MATHEMATICS PART – A

1. ABC is a triangle, right angled at A. The resultant of the forces acting along AB, AC with magnitudes $\frac{1}{AB}$ and $\frac{1}{AC}$ respectively is the force along \overrightarrow{AD} , where D is the foot of the perpendicular from A onto BC. The magnitude of the resultant is (1) $\frac{AB^2 + AC^2}{(AB)^2(AC)^2}$ (2) $\frac{(AB)(AC)}{AB + AC}$ (4) $\frac{1}{AD}$ (3) $\frac{1}{AB} + \frac{1}{AC}$ Ans. (4) Sol: Magnitude of resultant С $\int_{0}^{2} + \left(\frac{1}{AC}\right)^{2} = \frac{\sqrt{AB^{2} + AC^{2}}}{AB \cdot AC}$ D $=\frac{BC}{AB \cdot AC}=\frac{BC}{AD \cdot BC}=\frac{1}{AD}$ В 2. Suppose a population A has 100 observations 101, 102, ..., 200, and another population B has 100 observations 151, 152, ... , 250. If V_{A} and V_{B} represent the variances of the two populations, respectively, then $\frac{V_A}{V_A}$ is (1) 1(2) 9/4(3) 4/9(4) 2/3Ans. (1) $\sigma_x^2 = \frac{\sum d_i^2}{2}$. (Here deviations are taken from the mean) Sol: Since A and B both has 100 consecutive integers, therefore both have same standard deviation and hence the variance. $\therefore \frac{v_A}{V_e} = 1 \ \left(As \ \sum d_i^2 \ is \ same \ in \ both \ the \ cases \right).$ If the roots of the quadratic equation $x^2 + px + q = 0$ are tan 30° and tan 15°, 3. respectively then the value of 2 + q - p is (3)2(2)3(4) 1 (3)0Ans. (2) $x^{2} + px + q = 0$ Sol: tan 30° + tan 15° = -p $\tan 30^{\circ} \cdot \tan 15^{\circ} = q$

 $\tan 45^\circ = \frac{\tan 30^\circ + \tan 15^\circ}{1 - \tan 30^\circ \tan 15^\circ} = \frac{-p}{1 - q} = 1$ $\Rightarrow - p = 1 - q$ $\Rightarrow q-p=1 \quad \therefore 2+q-p=3.$ The value of the integral, $\int_{2}^{6} \frac{\sqrt{x}}{\sqrt{9-x} + \sqrt{x}} dx$ is 4. (1) 1/2(2) 3/2(3) 2 (4) 1 Ans. (2) $I = \int_{0}^{6} \frac{\sqrt{x}}{\sqrt{9 - x} + \sqrt{x}} dx$ Sol: $I = \int_{0}^{0} \frac{\sqrt{9-x}}{\sqrt{9-x} + \sqrt{x}} dx$ $2I = \int_{-\infty}^{6} dx = 3 \implies I = \frac{3}{2}.$ The number of values of x in the interval $[0, 3\pi]$ satisfying the equation 5. $2\sin^2 x + 5\sin x - 3 = 0$ is (1) 4 (2)6(3)1(4) 2Ans. (1) $2\sin^2 x + 5\sin x - 3 = 0$ Sol: \Rightarrow (sin x + 3) (2 sin x - 1) = 0 \Rightarrow sin x = $\frac{1}{2}$ \therefore In (0, 3 π), x has 4 values If $(\overline{a} \times \overline{b}) \times \overline{c} = \overline{a} \times (\overline{b} \times \overline{c})$, where $\overline{a}, \overline{b}$ and \overline{c} are any three vectors such that $\overline{a} \cdot \overline{b} \neq 0$, 6. $\overline{b} \cdot \overline{c} \neq 0$, then \overline{a} and \overline{c} are (1) inclined at an angle of $\pi/3$ between them (2) inclined at an angle of $\pi/6$ between them (3) perpendicular (4) parallel Ans. (4) $\left(\overline{\overline{a}\times\overline{b}}\right)\times\overline{\overline{c}}=\overline{\overline{a}}\times\left(\overline{\overline{b}}\times\overline{\overline{c}}\right),\ \overline{\overline{a}}\cdot\overline{\overline{b}}\neq0,\ \overline{\overline{b}}\cdot\overline{\overline{c}}\neq0$ Sol: $\Rightarrow (\overline{a} \cdot \overline{c}) \overline{b} - (\overline{b} \cdot \overline{c}) \overline{a} = (\overline{a} \cdot \overline{c}) \overline{b} - (\overline{a} \cdot \overline{b}) \overline{c}$ $(\overline{a} \cdot \overline{b})\overline{c} = (\overline{b} \cdot \overline{c})\overline{a}$ ā∥īc 7. Let W denote the words in the English dictionary. Define the relation R by :

