IIT-JEE2005-M-1

fIITJG Solutions to IITJEE-2005 Mains Paper

Mathematics

Time: 2 hours

Note: Question number 1 to 8 carries 2 marks each, 9 to 16 carries 4 marks each and 17 to 18 carries 6 marks each.

Q1. A person goes to office either by car, scooter, bus or train probability of which being $\frac{1}{7}, \frac{3}{7}, \frac{2}{7}$ and $\frac{1}{7}$ respectively. Probability that he reaches office late, if he takes car, scooter, bus or train is $\frac{2}{9}, \frac{1}{9}, \frac{4}{9}$ and $\frac{1}{9}$ respectively. Given that he reached office in time, then what is the probability that he travelled by a car.

Sol. Let C, S, B, T be the events of the person going by car, scooter, bus or train respectively.
Given that $\mathrm{P}(\mathrm{C})=\frac{1}{7}, \mathrm{P}(\mathrm{S})=\frac{3}{7}, \mathrm{P}(\mathrm{B})=\frac{2}{7}, \mathrm{P}(\mathrm{T})=\frac{1}{7}$
Let \bar{L} be the event of the person reaching the office in time.
$\Rightarrow \mathrm{P}\left(\frac{\overline{\mathrm{L}}}{\mathrm{C}}\right)=\frac{7}{9}, \mathrm{P}\left(\frac{\overline{\mathrm{L}}}{\mathrm{S}}\right)=\frac{8}{9}, \mathrm{P}\left(\frac{\overline{\mathrm{L}}}{\mathrm{B}}\right)=\frac{5}{9}, \mathrm{P}\left(\frac{\overline{\mathrm{L}}}{\mathrm{T}}\right)=\frac{8}{9}$
$\Rightarrow P\left(\frac{C}{\bar{L}}\right)=\frac{P\left(\frac{\bar{L}}{C}\right) \cdot P(C)}{P(\bar{L})}=\frac{\frac{1}{7} \times \frac{7}{9}}{\frac{1}{7} \times \frac{7}{9}+\frac{3}{7} \times \frac{8}{9}+\frac{2}{7} \times \frac{5}{9}+\frac{8}{9} \times \frac{1}{7}}=\frac{1}{7}$.
Q2. Find the range of values of t for which $2 \sin t=\frac{1-2 x+5 x^{2}}{3 x^{2}-2 x-1}, t \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

Sol. Let $\mathrm{y}=2 \sin \mathrm{t}$
so, $y=\frac{1-2 x+5 x^{2}}{3 x^{2}-2 x-1}$
$\Rightarrow(3 y-5) x^{2}-2 x(y-1)-(y+1)=0$
since $x \in R-\left\{1,-\frac{1}{3}\right\}$, so $D \geq 0$
$\Rightarrow y^{2}-\mathrm{y}-1 \geq 0$
or $\mathrm{y} \geq \frac{1+\sqrt{5}}{2}$ and $\mathrm{y} \leq \frac{1-\sqrt{5}}{2}$
or $\sin t \geq \frac{1+\sqrt{5}}{4}$ and $\sin t \leq \frac{1-\sqrt{5}}{4}$
Hence range of t is $\left[-\frac{\pi}{2},-\frac{\pi}{10}\right] \cup\left[\frac{3 \pi}{10}, \frac{\pi}{2}\right]$.
Q3. Circles with radii 3,4 and 5 touch each other externally if P is the point of intersection of tangents to these circles at their points of contact. Find the distance of P from the points of contact.

IIT-JEE2005-M-2

Sol. Let A, B, C be the centre of the three circles.
Clearly the point P is the in-centre of the $\triangle A B C$, and hence
$r=\frac{\Delta}{s}=\frac{\sqrt{s(s-a)(s-b)(s-c)}}{s}=\sqrt{\frac{(s-a)(s-b)(s-c)}{s}}$
Now $2 \mathrm{~s}=7+8+9=24 \Rightarrow \mathrm{~s}=12$.
Hence $r=\sqrt{\frac{5 \cdot 4 \cdot 3}{12}}=\sqrt{5}$.

Q4. Find the equation of the plane containing the line $2 x-y+z-3=0,3 x+y+z=5$ and at a distance of $\frac{1}{\sqrt{6}}$ from the point $(2,1,-1)$.

