fIITJEG solutions to IIT-IEE, 2004 Screening

1*. 2-phenyl propene on acidic hydration gives
(A) 2-phenyl-2-propanol
(B) 2-phenyl-1-propanol
(C) 3-phenyl-1-propanol
(D) 1-phenyl-2-propanol

Ans. (A)

2*.

C_{2} is rotated anticlockwise 120° about $\mathrm{C}_{2}-\mathrm{C}_{3}$ bond. The resulting conformer is
(A) Partially eclipsed
(B) Eclipsed
(C) Gauche
(D) Staggered

Ans. (C)

$\xrightarrow[\text { rotation }]{\mathrm{On} 120^{\circ}}$

The resulting conformer is a Gauche conformer
3. Benzamide on treatment with POCl_{3} gives
(A) Aniline
(B) Benzonitrile
(C) Chlorobenzene
(D) Benzyl amine

Ans. (B)

POCl_{3} is a dehydrating agent
4. The methods chiefly used for the extraction of Lead \& Tin from their ores are respectively
(A) Self reduction \& carbon reduction
(B) Self reduction \& electrolytic reduction
(C) Carbon reduction \& self reduction
(D) Cyanide process \& carbon reduction

Ans
(A) Factual

IIT-JEE2004-S-2

5*.

$\xrightarrow{\mathrm{Fe} / \mathrm{Br}_{2}}$ Product on monobro min ation of this compound is
(A)

(B)

(C)

(D)

Ans. (B) The ring with maximum electron density will be substituted by an electrophile

The ring attached with - NH- will have rich electron density due to resonance. As ortho position is blocked, the electrophile attacks the para position
6. The order of reactivity of Phenyl Magnesium Bromide with the following compounds is

(I)

(II)

(III) Ph
(A) (II) $>$ (III) $>$ (I)
(B) (I) $>$ (III) $>$ (II)
(C) (II) $>$ (I) $>$ (III)
(D) All react with the same rate

Ans. (C) Nucleophile attacks the most electrophilic site first. Among aldehyde and a ketone, aldehydes are more electrophilic as in ketones the $\delta+$ charge an carbonyl carbon is decreased by +I effect of both alkyl groups

More over in the tetrahedral intermediate aldehydes have less steric repulsion than ketone and aldehydes increases the -ve charge on oxygen less in comparison to ketones

Based on the above the order of reactivity is (II) $>$ (I) $>$ (III)
7. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ on heating gives a gas which is also given by
(A) Heating $\mathrm{NH}_{4} \mathrm{NO}_{2}$
(B) Heating $\mathrm{NH}_{4} \mathrm{NO}_{3}$
(C) $\mathrm{Mg}_{3} \mathrm{~N}_{2}+\mathrm{H}_{2} \mathrm{O}$
(D) Na (comp.) $+\mathrm{H}_{2} \mathrm{O}_{2}$

Ans. (A) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \xrightarrow{\Delta} \mathrm{~N}_{2} \uparrow+\mathrm{Cr}_{2} \mathrm{O}_{3}+4 \mathrm{H}_{2} \mathrm{O}$

$$
\mathrm{NH}_{4} \mathrm{NO}_{2} \xrightarrow{\Delta} \mathrm{~N}_{2} \uparrow+2 \mathrm{H}_{2} \mathrm{O}
$$

8. $\quad \mathrm{Zn}\left|\mathrm{Zn}^{2+}(\mathrm{a}=0.1 \mathrm{M}) \| \mathrm{Fe}^{2+}(\mathrm{a}=0.01 \mathrm{M})\right| \mathrm{Fe}$. The emf of the above cell is 0.2905 V . Equilibrium constant for the cell reaction is
(A) $10^{0.32 / 0.0591}$
(B) $10^{0.32 / 0.0295}$
(C) $10^{0.26 / 0.0295}$
(D) $e^{0.32 / 0.295}$

Ans. (B) $\mathrm{E}=\mathrm{E}^{\circ}-\frac{0.0591}{\mathrm{n}} \log \mathrm{Kc}$
$0.2905=\mathrm{E}^{\circ}-\frac{0.0591}{2} \log \frac{0.1}{0.01}$
$\mathrm{E}^{\circ}=0.2905+0.0295=0.32$
$\mathrm{E}^{\circ}=\frac{0.0591}{\mathrm{n}} \log \mathrm{K}$
$0.32=\frac{0.0591}{2} \log \mathrm{~K}$
$\mathrm{K}=10^{0.32 / 0.0295}$
9*. HX is a weak acid $\left(\mathrm{K}_{\mathrm{a}}=10^{-5}\right)$. It forms a salt $\mathrm{NaX}(0.1 \mathrm{M})$ on reacting with caustic soda. The degree of hydrolysis of NaX is
(A) 0.01%
(B) 0.0001%
(C) 0.1%
(D) 0.5%

Ans. $\quad(\mathrm{A}) \mathrm{X}^{-}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{HX}+\mathrm{OH}^{-}$
$\mathrm{K}_{\mathrm{h}}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{K}_{\mathrm{a}}}=10^{-9}$
$\mathrm{K}_{\mathrm{h}}=\mathrm{C} \alpha^{2}=10^{-9}$
$\alpha^{2}=10^{-8} \Rightarrow \alpha=10^{-4}$
$\%$ degree of dissociation $=10^{-4} \times 100=0.01 \%$
10. Spontaneous adsorption of a gas on solid surface is an exothermic process because
(A) $\Delta \mathrm{H}$ increases for system
(B) $\Delta \mathrm{S}$ increases for gas
(C) $\Delta \mathrm{S}$ decreases for gas
(D) $\Delta \mathrm{G}$ increases for gas

Ans. (C)For spontaneous absorption $\Delta \mathrm{G}$ is negative as well as the degree of randomness of gas molecules decreases thereby $\Delta \mathrm{S}$ also negative. That's why T. $\Delta \mathrm{S}$ is -ve
$\therefore \Delta \mathrm{H}=\Delta \mathrm{G}+\mathrm{T} . \Delta \mathrm{S}$
Thereby $\Delta \mathrm{H}$ is -ve
11*. For a monoatomic gas kinetic energy $=\mathrm{E}$. The relation with rms velocity is
(A) $\mathrm{u}=\left(\frac{2 \mathrm{E}}{\mathrm{m}}\right)^{1 / 2}$
(B) $\mathrm{u}=\left(\frac{3 \mathrm{E}}{2 \mathrm{~m}}\right)^{1 / 2}$
(C) $u=\left(\frac{E}{2 m}\right)^{1 / 2}$
(D) $u=\left(\frac{E}{3 m}\right)^{1 / 2}$

Ans. (A) Since,
$P=\frac{1}{3} \times \frac{\mathrm{m}}{\mathrm{v}} \times \mathrm{c}^{2} \quad(\mathrm{c}=$ rms velocity $) \Rightarrow \sqrt{\frac{3 \mathrm{PV}}{\mathrm{m}}}=\mathrm{c}$

