COMPUTER SCIENCE AND APPLICATIONS

- A file is downloaded in a home computer using a 56 kbps MODEM connected to an Internet Service Provider. If the download of file completes in 2 minutes, what is the maximum size of data downloaded ?
 (A) 112 Mbits (B) 6.72 Mbits
 (C) 67.20 Mbits (D) 672 Mbits
- 2. In _____ CSMA protocol, after the station finds the line idle, it sends or refrains from sending based on the outcome of a random number generator.
 - (A) Non-persistent
 - (B) 0-persistent
 - (C) 1-persistent
 - (D) p-persistent
- **3.** Which of the following substitution technique have the relationship between a character in the plaintext and a character in the ciphertext as one-to-many ?
 - (A) Monoalphabetic
 - (B) Polyalphabetic
 - (C) Transpositional
 - (D) None of the above
- **4.** What is the maximum length of CAT-5 UTP cable in Fast Ethernet network ?
 - (A) 100 meters (B) 200 meters
 - (C) 1000 meters (D) 2000 meters
- 5. The _____ is a set of standards that defines how a dynamic web document should be written, how input data should be supplied to the program, and how the output result should be used.
 - (A) Hyper Text Markup Language
 - (B) File Transfer Protocol
 - (C) Hyper Text Transfer Protocol
 - (D) Common Gateway Interface

- 6. The count-to-infinity problem is associated with
 - (A) Flooding algorithm
 - (B) Hierarchical routing algorithm
 - (C) Distance vector routing algorithm
 - (D) Link state routing algorithm
- 7. The IEEE single-precision and double-precision format to represent floating-point numbers, has a length of and respectively.
 - of _____ and ____ respectively
 - (A) 8 bits and 16 bits
 - (B) 16 bits and 32 bits
 - (C) 32 bits and 64 bits
 - (D) 64 bits and 128 bits
- 8. Consider an undirected graph G with 100 nodes. The maximum number of edges to be included in G so that the graph is not connected is
 - (A) 2451 (B) 4950
 - (C) 4851 (D) 9900
- 9. The amortized time complexity to perform _____ operation(s) in Splay trees is O(Ig n).
 - (A) Search
 - (B) Search and Insert
 - (C) Search and Delete
 - (D) Search, Insert and Delete
- 10. Suppose that the splits at every level of Quicksort are in proportion 1- β to β , where $0 < \beta \le 0.5$ is a constant. The number of elements in an array is n. The maximum depth is approximately
 - (A) $0.5 \beta \text{ Ig n}$
 - (B) $0.5 (1 \beta) \text{ Ig n}$
 - (C) $-(Ig n)/(Ig \beta)$
 - (D) $-(Ig n)/Ig (1 \beta)$

- **11.** The minimum number of nodes in a binary tree of depth d (root is at level 0) is
 - (A) $2^{d} 1$ (B) $2^{d+1} 1$ (C) d+1 (D) d
- **12.** The efficient data structure to insert/delete a number in a stored set of numbers is
 - (A) Queue
 - (B) Linked list
 - (C) Doubly linked list
 - (D) Binary tree
- 13. The number of states in a minimal deterministic finite automaton corresponding to the language $L = \{a^n \mid n \ge 4\}$ is (A) 3 (B) 4
 - (C) 5 (D) 6
- Regular expression for the language
 L = { w ∈ {0, 1}* | w has no pair of consecutive zeros} is
 - (A) $(1+010)^*$
 - (B) $(01 + 10)^*$
 - (C) $(1+010)^* (0+\lambda)$
 - (D) $(1+01)^*(0+\lambda)$
- **15.** Consider the following two languages :

 $L_1 = \{ a^n \ b^l \ a^k \quad | \ n+l \ {+}k {>}5 \ \}$

 $L_2 = \{a^n b^l a^k | n > 5, l > 3, k \le l \}$

Which of the following is true ?

- (A) L_1 is regular language and L_2 is not regular language.
- (B) Both L_1 and L_2 are regular languages.
- (C) Both L_1 and L_2 are not regular languages.
- (D) L_1 is not regular language and L_2 is regular language.