 $R = \{(x, y) \in W \times W \mid \text{the words } x \text{ and } y \text{ have at least one letter in common}\}$. Then R is (1) not reflexive, symmetric and transitive (2) reflexive, symmetric and not transitive (3) reflexive, symmetric and transitive (4) reflexive, not symmetric and transitive Ans. (2)Sol: Clearly $(x, x) \in R \quad \forall x \in W$. So, R is reflexive. Let $(x, y) \in R$, then $(y, x) \in R$ as x and y have at least one letter in common. So, R is symmetric. But R is not transitive for example Let x = DELHI, y = DWARKA and z = PARK then $(x, y) \in R$ and $(y, z) \in R$ but $(x, z) \notin R$. If A and B are square matrices of size n × n such that $A^2 - B^2 = (A - B) (A + B)$, then 8. which of the following will be always true ? (1) A = B(2) AB = BA(3) either of A or B is a zero matrix (4) either of A or B is an identity matrix Ans. (2) $\dot{A}^2 - B^2 = (A - B) (A + B)$ Sol: $A^2 - B^2 = A^2 + AB - BA - B^2$ $\Rightarrow AB = BA.$ The value of $\sum_{k=4}^{10} \left(\sin \frac{2k\pi}{11} + i\cos \frac{2k\pi}{11} \right)$ 9. (1) i (2) 1 (3) - 1(4) –i Ans. (4) $\sum_{k=1}^{10} \left(\sin \frac{2k\pi}{11} + i\cos \frac{2k\pi}{11} \right) = \sum_{k=1}^{10} \sin \frac{2k\pi}{11} + i\sum_{k=1}^{10} \cos \frac{2k\pi}{11}$ Sol: = 0 + i (- 1) = - i. All the values of m for which both roots of the equations $x^2 - 2mx + m^2 - 1 = 0$ are 10. greater than -2 but less than 4, lie in the interval (1) - 2 < m < 0(2) m > 3(3) - 1 < m < 3(4) 1 < m < 4Ans. (3)Equation $x^2 - 2mx + m^2 - 1 = 0$ Sol: $(x - m)^2 - 1 = 0$ (x - m + 1)(x - m - 1) = 0x = m - 1, m + 1-2 < m - 1 and m + 1 < 4

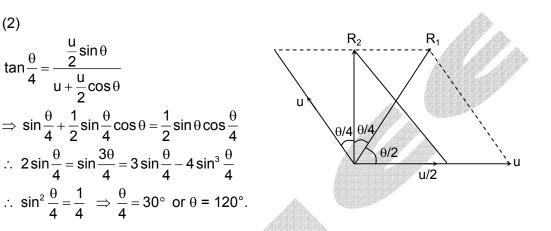
m > -1 and m < 3- 1 < m < 3.

- 11. A particle has two velocities of equal magnitude inclined to each other at an angle θ . If one of them is halved, the angle between the other and the original resultant velocity is bisected by the new resultant. Then θ is (2) 120° $(1) 90^{\circ}$ (3) 45° (4) 60°

Ans. (2)

Sol:
$$\tan \frac{\theta}{4} = \frac{\frac{u}{2}\sin\theta}{u + \frac{u}{2}\cos\theta}$$

 $\Rightarrow \sin \frac{\theta}{4} + \frac{1}{2}\sin \frac{\theta}{4}cccc$
 $\therefore 2\sin \frac{\theta}{4} = \sin \frac{3\theta}{4} = \cos \frac{3\theta}{4} = \sin \frac{3\theta}{4} = \cos \frac{3\theta$



12. At a telephone enquiry system the number of phone cells regarding relevant enquiry follow Poisson distribution with an average of 5 phone calls during 10-minute time intervals. The probability that there is at the most one phone call during a 10-minute time period is

