$
(4) $\Delta H>\Delta U$
90. (3)

$$
\begin{aligned}
& \Delta H=\Delta U+\Delta n R T \\
& \Delta n=-2 \\
& \Delta H=\Delta U-2 R T \\
& \Delta H<\Delta U
\end{aligned}
$$

91. Which one of the following statements is NOT true about the effect of an increase in temperature on the distribution of molecular speeds in a gas?
(1) The most probable speed increases
(2) The fraction of the molecules with the most probable speed increases
(3) The distribution becomes broader
(4) The area under the distribution curve remains the same as under the lower temperature
92. (2)

Most probable velocity increase and fraction of molecule possessing most probable velocity decreases.
92. The volume of a colloidal particle, V_{C} as compared to the volume of a solute particle in a true solution V_{s}, could be
(1) $\frac{V_{c}}{V_{S}} \simeq 1$
(2) $\frac{V_{C}}{V_{S}} \simeq 10^{23}$
(3) $\frac{V_{c}}{V_{s}}=10^{-3}$
(4) $\frac{V_{C}}{V_{s}} \simeq 10^{3}$
92. (4)
93. The solubility product of a salt having general formula MX_{2}, in water is: 4×10^{-12}. The concentration of M^{2+} ions in the aqueous solution of the salt is
(1) $2.0 \times 10^{-6} \mathrm{M}$
(2) $1.0 \times 10^{-4} \mathrm{M}$
(3) $1.6 \times 10^{-4} \mathrm{M}$
(4) $4.0 \times 10^{-10} \mathrm{M}$
93. (2)
$\mathrm{MX}_{2} \rightleftharpoons \mathrm{M}^{+2}+2 \mathrm{X}^{-}$
$\mathrm{K}_{\mathrm{sp}}=4 \mathrm{~s}^{3}, \mathrm{~S}=\sqrt[3]{\frac{\mathrm{K}_{\mathrm{sp}}}{4}}=1 \times 10^{-4}$
94. Benzene and toluene form nearly ideal solutions. At $20^{\circ} \mathrm{C}$, the vapour pressure of benzene is 75 torr and that of toluene is 22 torr. The partial vapour pressure of benzene at $20^{\circ} \mathrm{C}$ for a solution containing 78 g of benzene and 46 g of toluene in torr is
(1) 50
(2) 25
(3) 37.5
(4) 53.5
94. (1)
$P_{B}=P_{B}^{\circ} \times B=75 \times \frac{1}{1.5}=50$ torr
95. The exothermic formation of ClF_{3} is represented by the equation:
$\mathrm{Cl}_{2(g)}+3 \mathrm{~F}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{ClF}_{3(\mathrm{~g}} ; \Delta \mathrm{rH}=-329 \mathrm{~kJ}$
Which of the following will increase the quantity of ClF_{3} in an equilibrium mixture of $\mathrm{Cl}_{2}, \mathrm{~F}_{2}$ and ClF_{3} ?
(1) Increasing the temperature
(2) Removing Cl_{2}
(3) Increasing the volume of the container
(4) Adding F_{2}
95. (4)
$M_{3} V_{3}=M_{1} V_{2}+M_{2} V_{2}$
$M=\frac{480(1.5)+520(1.2)}{1000}=1.344 \mathrm{M}$
96. Two solutions of a substance (non electrolyte) are mixed in the following manner. 480 ml of 1.5 M first solution +520 mL of 1.2 M second solution. What is the molarity of the final mixture?
(1) 1.20 M
(2) 1.50 M
(3) 1.344 M
(4) 2.70 M
96. (3)
97. For the reaction
$2 \mathrm{NO}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})}$,
($\mathrm{K}_{\mathrm{c}}=1.8 \times 10^{-6}$ at $184^{\circ} \mathrm{C}$)
($\mathrm{R}=0.0831 \mathrm{~kJ} /(\mathrm{mol} . \mathrm{K}$)
When K_{p} and K_{c} are compared at $184^{\circ} \mathrm{C}$, it is found that
(1) K_{p} is greater than K_{c}
(2) K_{p} is less than K_{c}
(3) $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}$
(4) Whether K_{p} is greater than, less than or equal to K_{c} depends upon the total gas pressure
97.
(1)
$K p=K c R T^{\Delta n}, \quad \Delta n=1$
$K p>K c$
98. Hydrogen ion concentration in $\mathrm{mol} / \mathrm{L}$ in a solution of $\mathrm{pH}=5.4$ will be
(1) 3.98×10^{8}
(2) 3.88×10^{6}
(3) 3.68×10^{-6}
(4) 3.98×10^{-6}
98. (4)
$\mathrm{p}^{\mathrm{H}}=-\log \left(\mathrm{H}^{+}\right)$
99. A reaction involving two different reactants can never be
(1) Unimolecular reaction
(2) First order reaction
(3) second order reaction
(4) Bimolecular reaction
99. (1)
100. If we consider that $\frac{1}{6}$, in place of $\frac{1}{12}$; mass of carbon atom is taken to be the relative atomic mass unit, the mass of one mole of a substance will
(1) Decrease twice
(2) Increase two fold
(3) Remain unchanged
(4) Be a function of the molecular mass of the substance
100. (3)
101. In a multi - electron atom, which of the following orbitals described by the three quantum numbers will have the same energy in the absence of magnetic acid and electric fields?
(a) $n=1, I=0, m=0$
(b) $n=2, l=0, m=0$
(c) $n=2, I=1, m=1$
(d) $n=3, I=2, m=1$
(e) $n=3, I=2, m=0$
(1) (a) and (b)
(2) (b) and (c)
(3) (c) and (d)
(4) (d) and (e)
101. (4)
$\mathrm{n}=$ same
102. During the process of electrolytic refining of copper, some metals present as impurity settle as 'anode mud' These are
(1) Sn and Ag
(2) Pb and Zn
(3) Ag and Au
(4) Fe and Ni
102. (3)
103.