IIT-JEE2004-S-4

For 1molecule $\mathrm{PV}=\mathrm{kT} \Rightarrow \mathrm{c}=\sqrt{\frac{3 \mathrm{kT}}{\mathrm{m}}}$
$\therefore \mathrm{KE}=\frac{3}{2} \mathrm{kT} \Rightarrow 2 \mathrm{KE}=3 \mathrm{kT} \Rightarrow \mathrm{c}=\sqrt{\frac{2 \mathrm{KE}}{\mathrm{m}}}$
12*. The pair of compounds having metals in their highest oxidation state is
(A) $\mathrm{MnO}_{2}, \mathrm{FeCl}_{3}$
(B) $\left[\mathrm{MnO}_{4}\right]^{-}, \mathrm{CrO}_{2} \mathrm{Cl}_{2}$
(C) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-},\left[\mathrm{Co}(\mathrm{CN})_{3}\right]$
(D) $\left[\mathrm{NiCl}_{4}\right]^{2-},\left[\mathrm{CoCl}_{4}\right]^{-}$

Ans. (B) $\left[\mathrm{MnO}_{4}\right]^{-}, \mathrm{Mn}=+7$
$\mathrm{CrO}_{2} \mathrm{Cl}_{2}, \mathrm{Cr}=+6$
13. The compound having tetrahedral geometry is
(A) $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$
(B) $\left[\operatorname{Pd}(\mathrm{CN})_{4}\right]^{2-}$
(C) $\left[\mathrm{PdCl}_{4}\right]^{2-}$
(D) $\left[\mathrm{NiCl}_{4}\right]^{2-}$

Ans. (D)

Hybridisation of $\left[\mathrm{NiCl}_{4}\right]^{2-}=\mathrm{sp}^{3}$
Shape of $\left[\mathrm{NiCl}_{4}\right]^{2-}=$ Tetrahedral
14. Spin only magnetic moment of the compound $\mathrm{Hg}\left[\mathrm{Co}(\mathrm{SCN})_{4}\right]$ is
(A) $\sqrt{3}$
(B) $\sqrt{15}$
(C) $\sqrt{24}$
(D) $\sqrt{8}$

Ans. (B) $\mathrm{Hg}\left[\mathrm{Co}(\mathrm{SCN})_{4}\right]$

$\mathrm{n}=3$
$\mu_{\mathrm{s}}=\sqrt{\mathrm{n}(\mathrm{n}+2)}=\sqrt{3 \times 5}=\sqrt{15}$
15. A sodium salt of an unknown anion when treated with MgCl_{2} gives white precipitate only on boiling. The anion is
(A) $\mathrm{SO}_{4}{ }^{2-}$
(B) $\mathrm{HCO}_{3}{ }^{-}$
(C) $\mathrm{CO}_{3}{ }^{2-}$
(D) NO_{3}^{-}

Ans. $\quad(\mathrm{B}) \mathrm{MgCl}_{2}+2 \mathrm{NaHCO}_{3} \longrightarrow \underset{\text { soluble }}{ } \mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}+2 \mathrm{NaCl}$

$$
\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2} \xrightarrow{\Delta} \underset{\text { white }}{\mathrm{MgCO}_{3}} \downarrow+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}
$$

16*. Which Hydrogen like species will have same radius as that of Bohr orbit of Hydrogen atom?
(A) $\mathrm{n}=2, \mathrm{Li}^{+2}$
(B) $\mathrm{n}=2, \mathrm{Be}^{3+}$
(C) $\mathrm{n}=2, \mathrm{He}^{+}$
(D) $\mathrm{n}=3, \mathrm{Li}^{2+}$

Ans.
(B) $r=\frac{n^{2} r_{1\left(\mathrm{H}^{+}\right)}}{z}$

$$
\because \mathrm{r}=\mathrm{r}_{\left(\mathrm{H}^{+}\right)} \quad \therefore \mathrm{n}^{2}=\mathrm{z} \quad \therefore \mathrm{n}=2, \mathrm{z}=4
$$

$$
\text { so } \mathrm{r}_{2\left(\mathrm{Be}^{+3}\right)}=\mathrm{r}_{1\left(\mathrm{H}^{+}\right)}
$$

17.

Arrange in order of increasing acidic strength
(A) $\mathrm{X}>\mathrm{Z}>\mathrm{Y}$
(B) $\mathrm{Z}<\mathrm{X}>\mathrm{Y}$
(C) $\mathrm{X}>$ Y $>$ Z
(D) $\mathrm{Z}>\mathrm{X}>\mathrm{Y}$

Ans. (A) pKa value of carboxylic group is less than pKa of $-\stackrel{+}{\mathrm{N}} \mathrm{H}_{3}(\mathrm{y})$ in amino acid and $-\stackrel{+}{\mathrm{N}} \mathrm{H}_{3}(\mathrm{z})$ will have comparatively less pKa than $-\stackrel{+}{\mathrm{N}} \mathrm{H}_{3}(\mathrm{z})$ due to -I effect of carboxylate group.
18. $0.004 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ is isotonic with 0.01 M Glucose. Degree of dissociation of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ is
(A) 75%
(B) 50%
(C) 25%
(D) 85%

Ans. (A) $\pi_{\mathrm{Na}_{2} \mathrm{SO}_{4}}=\pi_{\text {Glucose }}=0.01 \times \mathrm{RT}$
or $0.01 \mathrm{RT}=\mathrm{i} \times 0.004 \mathrm{RT}$
$\mathrm{i}=2.5$
$\mathrm{Na}_{2} \mathrm{SO}_{4} \rightleftharpoons 2 \mathrm{Na}^{+}+\mathrm{SO}_{4}{ }^{-2}$
$1-\alpha \quad 2 \alpha \quad \alpha$
$\mathrm{i}=1+2 \alpha=2.5$
$\alpha=0.75$
or 75% dissociation
19. $\Delta \mathrm{H}_{\text {vap }}=30 \mathrm{KJ} /$ mole and $\Delta \mathrm{S}_{\text {vap. }}=75 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$. Find temperature of vapour, at one atmosphere
(A) 400 K
(B) 350 K
(C) 298 K
(D) 250 K

Ans. (A) $\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$
At equilibrium $\Delta \mathrm{G}=0$
$\mathrm{T}=\frac{\Delta \mathrm{H}}{\Delta \mathrm{S}}=\frac{30 \times 10^{3}}{75}=400 \mathrm{~K}$
20. 2 mol of an ideal gas expanded isothermally \& reversibly from 1 litre to 10 litres at 300 K . What is the enthalpy change?
(A) 4.98 KJ
(B) 11.47 KJ
(C) -11.47 KJ
(D) 0 KJ

Ans. (D) $\mathrm{H}=\mathrm{E}+\mathrm{PV}$
and $\Delta \mathrm{H}=\Delta \mathrm{E}+\Delta(\mathrm{PV})$
or $\Delta \mathrm{H}=\Delta \mathrm{E}+\mathrm{nR} \Delta \mathrm{T}$
$\Delta \mathrm{T}=0$
$\Delta \mathrm{E}=0$
$\therefore \Delta \mathrm{H}=0$
21*. (A) follows first order reaction. (A) \longrightarrow product
Concentration of A, changes from 0.1 M to 0.025 M in 40 minutes. Find the rate of reaction of A when concentration of A is 0.01 M
(A) $3.47 \times 10^{-4} \mathrm{M} \mathrm{min}^{-1}$
(B) $3.47 \times 10^{-5} \mathrm{M} \mathrm{min}^{-1}$
(C) $1.73 \times 10^{-4} \mathrm{M} \mathrm{min}^{-1}$
(D) $1.73 \times 10^{-5} \mathrm{M} \mathrm{min}^{-1}$