(1)
$$\frac{6}{5^{e}}$$

(3) $\frac{6}{55}$
(4)
P (X = r) = $\frac{e^{-m}m^{r}}{r!}$
P (X ≤ 1) = P (X = 0) + P (X = 1)
= $e^{-5} + 5 \times e^{-5} = -\frac{6}{5}$

 e^5

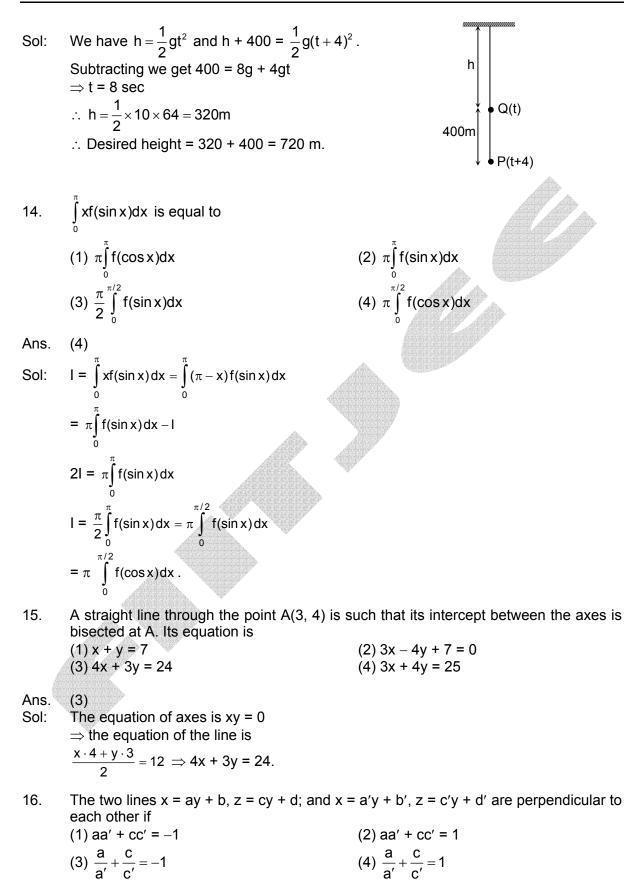
13. A body falling from rest under gravity passes a certain point P. It was at a distance of 400 m from P, 4s prior to passing through P. If $g = 10 \text{ m/s}^2$, then the height above the point P from where the body began to fall is

(1) 720 m	(2) 900 m
(3) 320 m	(4) 680 m

Ans. (1)

Ans.

Sol:



(1)Ans. Equation of lines $\frac{x-b}{a} = y = \frac{z-d}{c}$ Sol: $\frac{x-b'}{a'} = y = \frac{z-d'}{c'}$ Lines are perpendicular \Rightarrow aa' + 1 + cc' = 0. The locus of the vertices of the family of parabolas $y = \frac{a^3x^2}{3} + \frac{a^2x}{2} - 2a$ is 17. (!) $xy = \frac{105}{64}$ (2) $xy = \frac{3}{4}$ (4) $xy = \frac{64}{105}$ (3) $xy = \frac{35}{16}$ Ans. (1)Parabola: y = $\frac{a^3x^2}{3} + \frac{a^2x}{2} - 2a$ Sol: Vertex: (α, β) $\alpha = \frac{-a^2/2}{2a^3/3} = -\frac{3}{4a}, \ \beta = \frac{-\left(\frac{a^4}{4} + 4 \cdot \frac{a^3}{3} \cdot 2a\right)}{4\frac{a^3}{3}} = -\frac{-\left(\frac{1}{4} + \frac{8}{3}\right)a^4}{\frac{4}{3}a^3}$ $= -\frac{35}{12}\frac{a}{4} \times 3 = -\frac{35}{16}a$ $\alpha\beta = -\frac{3}{4a}\left(-\frac{35}{16}\right)a = \frac{105}{64}$ The values of a, for which the points A, B, C with position vectors 18. $2\hat{i} - \hat{j} + \hat{k}, \hat{i} - 3\hat{j} - 5\hat{k}$ and $a\hat{i} - 3\hat{j} + \hat{k}$ respectively are the vertices of a right-angled triangle with $C = \frac{\pi}{2}$ are (1) 2 and 1 (2) -2 and -1 (4) 2 and -1 (3) -2 and 1 Ans. (1) $\Rightarrow \overrightarrow{BA} = \hat{i} - 2\hat{j} + 6\hat{k}$ Sol: $\overrightarrow{CA} = (2-a)\hat{i} + 2\hat{j}$ $\overrightarrow{CB} = (1-a)\hat{i} - 6\hat{k}$ $\overrightarrow{CA} \cdot \overrightarrow{CB} = 0 \Rightarrow (2 - a) (1 - a) = 0$ ⇒ a = 2, 1.