- 16. LL grammar for the language $L = \{a^{n} b^{m} c^{n+m} \mid m \ge 0, n \ge 0\} \text{ is}$ (A) $S \rightarrow aSc \mid S_{1}; S_{1} \rightarrow bS_{1}c \mid \lambda$
 - (B) $S \rightarrow aSc \mid S_1 \mid \lambda; S_1 \rightarrow bS_1c$
 - (C) $S \rightarrow aSc \mid S_1 \mid \lambda; S_1 \rightarrow bS_1c \mid \lambda$
 - (D) $S \rightarrow aSc \mid \lambda ; S_1 \rightarrow bS_1c \mid \lambda$
- **17.** Assume the statements S_1 and S_2 given as :
 - S_1 : Given a context free grammar G, there exists an algorithm for determining whether L(G) is infinite.
 - S_2 : There exists an algorithm to determine whether two context free grammars generate the same language.

Which of the following is true ?

- (A) S_1 is correct and S_2 is not correct.
- (B) Both S_1 and S_2 are correct.
- (C) Both S_1 and S_2 are not correct.
- (D) S_1 is not correct and S_2 is correct.
- **18.** The number of eight-bit strings beginning with either 111 or 101 is
 - (A) 64
 - (B) 128
 - (C) 265
 - (D) None of the above
- **19.** Find the number of ways to paint 12 offices so that 3 of them will be green, 2 of them pink, 2 of them yellow and the rest ones white.
 - (A) 55,440
 (B) 1,66,320
 (C) 4.790E+08
 (D) 39,91,680

S-87-13

- **20.** Consider the following statements :
 - (i) A graph in which there is a unique path between every pair of vertices is a tree.
 - (ii) A connected graph with e = v 1 is a tree.
 - (iii) A graph with e = v 1 that has no circuit is a tree.

Which of the above statements is/are true ?

- (A) (i) & (iii)
- (B) (ii) & (iii)
- (C) (i) & (ii)
- (D) All of the above
- 21. Consider the In-order and Post-order traversals of a tree as given below :In-order : j e n k o p b f a c l g m d h iPost-order : j n o p k e f b c l m g h i d aThe Pre-order traversal of the tree shall be
 - (A) abfejknopcdglmhi
 - (B) abcdefjknopglmhi
 - (C) abejknopfcdglmhi
 - (D) jenopkfbclmghida
- **22.** A simple graph G with n-vertices is connected if the graph has
 - (A) (n-1)(n-2)/2 edges
 - (B) more than (n 1) (n 2)/2 edges
 - (C) less than (n-1)(n-2)/2 edges
 - (D) $\sum_{i=1}^{k} C(n_i, 2)$ edges
- **23.** Which one of the following set of gates is best suited for 'parity' checking and 'parity' generation ?
 - (A) AND, OR, NOT
 - (B) NAND, NOR
 - (C) EX-OR, EX-NOR
 - (D) None of the above

- 24. The quantification \exists !x P(x) denotes the proposition "There exists a unique x such that P(x) is true", express the quantification using universal and existential quantifications and logical operators : (A) \exists x P(x) $\lor \forall$ x \forall y ((P(x) $\lor P(y)$)
 - $(\mathbf{r}_{1}) = \mathbf{r}_{1} \mathbf{r}_{2} \mathbf{r}_{2} \mathbf{r}_{3} \mathbf{r}_{$
 - (B) $\forall x P(x) \land \forall x \forall y ((P(x) \lor P(y)))$ $\rightarrow x = y)$
 - (C) $\exists x P(x) \land \forall x \forall y ((P(x) \land P(y)))$ $\rightarrow x = y)$
 - (D) $\exists x \ P(x) \land \exists x \exists y \ ((P(x) \lor P(y)) \rightarrow x = y)$
- **25.** If F and G are Boolean functions of degree n. Then, which of the following is true ?
 - (A) $F \leq F + G$ and $F G \leq F$
 - $(B) \quad G \leq F + G \text{ and } F \ G \geq G$
 - $(C) \quad F \geq F + G \text{ and } F G \leq F$
 - (D) $G \ge F + G$ and $F G \le F$
- **26.** Match the following identities/laws to their corresponding name :
 - (a) x + x = x i. Dominance $x \bullet x = x$
 - (b) x + 0 = x ii. Absorption $x \bullet 1 = x$
 - (c) x + 1 = 1 iii. Idempotent $x \bullet 0 = 0$
 - (d) $\mathbf{x} \bullet (\mathbf{x} + \mathbf{y}) = \mathbf{x}$ iv. Identity **Codes :**
 - (d) (a) (b) (c) (A) iii iv i ii **(B)** iv iii i ii (C) iv iii ii i i (D) iii iv ii
- 27. In which one of the following, continuous process improvement is done ?
 - (A) ISO9001
 - (B) RMMM
 - (C) CMM
 - (D) None of the above

