2007 KARNATAKA STATE NATIONAL INSTITUTE OF TECHNOLOGY

III SEM.B.TECH.-CHEMICAL ENGINEERING.

PROCESS CALCULATIONS
TIME : 1 HOUR

MARK : 30

NOTE :- Answer the following. Make appropriate assumptions wherever necessary and state them.

1]. A solution of sulfuric acid in water contains $22.25 \% \mathrm{H} 2 \mathrm{SO} 4$ (by weight) at $15.6^{\circ} \mathrm{C}$. The specific gravity of solution is 1.16 . Find the concentration of sulfuric acid in the solution in grams per liter. Also, compute the molarity, normality and molality of the solution.

2] An organic compound contains carbon, hydrogen and oxygen. A sample of the compound weighing 0.660 gm , upon complete combustion gives a 0.968 gm of carbon dioxide and 0.792 gm of water. Calculate the mass percentage of oxygen in the compound.

3] A Stock solution contains 5000 ppm of phenol (C6H5OH) in water at $28^{\circ} \mathrm{C}$. You are required to prepare 5 liters of phenolic water containing 50 ppm of phenol. What are the quantities of stock solution and distilled water you will take to prepare the required solution?
.4] A gas mixture containing 60% CO2, 10% CO, $5 \% \mathrm{CH} 4$ and 25% N2by volume at $250^{\circ} \mathrm{C}$ is flowing through a pipe line under a draft of 2 inches of water, at a flow rate of 1500 liters per minute. Compute the density and mass Dow rate of the mixture.

5] . A mixture of nitrogen gas and benzene vapor is available at $102.6 \mathrm{Kpa}, 26^{\circ} \mathrm{C}$, and $90 \mathrm{~m} 3 / \mathrm{hr}$; its relative saturation is 35%. The mixture is isothermally compressed to a final total pressure of 966.3 Kpa . Calculate the rate of condensation of benzene. The vapor pressure of benzene at $26^{\circ} \mathrm{C}$ may be taken as 100 mm Hg .

