General Instructions: - i) The question-cum-answer booklet contains two Parts, **Part A** & **Part B**. - ii) **Part A** consists of 60 questions and **Part B** consists of 16 questions. - iii) Space has been provided in the question-cum-answer booklet itself to answer the questions. - iv) Follow the instructions given in Part A and write the correct choice in full in the space provided below each question. - v) For **Part B** enough space for each question is provided. You have to answer the questions in the space provided. - vi) **Space for Rough Work** has been printed and provided at the bottom of each page. ## PART - A Four alternatives are suggested to each of the following questions / incomplete statements. Choose the most appropriate alternative and write the answer in the space provided below each question. $60 \times 1 = 60$ | 1. | If set $A = \{2, 3, 4, 5\}$ and set $B = \{4, 5\}$, then which of the following is a null | |----|--| | | set? | (A) A - B (B) B-A (C) $A \cup B$ (D) $A \cap B$. _____ - 2. P, Q and R are three sets, then $(P \cup Q) \cap (P \cup R) =$ - (A) $P \cup (Q \cup R)$ (B) $P \cap (Q \cup R)$ (C) $P \cup (Q \cap R)$ (D) $P \cap (Q \cap R)$. Ans. 3. A and B are the subsets of set $U, A' \cup B' = \{2, 3, 5\}$ and $U=\ \left\{\ 1,\ 2,\ 3,\ 4,\ 5,\ 6\ \right\}$, then $\ A\ \cap\ B=$ (A) $\{2, 3, 5\}$ - (B) { 1, 4 } - (C) $\{1, 2, 3, 4, 5, 6\}$ - (D) { 1, 4, 6 }. Ans. | | | (SPACE FOR ROUGH WORK) | |----|--------------------------------|--| | | Ans. : | | | | (C) 128 | (D) 256. | | | (A) 16 | (B) 64 | | 8. | Geometric mean of three | e numbers is 4. Then their product is | | | Ans. : | | | | (C) 3n | (D) 2n. | | | (A) 3 | (B) 2 | | 7. | | sion $T_{n+5} = 35$ and $T_{n+1} = 23$ then common difference is | | | Ans.: | (=) -1 | | | (C) 3 | (D) 4. | | | (A) 1 | (B) 2 | | 6. | Ans.: In an arithmetic progres | sion $T_n = 3n - 1$, then common difference = | | | | • | | | (C) U | (D) φ. | | | (A) A | (B) <i>B</i> | | 5. | In sets A and B if $A - B$ | | | | Ans. : | | | | (C) 11 | (D) 10. | | | (A) 21 | (B) 18 | | | Maths club only is | | | | | oth. 29 students are the members of Science club and
embers of both the clubs. Then the number of students in | | 4. | In a class of 50 studen | ts everyone should be a member of either Science club, or | - 9. The harmonic mean of P and Q is - (A) $\frac{2(P+Q)}{PQ}$ (B) $\frac{2PQ}{P+Q}$ (C) $\frac{2 (P + Q)}{P - Q}$ (D) $\frac{2P+Q}{PQ}$. Ans. : _____ - 10. If $\begin{bmatrix} 2 & 2x 6 \\ 0 & 3 \end{bmatrix}$ is a diagonal matrix, then x is equal to - (A) O (B) 1 (C) 2 (D) 3. Ans. - 11. If $(AB)^{\prime} = \begin{bmatrix} 2 & 3 \\ 5 & 6 \end{bmatrix}$, then $B^{\prime} A^{\prime} =$ - (A) $\begin{bmatrix} 2 & 5 \\ 3 & 6 \end{bmatrix}$ (B) $\begin{bmatrix} 2 & 3 \\ 6 & 5 \end{bmatrix}$ (C) $\left[\begin{array}{cc} 2 & 3 \\ 5 & 6 \end{array} \right]$ (D) $\begin{bmatrix} 5 & 6 \\ 2 & 3 \end{bmatrix}$. Ans. : _____ - 12. ${}^{n}P_{1} + {}^{n}C_{1} =$ - (A) 2n (B) n (C) 2 (D) n + 1. Ans.: | | | • | | |-----|---|-----------|--| | 13. | Value of 20 C_{18} = | | | | | (A) 360 | (B) | 300 | | | (C) 180 | (D) | 190. | | | Ans. : | | | | 14. | If $^n P_3 = 120$, then n is equal to | | | | | (A) 12 | (B) | 10 | | | (C) 8 | (D) | 6. | | | Ans. : | | | | 15. | The correct relation is | | | | | (A) ${}^n P_r = {}^n C_r \times \underline{r}$ | (B) | ${}^{n}C_{r} = {}^{n}P_{r} \times \underline{r}$ | | | (C) ${}^n P_r = {}^n C_r \div \underline{\Gamma}$ | (D) | ${}^n C_r = {}^n P_r + \underline{\Gamma} .$ | | | Ans. : | | | | 16. | Sheela is one among 5 girls in a group. | 5 chai | rs are kept in a row. In how many way | | | can Sheela sit in the middle chair? | | 4 | | | (A) ⁵ P ₅ | | ⁴ P ₄ | | | (C) 5 P_4 \times 2 P_2 | (D) | 4 P_4 \times 2 P_2 . | | | Ans. : | | | | 17. | If the value of standard deviation is 0.9 | , then | the value of variance is | | | (A) 0·81 | (B) | 8.1 | | | (C) 0·3 | (D) | 0.03. | | | Ans. : | | | | 18. | If the value of standard deviation of 10 | scores | is 0, then the scores | | | (A) are equal to one another but oppos | site in s | signs | | | (B) are equal to each other | | | | | (C) are unequal to one another | | | | | (D) increase by one. | | | | | Ans. : | CE FOR ROUGH WORK) | | |-----|--|---|--| | | (C) 18abc | (D) – 27abc. | | | | (A) 3abc | (B) – 6 <i>abc</i> | | | 24. | If $a - 2b - 3c = 0$ then $a^3 - 8b$ | $0^{3} - 27c^{3} =$ | | | | Ans. : | | | | | (C) $(a + b)^3$ | (D) $(a-b)^3$. | | | | (A) $a^3 + b^3$ | (B) $a^3 - b^3$ | | | 23. | $(a+b)$ and (a^2+b^2-ab) | are the factors of | | | | Ans. : | | | | | (C) 1 | (D) 0. | | | | (A) $a-b-c$ | (B) $a + b + c$ | | | | a, b, c | • | | | 22. | The value of $\sum (a-b)$ is ϵ | equal to | | | | Ans. : | | | | | (C) $3x + 3y + 3z$ | (D) 3xyz. | | | | (A) x + y + z | (B) $2x + 2y + 2z$ | | | 21. | When $\sum_{y=0}^{\infty} (x + y)$ is expand | ed, we get | | | | Ans. : | | | | | (C) 1 | (D) 0. | | | | (A) $(a + b)$ | (B) $a^2 - b^2$ | | | 20. | H.C.F. of $(a + b)$ and $(a - b)$ |) is | | | | Ans. : | | | | | (C) Jowar | (D) Ragi. | | | | (A) Rice | (B) Wheat | | | 19. | | of 4 foodgrains namely rice, wheat, jowar and rag
ly. Then which foodgrain's rate is more consistent | | | ~ = | The order and radicand of | а | $n \mid \mathbf{y}$ | γ | |-----|---------------------------|---|---------------------|--------------------------------------| | 25. | The order and radicand of | o | ~ ~ | respectively are | (A) a and n (B) a and x (C) n and x (D) x and n. Ans. : _____ 26. $$\sqrt{32} + \sqrt{50} =$$ (A) $\sqrt{82}$ (B) $5\sqrt{3}$ (C) $7\sqrt{2}$ (D) $9\sqrt{2}$. Ans.:_____ ## 27. Rationalising factor of $5\sqrt{p-q}$ is (A) $5\sqrt{p+q}$ (B) $\sqrt{p-q}$ (C) $\sqrt{p+q}$ (D) $5\sqrt{p} + 5\sqrt{q}$. Ans. : _____ - 28. When $2\sqrt{x} \sqrt{y}$ is subtracted from $5\sqrt{x} + 2\sqrt{y}$, the answer is - $(A) \quad 3\sqrt{x} + 3\sqrt{y}$ (B) $3\sqrt{x} - \sqrt{y}$ (C) $3\sqrt{x} + \sqrt{y}$ (D) $3\sqrt{x} - 3\sqrt{y}$. Ans.: ## 29. An example for pure quadratic equation is (A) $2x^2 - x = 0$ (B) 5x = 3 (C) $4x = 9x^2$ (D) $2x^2 = 16$. Ans. : _____ - 30. If an equation has only one root, then the equation is - (A) quadratic equation (B) linear equation (C) cubic equation (D) simultaneous equation. Ans.: - 31. If $F = \frac{mv^2}{r}$ then v = - (A) $\sqrt{\frac{Fm}{r}}$ (B) $\sqrt{\frac{mr}{F}}$ (C) $\sqrt{\frac{Fr}{m}}$ (D) $\sqrt{\frac{F}{rm}}$. Ans. - 32. One of the positive roots of the equation (2x-7)(3x-5)=0 is - (A) $\frac{7}{2}$ (B) $\frac{2}{7}$ (C) $\frac{3}{5}$ (D) $\frac{5}{7}$. Ans. - 33. Value of x in the equation $px^2 + qx + r = 0$ is - (A) $\frac{-p \pm \sqrt{p^2 4pq}}{2p}$ (B) $\frac{-q \pm \sqrt{q^2 - 4pr}}{2p}$ (C) $\frac{-p \pm \sqrt{r^2 - 4pq}}{2r}$ (D) $\frac{-p \pm \sqrt{p^2 - 4pq}}{2q}$. Ans.: - 34. The length of a rectangle is 4 cm more than the breadth. The area is 60 sq.cm. This can be represented as - (A) x + (x + 4) = 60 (B) x + (x + 4) - 60 = 0 (C) (x + 4)x + 60 = 0 (D) (x + 4)x - 60 = 0. Ans | 35. | The nature | of the roots | of the equation | $ax^2 + bx + c = 0$ | is decided by | |-----|------------|--------------|-----------------|---------------------|---------------| | | | | | | | (A) $$b^2 - 4ac$$ (B) $$b^2 + 4ac$$ (C) $$b-4ac$$ (D) $$b + 4ac$$. Ans. 36. The product of the roots of the equation $$2x^2 = 3x$$ is (A) $$-\frac{2}{3}$$ (B) $$\frac{3}{2}$$ (D) $$\frac{1}{2}$$. Ans.: 37. The positive value of m for which the roots of the equation $x^2 - mx + 25 = 0$ are equal, is (A) 20 (B) 10 (C) 15 (D) 5. Ans. : _____ 38. If the sum of the roots of a quadratic equation is -5 and the product is 4, then the equation is (A) $$x^2 + 5x + 4 = 0$$ (B) $$x^2 - 5x + 4 = 0$$ (C) $$x^2 + x - 20 = 0$$ (D) $$x^2 - x - 20 = 0$$. Ans.: 39. If a and b are the roots of the equation $x^2 - 5x + 7 = 0$, then ab (a + b) = (A) 5 (B) 25 (C) 35 (D) 49. Ans. 81-E | | (| SPACE FOR ROUGH WORK |) | |-----|---|-----------------------------|--| | | Ans. : | | | | | (C) x units | (D) 1 unit | ·
· | | | (A) $4x$ units | (B) $2x$ un | its | | | is | | | | 44. | - | - | circle. If the distance from the the distance between the chords | | 11 | Ans.: | | oirolo. If the distance from the | | | | | | | | (C) 24 | (D) 336. | | | | (A) 3 | (B) 11 | | | 43. | If ${}^nC_3 = {}^nC_8$, then the | e value of ${}^n C_1 =$ | | | | Ans. : | | | | | (C) 6 | (D) 7. | | | | (A) 2 | (B) 3 | | | 42. | Value of x , if $x \oplus_{10} x = 2$ | , is | | | | Ans. : | | | | | (C) $m-1$ | (D) m. | | | | (A) O | (B) 1 | | | 41. | The greatest remainder obt | | divided by $(m + 1)$ is | | | Ans. : | | | | | (C) 4 | (D) 5. | | | | (A) – 5 | (B) - 4 | | | 40. | _ | _ | K 1 4) = 0 15 2010, then K = | | 40. | The product of the roots of | the equation $x^2 + 5x + 6$ | k + 4) = 0 is zero, then $k =$ | - 45. \angle ABC is an angle in a major arc. Then \angle ABC is - (A) Obtuse angle (B) Right angle (C) Acute angle (D) Straight