IIT-JEE2004-S-6

Ans. (A)Concentration changes from 0.01 to 0.025 M in 40 minutes $\Rightarrow 2 \mathrm{t}_{1 / 2}=40 \mathrm{~min}$
$\mathrm{t}_{1 / 2}=20 \mathrm{~min}$
$\mathrm{r}=\mathrm{K}[\mathrm{A}]=\frac{0.693}{20} \times 0.01=3.47 \times 10^{-4}$

22*. 2-hexyne gives trans-2-hexene on treatment with
(A) $\mathrm{Li} / \mathrm{NH}_{3}$
(B) $\mathrm{Pd} / \mathrm{BaSO}_{4}$
(C) LiAlH_{4}
(D) $\mathrm{Pt} / \mathrm{H}_{2}$

Ans. (A) Li/ NH_{3} brings about trans addition of H_{2}
23*. How many chiral compounds are possible on mono chlorination of 2-methyl butane?
(A) 2
(B) 4
(C) 6
(D) 8

Ans. (B)

$+$

24. Which of the following pairs give positive Tollen's test?
(A) Glucose, sucrose
(B) Glucose, fructose
(C) Hexanal, Acetophenone
(D) Fructose, sucrose

Ans. (B) Aldehydes and α - hydroxy ketones give positive Tollen's test. Glucose has an aldehydic group and fructose is an α hydroxy ketone
25. Which of the following has $-\mathrm{O}-\mathrm{O}$ - linkage
(A) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{6}$
(B) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$
(C) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$
(D) $\mathrm{H}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$

Ans. (B)

26. When I^{-}is oxidised by MnO_{4}^{-}in alkaline medium, I^{-}converts into
(A) $\mathrm{IO}_{3}{ }^{-}$
(B) I_{2}
(C) $\mathrm{IO}_{4}{ }^{-}$
(D) IO^{-}

Ans. (A) $2 \mathrm{KMnO}_{4}+2 \mathrm{KOH} \longrightarrow 2 \mathrm{~K}_{2} \mathrm{MnO}_{4}+\mathrm{H}_{2} \mathrm{O}+\mathrm{O}$
$\frac{2 \mathrm{~K}_{2} \mathrm{MnO}_{4}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{MnO}_{2}+4 \mathrm{KOH}+2 \mathrm{O}}{2 \mathrm{KMnO}_{4}+\mathrm{H}_{2} \mathrm{O} \xrightarrow{\text { alkaline }} 2 \mathrm{MnO}_{2}+2 \mathrm{KOH}+3[\mathrm{O}]}$
$\frac{\mathrm{KI}+[\mathrm{O}] \quad \longrightarrow \quad \mathrm{KIO}_{3}}{2 \mathrm{KMnO}_{4}+\mathrm{KI}+\mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{KOH}+2 \mathrm{MnO}_{2}+\mathrm{KIO}_{3}}$

27*. Number of lone pair(s) in XeOF_{4} is/are
(A) 0
(B) 1
(C) 2
(D) 3

Ans. (B) Structure of XeOF_{4}

Number of lone pairs on the central atom is 1.
28*. According to MO Theory,
(A) $\mathrm{O}_{2}{ }^{+}$is paramagnetic and bond order greater than O_{2}
(B) O_{2}^{+}is paramagnetic and bond order less than O_{2}
(C) O_{2}^{+}is diamagnetic and bond order is less than O_{2}
(D) $\mathrm{O}_{2}{ }^{+}$is diamagnetic and bond order is more than O_{2}

Ans. (A) $\mathrm{O}_{2}{ }^{+}$
B.O. $=\frac{1}{2}[$ no. of bonding - no. of antibonding electrons $]=\frac{1}{2}[10-5]=2.5$
$\mathrm{O}_{2} \quad$ B.O. $=\frac{1}{2}[10-6]$
$\sigma 1 \mathrm{~s}^{2} \sigma^{*} 1 \mathrm{~s}^{2} \sigma 2 \mathrm{~s}^{2} \sigma^{*} 2 \mathrm{~s}^{2} \sigma 2 \mathrm{pz}^{2}\left[\begin{array}{c}\pi 2 \mathrm{px}^{2} \\ \pi 2 \mathrm{py}^{2}\end{array}\right]\left[\begin{array}{c}* \\ \pi^{*} 2 \mathrm{px}^{1} \\ \pi^{*} 2 \mathrm{py}^{1}\end{array}\right]$
One unpaired e- hence paramagnetic
29*. A block P of mass m is placed on a horizontal frictionless plane. A second block of same mass m is placed on it and is connected to a spring of spring constant k , the two blocks are pulled by distance A. Block Q oscillates without slipping. What is the maximum
 value of frictional force between the two blocks.
(B) kA
(A) $\mathrm{kA} / 2$
(D) zero

Ans. (A) $\mathrm{a}_{\max }=\frac{\mathrm{k}}{2 \mathrm{~m}} \mathrm{~A}$, hence $\mathrm{f}_{\max }=\mathrm{ma}_{\max }=\frac{\mathrm{kA}}{2}$
30. A beam of white light is incident on glass air interface from glass to air such that green light just suffers total internal reflection. The colors of the light which will come out to air are
(A) Violet, Indigo, Blue
(B) All coolers except green
(C) Yellow, Orange, Red
(D) White light

Ans. (C) Condition for light to transmit is $\sin C<1 / \mu, \mu_{v}>\mu_{\mathrm{g}}>\mu_{\mathrm{r}}$
31. Six charges of equal magnitude, 3 positive and 3 negative are to be placed on PQRSTU corners of a regular hexagon, such that field at the centre is double that of what it would have been if only one +ve charge is placed at R
(A),,,,,+++---
(B),,,,,-+++--
(C),,,,,-++-+-
(D),,,,,+-+-+-

Ans. (C)

IIT-JEE2004-S-8

32. A Gaussian surface in the figure is shown by dotted line. The electric field on the surface will be
(A) due to q_{1} and q_{2} only
(B) due to q_{2} only
(C) zero
(D) due to all

Ans. (D)
33*. A horizontal circular plate is rotating about a vertical axis passing through its centre with an angular velocity ω_{0}. A man sitting at the centre having two blocks in his hands stretches out his hands so that the moment of inertia of the system doubles. If the kinetic energy of the system is K initially, its final kinetic energy will be
(A) 2 K
(B) $\mathrm{K} / 2$
(C) K
(D) K/4

Ans. (B) $I \omega_{0}=2 I \omega^{\prime} \Rightarrow \omega^{\prime}=\omega_{0} / 2$
$K=\frac{1}{2} \mathrm{I} \omega_{0}^{2}$
$\mathrm{K}^{\prime}=\quad \frac{1}{2} 2 \mathrm{I}\left(\frac{\omega_{0}}{2}\right)^{2}=\frac{\mathrm{K}}{2}$
34*. A particle is acted by a force $\mathrm{F}=\mathrm{kx}$, where k is $\mathrm{a}+\mathrm{ve}$ constant. Its potential energy at $\mathrm{x}=0$ is zero. Which curve correctly represents the variation of potential energy of the block with respect to x
(A)

(B)

(C)

(D)

Ans. (B) $U=-\int_{0}^{x} k x d x=-\frac{k x^{2}}{2}$
35. An equilateral prism is placed on a horizontal surface. A ray PQ is incident onto it. For minimum deviation
(A) PQ is horizontal
(B) QR is horizontal
(C) RS is horizontal

(D) Any one will be horizontal.

