
CHEMISTRY PART – C

- 96. HBr reacts with $CH_2 = CH - OCH_3$ under anhydrous conditions at room temperature to give (1) CH₃CHO and CH₃Br (2) BrCH₂CHO and CH₃OH (3) $BrCH_2 - CH_2 - OCH_3$ (4) $H_3C - CHBr - OCH_3$
- Ans. (4)
- Sol. Electrophilic addition reaction more favourable.

97. The IUPAC name of the compound shown below is

- (1) 2-bromo-6-chlorocyclohex-1-ene
- (3) 3-bromo-1-chlorocyclohexene

Br

- (2) 6-bromo-2-chlorocyclohexene
- (4) 1-bromo-3-chlorocyclohexene

Ans. (3)

- 98. The increasing order of the rate of HCN addition to compounds A – D is
 - (A) HCHO (B) CH₃COCH₃ (C) PhCOCH₃ (D) PhCOPh (1) A < B < C < D(2) D < B < C < A(3) D < C < B < A(4) C < D < B < A

Ans. (3)

- How many moles of magnesium phosphate, Mg₃(PO₄)₂ will contain 0.25 mole of oxygen atoms? 99. (2) 3.125 × 10⁻² (1) 0.02 (3) 1.25 × 10⁻² (4) 2.5×10^{-2}
- Ans. (2)

Sol. $Mg_3(PO_4)_2$ 'n' moles 8n = 0.25 $n = \frac{0.25}{1}$ 8 25

8×100

= 3.125 × 10⁻²

100.

According to Bohr's theory, the angular momentum of an electron in 5th orbit is

(1) $25\frac{h}{\pi}$	(2) $1.0\frac{h}{\pi}$
(3) $10\frac{h}{\pi}$	(4) $2.5\frac{h}{\pi}$

Ans. (4)

 $\frac{nh}{2}$ Sol. mvr =

$$=\frac{5h}{2\pi}=2.5\frac{h}{\pi}$$

FIITJEE Solutions to AIEEE–2006

101.	Which of the following molecules/ions does not contain unpaired electrons?
------	--

(1) O ₂ ²⁻	(2) B ₂
(-) -2	(-) -2

(3) N_2^+ (4) O₂

Ans. (1)

102. Total volume of atoms present in a face-centre cubic unit cell of a metal is (r is atomic radius)

(1)	$\frac{20}{3}\pi r^3$	(2)	$\frac{24}{3}\pi r^3$
(3)	$\frac{12}{3}\pi r^3$	(4)	$\frac{16}{3}\pi r^3$

Ans.

 $V = n \times \left(\frac{4}{3}\pi r^3\right)$ Sol. $=4\times\left(rac{4}{3}\pi r^{3}
ight)$ $=\frac{16}{3}\pi r^3$

- 103. A reaction was found to be second order with respect to the concentration of carbon monoxide. If the concentration of carbon monoxide is doubled, with everything else kept the same, the rate of reaction will
 - (1) remain unchanged
 - (3) increase by a factor of 4
- (2) triple (4) double

- Ans. (3)
- $R \propto [W]^2$ Sol.
 - R' ∞ [2CO]² $R \propto 4[W]^2$ $R \propto 4M$

104. Which of the following chemical reactions depicts the oxidizing behaviour of H₂SO₄?

- (1) $2HI + H_2SO_4 \longrightarrow I_2 + SO_2 + 2H_2O$ (2) $Ca(OH)_2 + H_2SO_4 \longrightarrow CaSO_4 + 2H_2O$
- (3) $NaCl + H_2SO_4 \longrightarrow NaHSO_4 + HCl$ (4) $2PCl_5 + H_2SO_4 \longrightarrow 2POCl_3 + 2HCl + SO_2Cl_2$

Ans. (1)

105. The IUPAC name for the complex [Co(NO₂)(NH₃)₅]Cl₂ is

- (1) nitrito-N-pentaamminecobalt (III) chloride (3) pentaammine nitrito-N-cobalt (II) chloride
- (2) nitrito-N-pentaamminecobalt (II) chloride
- (4) pentaammine nitrito-N-cobalt (III) chloride

- Ans. (4)
- 106. The term anomers of glucose refers to
 - (1) isomers of glucose that differ in configurations at carbons one and four (C-1 and C-4)
 - (2) a mixture of (D)-glucose and (L)-glucose
 - (3) enantiomers of glucose
 - (4) isomers of glucose that differ in configuration at carbon one (C-1)
- Ans. (4)

