IBPS Specialist Officers (IT)

Model Paper

KEY

ANSWERS:

1. 4.
1. 3: From the fourth line of the second paragraph.

3. 3

4. 1
5. 5: In the last sentence of the second para.
6. 4: Second and third para tells about Indian concept of life and treatment while the last para tells about western concept of life and knowledge about medical science.
7. 5: It is clearly given in the last sentence of the passage: "the contribution of this science in the third filed of non-communicable diseases in remarkably poor"...
8. 2
9. 1
10. 4
11. 3
12. 1
13. 5
14. 3
15. 2
16. 4
17. 2
18. 3
19. 5
20. 3
21. 2: Mahesh was so extremely impressed by the fascinating paintings that he purchased all of them although they were very expensive.
22. 2: In spite of observing all the Yogic exercises very carefully, Raju could not successes in practing even a single one.
23. 3: But for his shyness, he possesses all the qualities of a good leader.
24. 4: Shyam was extraordinary enough to face all the problem with utmost courage.
Unlike any ordinary person, Shyam faced all the problems with utmost courage.
25. 2 26. 5
26. 3: Use either reception or party but certainly not together.
27. 2: I will not only come...
28. 3: In comparison we should use prefer to instead of prefer than.
29. 5
30. 4: More intelligent
31. 4: Depended upon.
32. 4: Didn't you?
33. 2: Brought out
34. 3: Had died of accident. (Because information was received after the death, hence past perfect tense will be used for former incident.)
36.4
37.1: Here p simple present tense is used. Hence delete will.
35. 1: One of my good qualities
36. 1: 'Of is not used with 'comprise'.
37. 4
41.4
38. 4
39. 3
40. 5
41. 1
42. 3
47.4
43. 5
44. 3
45. 5
46. 5
47. 1: Let the number be x

According to the question, $\frac{2}{8}$ of $\frac{3}{8}$ of $\frac{1}{8} \times x=268.50$

$$
X=\frac{26380 \times 8 \times 8 \times 8}{2 \times 8}=5370 \Rightarrow 30 \% \text { of } x=\frac{30}{100} \times 5370=1611
$$

53.1

54. 2: ? $=31 \%$ of $3581+27 \%$ of $9319 \Rightarrow 1110.11+251.13 \approx 3625$
55. 3: Let the three-digit number be $100 x+10 y+z$.

According to the question, $(100 x+10 z+y)-(100 x+10 y+z)=54$ Or, $9 z-$
$9 y=54 \quad$ or, $z-y=6$
56. 4
57. 2: Difference between two lowest numbers $=12-7=5$

Difference between two highest numbers $=91-89=2$
Product of these two numbers $=5 \times 2=10$
58.1: $48 \sqrt{7} \times 4 \frac{2}{3}+7 \frac{5}{8}+3 \frac{1}{2}=? \quad$ or, $\quad ?=\frac{29}{4} \times \frac{14}{3}+\frac{47}{6} \times \frac{7}{2}=\frac{496}{12}+\frac{997}{12}=\frac{788}{19}=\frac{248}{4}=61 \frac{1}{4}$
59. 2
60.5
61. 2: Let the two numbers be $3 x$ and $2 x$.

According to the question, $10+(3 x+2 x)+(3 x \times 2 x)=(16)^{2}$
Or, $6 x^{2}+5 x-246=0$
Or, $6 x^{2}+41 x-36 x-246=0$
Or, $6 x(6 x+41)-6(6 x+41)=0$
Or, $(6 x+41)(x-6)=0 \Rightarrow X=6$ or $\frac{\text { 舥 }}{6}$ (But - ve value cannot be accepted)

On solving (i) and (ii) we get Rahul $=15$ years and Radha $=25$ years.
63. 3: The others parts are equal to 8940.37
64. 2: Required number $=\frac{4 \times \frac{4}{2}}{\frac{4}{6} \frac{1}{6} \frac{t}{6}}=1600$
65. 5: $x y=96050 \ldots$..(i) and $x z=95625 \ldots$..(ii) And $y-z=1 \ldots(i i i)$

Combining (iii) and (iv), we get $z=225$
66.1: Amount $=60000\left(1+\frac{2}{100}\right)^{3} \Rightarrow 60000 \times \frac{21}{20} \times \frac{21}{20} \times \frac{31}{20}=$ Rs $63,672.48$
67. 4: By allegation rule, So, 20 litres of the $2^{\text {nd }}$ solution be added.
68. 4
69.4: Let the total number of members in the meeting be x.