Ans. (B) For minimum deviation, $\mathrm{i}=\mathrm{e}$
36*. A pipe of length ℓ_{1}, closed at one end is kept in a chamber of gas of density ρ_{1}. A second pipe open at both ends is placed in a second chamber of gas of density ρ_{2}. The compressibility of both the gases is equal. Calculate the length of the second pipe if frequency of first overtone in both the cases is equal.
(A) $\frac{4}{3} \ell_{1} \sqrt{\frac{\rho_{2}}{\rho_{1}}}$
(B) $\frac{4}{3} \ell_{1} \sqrt{\frac{\rho_{1}}{\rho_{2}}}$
(C) $\ell_{1} \sqrt{\frac{\rho_{2}}{\rho_{1}}}$
(D) $\ell_{1} \sqrt{\frac{\rho_{1}}{\rho_{2}}}$

Ans. (B) $\ell_{1}=\frac{3}{4} \frac{v_{1}}{f_{1}}, \ell_{2}=\frac{v_{2}}{f_{2}}$
$\frac{3 \mathrm{v}_{1}}{4 \ell_{1}}=\frac{\mathrm{v}_{2}}{\ell_{2}}$
$\ell_{2}=\frac{4 \ell_{1} \mathrm{v}_{2}}{3 \mathrm{v}_{1}}=\frac{4 \ell_{1}}{3} \sqrt{\frac{\rho_{1}}{\rho_{2}}}$

37*. Three discs A, B and C having radii 2, 4, and 6 cm respectively are coated with carbon black. Wavelength for maximum intensity for the three discs are 300,400 and 500 nm respectively. If $\mathrm{Q}_{\mathrm{A}}, \mathrm{Q}_{\mathrm{B}}$ and Q_{C} are power emitted by A, B and C respectively, then
(A) Q_{A} will be maximum
(B) Q_{B} will be maximum
(C) Q_{C} will be maximum
(D) $\mathrm{Q}_{\mathrm{A}}=\mathrm{Q}_{\mathrm{B}}=\mathrm{Q}_{\mathrm{C}}$

Ans. (B) $\lambda_{\mathrm{m}} \mathrm{T}=$ constant
$\mathrm{T}_{1}: \mathrm{T}_{2}: \mathrm{T}_{3}:: \frac{1}{3}: \frac{1}{4}: \frac{1}{5}$
$\mathrm{Q}=\sigma \varepsilon \mathrm{AT}^{4}$
$\mathrm{Q}_{\mathrm{A}}: \mathrm{Q}_{\mathrm{B}}: \mathrm{Q}_{\mathrm{C}}:: \frac{2^{2}}{3^{4}}: \frac{4^{2}}{4^{4}}: \frac{6^{2}}{5^{4}}$
Q_{B} will be maximum.
38. Monochromatic light of wavelength 400 nm and 560 nm are incident simultaneously and normally on double slits apparatus whose slits separation is 0.1 mm and screen distance is 1 m . Distance between areas of total darkness will be
(A) 4 mm
(B) 5.6 mm
(C) 14 mm
(D) 28 mm

Ans. (D) $(2 \mathrm{n}+1) \lambda_{1}=(2 \mathrm{~m}+1) \lambda_{2}$
$\frac{2 \mathrm{n}+1}{2 \mathrm{~m}+1}=\frac{560}{400}=\frac{7}{5}$
$10 \mathrm{n}=14 \mathrm{~m}+2$
By inspection, for $\mathrm{m}=2 ; \mathrm{n}=3$

$$
\mathrm{m}=7 ; \mathrm{n}=10
$$

$\therefore \Delta \mathrm{s}=\frac{\lambda_{1} \mathrm{D}}{2 \mathrm{~d}}\left[\left(2 \mathrm{n}_{2}+1\right)-\left(2 \mathrm{n}_{1}+1\right)\right]=28 \mathrm{~mm}$.
39. Shown in figure is a Post Office box. In order to calculate the value of external resistance, it should be connected between
(A) B^{\prime} and C^{\prime}
(B) A and D
(C) C and D
(D) B and D

Ans. (B)
40*. A disc is rolling without slipping with angular velocity ω. P and Q are two points equidistant from the centre C . The order of magnitude of velocity is
(A) $v_{Q}>v_{C}>v_{P}$
(B) $\mathrm{v}_{\mathrm{P}}>\mathrm{v}_{\mathrm{C}}>\mathrm{v}_{\mathrm{Q}}$
(C) $\mathrm{v}_{\mathrm{P}}=\mathrm{v}_{\mathrm{C}}, \mathrm{v}_{\mathrm{Q}}=\mathrm{v}_{\mathrm{C}} / 2$
(D) $\mathrm{v}_{\mathrm{P}}<\mathrm{v}_{\mathrm{C}}>\mathrm{v}_{\mathrm{Q}}$

Ans. (B) About instantaneous axis of rotation i.e. point of contact $v=r \omega, r_{P}$ is maximum $\therefore v_{P}$ is maximum.

IIT-JEE2004-S-10

41*. A body starts from rest at time $t=0$, the acceleration time graph is shown in the figure. The maximum velocity attained by the body will be
(A) $110 \mathrm{~m} / \mathrm{s}$
(B) $55 \mathrm{~m} / \mathrm{s}$
(C) $650 \mathrm{~m} / \mathrm{s}$
(D) $550 \mathrm{~m} / \mathrm{s}$

Ans. (B) Maximum velocity $=$ area under the graph $=55 \mathrm{~m} / \mathrm{s}$.
42*. A source emits sound of frequency 600 Hz inside water. The frequency heard in air will be equal to (velocity of sound in water $=1500 \mathrm{~m} / \mathrm{s}$, velocity of sound in air $=300 \mathrm{~m} / \mathrm{s}$)
(A) 3000 Hz
(B) 120 Hz
(C) 600 Hz
(D) 6000 Hz

Ans. (C)
43*. If liquefied oxygen at 1 atmospheric pressure is heated from 50 k to 300 k by supplying heat at constant rate. The graph of temperature vs time will be

Ans. (C)
44. Six identical resistors are connected as shown in the figure. The equivalent resistance will be
(A) Maximum between P and R.
(B) Maximum between Q and R .
(C) Maximum between P and Q .
(D) all are equal.

