General Instructions:

- i) The question-cum-answer booklet contains two Parts, **Part A** & **Part B**.
- ii) **Part A** consists of 60 questions and **Part B** consists of 16 questions.
- iii) Space has been provided in the question-cum-answer booklet itself to answer the questions.
- iv) Follow the instructions given in Part A and write the correct choice in full in the space provided below each question.
- v) For **Part B** enough space for each question is provided. You have to answer the questions in the space provided.
- vi) **Space for Rough Work** has been printed and provided at the bottom of each page.

PART - A

Four alternatives are suggested to each of the following questions / incomplete statements. Choose the most appropriate alternative and write the answer in the space provided below each question. $60 \times 1 = 60$

1.	If set $A = \{2, 3, 4, 5\}$ and set $B = \{4, 5\}$, then which of the following is a null
	set?

(A) A - B

(B) B-A

(C) $A \cup B$

(D) $A \cap B$.

- 2. P, Q and R are three sets, then $(P \cup Q) \cap (P \cup R) =$
 - (A) $P \cup (Q \cup R)$

(B) $P \cap (Q \cup R)$

(C) $P \cup (Q \cap R)$

(D) $P \cap (Q \cap R)$.

Ans.

3. A and B are the subsets of set $U, A' \cup B' = \{2, 3, 5\}$ and

 $U=\ \left\{\ 1,\ 2,\ 3,\ 4,\ 5,\ 6\ \right\}$, then $\ A\ \cap\ B=$

(A) $\{2, 3, 5\}$

- (B) { 1, 4 }
- (C) $\{1, 2, 3, 4, 5, 6\}$
- (D) { 1, 4, 6 }.

Ans.

		(SPACE FOR ROUGH WORK)
	Ans. :	
	(C) 128	(D) 256.
	(A) 16	(B) 64
8.	Geometric mean of three	e numbers is 4. Then their product is
	Ans. :	
	(C) 3n	(D) 2n.
	(A) 3	(B) 2
7.		sion $T_{n+5} = 35$ and $T_{n+1} = 23$ then common difference is
	Ans.:	(=) -1
	(C) 3	(D) 4.
	(A) 1	(B) 2
6.	Ans.: In an arithmetic progres	sion $T_n = 3n - 1$, then common difference =
		•
	(C) U	(D) φ.
	(A) A	(B) <i>B</i>
5.	In sets A and B if $A - B$	
	Ans. :	
	(C) 11	(D) 10.
	(A) 21	(B) 18
	Maths club only is	
		oth. 29 students are the members of Science club and embers of both the clubs. Then the number of students in
4.	In a class of 50 studen	ts everyone should be a member of either Science club, or

- 9. The harmonic mean of P and Q is
 - (A) $\frac{2(P+Q)}{PQ}$

(B) $\frac{2PQ}{P+Q}$

(C) $\frac{2 (P + Q)}{P - Q}$

(D) $\frac{2P+Q}{PQ}$.

Ans. : _____

- 10. If $\begin{bmatrix} 2 & 2x 6 \\ 0 & 3 \end{bmatrix}$ is a diagonal matrix, then x is equal to
 - (A) O

(B) 1

(C) 2

(D) 3.

Ans.

- 11. If $(AB)^{\prime} = \begin{bmatrix} 2 & 3 \\ 5 & 6 \end{bmatrix}$, then $B^{\prime} A^{\prime} =$
 - (A) $\begin{bmatrix} 2 & 5 \\ 3 & 6 \end{bmatrix}$

(B) $\begin{bmatrix} 2 & 3 \\ 6 & 5 \end{bmatrix}$

(C) $\left[\begin{array}{cc} 2 & 3 \\ 5 & 6 \end{array} \right]$

(D) $\begin{bmatrix} 5 & 6 \\ 2 & 3 \end{bmatrix}$.

Ans. : _____

- 12. ${}^{n}P_{1} + {}^{n}C_{1} =$
 - (A) 2n

(B) n

(C) 2

(D) n + 1.