Sol. Let the equation of plane be $(3 \lambda+2) x+(\lambda-1) y+(\lambda+1) z-5 \lambda-3=0$
$\Rightarrow\left|\frac{6 \lambda+4+\lambda-1-\lambda-1-5 \lambda-3}{\sqrt{(3 \lambda+2)^{2}+(\lambda-1)^{2}+(\lambda+1)^{2}}}\right|=\frac{1}{\sqrt{6}}$
$\Rightarrow 6(\lambda-1)^{2}=11 \lambda^{2}+12 \lambda+6 \Rightarrow \lambda=0,-\frac{24}{5}$.
\Rightarrow The planes are $2 x-y+z-3=0$ and $62 x+29 y+19 z-105=0$.
Q5. If $\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|<\left(x_{1}-x_{2}\right)^{2}$, for all $x_{1}, x_{2} \in R$. Find the equation of tangent to the curve $y=f(x)$ at the point (1, 2).

Sol. $\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|<\left(x_{1}-x_{2}\right)^{2}$
$\Rightarrow \lim _{x_{1} \rightarrow x_{2}}\left|\frac{f\left(x_{1}\right)-f\left(x_{2}\right)}{x_{1}-x_{2}}\right|<\lim _{x_{1} \rightarrow x_{2}}\left|x_{1}-x_{2}\right| \Rightarrow\left|f^{\prime}(x)\right|<\delta \Rightarrow f^{\prime}(x)=0$.
Hence $f(x)$ is a constant function and $P(1,2)$ lies on the curve.
$\Rightarrow f(x)=2$ is the curve.
Hence the equation of tangent is $y-2=0$.
Q6. If total number of runs scored in n matches is $\left(\frac{n+1}{4}\right)\left(2^{n+1}-n-2\right)$ where $n>1$, and the runs scored in the $k^{\text {th }}$ match are given by $k .2^{n+1-k}$, where $1 \leq k \leq n$. Find n.

Sol. Let $S_{n}=\sum_{k=1}^{n} k .2^{n+1-k}=2^{n+1} \sum_{k=1}^{n} k \cdot 2^{-k}=2^{n+1} \cdot 2\left[1-\frac{1}{2^{n}}-\frac{n}{2^{n+1}}\right] \quad$ (sum of the A.G.P.)
$=2\left[2^{n+1}-2-n\right]$
$\Rightarrow \frac{\mathrm{n}+1}{4}=2 \Rightarrow \mathrm{n}=7$.
Q7. The area of the triangle formed by the intersection of a line parallel to x-axis and passing through $P(h, k)$ with the lines $y=x$ and $x+y=2$ is $4 h^{2}$. Find the locus of the point P.

Sol. Area of triangle $=\frac{1}{2} . A B . A C=4 h^{2}$
and $A B=\sqrt{2}|k-1|=A C$
$\Rightarrow 4 \mathrm{~h}^{2}=\frac{1}{2} \cdot 2 \cdot(\mathrm{k}-1)^{2}$
$\Rightarrow \mathrm{k}-1= \pm 2 \mathrm{~h}$.
\Rightarrow locus is $y=2 x+1, y=-2 x+1$.

IIT-JEE2005-M-3

Q8. Evaluate $\int_{0}^{\pi} e^{|\cos x|}\left(2 \sin \left(\frac{1}{2} \cos x\right)+3 \cos \left(\frac{1}{2} \cos x\right)\right) \sin x d x$.

Sol. $\quad I=\int_{0}^{\pi} e^{|\cos x|}\left(2 \sin \left(\frac{1}{2} \cos x\right)+3 \cos \left(\frac{1}{2} \cos x\right)\right) \sin x d x$
$=6 \int_{0}^{\pi / 2} e^{\cos x} \sin x \cos \left(\frac{1}{2} \cos x\right) d x \quad \because \int_{0}^{2 a} f(x) d x=\left\{\begin{array}{ll}0, & \text { if } f(2 a-x)=-f(x) \\ 2 \int_{0}^{a} f(x) d x, & \text { if } f(2 a-x)=f(x)\end{array}\right)$
Let $\cos x=t$
$I=6 \int_{0}^{1} e^{t} \cos \left(\frac{t}{2}\right) d t$
$=\frac{24}{5}\left(e \cos \left(\frac{1}{2}\right)+\frac{e}{2} \sin \left(\frac{1}{2}\right)-1\right)$.
Q9. Incident ray is along the unit vector \hat{v} and the reflected ray is along the unit vector \hat{w}. The normal is along unit vector \hat{a} outwards. Express \hat{w} in terms of \hat{a} and \hat{v}.