Ans. (C)
45. In a photoelectric experiment anode potential is plotted against plate current

(A) A and B will have different intensities while B and C will have different frequencies.
(B) B and C will have different intensities while A and C will have different frequencies.
(C) A and B will have different intensities while A and C will have equal frequencies.
(D) A and B will have equal intensities while B and C will have different frequencies.

Ans. (A)

46*. Pressure depends on distance as, $\mathrm{P}=\frac{\alpha}{\beta} \exp \left(-\frac{\alpha \mathrm{z}}{\mathrm{k} \theta}\right)$, where α, β are constants, z is distance, k is Boltzman's constant and θ is temperature. The dimension of β are
(A) $\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}$
(B) $\mathrm{M}^{-1} \mathrm{~L}^{-1} \mathrm{~T}^{-1}$
(C) $\mathrm{M}^{0} \mathrm{~L}^{2} \mathrm{~T}^{0}$
(D) $\mathrm{M}^{-1} \mathrm{~L}^{1} \mathrm{~T}^{2}$

Ans. (C) $\frac{\alpha z}{\mathrm{k} \theta}$ should be dimensionless, hence $\alpha=\mathrm{MLT}^{-2}$
$\alpha / \beta=M L^{-1} T^{-2}=P$, hence $\beta=M^{0} L^{2} T^{0}$
47. An electron traveling with a speed u along the positive x-axis enters into a region of magnetic field where $B=-B_{0} \hat{k}(x>0)$. It comes out of the region with speed v then
(A) $v=u$ at $y>0$
(B) $v=u$ at $y<0$
(C) $v>u$ at $y>0$
(D) $v>u$ at $y<0$

Ans. (B) Charged particle will move in a circular path with constant speed inside the magnetic field.
48. A capacitor is charged using an external battery with a resistance x in series. The dashed line shows the variation of \ln I with respect to time. If the resistance is changed to 2 x , the new graph will be
(A) P
(B) Q
(C) R
(D) S

Ans. (B) $\mathrm{I}=\mathrm{I}_{0} \mathrm{e}^{-\mathrm{t} / \mathrm{xC}} \Rightarrow \ln \mathrm{I}=\ln \mathrm{I}_{0}-\mathrm{t} / \mathrm{xC}$
I_{0} is inversely proportional to x .
49. A 280 days old radioactive substance shows an activity of $6000 \mathrm{dps}, 140$ days later it's activity becomes 3000 dps . What was its initial activity
(A) 20000 dps
(B) 24000 dps
(C) 12000 dps
(D) 6000 dps

Ans. (B) $\mathrm{A}_{1}=\lambda \mathrm{N}_{1}=\lambda \mathrm{N}_{0} \mathrm{e}^{-\lambda t_{1}}, \mathrm{~A}_{2}=\lambda \mathrm{N}_{2}=\lambda \mathrm{N}_{0} \mathrm{e}^{-\lambda \mathrm{t}_{2}}$ and $\mathrm{A}_{0}=\lambda \mathrm{N}_{0}=24000 \mathrm{dps}$.
50^{*}. Two identical rods are connected between two containers one of them is at $100^{\circ} \mathrm{C}$ and another is at $0^{\circ} \mathrm{C}$. If rods are connected in parallel then the rate of melting of ice $\mathrm{q}_{1} \mathrm{gm} / \mathrm{sec}$. If they are connected in series then rate is q_{2}. Then the ratio $\mathrm{q}_{2} / \mathrm{q}_{1}$ is
(A) 2
(B) 4
(C) $1 / 2$
(D) $1 / 4$

Ans. (D) $\mathrm{q}_{1}=\frac{C T}{\mathrm{R}_{\mathrm{T}} / 2}, \mathrm{q}_{2}=\frac{C T}{2 \mathrm{R}_{\mathrm{T}}}$ and $\mathrm{q}_{2} / \mathrm{q}_{1}=1 / 4$
51*. A particle starts sliding down a frictionless inclined plane. If S_{n} is the distance traveled by it from time $\mathrm{t}=$ $n-1 \sec$ to $t=n \sec$, the ratio S_{n} / S_{n+1} is
(A) $\frac{2 \mathrm{n}-1}{2 \mathrm{n}+1}$
(B) $\frac{2 n+1}{2 n}$
(C) $\frac{2 n}{2 n+1}$
(D) $\frac{2 n+1}{2 n-1}$

Ans. (A) $\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{a}}{2}(2 \mathrm{n}-1), \mathrm{S}_{\mathrm{n}+1}=\frac{\mathrm{a}}{2}(2 \mathrm{n}+2-1)$

IIT-JEE2004-S-12

52. A small bar magnet is being slowly inserted with constant velocity inside a solenoid as shown in figure. Which graph best represents the relationship between emf induced with time

(A)

(B)

(C)

(D)

Ans. (C)
53. A point object is placed at the centre of a glass sphere of radius 6 cm and refractive index 1.5. The distance of virtual image from the surface is
(A) 6 cm
(B) 4 cm
(C) 12 cm
(D) 9 cm

Ans. (A) Object is at centre of curvature, hence image will also be at centre of curvature.
54. A proton has kinetic energy $\mathrm{E}=100 \mathrm{keV}$ which is equal to that of a photon. The wavelength of photon is λ_{2} and that of proton is λ_{1}. The ratio of $\lambda_{1} / \lambda_{2}$ is proportional to
(A) E^{2}
(B) $\mathrm{E}^{1 / 2}$
(C) E^{-1}
(D) $\mathrm{E}^{-1 / 2}$

Ans. (B) $\lambda_{\text {proton }}=\frac{\mathrm{h}}{\sqrt{2 \mathrm{mE}}}, \lambda_{\text {photon }}=\frac{\mathrm{hc}}{\mathrm{E}}$.
55*. An ideal gas is initially at $\mathrm{P}_{1}, \mathrm{~V}_{1}$ is expanded to $\mathrm{P}_{2}, \mathrm{~V}_{2}$ and then compressed adiabatically to the same volume V_{1} and pressure P_{3}. If W is the net work done by the gas in complete process which of the following is true
(A) $\mathrm{W}>0 ; \quad \mathrm{P}_{3}>\mathrm{P}_{1}$
(B) $\mathrm{W}<0 ; \quad \mathrm{P}_{3}>\mathrm{P}_{1}$
(C) $\mathrm{W}>0 ; \quad \mathrm{P}_{3}<\mathrm{P}_{1}$
(D) $\mathrm{W}<0 ; \quad \mathrm{P}_{3}<\mathrm{P}_{1}$

Ans. (B)

56*. A wire of length $\ell=6 \pm 0.06 \mathrm{~cm}$ and radius $\mathrm{r}=0.5 \pm 0.005 \mathrm{~cm}$ and mass $\mathrm{m}=0.3 \pm 0.003 \mathrm{gm}$. Maximum percentage error in density is
(A) 4
(B) 2
(C) 1
(D) 6.8

Ans.