107.	In the transformation of ${}^{238}_{92}$ U to ${}^{234}_{92}$ U, if one emission(s)? (1) Two β^- (3) One β^- and one γ	emission is an α -particle, what should be the other (2) Two β^- and one β^+ (4) One β^+ and one β^-	
Ans.	(1)		
Sol.	${}^{238}_{92} U \longrightarrow {}^{234}_{92} U + {}^{4}_{2} He + 2 {}^{0}_{-1} e$		
108.	Phenyl magnesium bromide reacts with methan (1) a mixture of anisole and Mg(OH)Br (3) a mixture of toluene and Mg(OH)Br	ol to give (2) a mixture of benzene and Mg(OMe)Br (4) a mixture of phenol and Mg(Me)Br	
Ans.	(2)		
109.	$CH_{3}Br + Nu^{-} \longrightarrow CH_{3} - Nu + Br^{-}$		
	The decreasing order of the rate of the above re [Nu ⁻ = (A) PhO ⁻ , (B) AcO ⁻ , (C) HO ⁻ , (D) CH ₃ O ⁻]		
	(1) D > C > A > B	(2) D > C > B > A	
	(3) $A > B > C > D$	(4) B > D > C > A	
Ans.	(1)		
110.	The pyrimidine bases present in DNA are		
	(1) cytosine and adenine(3) cytosine and thymine	(2) cytosine and guanine(4) cytosine and uracil	
_			
Ans.	(3)		
111.		iodoform test upon reaction with I_2 and NaOH is	
	(1) $CH_3CH_2CH(OH)CH_2CH_3$	$(2) C_6H_5CH_2CH_2OH$	
		(4) PhCHOHCH ₃	
Ans.	(4)		
112.	The increasing order of stability of the following	free radicals is	
	(1) $(CH_3)_2 CH < (CH_3)_3 C < (C_6H_5)_2 CH < (C_6H_5)_2 CH$	•	
	(2) $(C_6H_5)_3 C < (C_6H_5)_2 CH < (CH_3)_3 C < (CH_3)_$	•	
	(2) $(C_6H_5)_3 C < (C_6H_5)_2 CH < (CH_3)_3 C < (CH_3)_2 CH$ (3) $(C_6H_5)_2 CH < (C_6H_5)_3 C < (CH_3)_3 C < (CH_3)_2 CH$		
		_	
	(4) $(CH_3)_2 CH < (CH_3)_3 C < (C_6H_5)_3 C < (C_$	₂ CH	
Ans.	(1)		
113.			
	accurate upto 0.001%, will be (1) 19.2×10^{-2} m	(2) 5.76 × 10 ⁻² m	
	(3) $1.92 \times 10^{-2} \text{ m}$ (b = 6.63 × 10 ⁻³⁴ lp)	(4) $3.84 \times 10^{-2} \text{ m}$	

 $(h = 6.63 \times 10^{-34} \text{ Js})$

Ans. (3)

Sol. $\Delta x \cdot \Delta V \ge \frac{h}{4\pi m}$ $\Delta x \ge \frac{h}{4\pi m \Delta V} = \frac{6.63 \times 10^{-34}}{4 \times 3.14 \times 9.1 \times 10^{-31} \times 300 \times \frac{0.001}{100}}$ $= \frac{6.63 \times 10^{-34}}{4 \times 3.14 \times 9.1 \times 3 \times 10^{-31} \times 10^{-3}}$ = 0.01933 $= 1.93 \times 10^{-2}$

114. Phosphorus pentachloride dissociates as follows, in a closed reaction vessel, $PCl_5(g) \xrightarrow{} PCl_3(g) + Cl_2(g)$

If total pressure at equilibrium of the reaction mixture is P and degree of dissociation of PCI_5 is x, the partial pressure of PCI_3 will be

(4) $\left(\frac{x}{1-x}\right)P$

(1)
$$\left(\frac{x}{x+1}\right)P$$

(3) $\left(\frac{x}{x-1}\right)P$

Ans. (1)

Sol. $PCl_5(g) \Longrightarrow PCl_3(g) + Cl_2(g)$

$$(1-x) x P_{PCI_3} = \left(\frac{x}{1+x}\right) \times P$$

- 115. The standard enthalpy of formation ($\Delta_{f}H^{o}$) at 298 K for methane, CH₄(g), is -74.8 kJ mol⁻¹. The additional information required to determine the average energy for C H bond formation would be (1) the dissociation energy of H₂ and enthalpy of sublimation of carbon
 - (2) latent heat of vapourization of methane
 - (3) the first four ionization energies of carbon and electron gain enthalpy of hydrogen
 - (4) the dissociation energy of hydrogen molecule, H₂