Electrolyte	KCl	KNO_{3}	HCl	NaOAc	NaCl
$\wedge^{\infty}(\mathrm{S} \mathrm{cm}$${ }^{2} \mathrm{~mol}^{-}$	149.9	145.0	426.2	91.0	126.5

Calculate $\wedge_{\mathrm{HOAc}}^{\infty}$ Using appropriate molar conductances of the electrolytes listed above at infinite dilution in $\mathrm{H}_{2} \mathrm{O}$ at $25^{\circ} \mathrm{C}$
(1) 517.2
(2) 552.7
(3) 390.7
(4) 217.5
103. (3)
$\wedge_{\mathrm{ACOH}}^{\infty}=\wedge_{\mathrm{HCl}}^{\infty}+\wedge_{\mathrm{ACONa}}^{\infty}-\wedge_{\mathrm{NaCl}}^{\infty}$
$=390.7$
104. A schematic plot of $\operatorname{In} \mathrm{K}_{\text {eq }}$ versus inverse of temperature for a reaction is shown below

The reaction must be
(1) exothermic
(2) endothermic
(3) one with negligible enthalpy change
(4) highly spontaneous at ordinary temperature
104. (1)
$K_{\text {eq }}=A e^{-} \frac{\Delta H}{R T}$
105. The disperse phase in colloidal iron (III) hydroxide and colloidal gold is positively and negatively charged, respectively, which of the following statements is NOT correct?
(1) magnesium chloride solution coagulates, the gold sol more readily than the iron (III) hydroxide sol.
(2) sodium sulphate solution causes coagulation in both sols
(3) mixing the sols has no effect
(4) coagulation in both sols can be brought about by electrophoresis
105. (3)
106. Based on lattice energy and other considerations which one of the following alkali metal chlorides is expected to have the highest melting point.
(1) LiCl
(2) NaCl
(3) KCl
(4) RbCl
106. (2)

Although lattice energy of LiCl higher than NaCl but LiCl is covalent in nature and NaCl ionic there after, the melting point decreases as we move NaCl because the lattice energy decreases as a size of alkali metal atom increases (lattice energy \propto to melting point of alkali metal halide)
107. Heating mixture of $\mathrm{Cu}_{2} \mathrm{O}$ and $\mathrm{Cu}_{2} \mathrm{~S}$ will give
(1) $\mathrm{Cu}+\mathrm{SO}_{2}$
(2) $\mathrm{Cu}+\mathrm{SO}_{3}$
(3) $\mathrm{CuO}+\mathrm{CuS}$
(4) $\mathrm{Cu}_{2} \mathrm{SO}_{3}$
107. (1)
$2 \mathrm{Cu}_{2} \mathrm{O}+\mathrm{Cu}_{2} \mathrm{~S} \longrightarrow 6 \mathrm{Cu}+\mathrm{SO}_{2}$
108. The molecular shapes of $\mathrm{SF}_{4}, \mathrm{CF}_{4}$ and XeF_{4} are
(1) the same with 2,0 and 1 lone pairs of electrons on the central atom, respectively
(2) the same with 1, 1 and 1 lone pair of electrons on the central atoms, respectively
(3) different with 0,1 and 2 lone pair of electrons on the central atoms, respectively
(4) different with 1,0 and 2 lone pairs of electron on the central atoms respectively
109. The number and type of bonds between two carbon atoms in calcium carbide are
(1) One sigma, one pi
(2) One sigma, two pi
(3) Two sigma, one pi
(4) Two sigma, two pi
109. (2)
$\begin{array}{lll}\mathrm{CaC}_{2} & \mathrm{Ca}^{+2} \mathrm{C}^{-} \\ \text {One } & \sigma & \mathrm{C}^{-}\end{array}$
One σ
Two π
110. The oxidation state of chromium in the final product formed by the reaction between Kl and acidified potassium dichromate solution is
(1) +4
(2) +6
(3) +2
(4) +3
110. (4)

