2005 JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY

```
II B.TECH I SEMESTER SUPPLEMENTARY EXAMINATIONS
                    OPTIMIZATION TECHNIQUES
(ELECTRICAL \& ELECTRONIC ENGINEERING)
```

MAY 2005

1. (a) Explain the theory of multivariable optimization without constraints.
(b) What is objective function? Explain the objective function surfaces.
2. (a) Explain single variable optimization with illustrative example.
(b) Find the extreme points of the function.
$f(x 1, x 2)=x 3$
$1+\mathrm{x} 3$
$2+2 \mathrm{x} 2$
$1+2 \mathrm{x} 2$
$2+6$.
3. Solve the following system of equations by using pivot operations.
$4 \mathrm{x} 1+3 \mathrm{x} 2+\mathrm{x} 3=13$
$3 x 1+7 x 3=24$
$x 1+2 x 2+3 x 3=14$
4. (a) Give a generalized mathematical model of Linear Programming Problem.
(b) Explain about the Basic Feasible Solution.
(c) Explain the significance of 'key row', 'key column' and 'key number' and 'replacement ratio' with respect to a Simplex Method.
5. Maximize the following problem using Simplex Method.
$Z=10 x+y+2 z$ Subject to $x+y-2 z \rrbracket 10 ; 4 x+y+z \square 20$ and x, y and $z 0$
6. An oil company has three refinery stations and five filling stations. Transportation cost (rupees for barrel) for shipping oil from refinery station to filling station is shown in the following table. Filling Station Capacities F1F2F3F4F5 (barrels)

Refinery R1 36018027018054024
Station R2 4503604501809036
R3 54045036063027042
Requirementes 1212182424

7．Solve the following problem using dynamic programming technique：Maximized $z=28 x+7 y$ Subject to： $4 \mathrm{x}+3 \mathrm{y}$ 【 $12 ; 2 \mathrm{x} 1+5 \mathrm{x} 2$ 【 $10 ; \mathrm{x} 1$ ， x 2 【 0 ．

8．Write short notes on the following：
（a）Kuhn－Rucker conditions
（b）Limitations of Dynamic Programming Technique
（c）Simplex algorithm．