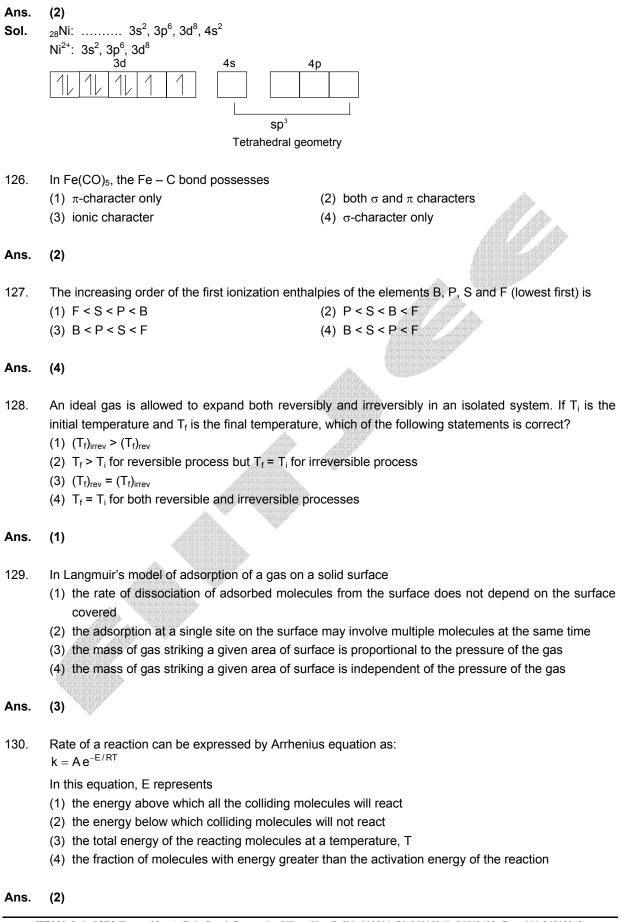
х

Ans. (1)

- 116. Among the following mixtures, dipole-dipole as the major interaction, is present in
 - (1) benzene and ethanol
 - (3) KCI and water

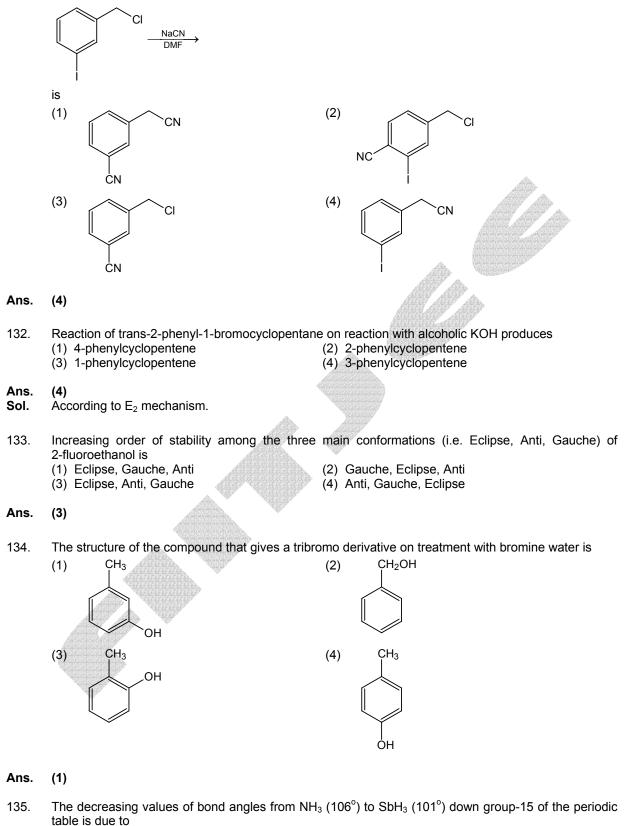
(2) acetonitrile and acetone(4) benzene and carbon tetrachloride

Ans. (2)


- 117. Fluorobenzene (C_6H_5F) can be synthesized in the laboratory
 - (1) by heating phenol with HF and KF
 - (2) from aniline by diazotisation followed by heating the diazonium salt with HBF₄
 - (3) by direct fluorination of benzene with F_2 gas
 - (4) by reacting bromobenzene with NaF solution