Paper-II

- 28. _____ of a program or The computing system is the structure or structures of the system, which comprise software components, the externally visible properties of these components, and the relationship among them.
 - (A) E-R diagram
 - (B) Data flow diagram
 - (C) Software architecture
 - (D) Software design
- 29. Working software is not available until late in the process in
 - (A) Waterfall model
 - (B) Prototyping model
 - (C) Incremental model
 - (D) Evolutionary Development model
- 30. Equivalence partitioning is a _____ testing method that divides the input domain of a program into classes of data from which test cases can be derived.
 - (A) White box (B) Black box
 - (C) Regression (D) Smoke
- 31. Consider the following characteristics :
 - Correct and unambiguous (i)
 - (ii) Complete and consistent
 - (iii) Ranked for importance and/or stability and verifiable
 - (iv) Modifiable and Traceable Which of the following is true for a good SRS?
 - (A) (i), (ii) and (iii)
 - (B) (i), (iii) and (iv)
 - (C) (ii), (iii) and (iv)
 - (D) (i), (ii), (iii) and (iv)
- 32. Linked Lists are not suitable for
 - (A) Binary Search
 - (B) Polynomial Manipulation
 - (C) Insertion
 - (D) Radix Sort

33. What is the size of the following Union ? Assume that the size of int = 2, size of float = 4, size of char = 1union tag {

int a: float b: char c: }; (A) 2 (B) 4 (C) 1 (D) 7

34. What is the output of the following program segment? sum(n)

if (n < 1) return n; else return (n + sum(n-1));

main()

{

}

{

printf("%d", sum(5));

ĵ			
(A)	10	(B)	16
(C)	15	(D)	14

35. Assume that x and y are non-zero positive integers. What does the following program segment perform ?

$$\begin{cases} \\ \text{if } (x>y) \\ x = x-y \\ \text{else} \end{cases}$$

- (A) Computes LCM of two numbers
- Computes GCD of **(B)** two numbers
- (C) Divides large number with small number
- (D) Subtracts smaller number from large number

36. Consider the following program segment :

d=0; for(i=1; i<31, ++i) for(j=1; j<31, ++j) for(k=1; k<31, ++k) if ((i+j+k)%3)= = 0); d = d + 1; printf("%d", d); The output will be (A) 9000 (B) 30

- (A) 9000 (B) 3000 (C) 90 (D) 2700
- **37.** Usage of Preemption and Transaction Rollback prevents _____.
 - (A) Unauthorised usage of data file
 - (B) Deadlock situation
 - (C) Data manipulation
 - (D) File preemption
- 38. The _____ language was originally designed as the Transformation Language for Style Sheet facility.
 (A) XSTL
 (B) XML
 - (C) XQuery (D) XPath
 - (C) XQuery (D) XPath
- **39.** Views are useful for _____ unwanted information, and for collecting together information from more than one relation into a single view.
 - (A) Hiding
 - (B) Deleting
 - (C) Highlighting
 - (D) All of the above
- **40.** The decision tree classifier is a widely used technique for _____.
 - (A) Classification (B) Association
 - (C) Partition (D) Clustering
- **41.** Cross_tab displays permit users to view _____ of multidimensional data at a time.
 - (A) One dimension
 - (B) Two dimensions
 - (C) Three dimensions
 - (D) Multidimensions