Sol. $\quad \hat{v}$ is unit vector along the incident ray and \hat{w} is the unit vector along the reflected ray. Hence \hat{a} is a unit vector along the external bisector of \hat{v} and \hat{w}. Hence
$\hat{w}-\hat{v}=\lambda \hat{a}$
$\Rightarrow 1+1-\hat{w} \cdot \hat{v}=\lambda^{2}$
or $2-2 \cos 2 \theta=\lambda^{2}$
or $\lambda=2 \sin \theta$
where 2θ is the angle between \hat{v} and \hat{w}.
Hence $\hat{w}-\hat{v}=2 \sin \theta \hat{a}=2 \cos \left(90^{\circ}-\theta\right) \hat{a}=-(2 \hat{a} \cdot \hat{v}) \hat{a}$
$\Rightarrow \hat{w}=\hat{v}-2(\hat{a} \cdot \hat{v}) \hat{a}$.
Q10. Tangents are drawn from any point on the hyperbola $\frac{x^{2}}{9}-\frac{y^{2}}{4}=1$ to the circle $x^{2}+y^{2}=9$. Find the locus of mid-point of the chord of contact.
Sol. Any point on the hyperbola $\frac{x^{2}}{9}-\frac{y^{2}}{4}=1$ is $(3 \sec \theta, 2 \tan \theta)$.
Chord of contact of the circle $x^{2}+y^{2}=9$ with respect to the point $(3 \sec \theta, 2 \tan \theta)$ is
$3 \sec \theta \cdot x+2 \tan \theta \cdot y=9$
Let $\left(x_{1}, y_{1}\right)$ be the mid-point of the chord of contact.
\Rightarrow equation of chord in mid-point form is $x_{1}+y_{1}=x_{1}{ }^{2}+y_{1}{ }^{2}$
Since (1) and (2) represent the same line,
$\frac{3 \sec \theta}{x_{1}}=\frac{2 \tan \theta}{y_{1}}=\frac{9}{x_{1}{ }^{2}+y_{1}{ }^{2}}$
$\Rightarrow \sec \theta=\frac{9 x_{1}}{3\left(x_{1}^{2}+y_{1}^{2}\right)}, \tan \theta=\frac{9 y_{1}}{2\left(x_{1}^{2}+y_{1}^{2}\right)}$
Hence $\frac{81 x_{1}{ }^{2}}{9\left(x_{1}{ }^{2}+y_{1}{ }^{2}\right)^{2}}-\frac{81 y_{1}{ }^{2}}{4\left(x_{1}{ }^{2}+y_{1}{ }^{2}\right)^{2}}=1$
\Rightarrow the required locus is $\frac{x^{2}}{9}-\frac{y^{2}}{4}=\left(\frac{x^{2}+y^{2}}{9}\right)^{2}$.

IIT-JEE2005-M-4

Q11. Find the equation of the common tangent in $1^{\text {st }}$ quadrant to the circle $x^{2}+y^{2}=16$ and the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{4}=1$. Also find the length of the intercept of the tangent between the coordinate axes.

Sol. Let the equations of tangents to the given circle and the ellipse respectively be
$y=m x+4 \sqrt{1+m^{2}}$
and $y=m x+\sqrt{25 m^{2}+4}$
Since both of these represent the same common tangent,
$4 \sqrt{1+m^{2}}=\sqrt{25 m^{2}+4}$
$\Rightarrow 16\left(1+\mathrm{m}^{2}\right)=25 \mathrm{~m}^{2}+4$
$\Rightarrow \mathrm{m}= \pm \frac{2}{\sqrt{3}}$
The tangent is at a point in the first quadrant $\Rightarrow \mathrm{m}<0$.
$\Rightarrow m=-\frac{2}{\sqrt{3}}$, so that the equation of the common tangent is
$y=-\frac{2}{\sqrt{3}} x+4 \sqrt{\frac{7}{3}}$.
It meets the coordinate axes at $A(2 \sqrt{7}, 0)$ and $B\left(0,4 \sqrt{\frac{7}{3}}\right)$
$\Rightarrow A B=\frac{14}{\sqrt{3}}$.