111. The number of hydrogen atom(s) attached to phosphorus atom in hypophosphorous acid is
(1) zero
(2) two
(3) one
(4) three
111. (2)

112. What is the conjugate base of OH^{-}?
(1) O_{2}
(2) $\mathrm{H}_{2} \mathrm{O}$
(3) O^{-}
(4) O^{-2}
112. (4)
$\mathrm{OH}^{-} \longrightarrow \mathrm{O}^{-2}+\mathrm{H}^{+}$
113. The correct order of the thermal stability of hydrogen halides $(\mathrm{H}-\mathrm{X})$ is
(1) $\mathrm{HI}>\mathrm{HBr}>\mathrm{HCl}>\mathrm{HF}$
(2) $\mathrm{HF}>\mathrm{HCl}>\mathrm{HBr}>\mathrm{HI}$
(3) $\mathrm{HCl}<\mathrm{HF}>\mathrm{HBr}<\mathrm{HI}$
(4) $\mathrm{HI}>\mathrm{HCl}<\mathrm{HF}<\mathrm{HBr}$
113. (2)
114. Heating an aqueous solution of aluminium chloride to dryness will give
(1) AlCl_{3}
(2) $\mathrm{Al}_{2} \mathrm{Cl}_{6}$
(3) $\mathrm{Al}_{2} \mathrm{O}_{3}$
(4) $\mathrm{Al}(\mathrm{OH}) \mathrm{Cl}_{2}$
114. (3)
$\mathrm{Al}_{2} \mathrm{Cl}_{6} 6 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Al}_{2} \mathrm{O}_{3}++6 \mathrm{HCl}+3 \mathrm{H}_{2} \mathrm{O} \uparrow$
115. Calomel $\left(\mathrm{Hg}_{2} \mathrm{Cl}_{2}\right)$ on reaction with ammonium hydroxide gives
(1) $\mathrm{HgNH}_{2} \mathrm{Cl}$
(2) $\mathrm{NH}_{2}-\mathrm{Hg}-\mathrm{Hg}-\mathrm{Cl}$
(3) $\mathrm{Hg}_{2} \mathrm{O}$
(4) HgO
115. (1)
$\mathrm{Hg}_{2} \mathrm{Cl}_{2}+2 \mathrm{NH}_{4} \mathrm{OH} \longrightarrow \mathrm{Hg}+\mathrm{Hg}\left(\mathrm{NH}_{2}\right) \mathrm{Cl}+\mathrm{NH}_{4} \mathrm{Cl}+2 \mathrm{H}_{2} \mathrm{O}$
116. In which of the following arrangements the order is NOT according to the property indicated against it?
(1) $\mathrm{Al}^{3+}<\mathrm{Mg}^{2+}<\mathrm{Na}^{+}<\mathrm{F}^{-}$

Increasing ionic size
(2) B $<$ C $<$ N $<$ O

Increasing first ionization enthalpy
(3) I $<\mathrm{Br}<\mathrm{F}<\mathrm{Cl}$ Increasing electron gain enthalpy (with negative sign)
(4) $\mathrm{Li}<\mathrm{Na}<\mathrm{K}<\mathrm{Rb}$ Increasing metallic radius
116. (2)

B $<$ C $<$ O $<N$
117. In silicon dioxide
(1) Each silicon atom is surrounded by four oxygen atoms and each oxygen atom is bonded to two silicon atoms
(2) Each silicon atom is surrounded by two oxygen atoms and each oxygen atom is bonded to two silicon atoms
(3) Silicon atoms is bonded to two oxygen atoms
(4) there are double bonds between silicon and oxygen atoms
117. (1)