$$
\begin{aligned}
& \text { (A) } \rho=\frac{\mathrm{m}}{\ell \pi \mathrm{r}^{2}} \\
& \frac{\Delta \rho}{\rho}=\frac{\Delta \mathrm{m}}{\mathrm{~m}}+\frac{2 \Delta \mathrm{r}}{\mathrm{r}}+\frac{\Delta \ell}{\ell}=\frac{0.003}{0.3}+\frac{2 \times 0.005}{0.5}+\frac{0.06}{6}=\frac{4}{100}=4 \%
\end{aligned}
$$

57*. The sides of a triangle are in the ratio $1: \sqrt{3}: 2$, then the angles of the triangle are in the ratio
(A) $1: 3: 5$
(B) $2: 3: 4$
(C) $3: 2: 1$
(D) $1: 2: 3$

Ans. (D) Let $\mathrm{a}=\mathrm{x}, \mathrm{b}=\sqrt{3} \mathrm{x}, \mathrm{c}=2 \mathrm{x}$
$c^{2}=\mathrm{a}^{2}+\mathrm{b}^{2} \Rightarrow \angle \mathrm{C}=90^{\circ}$
$\tan \mathrm{A}=\frac{1}{\sqrt{3}} \Rightarrow \angle \mathrm{~A}=30^{\circ}$.
$\Rightarrow \mathrm{A}: \mathrm{B}: \mathrm{C}=1: 2: 3$.

58*. Area of the triangle formed by the line $x+y=3$ and angle bisectors of the pair of straight lines $x^{2}-y^{2}+2 y=1$ is
(A) 2 sq. units
(B) 4 sq. units
(C) 6 sq. units
(D) 8 sq. units

Ans. (A) $x^{2}-y^{2}+2 y-1=0$
\Rightarrow Equations of lines are $y=x+1, y=-x+1$
\Rightarrow angle bisectors are $y=1$ and $x=0$
\Rightarrow area of triangle $=\frac{1}{2} \times 2 \times 2=2$ sq. units
59. If three distinct numbers are chosen randomly from the first 100 natural numbers, then the probability that all three of them are divisible by both 2 and 3 is
(A) $4 / 25$
(B) $4 / 35$
(C) $4 / 33$
(D) $4 / 1155$

Ans. (D) Numbers between 1 and 100 which are divisible by both 2 and 3 are 16 .
Hence the probability is $\frac{{ }^{16} \mathrm{C}_{3}}{{ }^{100} \mathrm{C}_{3}}=\frac{4}{1155}$.
60. The area enclosed between the curves $y=a x^{2}$ and $x=a y^{2}(a>0)$ is 1 sq. unit, then the value of a is
(A) $1 / \sqrt{3}$
(B) $1 / 2$
(C) 1
(D) $1 / 3$

Ans. (A) Points of intersection of $y=a x^{2}$ and $x=a y^{2}$ are $(0,0)$ and $\left(\frac{1}{a}, \frac{1}{a}\right)$.
Hence $\int_{0}^{1 / a}\left(\sqrt{\frac{x}{a}}-\mathrm{ax}^{2}\right) \mathrm{dx}=1 \Rightarrow \mathrm{a}=\frac{1}{\sqrt{3}} \quad($ as $\mathrm{a}>0)$.

61*. Given both θ and ϕ are acute angles and $\sin \theta=\frac{1}{2}, \cos \phi=\frac{1}{3}$, then the value of $\theta+\phi$ belongs to
(A) $\left(\frac{\pi}{3}, \frac{\pi}{2}\right]$
(B) $\left(\frac{\pi}{2}, \frac{2 \pi}{3}\right]$
(C) $\left(\frac{2 \pi}{3}, \frac{5 \pi}{6}\right]$
(D) $\left(\frac{5 \pi}{6}, \pi\right]$

Ans. (B) $\sin \theta=\frac{1}{2} \Rightarrow \theta=\frac{\pi}{6}$
$\cos \phi=\frac{1}{3} \Rightarrow \frac{\pi}{3}<\phi<\frac{\pi}{2} \Rightarrow \theta+\phi \in\left(\frac{\pi}{2}, \frac{2 \pi}{3}\right)$.

IIT-JEE2004-S-14

62*. If tangents are drawn to the ellipse $x^{2}+2 y^{2}=2$, then the locus of the mid-point of the intercept made by the tangents between the coordinate axes is
(A) $\frac{1}{2 x^{2}}+\frac{1}{4 y^{2}}=1$
(B) $\frac{1}{4 \mathrm{x}^{2}}+\frac{1}{2 \mathrm{y}^{2}}=1$
(C) $\frac{x^{2}}{2}+\frac{y^{2}}{4}=1$
(D) $\frac{x^{2}}{4}+\frac{y^{2}}{2}=1$

Ans. (A) Equation of tangent at any point ' θ ' is $\frac{x}{\sqrt{2}} \cos \theta+y \sin \theta=1$ and the midpoint of its intercept between the axes is $\left(\frac{\sqrt{2}}{2} \sec \theta, \frac{1}{2} \operatorname{cosec} \theta\right) \Rightarrow$ locus is $\frac{1}{2 \mathrm{x}^{2}}+\frac{1}{4 \mathrm{y}^{2}}=1$.
63. If $f(x)$ is differentiable and $\int_{0}^{t^{2}} x f(x) d x=\frac{2}{5} t^{5}$, then $f\left(\frac{4}{25}\right)$ equals
(A) $2 / 5$
(B) $-5 / 2$
(C) 1
(D) $5 / 2$

Ans. (A) Differentiating both sides, we get

$$
\mathrm{t}^{2} \mathrm{f}\left(\mathrm{t}^{2}\right) \cdot 2 \mathrm{t}=\frac{5 \mathrm{t}^{4} \cdot 2}{5} \Rightarrow \mathrm{f}\left(\mathrm{t}^{2}\right)=\mathrm{t} \Rightarrow \mathrm{f}\left(\frac{4}{25}\right)= \pm \frac{2}{5}
$$

64*. The value of x for which $\sin \left(\cot ^{-1}(1+x)\right)=\cos \left(\tan ^{-1} x\right)$ is
(A) $1 / 2$
(B) 1
(C) 0
(D) $-1 / 2$

Ans. (D) $\frac{1}{\sqrt{1+(1+x)^{2}}}=\frac{1}{\sqrt{1+x^{2}}} \Rightarrow x^{2}+2 x+2=x^{2}+1 \Rightarrow x=-\frac{1}{2}$.
65. If $f(x)=x^{3}+\mathrm{bx}^{2}+\mathrm{cx}+\mathrm{d}$ and $0<\mathrm{b}^{2}<\mathrm{c}$, then in $(-\infty, \infty)$
(A) $f(x)$ is a strictly increasing function
(B) $f(x)$ has a local maxima
(C) $f(x)$ is a strictly decreasing function
(D) $f(x)$ is bounded