Q12. If length of tangent at any point on the curve $y=f(x)$ intercepted between the point and the x-axis is of length 1 . Find the equation of the curve.

Sol. Length of tangent $=\left|y \sqrt{1+\left(\frac{d x}{d y}\right)^{2}}\right| \Rightarrow 1=y^{2}\left[1+\left(\frac{d x}{d y}\right)^{2}\right]$
$\Rightarrow \frac{d y}{d x}= \pm \frac{y}{\sqrt{1-y^{2}}} \Rightarrow \int \frac{\sqrt{1-y^{2}}}{y} d y= \pm x+c$.
Writing $y=\sin \theta, d y=\cos \theta d \theta$ and integrating, we get the equation of the curve as
$\sqrt{1-y^{2}}+\ln \left|\frac{1-\sqrt{1-y^{2}}}{y}\right|= \pm x+c$.
Q13. Find the area bounded by the curves $x^{2}=y, x^{2}=-y$ and $y^{2}=4 x-3$.
Sol. The region bounded by the given curves
$x^{2}=y, x^{2}=-y$ and $y^{2}=4 x-3$ is
symmetrical about the x-axis. The parabolas $x^{2}=y$
and $y^{2}=4 x-3$ touch at the point $(1,1)$.
Moreover the vertex of the curve
$y^{2}=4 x-3$ is at $\left(\frac{3}{4}, 0\right)$.
Hence the area of the region
$=2\left[\int_{0}^{1} x^{2} d x-\int_{3 / 4}^{1} \sqrt{4 x-3} d x\right]$

$=2\left[\left(\frac{x^{3}}{3}\right)_{0}^{1}-\frac{1}{6}\left((4 x-3)^{3 / 2}\right)_{3 / 4}^{1}\right]=2\left[\frac{1}{3}-\frac{1}{6}\right]=\frac{1}{3}$. sq. units.

IIT-JEE2005-M-5

Q14. If one of the vertices of the square circumscribing the circle $|z-1|=\sqrt{2}$ is $2+\sqrt{3} i$. Find the other vertices of square.

Sol. Since centre of circle i.e. $(1,0)$ is also the mid-point of diagonals of square
$\Rightarrow \frac{\mathrm{z}_{1}+\mathrm{z}_{2}}{2}=\mathrm{z}_{0} \Rightarrow \mathrm{z}_{2}=-\sqrt{3 \mathrm{i}}$
and $\frac{z_{3}-1}{z_{1}-1}=e^{ \pm i \pi / 2}$
\Rightarrow other vertices are
$z_{3}, z_{4}=(1-\sqrt{3})+i$ and $(1+\sqrt{3})-i$.

Q15. If $f(x-y)=f(x) . g(y)-f(y) . g(x)$ and $g(x-y)=g(x) . g(y)+f(x) . f(y)$ for all $x, y \in R$. If right hand derivative at $x=0$ exists for $f(x)$. Find derivative of $g(x)$ at $x=0$.

Sol. $\quad f(x-y)=f(x) g(y)-f(y) g(x)$
Put $x=y$ in (1), we get
$f(0)=0$
put $y=0$ in (1), we get
$g(0)=1$.
Now, $f^{\prime}\left(0^{+}\right)=\lim _{h \rightarrow 0^{+}} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0^{+}} \frac{f(0) g(-h)-g(0) f(-h)-f(0)}{h}$
$=\lim _{h \rightarrow 0^{+}} \frac{f(-h)}{-h}$
$(\because f(0)=0)$
$=\lim _{h \rightarrow 0^{+}} \frac{f(0-h)-f(0)}{-h}$
$=f^{\prime}\left(0^{-}\right)$.
Hence $f(x)$ is differentiable at $x=0$.
Put $y=x$ in $g(x-y)=g(x) . g(y)+f(x)$. $f(y)$.
Also $f^{2}(x)+g^{2}(x)=1$
$\Rightarrow g^{2}(x)=1-\mathrm{f}^{2}(\mathrm{x})$
$\Rightarrow 2 \mathrm{~g}^{\prime}(0) \mathrm{g}(0)=-2 \mathrm{f}(0) \mathrm{f}^{\prime}(0)=0 \Rightarrow \mathrm{~g}^{\prime}(0)=0$.
Q16. If $p(x)$ be a polynomial of degree 3 satisfying $p(-1)=10, p(1)=-6$ and $p(x)$ has maximum at $x=-1$ and $p^{\prime}(x)$ has minima at $x=1$. Find the distance between the local maximum and local minimum of the curve.