118. Of the following sets which one does NOT contain isoelectronic species?
(1) $\mathrm{PO}_{4}^{-3}, \mathrm{SO}_{4}^{-2}, \mathrm{ClO}_{4}^{-}$
(2) $\mathrm{CN}^{-}, \mathrm{N}_{2}, \mathrm{C}_{2}^{-2}$
(3) $\mathrm{SO}_{3}^{-2}, \mathrm{CO}_{3}^{-2}, \mathrm{NO}_{3}^{-}$
(4) $\mathrm{BO}_{3}^{-3}, \mathrm{CO}_{3}^{-2}, \mathrm{NO}_{3}^{-}$
118. (3)
119. The lanthanide contraction is responsible for the fact that
(1) Zr and Y have about the same radius
(2) Zr and Nb have similar oxidation state
(3) Zr and Hf have about the same radius (4) Zr and Zn have the same oxidation
119. (3)

Due to Lanthanide contraction.
120. The IUPAC name of the coordination compound $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ is
(1) Potassium hexacyanoferrate (II)
(2) Potassium hexacyanoferrate (III)
(3) Potassium hexacyanoiron (II)
(4) tripotassium hexcyanoiron (II)
120. (2)
121. Which of the following compounds shows optical isomerism?
(1) $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{+2}$
(2) $\left[\mathrm{ZnCl}_{4}\right]^{-2}$
(3) $\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{-3}$
(4) $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{-3}$
121. (3)

122. Which one of the following cyano complexes would exhibit the lowest value of paramagnetic behaviour?
(1) $\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]^{-3}$
(2) $\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]^{-3}$
(3) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{-3}$
(4) $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{-3}$
(At. No. $\mathrm{Cr}=24, \mathrm{Mn}=25, \mathrm{Fe}=26, \mathrm{Co}=27$)
122. (4)
123. 2 methylbutane on reacting with bromine in the presence of sunlight gives mainly
(1) 1 - bromo -2-methylbutane
(2) 2 - bromo -2 - methylbutane
(3) 2 - bromo -3-methylbutane
(4) 1 - bromo -3 - methylbutane
123. (2)

124. The photon of hard gamma radiation knocks a proton out of ${ }_{12}^{24} \mathrm{Mg}$ nucleus to form
(1) the isotope of parent nucleus
(2) the isobar of parent nucleus
(3) the nuclide ${ }_{11}^{23} \mathrm{Na}$
(4) the isobar of ${ }_{11}^{23} \mathrm{Na}$
124. (3)
125. The best reagent to convert pent -3- en-2-ol into pent -3-en-2-one is
(1) Acidic permanganate
(2) Acidic dichromate
(3) Chromic anhydride in glacial acetic acid
(4) Pyridinium chloro - chromate
125. (3)
126. Tertiary alkyl halides are practically inert to substitution by $\mathrm{S}_{\mathrm{N}}{ }^{2}$ mechanism because of
(1) insolubility
(2) instability
(3) inductive effect
(4) steric hindrance
126. (4)
127. In both DNA and RNA, heterocyclic base and phosphate ester linkages are at-
(1) C_{5}^{\prime} and C_{2}^{\prime} respectively of the sugar molecule
(2) C_{2}^{1} and C_{5}^{1} respectively of the sugar molecule
(3) C_{1}^{\prime} and C_{5}^{\prime} respectively of the sugar molecule
(4) C_{5}^{\prime} and C_{1}^{\prime} respectively of the sugar molecule
127. (3)

128. Reaction of one molecule of HBr with one molecule of 1,3 -butadiene at $40^{\circ} \mathrm{C}$ gives predominantly
(1) 3-bromobutene under kinetically controlled conditions
(2) 1-bromo-2-butene under thermodymically controlled conditions
(3) 3-bromobutene under thermodynamically controlled conditions
(4) 1-bromo-2-butene under kinetically controlled conditions
128. (2)
129. Among the following acids which has the lowest pK_{a} value?
(1) $\mathrm{CH}_{3} \mathrm{COOH}$
(2) HCOOH
(3) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{COOH}$
(4) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$
129. (2)
130. The decreasing order of nucleophilicity among the nucleophiles
(a) $\mathrm{CH}_{3}-\mathrm{Cl}_{\mathrm{O}}^{-\mathrm{O}^{-}}$
(b) $\mathrm{CH}_{3} \mathrm{O}^{-}$
(c) CN^{-}
(d)