Ans. $\quad(A) f^{\prime}(x)=3 x^{2}+2 b x+c$
$D=4 b^{2}-12 \mathrm{c}=4\left(\mathrm{~b}^{2}-\mathrm{c}\right)-8 \mathrm{c} \Rightarrow \mathrm{D}<0 \Rightarrow \mathrm{f}^{\prime}(\mathrm{x})>0 \forall \mathrm{x} \in(-\infty, \infty) \Rightarrow \mathrm{f}(\mathrm{x})$ is an increasing function.
66*. If $\omega(\neq 1)$ be a cube root of unity and $\left(1+\omega^{2}\right)^{n}=\left(1+\omega^{4}\right)^{n}$, then the least positive value of n is
(A) 2
(B) 3
(C) 5
(D) 6

Ans. (B) $\left(1+\omega^{2}\right)^{\mathrm{n}}=\left(1+\omega^{4}\right)^{\mathrm{n}} \Rightarrow(-\omega)^{\mathrm{n}}=\left(-\omega^{2}\right)^{\mathrm{n}} \Rightarrow(\omega)^{\mathrm{n}}=1 \Rightarrow \mathrm{n}=3$.
67. If $f(x)=x^{\alpha} \log x$ and $f(0)=0$, then the value of α for which Rolle's theorem can be applied in [0, 1] is
(A) -2
(B) -1
(C) 0
(D) $1 / 2$

Ans. (D) For function to satisfy the condition of Rolle's theorem, it should be continuous in [0, 1]
$\Rightarrow \lim _{\mathrm{x} \rightarrow 0^{+}} \mathrm{f}(\mathrm{x})=\mathrm{f}(0) \Rightarrow \lim _{\mathrm{x} \rightarrow 0^{+}} \frac{\log \mathrm{x}}{\mathrm{x}^{-\alpha}}=0 \Rightarrow \lim _{\mathrm{x} \rightarrow 0^{+}} \frac{1 / \mathrm{x}}{-\alpha \mathrm{x}^{-\alpha-1}}=0 \Rightarrow \alpha>0$.
Also $\forall \alpha>0, f(x)$ is differentiable in $(0,1)$ and $f(1)=0=f(0)$.

68*. For all ' x ', $x^{2}+2 a x+10-3 a>0$, then the interval in which ' a ' lies is
(A) $a<-5$
(B) $-5<a<2$
(C) $a>5$
(D) $2<$ a <5

Ans. (B) $\mathrm{D}<0 \Rightarrow 4 \mathrm{a}^{2}-4(10-3 \mathrm{a})<0 \Rightarrow 4 \mathrm{a}^{2}+12 \mathrm{a}-40<0 \Rightarrow-5<\mathrm{a}<2$.
69*. The angle between the tangents drawn from the point $(1,4)$ to the parabola $y^{2}=4 x$ is
(A) $\pi / 6$
(B) $\pi / 4$
(C) $\pi / 3$
(D) $\pi / 2$

Ans. (C) Equation of tangent is $\mathrm{y}=\mathrm{mx}+\frac{1}{\mathrm{~m}}$.
Since it passes through $(1,4)$
$\therefore \mathrm{m}^{2}-4 \mathrm{~m}+1=0 \Rightarrow \mathrm{~m}_{1}+\mathrm{m}_{2}=4, \mathrm{~m}_{1} \mathrm{~m}_{2}=1 \Rightarrow\left|\mathrm{~m}_{1}-\mathrm{m}_{2}\right|=2 \sqrt{3}$
$\therefore \tan \theta=\frac{2 \sqrt{3}}{2}=\sqrt{3} \Rightarrow \theta=\frac{\pi}{3}$.
70*. If one root is square of the other root of the equation $x^{2}+p x+q=0$, then the relation between p and q is
(A) $\mathrm{p}^{3}-\mathrm{q}(3 \mathrm{p}-1)+\mathrm{q}^{2}=0$
(B) $\mathrm{p}^{3}-\mathrm{q}(3 \mathrm{p}+1)+\mathrm{q}^{2}=0$
(C) $\mathrm{p}^{3}+\mathrm{q}(3 \mathrm{p}-1)+\mathrm{q}^{2}=0$
(D) $\mathrm{p}^{3}+\mathrm{q}(3 \mathrm{p}+1)+\mathrm{q}^{2}=0$

Ans. (A) Let the roots be α, α^{2}
$\Rightarrow \alpha^{2}+\alpha=-\mathrm{p}, \alpha^{3}=\mathrm{q} \Rightarrow \alpha(\alpha+1)=-\mathrm{p} \Rightarrow \alpha^{3}\left(\alpha^{3}+1+3\left(\alpha^{2}+\alpha\right)\right)=-\mathrm{p}^{3} \Rightarrow \mathrm{p}^{3}-\mathrm{q}(3 \mathrm{p}-1)+\mathrm{q}^{2}=0$.
71. The value of the integral $\int_{0}^{1} \sqrt{\frac{1-\mathrm{x}}{1+\mathrm{x}}} \mathrm{dx}$ is
(A) $\frac{\pi}{2}+1$
(B) $\frac{\pi}{2}-1$
(C) -1
(D) 1

Ans. (B) Let $\mathrm{I}=\int_{0}^{1} \sqrt{\frac{1-\mathrm{x}}{1+\mathrm{x}}} d x$. Put $\mathrm{x}=\cos \theta \Rightarrow d x=-\sin \theta d \theta$ then $\mathrm{I}=\int_{0}^{\pi / 2}(1-\cos \theta) \mathrm{d} \theta=\frac{\pi}{2}-1$.
72. If $\vec{a}=(\hat{i}+\hat{j}+\hat{k}), \vec{a} \cdot \vec{b}=1$ and $\vec{a} \times \vec{b}=\hat{j}-\hat{k}$, then \vec{b} is
(A) $\hat{i}-\hat{j}+\hat{k}$
(B) $2 \hat{\mathrm{j}}-\hat{\mathrm{k}}$
(C) $\hat{\mathrm{i}}$
(D) $2 \hat{\mathrm{i}}$

Ans. (C) $\vec{a} \times(\vec{a} \times \vec{b})=(\vec{a} \cdot \vec{b}) \vec{a}-(\vec{a} \cdot \vec{a}) \vec{b}$
$(\hat{i}+\hat{j}+\hat{k}) \times(\hat{j}-\hat{k})=(\hat{i}+\hat{j}+\hat{k})-3 \vec{b} \Rightarrow \vec{b}=\hat{i}$.

73*. If ${ }^{n-1} C_{r}=\left(k^{2}-3\right){ }^{n} C_{r+1}$, then $k \in$
(A) $(-\infty,-2]$
(B) $[2, \infty)$
(C) $[-\sqrt{3}, \sqrt{3}]$
(D) $(\sqrt{3}, 2]$

Ans.
(D) ${ }^{\mathrm{n}-1} \mathrm{C}_{\mathrm{r}}=\left(\mathrm{k}^{2}-3\right) \frac{\mathrm{n}}{\mathrm{r}+1}{ }^{\mathrm{n}-1} \mathrm{C}_{\mathrm{r}} \Rightarrow \mathrm{k}^{2}-3=\frac{\mathrm{r}+1}{\mathrm{n}}$
$\therefore 0<\mathrm{k}^{2}-3 \leq 1$ or $3<\mathrm{k}^{2} \leq 4$.