According to the question,
$X(x-1)=28 \times 2 \quad x=8$.
70.3: Required no. $=$ LCM of $5,6,8,9+, 3=, 360+, 3=363$
71.3: The series is $-2,-4,-8,-16, \ldots$

So, $P=186-4=182$
$?=\sqrt{F-13}=\sqrt{182-13}=13$
72. 5: The series is $\times 1.5, \div 2, \times 1.5, \div 2, \ldots$
73. 2: The series is $2 \frac{1}{3}$ in each term
74. 1: The series is $-38,-36,-32,-30,-26,-24$
75. 4: The series is $+12,+14,+16,+18 \ldots$
76. 3: $I \rightarrow$ No. of boys in the class $=\frac{4}{9} \times 45=20 \quad$ II. $\rightarrow \frac{B}{8}=\frac{5}{4}$ and $B-G=9$

Solving the above two, we get $B=45$
77. 5: $\mathbf{I} \rightarrow M=1,250$ and $F=1,050 \quad$ II $\rightarrow M: F=2: 1$

78. 1: $\mathbf{I} \rightarrow \mathrm{m}=999999 \mathrm{n}=100000 \quad ?=\mathrm{m}-\mathrm{n} \div 37$ = 999999-100000 $\div 37 \Rightarrow$ 999999-2702.70 =997296.30

II $\rightarrow m-n=$ known, but neither the value of ' m ' is known nor the value of ' n ' is known. So, we cannot find the values of $\mathrm{m}-\mathrm{n} \div 37$ by this statement.
79.2: $\mathbf{I} \rightarrow$ The fixed value of $C P$ is not given, so SP of the article cannot be determined.
II \rightarrow Let \times be SP of an articlex $\times \frac{00}{100}=\frac{000 \times 142}{1000} \quad x=\frac{000 \times 142}{80}=$ Rs 255.55
80. 5: $\mathbf{I} \rightarrow$ Area of the room $=9 \times 7=63 \mathrm{~m}^{2}$

$$
\text { II } \rightarrow \text { Rate }=\frac{\text { Greverfolishmathe fioor }}{\text { Areoof floor }}
$$

Combing both the statements,
Cost of polishing the rectangular floor $=63 \times 2.25=$ Rs 141.75
81.3: Total rose production $=(15+12.5+12.45+20+12.4+22.5+22.4+25)$

$$
\times 1000=142250
$$

Percentage production of rose in the statement (the lowest four states)
Rajasthan
Karnataka
8.71
8.75
Haryana
Gujarat
8.78
10.54
82. 1: Required percentage $=\frac{23 \% 90}{20} \times 100=25 \%$ (more)
83.4: Total production of rose by all the states $=142250 \Rightarrow$ Average $=\frac{142330}{8 \times 1000} \approx 18$ thousand
84. 2: Required percentage $=\frac{23}{12223} \times 100 \approx 20 \%$
85.5: It is 36.8% approximately.
86.1: Quicker Method: Required difference $=2(6-1)=10$
87. 5: Let the number be x.
$\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right) x=\left(\frac{\text { fhthti }}{12}\right) x=\frac{18}{12} x$
According to the question,
$\frac{18}{12} x-x=4 \quad x=48$
88.3: certain sum for the person $=\frac{\operatorname{cov} \times 100}{18}=$ Rs 5000

Interest on Rs 5000 by CI $=5000\left(1+\frac{6}{100}\right)-5000=$ Rs 955.08
More interest $=$ Rs ($955.08-900)$ - Rs 55.08.
89. 4: Inner surface area of the box

$$
=2 \times[13 \times 10+10 \times 7+7 \times 13] \Rightarrow 2[130+70+91]=2 \times 291=582 \mathrm{~cm}^{2}
$$