19.	$\int_{-3\pi/2}^{-\pi/2} \left[\left(x + \pi \right)^3 + \cos^2 \left(x + 3\pi \right) \right] dx \text{ is equal}$	al to
	(1) $\frac{\pi^4}{32}$	(2) $\frac{\pi^4}{32} + \frac{\pi}{2}$
	(3) $\frac{\pi}{2}$	(4) $\frac{\pi}{4} - 1$
Ans.	(3)	Alter
Sol:	$I = \int_{-\pi/2}^{-\pi/2} \left[(x + \pi)^3 + \cos^2(x + 3\pi) \right] dx$	
	$-3\pi/2$ Put x + π = t	
	$I = \int_{-\pi/2}^{\pi/2} \left[t^3 + \cos^2 t \right] dt = 2 \int_{0}^{\pi/2} \cos^2 t dt$	
	$= \int_{0}^{\pi/2} (1 + \cos 2t) dt = \frac{\pi}{2} + 0.$	
20.	If x is real, the maximum value of $\frac{3x^2}{3x^2}$	$\frac{-9x+17}{15}$ is
	(1) 1/4 (3) 1	+ 9x + 7 (2) 41 (4) 17/7
Ans.	(2)	
Sol:	$y = \frac{3x^2 + 9x + 17}{3x^2 + 9x + 7}$	
	$3x^{2}(y-1) + 9x(y-1) + 7y - 17 = 0$ D ≥ 0 \therefore x is real	
	$81(y-1)^2 - 4x3(y-1)(7y-17) \ge 0$	
	$\Rightarrow (y-1)(y-41) \le 0 \Rightarrow 1 \le y \le 41.$	
21.	eccentricity is	its foci is 6 and minor axis is 8. Then its
	(1) $\frac{3}{5}$	(B) ¹ / ₂
6	(C) $\frac{4}{5}$	(D) $\frac{1}{\sqrt{5}}$
Ans.	(1)	√5
Sol:	$2ae = 6 \Rightarrow ae = 3$	
	$2b = 8 \implies b = 4$ $b^{2} = a^{2}(1 - e^{2})$	
	$16 = a^2 - a^2 e^2$ $a^2 = 16 + 9 = 25$	
	a = 5 3 3	
	$\therefore e = \frac{3}{a} = \frac{3}{5}$	

22.	Let $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ and $B = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$, $a , b \in N$. Then (1) there cannot exist any B such that AB = BA (2) there exist more than one but finite number of B's such that AB = BA (3) there exists exactly one B such that AB = BA (4) there exist infinitely many B's such that AB = BA		
Ans. Sol:	(4) $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \qquad B = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$ $AB = \begin{bmatrix} a & 2b \\ 3a & 4b \end{bmatrix}$ $BA = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} a & 2a \\ 3b & 4b \end{bmatrix}$ $AB = BA \text{ only when } a = b$		
23.	The function $f(x) = \frac{x}{2} + \frac{2}{x}$ has a local minim (1) x = 2 (3) x = 0	um at (2) x = -2 (4) x = 1	
Ans. Sol:	(1) $\frac{x}{2} + \frac{2}{x}$ is of the form $x + \frac{1}{x} \ge 2$ & equality holds for $x = 1$		
24.	Angle between the tangents to the curve y is (1) $\frac{\pi}{2}$ (3) $\frac{\pi}{6}$	= $x^2 - 5x + 6$ at the points (2, 0) and (3, 0) (2) $\frac{\pi}{2}$ (4) $\frac{\pi}{4}$	
Ans. Sol:	(2) $\frac{dy}{dx} = 2x - 5$ $\therefore m_1 = (2x - 5)_{(2, 0)} = -1, m_2 = (2x - 5)_{(3, 0)} = 3$ $\Rightarrow m_1 m_2 = -1$	- 1	
25.	Let a_1, a_2, a_3, \dots be terms of an A.P. If $\frac{a_1 - a_1}{a_1 + a_1}$ (1) $\frac{41}{11}$ (3) $\frac{2}{7}$	$\frac{a_{2} + \cdots + a_{p}}{a_{2} + \cdots + a_{q}} = \frac{p^{2}}{q^{2}}, p \neq q, \text{ then } \frac{a_{6}}{a_{21}} \text{ equals}$ $(2) \frac{7}{2}$ $(4) \frac{11}{41}$	
Ans.	(4)		