Ans. (2)

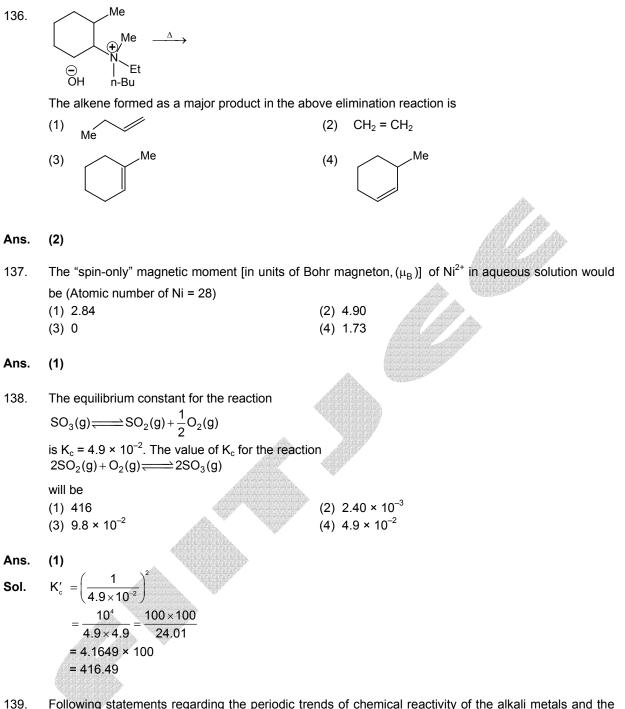
- 118. A metal, M forms chlorides in its +2 and +4 oxidation states. Which of the following statements about these chlorides is correct?
 - (1) MCl₂ is more volatile than MCl₄
 - (2) MCl_2 is more soluble in anhydrous ethanol than MCl_4
 - (3) MCl_2 is more ionic than MCl_4
 - (4) MCl_2 is more easily hydrolysed than MCl_4
- Ans. (3)


119.	Which of the following statements is true? (1) H_3PO_3 is a stronger acid than H_2SO_3 (2) In aqueous medium HF is a stronger acid than HCI (3) $HCIO_4$ is a weaker acid than $HCIO_3$ (4) HNO_3 is a stronger acid than HNO_2		
Ans.	(4)		
120.	The molar conductivities \wedge_{NaOAc}^{o} and \wedge_{HCl}^{o} at infinite dilution in water at 25°C are 91.0 and 426.2 S cm ² /mol respectively. To calculate \wedge_{HOAc}^{o} , the additional value required is		
	(1) $\wedge_{H_{2}O}^{o}$	(2) ∧ _{KCI}	
	(3) ∧ _{NaOH}	(4) ∧ ^o _{NaCl}	
Ans. Sol.	(4) $\lambda^{\circ}_{CH_{3}COONa} = \lambda^{\circ}_{CH_{3}COO^{-}} + \lambda^{\circ}_{Na^{+}} \dots \dots \dots (1)$ $\lambda^{\circ}_{HCI} = \lambda^{\circ}_{H^{+}} + \lambda^{\circ}_{CI^{-}} \dots \dots \dots \dots \dots (2)$ $\lambda^{\circ}_{NaCI} = \lambda^{\circ}_{Na} + \lambda^{\circ}_{CI^{-}} \dots \dots \dots \dots \dots (3)$		
	$\lambda^{\circ}_{_{CH_{3}COOH}} = (1) + (2) - (3)$		
121.	Which one of the following sets of ions represent (1) K^+ , CI^- , Ca^{2+} , Sc^{3+} (3) N^{3-} , O^{2-} , F^- , S^{2-}	nts a collection of isoelectronic species? (2) Ba ²⁺ , Sr ²⁺ , K ⁺ , S ²⁻ (4) Li ⁺ , Na ⁺ , Mg ²⁺ , Ca ²⁺	
Ans.	(1)		
122.	The correct order of increasing acid strength of (a) CH_3CO_2H	the compounds (b) MeOCH ₂ CO ₂ H	
	(c) CF ₃ CO ₂ H	(d) Me CO ₂ H Me	
	is (1) b < d < a < c (3) d < a < b < c	(2) d < a < c < b (4) a < d < c < b	
Ans.	(3)		
123.	In which of the following molecules/ions are all (1) SF_4 (3) XeF_4	the bonds not equal? (2) SiF_4 (4) BF_4^-	
Ans.	(1)		
124.	What products are expected from the dispropor (1) $HCIO_3$ and CI_2O (3) HCI and CI_2O	tionation reaction of hypochlorous acid? (2) HClO ₂ and HClO ₄ (4) HCl and HClO ₃	
Ans.	(4)		
125.		 ionodentate ligand X⁻ to form a paramagnetic complex in the nickel and geometry of this complex ion are, (2) two, tetrahedral (4) two, square planar 	