90. 2: Reqd. $\%$ increase $=\frac{10043}{100-10} \times 100-100 \Rightarrow \frac{102}{90} \times 100-100=\frac{109}{6}=16 \frac{2}{3} \%$
91. 1: The number should be 5555 in place of $5531 .-7^{2},-9^{2},-11^{2},-13^{2},-15^{2},-$ $17^{2} \ldots$
92. 2: the number should be 21 in place of $426 .+1,+2,+4,+8,+16,+32$
93. 4: The number should be 770 in place of $760 . \mathrm{X} 1,+2, x 2,+4, x 3+6, x 4+8$, $x 5+10, x 6+12, \ldots$
94. 4: The series is $0^{2}+4,1^{2}+2,3^{2}+0,6^{2}-2,10^{2}-4,15^{2}-6,21^{2}-8 \ldots$ Hence, 435 should be replaced with 433
95. 1: The number should be 2 in place of $1 \div 3.5, \div 3, \div 2.5, \div 2, \div 1.5, \div 1, \ldots$
96. 5: Year

2002 2003 2004

2005
2006

Required Percentage Change

$$
\frac{368-896}{268} \times 100=7.94 \text { (Decrease) }
$$

$$
\frac{348-896}{396} \times 100=3057 \text { (Increase) }
$$

$$
\left.\frac{3 \pi 8-206}{948} \times 100=6.32 \text { (Decrease }\right)
$$

$$
\frac{982-296}{926} \times 100=17.48 \text { (Increase) }
$$

97. 4: Requierd per cent $=\frac{290-268}{268} \times 100=9.43=9$
98. 2
99. 4: Required per cent $=\frac{314+396}{868} \times 100=\frac{649}{868} \times 100$

$$
=175.34=175
$$

100.3:

101. 2: All spoons are bowls \rightarrow conversion \rightarrow Some bowls are spoons. Hence II follows. No other conclusion follows.
(106-112): Hence the rule followed is:
In each step the fifth, third and first words become the first, second and third respectively. Fourth word remains at its previous positions. Sixth, seventh and eighth words shift one position leftward and the second word becomes the last, i.e. eight. For the sake of convenience, if we assign numeric value to these words, viz things-1, keep-2, dust-3, your-4, all-5, away-6, from-7, \& never -8 , the movement will be as follows:

Batch I (11am - 12 noon): 12345678
Batch II (12 noon -1pm): 53146782
Batch III (1pm-2pm): 61547823
Batch IV (2pm-3pm): $\begin{array}{llllllll}5 & 6 & 4 & 2 & 3\end{array}$
Batch V (3pm-4pm): 86742315
Batch VI (4pm-5pm): 27843156
Batch VII (5pm-6pm): 38241567
Batch VIII (6pm - 7pm): 123445678
106. 3: Batch VII: he for went then to the shop in

$$
\begin{array}{llllllll}
3 & 8 & 2 & 4 & 1 & 5 & 6 & 7
\end{array}
$$

Arrangement: shop to the then in for went he

| 6 | 1 | 5 | 4 | 7 | 8 | 2 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$107.4 \quad 108.2 \quad 109.3 \quad 110.5 \quad 111.2 \quad 112.1$
113. 4: Odd-positioned letters are coded as two positions forward and evenpositioned three positions forward.
114.1: Hence ' D ' is south-east of ' A '.
115.5: ? = G9K 116.5
117.1: I: (16-04-1999) - 22yrs. $=16$ - 04- 1977

II: The D.O.B. of Sudha is not known.
118.1: From I:

Sandeep - = Sushila's brohter's father-in-law's son
$=$ Sushila's borhter's brother -in-law.

From II: Sushila may be the wife or sister - in-law of Sandeep, Hence, not definite.
119.5: The exact date of foundation of the college can be known by using II and adding 25 years [using I] to that data.
120. 4: From I: Bell range at $7.15+5=7.20$ am

From II: Both B and C reached the school before 7.20am (using I). But exact time of reaching can't be determined. Hence, comparison is not possible.