(1) (a), (b), (c), (d)
(2) (d), (c), (b), (a)
(3) (b), (c), (a), (d)
(4) (c), (b), (a), (d)
130. (4)
131. Which one of the following methods is neither meant for the synthesis nor for separation of amines?
(1) Hinsberg method
(2) Hofmann method
(3) Wurtz reaction
(4) Curtius reaction
131. (3)
132. Which of the following is fully fluorinated polymer?
(1) Neoprene
(2) Teflon
(3) Thiokol
(4) PVC
132. (2)
133. Of the five isomeric hexanes, the isomer which can give two monochlorinated compounds is
(1) n-hexane
(2) 2, 3-dimethylbutane
(3) 2,2-dimethylbutane
(4) 2-methylpentane
133. (2)

134. Alkyl halides react with dialkyl copper reagents to give
(1) alkenes
(2) alkyl copper halides
(3) alkanes
(3) alkenyl halides
134. (3)

$$
\mathrm{R}_{2} \mathrm{CuLi}+\mathrm{R}^{\prime} \mathrm{X} \longrightarrow \mathrm{R}-\mathrm{R}^{\prime}+\mathrm{R}-\mathrm{Cu}+\mathrm{LiX}
$$

135. Acid catalyzed hydration of alkenes except ethene leads to the formation of
(1) primary alcohol
(2) secondary or tertiary alcohol
(3) mixture of primary and secondary alcohols
(4) mixture of secondary and tertiary alcohols
136. (4)
137. Amongst the following the most basic compound is
(1) benzylamine
(2) aniline
(3) acetanilide
(4) p-nitroaniline
138. (1)
$-\mathrm{NH}_{2}$ group is not linked with benzene ring.
139. Which types of isomerism is shown by 2,3-dichlorobutane?
(1) Diastereo
(2) Optical
(3) Geometric
(4) Structural
140. (2)

,

141. The reaction

is fastest when X is
(1) Cl
(2) NH_{2}
(3) $\mathrm{OC}_{2} \mathrm{H}_{5}$
(4) OCOR
142. (1)

Conjugated acid of Cl^{-}is a stronger acid i.e. HCl .
139. Elimination of bromine from 2-bromobutane results in the formation of-
(1) equimolar mixture of 1 and 2-butene
(2) predominantly 2-butene
(3) predominantly 1 -butene
(4) predominantly 2-butyne
139. (2)

Saytzeffs product.
140. Equimolar solutions in the same solvent have
(1) Same boiling point but different freezing point
(2) Same freezing point but different boiling point
(3) Same boiling and same freezing points
(4) Different boiling and different freezing points
140. (3)
141. Which of the following statements in relation to the hydrogen atom is correct?
(1) 3 s orbital is lower in energy than $3 p$ orbital
(2) $3 p$ orbital is lower in energy than 3d orbital
(3) 3 s and 3 p orbitals are of lower energy than 3d orbital
(4) $3 s, 3 p$ and $3 d$ orbitals all have the same energy
141. (4)
142. The structure of diborane $\left(\mathrm{B}_{2} \mathrm{H}_{6}\right)$ contains
(1) four $2 \mathrm{c}-2 e$ bonds and two $3 \mathrm{c}-2 \mathrm{e}$ bonds
(2) two $2 \mathrm{c}-2 \mathrm{e}$ bonds and four $3 \mathrm{c}-2 \mathrm{e}$ bonds
(3) two $2 \mathrm{c}-2 \mathrm{e}$ bonds and two $3 \mathrm{c}-3 \mathrm{e}$ bonds
(4) four $2 \mathrm{c}-2 \mathrm{e}$ bonds and four $3 \mathrm{c}-2 \mathrm{e}$ bonds
142. (1)

143. The value of the 'spin only' magnetic moment for one of the following configurations is 2.84 BM . The correct one is
(1) d^{4} (in strong ligand filed)
(2) d^{4} (in weak ligand field)
(3) d^{3} (in weak as well as in strong fields)
(4) d^{5} (in strong ligand field)
143. (1)

d^{4} in strong field, so unpaired electrons $=2$.
144. Which of the following factors may be regarded as the main cause of lanthanide contraction?
(1) Poor shielding of one of $4 f$ electron by another in the subshell
(2) Effective shielding of one of $4 f$ electrons by another in the subshell
(3) Poorer shielding of 5 d electrons by 4 f electrons
(4) Greater shielding of $5 d$ electrons by $4 f$ electrons
144. (1)
145. Reaction of cyclohexanone with dimethylamine in the presence of catalytic amount of an acid forms a compound if water during the reaction is continuously removed. The compound formed is generally known as
(1) a Schiff's base
(2) an enamine
(3) an imine
(4) an amine
145. (2)