Ans.:

		•	
13.	Value of 20 C_{18} =		
	(A) 360	(B)	300
	(C) 180	(D)	190.
	Ans. :		
14.	If $^n P_3 = 120$, then n is equal to		
	(A) 12	(B)	10
	(C) 8	(D)	6.
	Ans. :		
15.	The correct relation is		
	(A) ${}^n P_r = {}^n C_r \times \underline{r}$	(B)	${}^{n}C_{r} = {}^{n}P_{r} \times \underline{r}$
	(C) ${}^n P_r = {}^n C_r \div \underline{\Gamma}$	(D)	${}^n C_r = {}^n P_r + \underline{\Gamma} .$
	Ans. :		
16.	Sheela is one among 5 girls in a group.	5 chai	rs are kept in a row. In how many way
	can Sheela sit in the middle chair?		4
	(A) ⁵ P ₅		⁴ P ₄
	(C) 5 P_4 \times 2 P_2	(D)	4 P_4 \times 2 P_2 .
	Ans. :		
17.	If the value of standard deviation is 0.9	, then	the value of variance is
	(A) 0·81	(B)	8.1
	(C) 0·3	(D)	0.03.
	Ans. :		
18.	If the value of standard deviation of 10	scores	is 0, then the scores
	(A) are equal to one another but oppos	site in s	signs
	(B) are equal to each other		
	(C) are unequal to one another		
	(D) increase by one.		

	Ans. :	CE FOR ROUGH WORK)	
	(C) 18abc	(D) – 27abc.	
	(A) 3abc	(B) – 6 <i>abc</i>	
24.	If $a - 2b - 3c = 0$ then $a^3 - 8b$	$0^{3} - 27c^{3} =$	
	Ans. :		
	(C) $(a + b)^3$	(D) $(a-b)^3$.	
	(A) $a^3 + b^3$	(B) $a^3 - b^3$	
23.	$(a+b)$ and (a^2+b^2-ab)	are the factors of	
	Ans. :		
	(C) 1	(D) 0.	
	(A) $a-b-c$	(B) $a + b + c$	
	a, b, c	•	
22.	The value of $\sum (a-b)$ is ϵ	equal to	
	Ans. :		
	(C) $3x + 3y + 3z$	(D) 3xyz.	
	(A) x + y + z	(B) $2x + 2y + 2z$	
21.	When $\sum_{y=0}^{\infty} (x + y)$ is expand	ed, we get	
	Ans. :		
	(C) 1	(D) 0.	
	(A) $(a + b)$	(B) $a^2 - b^2$	
20.	H.C.F. of $(a + b)$ and $(a - b)$) is	
	Ans. :		
	(C) Jowar	(D) Ragi.	
	(A) Rice	(B) Wheat	
19.		of 4 foodgrains namely rice, wheat, jowar and rag ly. Then which foodgrain's rate is more consistent	

~ =	The order and radicand of	а	$n \mid \mathbf{y}$	γ
25.	The order and radicand of	o	~ ~	 respectively are

(A) a and n

(B) a and x

(C) n and x

(D) x and n.

Ans. : _____

26.
$$\sqrt{32} + \sqrt{50} =$$

(A) $\sqrt{82}$

(B) $5\sqrt{3}$

(C) $7\sqrt{2}$

(D) $9\sqrt{2}$.

Ans.:_____

27. Rationalising factor of $5\sqrt{p-q}$ is

(A) $5\sqrt{p+q}$

(B) $\sqrt{p-q}$

(C) $\sqrt{p+q}$

(D) $5\sqrt{p} + 5\sqrt{q}$.

Ans. : _____

- 28. When $2\sqrt{x} \sqrt{y}$ is subtracted from $5\sqrt{x} + 2\sqrt{y}$, the answer is
 - $(A) \quad 3\sqrt{x} + 3\sqrt{y}$

(B) $3\sqrt{x} - \sqrt{y}$

(C) $3\sqrt{x} + \sqrt{y}$

(D) $3\sqrt{x} - 3\sqrt{y}$.

Ans.:

29. An example for pure quadratic equation is

(A) $2x^2 - x = 0$

(B) 5x = 3

(C) $4x = 9x^2$

(D) $2x^2 = 16$.

Ans. : _____

- 30. If an equation has only one root, then the equation is
 - (A) quadratic equation

(B) linear equation

(C) cubic equation

(D) simultaneous equation.

Ans.:

- 31. If $F = \frac{mv^2}{r}$ then v =
 - (A) $\sqrt{\frac{Fm}{r}}$

(B) $\sqrt{\frac{mr}{F}}$

(C) $\sqrt{\frac{Fr}{m}}$

(D) $\sqrt{\frac{F}{rm}}$.

Ans.

- 32. One of the positive roots of the equation (2x-7)(3x-5)=0 is
 - (A) $\frac{7}{2}$

(B) $\frac{2}{7}$

(C) $\frac{3}{5}$

(D) $\frac{5}{7}$.

Ans.

- 33. Value of x in the equation $px^2 + qx + r = 0$ is
 - (A) $\frac{-p \pm \sqrt{p^2 4pq}}{2p}$

(B) $\frac{-q \pm \sqrt{q^2 - 4pr}}{2p}$

(C) $\frac{-p \pm \sqrt{r^2 - 4pq}}{2r}$

(D) $\frac{-p \pm \sqrt{p^2 - 4pq}}{2q}$.