$$\frac{\frac{p}{2}[2a_{1} + (p-1)d]}{\frac{q}{2}[2a_{1} + (q-1)d]} = \frac{p^{2}}{q^{2}} \Longrightarrow \frac{2a_{1} + (p-1)d}{2a_{1} + (q-1)d} = \frac{p}{q}$$
$$\frac{a_{1} + \left(\frac{p-1}{2}\right)d}{a_{1} + \left(\frac{q-1}{2}\right)d} = \frac{p}{q}$$
For $\frac{a_{6}}{a_{21}}$, $p = 11$, $q = 41 \rightarrow \frac{a_{6}}{a_{21}} = \frac{11}{41}$

The set of points where $f(x) = \frac{x}{1+|x|}$ is differentiable is 26. (2) $(-\infty, -1) \cup (-1, \infty)$ (4) $(0, \infty)$ (1) $(-\infty, 0) \cup (0, \infty)$ (3) (−∞, ∞)

Ans. (3)

Sol:
$$f(x) = \begin{cases} \frac{x}{1-x}, & x < 0 \\ \frac{x}{1+x}, & x \ge 0 \end{cases} \implies f'(x) = \begin{cases} \frac{1}{(1-x)^2}, & x < 0 \\ \frac{1}{(1+x)^2}, & x \ge 0 \end{cases}$$

 \therefore f'(x) exist at everywhere.

27. A triangular park is enclosed on two sides by a fence and on the third side by a straight river bank. The two sides having fence are of same length x. The maximum area enclosed by the park is

(1)
$$\frac{3}{2}x^2$$

(3) $\frac{1}{2}x^2$
(4) πx^2
Ans. (3)
Sol: Area = $\frac{1}{2}x^2 \sin\theta$
 $A_{max} = \frac{1}{2}x^2 \left(\operatorname{at} \sin\theta = 1, \ \theta = \frac{\pi}{2} \right)$

- 28. At an election, a voter may vote for any number of candidates, not greater than the number to be elected. There are 10 candidates and 4 are of be elected. If a voter votes for at least one candidate, then the number of ways in which he can vote is (1) 5040 (2) 6210 (3) 385 (4) 1110
- Ans.
- (3) ${}^{10}C_1 + {}^{10}C_2 + {}^{10}C_3 + {}^{10}C_4$ = 10 + 45 + 120 + 210 = 385 Sol:

If the expansion in powers of x of the function $\frac{1}{(1-ax)(1-bx)}$ is 29. $a_0 + a_1x + a_2x^2 + a_3x^3 + \dots$, then a_n is (1) $\frac{b^n - a^n}{b - a}$ (2) $\frac{a^n - b^n}{b - a}$ (4) $\frac{b^{n+1}-a^{n+1}}{b-a}$ (3) $\frac{a^{n+1}-b^{n+1}}{b-a}$ Ans. (4) $(1-ax)^{-1}(1-bx)^{-1} = (1+ax+a^2x^2+....)(1+bx+b^2x^2+...)$ Sol: : coefficient of $x^{n} = b^{n} + ab^{n-1} + a^{2}b^{n-2} + \dots + a^{n-1}b + a^{n} = \frac{b^{n+1} - a^{n+1}}{b - a}$ $\therefore a_n = \frac{b^{n+1} - a^{n+1}}{b - a}$ For natural numbers m, n if $(1 - y)^m (1 + y)^n = 1 + a_1y + a_2y^2 + ...$, and $a_1 = a_2 = 10$, 30. then (m, n) is (1)(20, 45)(2) (35, 20) (4) (35, 45) (3) (45, 35) (4) Ans. $(1-y)^{m}(1+y)^{n} = \begin{bmatrix} 1-^{m} C_{1}y + ^{m} C_{2}y^{2} - \dots \end{bmatrix} \begin{bmatrix} 1+^{n} C_{1}y + ^{n} C_{2}y^{2} + \dots \end{bmatrix}$ Sol: = $1+(n-m)+\left\{\frac{m(m-1)}{2}+\frac{n(n-1)}{2}-mn\right\}y^2+...$ $\therefore a_1 = n - m = 10$ and $a_2 = \frac{m^2 + n^2 - m - n - 2mn}{2} = 10$ So, n - m = 10 and $(m - n)^2 - (m + n) = 20 \implies m + n = 80$ ∴ m = 35, n = 45 The value of $\int [x] f'(x) dx$, a > 1, where [x] denotes the greatest integer not exceeding 31. x is (1) $af(a) - {f(1) + f(2) + ... + f([a])}$ (2) [a] $f(a) - {f(1) + f(2) + ... + f([a])}$ (3) [a] $f([a]) - \{f(1) + f(2) + ... + f(a)\}$ (4) $af([a]) - \{f(1) + f(2) + ... + f(a)\}$ Ans. (2)Sol: Let a = k + h, where [a] = k and $0 \le h < 1$ $\therefore \int_{a}^{a} [x]f'(x)dx = \int_{a}^{2} 1f'(x)dx + \int_{a}^{3} 2f'(x)dx + \dots \int_{a}^{k} (k-1)dx + \int_{a}^{k+h} kf'(x)dx$ ${f(2) - f(1)} + 2{f(3) - f(2)} + 3{f(4) - f(3)} + \dots + (k-1) - {f(k) - f(k-1)}$ $+ k{f(k + h) - f(k)}$ $= -f(1) - f(2) - f(3) \dots - f(k) + k f(k + h)$ $= [a] f(a) - \{f(1) + f(2) + f(3) + \dots + f([a])\}$