angle. Ans. - 46. Which of the following is a correct statement? - (A) All the rectangles are similar - (B) All the rhombuses are similar - (C) All the right-angled triangles are similar - (D) All the equilateral triangles are similar. Ans.: 47. In \triangle ABC, PQ | | AB|. The correct relation is (A) $\frac{BQ}{BA} = \frac{CP}{CA}$ (B) $\frac{AP}{PC} = \frac{BQ}{QC}$ (C) $\frac{PQ}{BQ} = \frac{AB}{BC}$ (D) $\frac{PQ}{QC} = \frac{AB}{AP}$. Ans. - 48. If the perimeters of two similar triangles are in the ratio of 4:1, then the ratio between their areas will be - (A) 16:1 (B) 4:1 (C) 2:1 (D) $\sqrt{2} : 1$. Ans. 49. In the figure, $\angle ABC = \angle AQP = 90^{\circ}$. Then, $\frac{AQ}{AB} = \frac{1}{2}$ (A) $\frac{BC}{PQ}$ (B) $\frac{AC}{PQ}$ (C) $\frac{QP}{BC}$ (D) $\frac{AP}{AB}$. Ans. : _____ 50. In the figure, AB is tangent to the circle with centre O. If $\angle AOB = 30^{\circ}$, then $\angle A$ and $\angle B$ respectively are (A) 75° , 75° (B) 100°, 50° (C) 80° , 70° (D) 90° , 60° . Ans. : _____ - 51. Radii of two circles are 5 cm and 3 cm respectively and the distance between their centres is 6 cm. Then they are - (A) touching externally (B) intersecting circles (C) touching internally (D) concentric circles. Ans. : _____ 52. In the figure, A and B are the centres of two circles with radii 6 cm and 2 cm respectively. CD is the diameter, then MD = (A) 8 cm (B) 6 cm (C) 4 cm (D) 2 cm. Ans. : _ 53. In the figure, AB, AC and BD are the tangents as shown in the figure. If AB = x cm, BD = y cm, then AC = x (A) x cm (B) *y* cm (C) (x-y) cm (D) (x + y) cm. Ans.: | 54. | The | formula used to find the total surface | e area | a of a solid cylinder is | | | | |-----|------|--|--------|---------------------------------------|--|--|--| | | (A) | 2 πrh | (B) | $2 \pi r^2 (r+h)$ | | | | | | (C) | $\pi r (r + h)$ | (D) | $2 \pi r (r + h)$. | | | | | | Ans | .: | | | | | | | 55. | The | number of plane surfaces in a solid of | one i | is | | | | | | (A) | 0 | (B) | 1 | | | | | | (C) | 2 | (D) | 3. | | | | | | Ans | ·: | | | | | | | 56. | Rati | o between the radii of two solid sph | eres | is 2: 3, then the ratio between their | | | | | | volu | imes is | | | | | | | | (A) | 8:27 | (B) | 4:9 | | | | | | (C) | 2:3 | (D) | $\sqrt{2}$: $\sqrt{3}$. | | | | | | Ans | ·: | | | | | | | 57. | The | The volume of a solid cone is $60~{\rm cm}^{3}$ and the area of the base is $20~{\rm cm}^{2}$. Then the | | | | | | | | heig | ght is | | | | | | | | (A) | 6 cm | (B) | 9 cm | | | | | | (C) | 12 cm | (D) | 18 cm. | | | | | | Ans | .: | | | | | | | | | | | | | | | | 58. | . A metal sheet of length $2\ \mathrm{m}$ and breadth $44\ \mathrm{cm}$ is rolled to form a hollow pipe of | | | | | |-----|--|--------------------------------------|--------|------------------------|--| | | length 2 m. Then the radius of that pipe is | | | | | | | (A) | 44 cm | (B) | 22 cm | | | | (C) | 11 cm | (D) | 7 cm. | | | | Ans | · : | | | | | 59. | The | numbers of vertices and edges respe- | ctivel | y in a tetrahedron are | | | | (A) | 4, 6 | (B) | 6, 4 | | | | (C) | 8, 6 | (D) | 6, 8. | | | | Ans | .: | | | | | 60. | The | numbers of regions and nodes in the | giver | network are | | | | | | | \rightarrow | | | | (A) | 3, 2 | (B) | 3, 3 | | | | (C) | 4, 2 | (D) | 4, 5 | | | | Ans | . : | | | | **81-E** 16 ## PART - B | 61. | A person deposits Rs. 1,000 in the first month. Then every month he increases | the | |-----|--|-----| | | monthly deposit by Rs. 60. Calculate his total investment at the end of 2 years. | 2 | | | | | 17 **81-E** 62. If $$A = \begin{bmatrix} 2 & 3 \\ 5 & 1 \end{bmatrix}$$ then find AA^{T} . (SPACE FOR ROUGH WORK) | 81-E | 18 | |-----------------------|----| | □ I - D | 10 | 63. Calculate the standard deviation of 10, 12, 14, 16, 18, 20. (Given mean = 15) 2 64. If a + b + c = 0, then prove that (b + c)(b - c) + a(a + 2b) = 0. (SPACE FOR ROUGH WORK) 2 65. Simplify by rationalising the denominator: $$\frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}}$$ 21 **81-E** 66. The height of a triangle is 5 cm less than the base. If the area of the triangle is 150 sq.cm, find the base. (SPACE FOR ROUGH WORK) **81-E** 22 | 67. | The H.C.F. and L.C.M. of two expressions are ($x - 3$) and $x^3 - 5x^2 - 2x$ + | - 24 | |-----|---|------| | | respectively. If one of the expressions is $x^2 - 7x + 12$, then find the other. | 4 | | 68. | Draw a circle of radius 3.5 cm. Draw two radii such that the angle between the | em | is | |-----|--|----|----| | | 110°. Draw tangents at the ends of the radii. | | 2 | | 81-E | 24 | |------|----| | 81-E | | | 69. | If one diagonal of a trapezium divides the other in the ratio $2:1$, then prove of the parallel sides is twice the other. | that one | |-----|--|----------| 70. In the figure, TP and TQ are the tangents drawn to a circle with centre O. Show that $\angle PTQ = 2 \angle OPQ$. (SPACE FOR ROUGH WORK) **81-E** 26 71. Draw a plan by using the data given below: (Scale : 20 m = 1 cm) | | To D | | |------|------------|------| | | 200 | | | | 160 | 60 C | | E 80 | 100 | | | | 40 | 50 B | | | From A | | | | (metres) | | 2 72. Construct the matrix for the given network. Write the relation between the sum of the elements of the matrix and the sum of the order of the nodes. (SPACE FOR ROUGH WORK) | 73. | State and prove 'Pythagoras theorem'. | 4 | |-----|---------------------------------------|---| (SPACE FOR ROUGH WORK) | | 81-E | 81-E | 30 | |------|----| | | 00 | | 81 <i>-</i> E | 30 | | | | | | | | |---------------|---|---------|-----|------|-------|-----|-------|------| | 75. | The 10th term of a geometric progression is 8 | 8 times | the | 13th | term. | The | first | term | | | is 3. Then find the sum up to infinite terms. | | | | | | | 4 | 2 76. Draw the graph of the equation $y = 2x^2$. | x : | 0 | 1 | - 1 | 2 | - 2 | |-----|---|---|-----|---|-----| | y : | 0 | 2 | 2 | 8 | 8 | graph (SPACE FOR ROUGH WORK)