122.1: F 6 Z $7 \underline{1}$ T 3 U XR $52 \underline{9}$ P 4 BA $7 \underline{8} \mathrm{D} 4 \underline{6}$ fGH2PQR
123. 3: $(5+6=) 11^{\text {th }}$ letter from left in the reversed series [among letters], or $11^{\text {th }}$ form right in the original series [among letters]. R is the required letter.
(124-130):

	i/(a)	ii/(b)	iii	$\mathrm{Iv}(\mathrm{c})$
104	\checkmark	$(\sqrt{ }$)		\checkmark
105	$(\sqrt{ }$)	\checkmark		\checkmark
106	\checkmark	\checkmark		$(\sqrt{ })$
107	\checkmark		$\sqrt{ }$	\times
108	$(\sqrt{ }$)		\checkmark	\checkmark
109	\times		\checkmark	\checkmark
110	\checkmark	\checkmark	\checkmark	\checkmark

(i) + (ii) + (iii) + (iv) $=$ Options 1
(a) + (ii) + (iii) + (iv) $=$ Option 2
(i) + (b) + (iii) + (iv) $=$ Option 3
(i) + (ii) $+($ iii $)+(\mathrm{c})=$ Option 5

Any other combination = Option 5
$\begin{array}{lllllll}124.3 & 125.2 & 126.4 & 127.5 & 128.2 & 129.5 & 130.1\end{array}$
131.4: $\mathrm{M}, \mathrm{T}, \mathrm{E}, \mathrm{I} \Rightarrow$ TIME, ITEM, MITE.
(132-134):
132.1
133.2: The rest are sitting adjacent to each other.

134.3

135.5: Total students in the class ($20+17-1=$) 36

Using given ratio $1: 2$, Boys $=12$, girls $=24$
Since Rita is a girl;
There are (17-8=)9 boys above Rita.
Hence ($12-9=$) 3 boys are below Rita.

(136-140):

136.4: $U>V$..(i), $W \leq Y$...(ii), $Y \geq U . .(i i)$

From (ii) and (iii), $W \leq Y \geq U \Rightarrow$ No relationship between W and U can be determined. Hence I is not true. Now, using (i), again no relationship between W and V can be determined.
137. 5: $B<A . .(i), D \cong E . .(i i), E>A . .(i i i)$

From (ii) and (iii), we get $D \geq E>A \Rightarrow D>A$. Hence I is true.
From (i) and (iii), we get $B<A<E \Rightarrow B<E$. Hence II is true.
138. 1: $S \geq Q \ldots$...(i), $R>T \ldots$ (ii), $R \leq s$. . (iii)

Combing all, we get, $\mathrm{Q} \leq \mathrm{S} \geq \mathrm{R}>\mathrm{T} \Rightarrow \mathrm{No}$
Relationship between Q and T can be determined.
Hence $I I$ is not true. But $S>T$. Hence I is true.
139.3: $A<N .$. (i),$P \geq Q \ldots$ (ii), $P>N \ldots$ (iii)

From (ii) and (iii), we get $\mathrm{N}<\mathrm{P} \geq \mathrm{Q} \Rightarrow$ No relationship between N and Q can be established. But I and II together are exhaustive. Hence either I or II is true.
140.2: $G \leq H \ldots$... $i), K \geq$ L...(ii), $L \leq G$... (iii) From 9ii) and (iii), we get, $\mathrm{K} \geq \mathrm{L} \leq \mathrm{G} \Rightarrow \mathrm{I}$ can't be established.
From (i) and (iii), we get $L \leq G \leq H \Rightarrow L \leq H$. Hence II is true.

141.2	142.1	143.5	144.1	145.5	146.3	147.4
148.4	149.2	150.5	151.2	152.3	153.2	154.2
155.4	156.4	157.1	158.2	159.2	160.2	161.1
162.1	163.3	164.3	165.2	166.4	167.4	168.4
169.3	170.4	171.4	172.2	173.2	174.3	175.4
176.2	177.1	178.1	179.4	180.1	181.2	182.3
183.2	184.1	185.3	186.1	187.4	188.2	189.4
190.2	191.1	192.2	193.5	194.5	195.3	196.1
197.3	198.2	199.3	200.2			

Prepared By,
Rameswar Mandali, Director, BFSI-Talent Sprint, Hyderabad.