- 42. A method to provide secure transmission of email is called _____.
 (A) TLS
 (B) SA
 - (C) IPSec (D) PGP
- **43.** Thoma's-write rule is _____.
 - (A) Two phase locking protocol
 - (B) Timestamp ordering protocol
 - (C) One phase locking protocol
 - (D) Sliding window protocol
- **44.** Match the following :

List – I			List - II			
Process state			Reason for			
1	transitio	n	transition			
а	Ready-	\rightarrow	i.	Request made		
	Runnir	ıg		by the process		
				is satisfied or		
				an event for		
				which it was		
1	ם ות	1.	::	waiting occurs.		
b		d→	ii.	Process wishes to wait for		
	Ready			some action by		
				another		
				process.		
с	Runnir	ıσ→	iii.	The process is		
C	Blocke	-		dispatched.		
d	Runnir	ıg→	iv.	The process is		
	Ready	-		preempted.		
С	odes :					
	а	b	c	d		
(A	A) iii	i	ii	iv		
(E	B) iv	i	iii			
(0	C) iv	iii	i	ii		
([D) iii	iii	ii	i		

- 45. The hit ratio of a Translation Look Aside Buffer (TLAB) is 80%. It takes 20 nanoseconds (ns) to search TLAB and 100 ns to access main memory. The effective memory access time is _____.
 (A) 36 ns
 (B) 140 ns
 - (C) 122 ns (D)

40 ns

46. Consider the input/output (I/O) requests made at different instants of time directed at a hypothetical disk having 200 tracks as given in the following table :

Serial	1	2	3	4	5
No.					
Track	12	85	40	100	75
No.					
Time of	65	80	110	100	175
arrival					

Assume that :

Current head position is at track no. 65

Direction of last movement is towards higher numbered tracks

Current clock time is 160 milliseconds

Head movement time per track is 1 millisecond.

"look" is a variant of "SCAN" diskarm scheduling algorithm. In this algorithm, if no more I/O requests are left in current direction, the disk head reverses its direction. The seek times in Shortest Seek First (SSF) and "look" disk-arm scheduling algorithms respectively are :

- (A) 144 and 123 milliseconds
- (B) 143 and 123 milliseconds
- (C) 149 and 124 milliseconds
- (D) 256 and 186 milliseconds
- 47. Assume that an implementation of Unix operating system uses i-nodes to keep track of data blocks allocated to a file. It supports 12 direct block addresses, one indirect block address and one double indirect block address. The file system has 256 bytes block size and 2 bytes for disk block address. The maximum possible size of a file in this system is (Λ) 16 MP (\mathbf{P}) 16 V D

(A)	10 MD	(D)	10 KD
(C)	70 KB	(D)	71 KB

- **48.** Which of the following set of Unix commands will always display "WELCOME" ?
 - (A) export title=WELCOME; Echo \$title
 - (B) title = WELCOME; export \$
 title ; sh -c "echo \$title"
 - (C) title = WELCOME; export title ; sh -c "echo \$title"
 - (D) title = WELCOME; echo \$title
- **49.** What type of logic circuit is represented by the figure shown below ?

50. The speed up of a pipeline processing over an equivalent non-pipeline processing is defined by the ratio :

(A)
$$S = \frac{n t_n}{(k+n-1)t_p}$$

(B)
$$S = \frac{n t_n}{(k+n+1)t_p}$$

(k + n + 1)t_p
C) S =
$$\frac{n t_n}{(k - n + 1)t}$$

(D)
$$S = \frac{(k+n-1)t_{\rm p}}{n t_{\rm p}}$$

Where $n \rightarrow no.$ of tasks

 $t_n \rightarrow \text{time of completion of}$ each task $k \rightarrow \text{no. of segments of}$ pipeline

- $t_n \rightarrow clock cycle time$
- $S \rightarrow$ speed up ratio

for more materials visit www.educationobserver.com/forum

Space For Rough Work