Sol. Let the polynomial be $P(x)=a x^{3}+b x^{2}+c x+d$
According to given conditions
$P(-1)=-a+b-c+d=10$
$P(1)=a+b+c+d=-6$
Also $P^{\prime}(-1)=3 a-2 b+c=0$
and $P^{\prime \prime}(1)=6 a+2 b=0 \Rightarrow 3 a+b=0$
Solving for a, b, c, d we get
$P(x)=x^{3}-3 x^{2}-9 x+5$
$\Rightarrow P^{\prime}(x)=3 x^{2}-6 x-9=3(x+1)(x-3)$
$\Rightarrow x=-1$ is the point of maximum and $x=3$ is the point of minimum.
Hence distance between $(-1,10)$ and $(3,-22)$ is $4 \sqrt{65}$ units.
Q17. $f(x)$ is a differentiable function and $g(x)$ is a double differentiable function such that $|f(x)| \leq 1$ and $f^{\prime}(x)=g(x)$. If $f^{2}(0)+g^{2}(0)=9$. Prove that there exists some $c \in(-3,3)$ such that $g(c) . g^{\prime \prime}(c)<0$.

Sol. Let us suppose that both $g(x)$ and $g^{\prime \prime}(x)$ are positive for all $x \in(-3,3)$.
Since $f^{2}(0)+g^{2}(0)=9$ and $-1 \leq f(x) \leq 1,2 \sqrt{2} \leq g(0) \leq 3$.
From $f^{\prime}(x)=g(x)$, we get
$f(x)=\int_{-3}^{x} g(x) d x+f(-3)$.

IIT-JEE2005-M-6

Moreover, $\mathrm{g}^{\prime \prime}(\mathrm{x})$ is assumed to be positive
\Rightarrow the curve $\mathrm{y}=\mathrm{g}(\mathrm{x})$ is open upwards.
If $g(x)$ is decreasing, then for some value of $x \int_{-3}^{x} g(x) d x>$ area of the rectangle $(0-(-3)) 2 \sqrt{2}$
$\Rightarrow \mathrm{f}(\mathrm{x})>2 \sqrt{2} \times 3-1$ i.e. $\mathrm{f}(\mathrm{x})>1$ which is a contradiction.
If $g(x)$ is increasing, for some value of $x \int_{-3}^{x} g(x) d x>$ area of the rectangle $\left.(3-0)\right) 2 \sqrt{2}$
$\Rightarrow f(x)>2 \sqrt{2} \times 3-1$ i.e. $f(x)>1$ which is a contradiction.
If $g(x)$ is minimum at $x=0$, then $\int_{-3}^{x} g(x) d x>$ area of the rectangle $(3-0) 2 \sqrt{2}$
$\Rightarrow \mathrm{f}(\mathrm{x})>2 \sqrt{2} \times 6-1$ i.e. $\mathrm{f}(\mathrm{x})>1$ which is a contradiction.
Hence $g(x)$ and $g^{\prime \prime}(x)$ cannot be both positive throughout the interval $(-3,3)$.
Similarly we can prove that $g(x)$ and $g^{\prime \prime}(x)$ cannot be both negative throughout the interval $(-3,3)$.
Hence there is atleast one value of $c \in(-3,3)$ where $g(x)$ and $g^{\prime \prime}(x)$ are of opposite sign
$\Rightarrow \mathrm{g}(\mathrm{c}) . \mathrm{g}^{\prime \prime}(\mathrm{c})<0$.