32.	If the lines $3x - 4y - 7 = 0$ and $2x - 3y - 4$ 49π square units, the equation of the circle (1) $x^2 + y^2 + 2x - 2y - 47 = 0$ (3) $x^2 + y^2 - 2x + 2y - 62 = 0$		
Ans. Sol:	(4) Point of intersection of $3x - 4y - 7 = 0$ and $2x - 3y - 5 = 0$ is $(1, -1)$, which is the centre of the circle and radius = 7. ∴ Equation is $(x - 1)^2 + (y + 1)^2 = 49 \Rightarrow x^2 + y^2 - 2x + 2y - 47 = 0$.		
33.	The differential equation whose solution is constants is of (1) second order and second degree (3) first order and first degree	 Ax² + By² = 1, where A and B are arbitrary (2) first order and second degree (4) second order and first degree 	
Ans. Sol:	(4) $Ax^{2} + By^{2} = 1 \qquad \dots (1)$ $Ax + By \frac{dy}{dx} = 0 \qquad \dots (2)$ $A + By \frac{d^{2}y}{dx^{2}} + B\left(\frac{dy}{dx}\right)^{2} = 0 \qquad \dots (3)$ From (2) and (3) $x \left\{-By \frac{d^{2}y}{dx^{2}} - B\left(\frac{dy}{dx}\right)^{2}\right\} + By \frac{dy}{dx} = 0$ $\Rightarrow xy \frac{d^{2}y}{dx^{2}} + x\left(\frac{dy}{dx}\right)^{2} - y \frac{dy}{dx} = 0$		
34.	Let C be the circle with centre (0, 0) and r the mid points of the chords of the circle C is (1) $x^2 + y^2 = \frac{3}{2}$ (3) $x^2 + y^2 = \frac{27}{4}$	0	
Ans. Sol:	(4) $\cos \frac{\pi}{3} = \frac{\sqrt{h^2 + k^2}}{3} \implies h^2 + k^2 = \frac{9}{4}$		
35.	If (a, a ²) falls inside the angle made by the belongs to (1) $\left(0, \frac{1}{2}\right)$ (3) $\left(\frac{1}{2}, 3\right)$	lines $y = \frac{x}{2}$, $x > 0$ and $y = 3x$, $x > 0$, then a (2) $(3, \infty)$ (4) $\left(-3, -\frac{1}{2}\right)$	