FIITJEE Solutions to AIEEE–2006

FIITJEE Solutions to AIEEE–2006

131. The structure of the major product formed in the following reaction



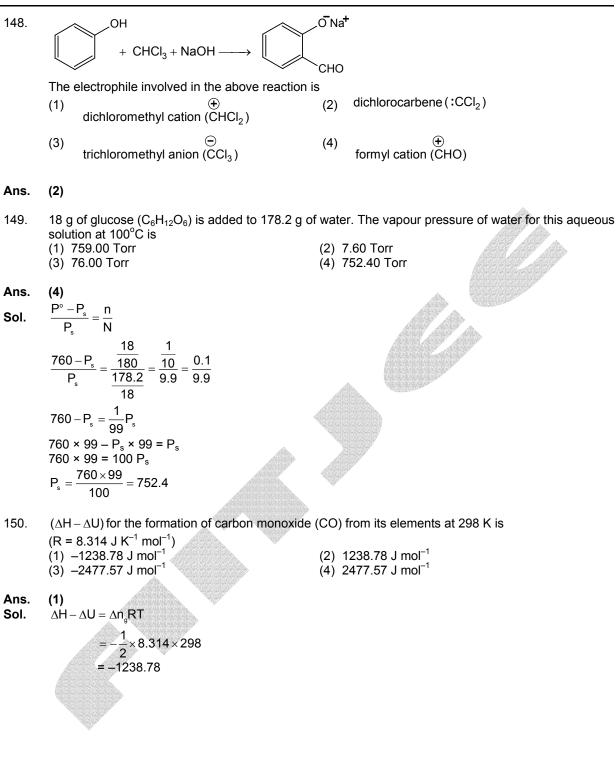
- (1) increasing bp-bp repulsion
- (3) decreasing lp-bp repulsion
- (2) increasing p-orbital character in sp³
- (4) decreasing electronegativity

Ans. (4)

FIITJEE Ltd., ICES House, 29 – A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 26515949, 26569493, Fax: 011-26513942.

FIITJEE Solutions to AIEEE–2006

- 39. Following statements regarding the periodic trends of chemical reactivity of the alkali metals and the halogens are given. Which of these statements gives the correct picture?
 - (1) The reactivity decreases in the alkali metals but increases in the halogens with increase in atomic number down the group
 - (2) In both the alkali metals and the halogens the chemical reactivity decreases with increase in atomic number down the group
 - (3) Chemical reactivity increases with increase in atomic number down the group in both the alkali metals and halogens
 - (4) In alkali metals the reactivity increases but in the halogens it decreases with increase in atomic number down the group


Ans. (4)

140. Given the data at 25°C, $Ag + I^- \longrightarrow AgI + e^-$; $E^o = 0.152 V$ $Ag \longrightarrow Ag^+ + e^-; \qquad E^o = -0.800 V$ What is the value of log K_{sp} for Agl? $2.303 \frac{\text{RT}}{\text{F}} = 0.059 \text{ V}$ (1) - 8.12(2) +8.612 (3) - 37.83(4) - 16.13Ans. (4) $Agl(s) + e^{-} \longrightarrow Ag(s) + I^{-}; E^{\circ} = -0.152$ Sol. $\mathsf{E}^{\circ}_{_{\text{cell}}} = \frac{0.059}{n} \text{logK}$ $-0.952 = \frac{0.059}{1} \text{log K}_{\text{sp}}$ $\log K_{sp} = -\frac{0.952}{0.059} = -16.135$ 141. The following mechanism has been proposed for the reaction of NO with Br₂ to form NOBr: $NO(g) + Br_2(g) \Longrightarrow NOBr_2(g)$ $NOBr_2(g) + NO(g) \longrightarrow 2NOBr(g)$ If the second step is the rate determining step, the order of the reaction with respect to NO(g) is (1) 1 (2) 0 (3) 3 (4) 2 Ans. (4) $NO(g) + Br_2(g) \Longrightarrow NOBr_2(g)$ Sol. $NOBr_2(g) + NO(g) \longrightarrow 2NOBr(g)$ $R = K[NOBr_{2}][NO]$ = K.K_c [NO] [Br₂][NO], where $K_c = \frac{[NOBr_2]}{[NO] [Br_2]}$ $= K'[NO]^{2}[Br_{2}]$ 142. Lanthanoid contraction is caused due to (1) the appreciable shielding on outer electrons by 4f electrons from the nuclear charge (2) the appreciable shielding on outer electrons by 5d electrons from the nuclear charge (3) the same effective nuclear charge from Ce to Lu (4) the imperfect shielding on outer electrons by 4f electrons from the nuclear charge Ans. (4)