Alternate:

$\int_{0}^{3} g(x) d x=\int_{0}^{3} f^{\prime}(x) d x=f(3)-f(0)$
$\Rightarrow\left|\int_{0}^{3} g(x) d x\right|<2$
In the same way $\left|\int_{-3}^{0} g(x) d x\right|<2$
$\Rightarrow\left|\int_{0}^{3} g(x) d x\right|+\left|\int_{-3}^{0} g(x) d x\right|<4$
From $(f(0))^{2}+(g(0))^{2}=9$
we get
$2 \sqrt{2}<g(0)<3$
or $-3<g(0)<-2 \sqrt{2}$
Case I: $2 \sqrt{2}<g(0)<3$
Let $\mathrm{g}(\mathrm{x})$ is concave upward $\forall \mathrm{x}(-3,3)$ then the area
$\left|\int_{-3}^{0} g(x) d x\right|+\left|\int_{0}^{3} g(x) d x\right|>6 \sqrt{2}$
which is a contradiction from equation (3).
$\therefore \mathrm{g}(\mathrm{x})$ will be concave downward for some c
$\in(-3,3)$ i.e. $g^{\prime \prime}(c)<0$

also at that point c
g (c) will be greater than $2 \sqrt{2}$
$\Rightarrow \mathrm{g}(\mathrm{c})>0$
From equation (6) and (7)
g (c). $\mathrm{g}^{\prime \prime}$ (c) <0 for some $\mathrm{c} \in(-3,3)$.

IIT-JEE2005-M-7

Case II: $-3<g(0)<-2 \sqrt{2}$
Let $\mathrm{g}(\mathrm{x})$ is concave downward $\forall \mathrm{x}(-3,3)$ then the area
$\left|\int_{-3}^{0} g(x) d x\right|+\left|\int_{0}^{3} g(x) d x\right|>6 \sqrt{2}$
which is a contradiction from equation (3).
$\therefore g(x)$ will be concave upward for some $c \in(-3,3)$ i.e. $g^{\prime \prime}(c)>0$
also at that point c
g (c) will be less than $-2 \sqrt{2}$
$\Rightarrow \mathrm{g}(\mathrm{c})<0$
From equation (8) and (9)
$g(c) . g^{\prime \prime}(c)<0$ for some $c \in(-3,3)$.
Q18. If $\left[\begin{array}{ccc}4 a^{2} & 4 a & 1 \\ 4 b^{2} & 4 b & 1 \\ 4 c^{2} & 4 c & 1\end{array}\right]\left[\begin{array}{c}f(-1) \\ f(1) \\ f(2)\end{array}\right]=\left[\begin{array}{c}3 a^{2}+3 a \\ 3 b^{2}+3 b \\ 3 c^{2}+3 c\end{array}\right], f(x)$ is a quadratic function and its maximum value occurs at a
point V. A is a point of intersection of $y=f(x)$ with x-axis and point B is such that chord $A B$ subtends a right angle at V. Find the area enclosed by $f(x)$ and chord $A B$.

Sol. Let we have
$4 a^{2} f(-1)+4 a f(1)+f(2)=3 a^{2}+3 a$
$4 b^{2} f(-1)+4 b f(1)+f(2)=3 b^{2}+3 b$
$4 c^{2} f(-1)+4 c f(1)+f(2)=3 c^{2}+3 c$
(3)

Consider a quadratic equation
$4 x^{2} f(-1)+4 x f(1)+f(2)=3 x^{2}+3 x$
or $[4 f(-1)-3] x^{2}+[4 f(1)-3] x+f(2)=0$
As equation (4) has three roots i.e. $x=a, b, c$. It is an identity.
$\Rightarrow \mathrm{f}(-1)=\frac{3}{4}, \mathrm{f}(1)=\frac{3}{4}$ and $\mathrm{f}(2)=0$
$\Rightarrow f(x)=\frac{\left(4-x^{2}\right)}{4}$
Let point A be $(-2,0)$ and B be $\left(2 t,-t^{2}+1\right)$
Now as $A B$ subtends a right angle at the vertex V $(0,1)$
$\frac{1}{2} \times \frac{-t^{2}}{2 t}=-1 \Rightarrow t=4$
$\Rightarrow B \equiv(8,-15)$
\therefore Area $=\int_{-2}^{8}\left(\frac{4-x^{2}}{4}+\frac{3 x+6}{2}\right) d x=\frac{125}{3}$ sq. units.