Ans. (3)
Sol:
$$a^2 - 3a < 0$$
 and $a^2 - \frac{a}{2} > 0 \Rightarrow \frac{1}{2} < a < 3$
36. The image of the point (-1, 3, 4) in the plane $x - 2y = 0$ is
(1) $\left(-\frac{17}{3}, -\frac{19}{3}, 4\right)$ (2) (15, 11, 4)
(3) $\left(-\frac{17}{3}, -\frac{19}{3}, 1\right)$ (4) (8, 4, 4)
Sol: If (α, β, γ) be the image then $\frac{\alpha - 1}{2} - 2\left(\frac{\beta + 3}{2}\right) = 0$
 $\therefore \alpha - 1 - 2\beta - 6 \Rightarrow \alpha - 2\beta = 7$... (1)
and $\frac{\alpha + 1}{1} - \frac{\beta - 3}{-2} = \frac{\gamma - 4}{0}$... (2)
From (1) and (2)
 $\alpha = \frac{9}{5}, \beta = -\frac{13}{5}, \gamma = 4$
No option matches.
37. If $z^2 + z + 1 = 0$, where z is a complex number, then the value of
 $\left(z + \frac{1}{z}\right)^2 + \left(z^2 + \frac{1}{z^2}\right)^2 + \left(z^3 + \frac{1}{z^2}\right)^2 + \dots + \left(z^6 + \frac{1}{z^6}\right)^8$ is
(1) 18
(3) 6 (4) 12
Ans. (4)
Sol: $z^2 + z + 1 = 0 \Rightarrow z = \omega \text{ or } \omega^2$
so, $z + \frac{1}{z} = \omega + \omega^2 = -1, z^2 + \frac{1}{z^2} = \omega^2 + \omega = -1, z^3 + \frac{1}{z^3} = \omega^3 + \omega^3 = 2$
 $z^4 + \frac{1}{z^4} = -4, z^6 + \frac{1}{z^6} = 2$
 \therefore The given sum = 1 + 1 + 4 + 1 + 1 + 4 = 12
38. If $0 < x < \pi$ and cosx + sinx = $\frac{1}{2}$, then tanx is
(1) $\frac{(1 - \sqrt{7})}{4}$ (B) $\frac{(4 - \sqrt{7})}{3}$
(3) $-\frac{(4 + \sqrt{7})}{3}$ (4) $\frac{(1 + \sqrt{7})}{4}$
Ans. (3)
Sol: $\cos x + \sin x = \frac{1}{2} \Rightarrow 1 + \sin 2x = \frac{1}{4} \Rightarrow \sin 2x = -\frac{3}{4}$, so x is obtuse
and $\frac{2\tan x}{1 + \tan^2 x} = -\frac{3}{4} \Rightarrow 3\tan^2 x + 8\tan x + 3 = 0$

$$\therefore \tan x = \frac{-8 \pm \sqrt{64 - 36}}{6} = \frac{-4 \pm \sqrt{7}}{3}$$

$$\therefore \tan x < 0 \qquad \therefore \tan x = \frac{-4 - \sqrt{7}}{3}$$
39. If $a_1, a_2, ..., a_n$ are in H.P., then the expression $a_1a_2 + a_2a_3 + ... + a_{n-1}a_n$ is equal to
(1) $n(a_1 - a_n)$ (2) $(n - 1)(a_1 - a_n)$
(3) na_1a_n (4) $(n - 1)a_1a_n$
Ans. (4)
Sol: $\frac{1}{a_2} - \frac{1}{a_1} = \frac{1}{a_3} - \frac{1}{a_2} = = \frac{1}{a_n} - \frac{1}{a_{n-1}} = d$ (say)
Then $a_1a_2 = \frac{a_1 - a_2}{d}$, $a_2a_3 = \frac{a_2 - a_3}{d}$,, $a_{n-1}a_n = \frac{a_{n-1} - a_n}{d}$
 $\therefore a_1a_2 + a_2a_3 + + a_{n-1}a_n = \frac{a_1 - a_n}{d}$ Also, $\frac{1}{a_1} = \frac{1}{a_1} + (n - 1)d$
 $\Rightarrow \frac{a_1 - a_n}{d} = (n - 1)a_1a_n$
40. If $x^m \cdot y^n = (x + y)^{m \cdot n}$, then $\frac{dy}{dx}$ is
(1) $\frac{y}{x}$ (2) $\frac{x + y}{xy}$
(3) xy (4) $\frac{x}{y}$
Ans. (1)
Sol: $x^m \cdot y^n = (x + y)^{m \cdot n} \Rightarrow \min x + n \ln y = (m + n) \ln(x + y)$
 $\therefore \frac{m}{x} + \frac{n}{y} \frac{dy}{dx} = \frac{m + n}{x + y} (1 + \frac{dy}{dx}) \Rightarrow (\frac{m}{x} - \frac{m + n}{x + y}) = (\frac{m + n}{x + y} - \frac{n}{y}) \frac{dy}{dx}$
 $\Rightarrow \frac{my - nx}{x(x + y)} = (\frac{my - nx}{y(x + y)}) \frac{dy}{dx} \Rightarrow \frac{dy}{dx} = \frac{y}{x}$