Ans.:

- 34. The length of a rectangle is 4 cm more than the breadth. The area is 60 sq.cm. This can be represented as
 - (A) x + (x + 4) = 60

(B) x + (x + 4) - 60 = 0

(C) (x + 4)x + 60 = 0

(D) (x + 4)x - 60 = 0.

Ans

35.	The nature	of the roots	of the equation	$ax^2 + bx + c = 0$	is decided by

(A)
$$b^2 - 4ac$$

(B)
$$b^2 + 4ac$$

(C)
$$b-4ac$$

(D)
$$b + 4ac$$
.

Ans.

36. The product of the roots of the equation
$$2x^2 = 3x$$
 is

(A)
$$-\frac{2}{3}$$

(B)
$$\frac{3}{2}$$

(D)
$$\frac{1}{2}$$
.

Ans.:

37. The positive value of m for which the roots of the equation $x^2 - mx + 25 = 0$ are equal, is

(A) 20

(B) 10

(C) 15

(D) 5.

Ans. : _____

38. If the sum of the roots of a quadratic equation is -5 and the product is 4, then the equation is

(A)
$$x^2 + 5x + 4 = 0$$

(B)
$$x^2 - 5x + 4 = 0$$

(C)
$$x^2 + x - 20 = 0$$

(D)
$$x^2 - x - 20 = 0$$
.

Ans.:

39. If a and b are the roots of the equation $x^2 - 5x + 7 = 0$, then ab (a + b) =

(A) 5

(B) 25

(C) 35

(D) 49.

Ans.

81-E

	(SPACE FOR ROUGH WORK)
	Ans. :		
	(C) x units	(D) 1 unit	· ·
	(A) $4x$ units	(B) $2x$ un	its
	is		
44.	-	-	circle. If the distance from the the distance between the chords
11	Ans.:		oirolo. If the distance from the
	(C) 24	(D) 336.	
	(A) 3	(B) 11	
43.	If ${}^nC_3 = {}^nC_8$, then the	e value of ${}^n C_1 =$	
	Ans. :		
	(C) 6	(D) 7.	
	(A) 2	(B) 3	
42.	Value of x , if $x \oplus_{10} x = 2$, is	
	Ans. :		
	(C) $m-1$	(D) m.	
	(A) O	(B) 1	
41.	The greatest remainder obt		divided by $(m + 1)$ is
	Ans. :		
	(C) 4	(D) 5.	
	(A) – 5	(B) - 4	
40.	_	_	K 1 4) = 0 15 2010, then K =
40.	The product of the roots of	the equation $x^2 + 5x + 6$	k + 4) = 0 is zero, then $k =$

- 45. \angle ABC is an angle in a major arc. Then \angle ABC is
 - (A) Obtuse angle

(B) Right angle

(C) Acute angle

(D) Straight angle.

Ans.

- 46. Which of the following is a correct statement?
 - (A) All the rectangles are similar
 - (B) All the rhombuses are similar
 - (C) All the right-angled triangles are similar
 - (D) All the equilateral triangles are similar.

Ans.:

47. In \triangle ABC, PQ | | AB|. The correct relation is

(A) $\frac{BQ}{BA} = \frac{CP}{CA}$

(B) $\frac{AP}{PC} = \frac{BQ}{QC}$

(C) $\frac{PQ}{BQ} = \frac{AB}{BC}$

(D) $\frac{PQ}{QC} = \frac{AB}{AP}$.

Ans.

- 48. If the perimeters of two similar triangles are in the ratio of 4:1, then the ratio between their areas will be
 - (A) 16:1

(B) 4:1

(C) 2:1

(D) $\sqrt{2} : 1$.

Ans.

49. In the figure, $\angle ABC = \angle AQP = 90^{\circ}$. Then, $\frac{AQ}{AB} = \frac{1}{2}$

(A) $\frac{BC}{PQ}$

(B) $\frac{AC}{PQ}$

(C) $\frac{QP}{BC}$

(D) $\frac{AP}{AB}$.

Ans. : _____

50. In the figure, AB is tangent to the circle with centre O. If $\angle AOB = 30^{\circ}$, then $\angle A$ and $\angle B$ respectively are

(A) 75° , 75°

(B) 100°, 50°

(C) 80° , 70°

(D) 90° , 60° .

Ans. : _____

- 51. Radii of two circles are 5 cm and 3 cm respectively and the distance between their centres is 6 cm. Then they are
 - (A) touching externally

(B) intersecting circles

(C) touching internally

(D) concentric circles.

Ans. : _____

52. In the figure, A and B are the centres of two circles with radii 6 cm and 2 cm respectively. CD is the diameter, then MD =

(A) 8 cm

(B) 6 cm

(C) 4 cm

(D) 2 cm.