146. p-cresol reacts with chloroform in alkaline medium to give the compound A which adds hydrogen cyanide to form, the compound B. The latter on acidic hydrolysis gives chiral carboxylic acid. The structure of the carboxylic acid is
(1)

(2)

(3)

(4)

146. (2)

147. An organic compound having molecular mass 60 is found to contain $\mathrm{C}=20 \%, \mathrm{H}=$ 6.67% and $\mathrm{N}=46.67 \%$ while rest is oxygen. On heating it gives NH_{3} alongwith a solid residue. The solid residue give violet colour with alkaline copper sulphate solution. The compound is
(1) $\mathrm{CH}_{3} \mathrm{NCO}$
(2) $\mathrm{CH}_{3} \mathrm{CONH}_{2}$
(3) $\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$
(4) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CONH}_{2}$
147. (3)
148. If the bond dissociation energies of $X Y, X_{2}$ and Y_{2} (all diatomic molecules) are in the ratio of 1:1:0.5 and $\Delta_{\mathrm{t}} \mathrm{H}$ for the formation of XY is $-200 \mathrm{~kJ} \mathrm{~mole}^{-1}$. The bond dissociation energy of X_{2} will be
(1) $100 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(2) $200 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(3) $300 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(4) $400 \mathrm{~kJ} \mathrm{~mol}^{-1}$
148. -
(None of the options is correct.)
$\mathrm{XY} \longrightarrow \mathrm{X}_{(\mathrm{g})}+\mathrm{Y}_{(\mathrm{g})} ; \quad \Delta \mathrm{H}=+\mathrm{akJ} / \mathrm{mole}$
$\mathrm{X}_{2} \longrightarrow 2 \mathrm{X} ; \quad \Delta \mathrm{H}=+\mathrm{akJ} / \mathrm{mole}$ \qquad
$\mathrm{Y}_{2} \longrightarrow 2 \mathrm{Y} ; \quad \Delta \mathrm{H}=+0.5 \mathrm{a} \mathrm{kJ} / \mathrm{mole}$
$\frac{1}{2} \times\left(\right.$ ii) $+\frac{1}{2} \times$ (iii) - (i), Gives
$\frac{1}{2} \mathrm{X}_{2}+\frac{1}{2} \mathrm{Y}_{2} \longrightarrow \mathrm{XY} ; \Delta \mathrm{H}=\left(+\frac{\mathrm{a}}{2}+\frac{0.5}{2} \mathrm{a}-\mathrm{a}\right) \mathrm{kJ} / \mathrm{mole}$
$+\frac{a}{2}+\frac{0.5 a}{2}-a=-200$
$\mathrm{a}=800$.
149. $t_{1 / 4}$ can be taken as the time taken for the concentration of a reactant to drop to $\frac{3}{4}$ of its initial value. If the rate constant for a first order reaction is K, the $t_{1 / 4}$ can be written as
(1) $0.10 / \mathrm{K}$
(2) $0.29 / \mathrm{K}$
(3) $0.69 / \mathrm{K}$
(4) $0.75 / \mathrm{K}$
149. (2)
$\mathrm{t}_{1 / 4}=\frac{2.303}{\mathrm{~K}} \log \frac{1}{1-\frac{1}{4}}=\frac{0.29}{\mathrm{~K}}$.
150. An amount of solid $\mathrm{NH}_{4} \mathrm{HS}$ is placed in a flask already containing ammonia gas at a certain temperature and 0.50 atm . Pressure. Ammonium hydrogen sulphide decomposes to yield NH_{3} and $\mathrm{H}_{2} \mathrm{~S}$ gases in the flask. When the decomposition reaction reaches equilibrium, the total pressure in the flask rises to 0.84 atm . The equilibrium constant for $\mathrm{NH}_{4} \mathrm{HS}$ decomposition at this temperature is
(1) 0.30
(2) 0.18
(3) 0.17
(4) 0.11
150. (4)

Total pressure $=0.5+2 x=0.84$
i.e., $x=0.17$
$\mathrm{K}_{\mathrm{p}}=\mathrm{p}_{\mathrm{NH}_{3}} \cdot \mathrm{p}_{\mathrm{H}_{2} \mathrm{~S}}$
$=(0.67) .(0.17)$
$=0.1139$.