IIT-JEE2004-S-16

74. If $f(x)=\sin x+\cos x, g(x)=x^{2}-1$, then $g(f(x))$ is invertible in the domain
(A) $\left[0, \frac{\pi}{2}\right]$
(B) $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$
(C) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
(D) $[0, \pi]$

Ans. (B) $g(f(x))=(\sin x+\cos x)^{2}-1=\sin 2 x$ which is invertible in $\left[\frac{-\pi}{4}, \frac{\pi}{4}\right]$.
75. If $y=y(x)$ and $\frac{2+\sin x}{y+1}\left(\frac{d y}{d x}\right)=-\cos x, y(0)=1$, then $y\left(\frac{\pi}{2}\right)$ equals
(A) $1 / 3$
(B) $2 / 3$
(C) $-1 / 3$
(D) 1

Ans. (A) $\frac{d y}{y+1}=\frac{-\cos x}{2+\sin x} d x$
$\ln (y+1)=-\ln (2+\sin x)+\ln c \Rightarrow y+1=\frac{c}{2+\sin x}$. Putting $x=0$ and $y=1$, we get $c=4$
$\Rightarrow \mathrm{y}\left(\frac{\pi}{2}\right)=\frac{1}{3}$.
76. If the lines $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}$ and $\frac{x-3}{1}=\frac{y-k}{2}=\frac{z}{1}$ intersect, then the value of k is
(A) $3 / 2$
(B) $9 / 2$
(C) $-2 / 9$
(D) $-3 / 2$

Ans. (B) General points on the lines are $(2 \lambda+1,3 \lambda-1,4 \lambda+1)$ and $(\mu+3,2 \mu+k, \mu)$ Equating the corresponding coordinates, we get $\mathrm{k}=9 / 2$.
77. Given $2 x-y-2 z=2, x-2 y+z=-4, x+y+\lambda z=4$ then the value of λ such that the given system of equation has NO solution, is
(A) 3
(B) 1
(C) 0
(D) -3

Ans. (D) As $\Delta_{z} \neq 0$, for no solution $\Delta=0 \Rightarrow\left|\begin{array}{ccc}2 & -1 & -2 \\ 1 & -2 & 1 \\ 1 & 1 & \lambda\end{array}\right|=0 \Rightarrow \lambda=-3$.
78*. If the line $2 x+\sqrt{6} y=2$ touches the hyperbola $x^{2}-2 y^{2}=4$, then the point of contact is
(A) $(-2, \sqrt{6})$
(B) $(-5,2 \sqrt{6})$
(C) $\left(\frac{1}{2}, \frac{1}{\sqrt{6}}\right)$
(D) $(4,-\sqrt{6})$

Ans. (D) Equation of tangent is $x_{1}-2 y_{1}=4$ on comparing with $2 x+\sqrt{6} y=2$, we get $x_{1}=4$ and $y_{1}=-\sqrt{6}$.
79. If $\mathrm{A}=\left[\begin{array}{ll}\alpha & 2 \\ 2 & \alpha\end{array}\right]$ and $\left|\mathrm{A}^{3}\right|=125$ then the value of α is
(A) ± 1
(B) ± 2
(C) ± 3
(D) ± 5

Ans. (C) $|A|^{3}=125 \Rightarrow|A|=5 \Rightarrow \alpha= \pm 3$.
80. The unit vector which is orthogonal to the vector $5 \hat{i}+2 \hat{j}+6 \hat{k}$ and is coplanar with the vectors $2 \hat{i}+\hat{j}+\hat{k}$ and $\hat{i}-\hat{j}+\hat{k}$ is
(A) $\frac{2 \hat{\mathrm{i}}-6 \hat{\mathrm{j}}+\hat{\mathrm{k}}}{\sqrt{41}}$
(B) $\frac{2 \hat{\mathrm{i}}-5 \hat{\mathrm{j}}}{\sqrt{29}}$
(C) $\frac{3 \hat{\mathrm{j}}-\hat{\mathrm{k}}}{\sqrt{10}}$
(D) $\frac{2 \hat{\mathrm{i}}-8 \hat{\mathrm{j}}+\hat{\mathrm{k}}}{\sqrt{69}}$

Ans. (C) Let $\vec{a}=5 \hat{i}+2 \hat{j}+6 \hat{k}, \vec{b}=2 \hat{i}+\hat{j}+\hat{k}, \vec{c}=\hat{i}-\hat{j}+\hat{k}$, then required unit vector will be along $\vec{a} \times(\vec{b} \times \vec{c})$. $\overrightarrow{\mathrm{a}} \times(\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}})=27 \hat{\mathrm{j}}-9 \hat{\mathrm{k}} \Rightarrow$ unit vector is $\frac{3 \hat{\mathrm{j}}-\hat{\mathrm{k}}}{\sqrt{10}}$.
81. If $f(x)$ is differentiable and strictly increasing function, then the value of $\lim _{x \rightarrow 0} \frac{f\left(x^{2}\right)-f(x)}{f(x)-f(0)}$ is
(A) 1
(B) 0
(C) -1
(D) 2

Ans. (C) Using L'Hospital's rule

$$
\lim _{x \rightarrow 0} \frac{2 x f^{\prime}\left(x^{2}\right)-f^{\prime}(x)}{f^{\prime}(x)}=-1 \quad\left(\because f^{\prime}(x)>0 \quad \forall x\right)
$$

82*. An infinite G.P. has first term ' x ' and sum ' 5 ', then x belongs to
(A) $x<-10$
(B) $-10<x<0$
(C) $0<x<10$
(D) $x>10$

Ans. (C) The sum of an infinite G.P. $=\frac{\mathrm{x}}{1-\mathrm{r}}=5$ (given)
$|r|<1 \Rightarrow\left|1-\frac{x}{5}\right|<1 \Rightarrow 0<x<10$.
83*. If one of the diameters of the circle $x^{2}+y^{2}-2 x-6 y+6=0$ is a chord to the circle with centre $(2,1)$, then the radius of the circle is
(A) $\sqrt{3}$
(B) $\sqrt{2}$
(C) 3
(D) 2

Ans. (C) Centre is $(1,3)$ and radius $=2$
If $r=$ radius of second circle then $r^{2}=2^{2}+(3-1)^{2}+(2-1)^{2} \Rightarrow r=3$.
84. If y is a function of x and $\log (x+y)-2 x y=0$, then the value of $y^{\prime}(0)$ is equal to
(A) 1
(B) -1
(C) 2
(D) 0

Ans. (A) At $x=0, y=1$
$\log (x+y)-2 x y=0$
$\frac{1}{x+y}\left(1+\frac{d y}{d x}\right) \frac{d y}{d x}=0 \Rightarrow \frac{d y}{d x}=\left.\frac{2 y(x+y)-1}{1-2(x+y) x} \Rightarrow \frac{d y}{d x}\right|_{(0,1)}=1$.

Note: fIITJEG solutions to IIT-JEE, 2004 Screening Test is based on Screening Test paper created using memory retention of select fIITJGe students appeared in this test and hence may not exactly be the same as the original paper. However, every effort has been made to reproduce the original paper in the interest of the aspiring students.