Ans. : _

53. In the figure, AB, AC and BD are the tangents as shown in the figure. If AB = x cm, BD = y cm, then AC = x

(A) x cm

(B) *y* cm

(C) (x-y) cm

(D) (x + y) cm.

Ans.:

54.	The	formula used to find the total surface	e area	a of a solid cylinder is			
	(A)	2 πrh	(B)	$2 \pi r^2 (r+h)$			
	(C)	$\pi r (r + h)$	(D)	$2 \pi r (r + h)$.			
	Ans	.:					
55.	The	number of plane surfaces in a solid of	one i	is			
	(A)	0	(B)	1			
	(C)	2	(D)	3.			
	Ans	·:					
56.	Rati	o between the radii of two solid sph	eres	is 2: 3, then the ratio between their			
	volu	imes is					
	(A)	8:27	(B)	4:9			
	(C)	2:3	(D)	$\sqrt{2}$: $\sqrt{3}$.			
	Ans	·:					
57.	The	The volume of a solid cone is $60~{\rm cm}^{3}$ and the area of the base is $20~{\rm cm}^{2}$. Then the					
	heig	ght is					
	(A)	6 cm	(B)	9 cm			
	(C)	12 cm	(D)	18 cm.			
	Ans	.:					

58.	. A metal sheet of length $2\ \mathrm{m}$ and breadth $44\ \mathrm{cm}$ is rolled to form a hollow pipe of				
	length 2 m. Then the radius of that pipe is				
	(A)	44 cm	(B)	22 cm	
	(C)	11 cm	(D)	7 cm.	
	Ans	· :			
59.	The	numbers of vertices and edges respe-	ctivel	y in a tetrahedron are	
	(A)	4, 6	(B)	6, 4	
	(C)	8, 6	(D)	6, 8.	
	Ans	.:			
60.	The	numbers of regions and nodes in the	giver	network are	
				\rightarrow	
	(A)	3, 2	(B)	3, 3	
	(C)	4, 2	(D)	4, 5	
	Ans	. :			

81-E 16

PART - B

61.	A person deposits Rs. 1,000 in the first month. Then every month he increases	the
	monthly deposit by Rs. 60. Calculate his total investment at the end of 2 years.	2

17 **81-E**

62. If
$$A = \begin{bmatrix} 2 & 3 \\ 5 & 1 \end{bmatrix}$$
 then find AA^{T} .

(SPACE FOR ROUGH WORK)

81-E	18
□ I - D	10

63. Calculate the standard deviation of 10, 12, 14, 16, 18, 20.

(Given mean = 15)

2

64. If a + b + c = 0, then prove that (b + c)(b - c) + a(a + 2b) = 0.

(SPACE FOR ROUGH WORK)

2

65. Simplify by rationalising the denominator:

$$\frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}}$$

21 **81-E**

66. The height of a triangle is 5 cm less than the base. If the area of the triangle is 150 sq.cm, find the base.

(SPACE FOR ROUGH WORK)

81-E 22

67.	The H.C.F. and L.C.M. of two expressions are ($x - 3$) and $x^3 - 5x^2 - 2x$ +	- 24
	respectively. If one of the expressions is $x^2 - 7x + 12$, then find the other.	4

68.	Draw a circle of radius 3.5 cm. Draw two radii such that the angle between the	em	is
	110°. Draw tangents at the ends of the radii.		2

81-E	24
81-E	

69.	If one diagonal of a trapezium divides the other in the ratio $2:1$, then prove of the parallel sides is twice the other.	that one

70. In the figure, TP and TQ are the tangents drawn to a circle with centre O. Show that $\angle PTQ = 2 \angle OPQ$.

(SPACE FOR ROUGH WORK)

81-E 26

71. Draw a plan by using the data given below:

(Scale : 20 m = 1 cm)

	To D	
	200	
	160	60 C
E 80	100	
	40	50 B
	From A	
	(metres)	

2

72. Construct the matrix for the given network. Write the relation between the sum of the elements of the matrix and the sum of the order of the nodes.

(SPACE FOR ROUGH WORK)

73.	State and prove 'Pythagoras theorem'.	4
	(SPACE FOR ROUGH WORK)	

81-E

81-E	30
	00

81 <i>-</i> E	30							
75.	The 10th term of a geometric progression is 8	8 times	the	13th	term.	The	first	term
	is 3. Then find the sum up to infinite terms.							4

2

76. Draw the graph of the equation $y = 2x^2$.

x :	0	1	- 1	2	- 2
y :	0	2	2	8	8

graph

(SPACE FOR ROUGH WORK)