143. Resistance of a conductivity cell filled with a solution of an electrolyte of concentration 0.1 M is 100 Ω. The conductivity of this solution is 1.29 S m⁻¹. Resistance of the same cell when filled with 0.2 M of the same solution is 520 Ω. The molar conductivity of 0.02 M solution of the electrolyte will be

(1) $124 \times 10^{-4} \text{ S m}^2 \text{ mol}^{-1}$ (2) $1240 \times 10^{-4} \text{ S m}^2 \text{ mol}^{-1}$ (4) $12.4 \times 10^{-4} \text{ S m}^2 \text{ mol}^{-1}$ (3) 1.24 × 10⁻⁴ S m² mol⁻¹

Ans. (4) Sol. There is one mistake in Question paper. Assuming concentration of solution is 0.2 M instead of 0.02 M. Since resistance of 0.2 M is 520 Ω. $R = 100 \Omega$ $K = \frac{1}{R} \left(\frac{\ell}{a} \right)$ $1.29 = \frac{1}{100} \left(\frac{\ell}{a}\right)$ $\left(\frac{\ell}{a}\right) = 129 \text{ m}^{-1}$ $R = 520 \Omega \cdot C = 0.2 M$ $K = \frac{1}{R} \left(\frac{\ell}{a} \right) = \frac{1}{520} (129) \ \Omega^{-1} m^{-1}$ $\mu = K \times V_{\text{in cm}^3}$ $=\frac{1}{520}\times129\times\frac{1000}{0.2}\times10^{-6} \text{ m}^{3}$ $=\frac{129}{520}\times\frac{1000}{0.2}\times10^{-6}$ $= 1.24 \times 10^{-3}$ $= 12.4 \times 10^{-4}$ The ionic mobility of alkali metal ions in aqueous solution is maximum for 144. (1) K⁺ (2) Rb⁺ (3) Li⁺ (4) Na Ans. (2) Density of a 2.05 M solution of acetic acid in water is 1.02 g/mL. The molality of the solution is 145. (1) 1.14 mol kg⁻ (2) 3.28 mol kg⁻¹ (3) 2.28 mol kg⁻¹ (4) 0.44 mol kg⁻¹ Ans. (3) 146. The enthalpy changes for the following processes are listed below: $Cl_2(g) = 2Cl(g),$ 242.3 kJ mol⁻¹ 151.0 kJ mol⁻¹ $I_2(g) = 2I(g),$ $ICI(g) = I(g) + CI(g), 211.3 \text{ kJ mol}^{-1}$ 62.76 kJ mol⁻¹ $I_2(s) = I_2(g), \langle \langle \rangle$ Given that the standard states for iodine and chlorine are $I_2(s)$ and $CI_2(g)$, the standard enthalpy of formation for ICI(g) is (1) -14.6 kJ mol⁻ (2) –16.8 kJ mol⁻¹ (3) +16.8 kJ mol⁻¹ (4) +244.8 kJ mol⁻¹ Ans. (3) $\frac{1}{2}I_2(s) + \frac{1}{2}CI_2 \longrightarrow ICI(g)$ Sol. $\Delta H = \left\lceil \frac{1}{2} \Delta H_{i_{2}(s) \to i_{2}(g)} + \frac{1}{2} \mu_{i_{-1}} + \frac{1}{2} \mu_{CI-CI} \right\rceil - \left[\mu_{i_{-CI}} \right]$ $= \left(\frac{1}{2} \times 62.76 + \frac{1}{2} \times 151.0 + \frac{1}{2} \times 242.3\right) - (211.3)$ = 228.03 - 211.3 ∆H = 16.73 How many EDTA (ethylenediaminetetraacetic acid) molecules are required to make an octahedral complex with a Ca^{2+} ion? 147. (2) Three (1) Six (3) One (4) Two Ans. (3)

FIITJEE Solutions to AIEEE–2006