2005 JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY

II B.TECH. I SEMESTER REGULAR EXAMINATIONS
MATHAMATICS II
(INFORMATION TECHNOLOGY)
APRIL/MAY 2005
TIME: 3 HOURS MARKS: 80

\longrightarrow Answer any FIVE Questions
 All Questions carry equal marks

1. (a) Define the rank of the matrix and find the rank of the following matrix. 2664
2135
4213
84713
84-3-1 3775
(b) Find whether the following equations are consistent, if so solve them. $x+y+2 z$ $=4 ; 2 x-y+3 z=9 ; 3 x-y-z=2$
2. Verify Cayley-Hamilton theorem for $\mathrm{A}=2$

4
123
245
356
35
hence deduce A-1
3. (a) Prove that the inverse of an orthogonal matrix is orthogonal and its transpose is also orthogonal.
(b) Reduce the quadratic form $3 \times 21+3 \times 22+3 x 23+2 x 1 x 2+2 x 1 x 3-2 x 2 x 3$ into sum of
squares by an orthogonal transformation and give the matrix of transformation
4. (a) An alternating current after passing through rectifier has the form $\mathrm{i}=\mathrm{\square}$
 the period is $2 \square$. Express i as a Fourier series.
(b) Represent the following function by Fourier sine series
$\mathrm{f}(\mathrm{x})=\square \quad 1,0<\mathrm{x}<\mathrm{m}$ $20, \mathrm{~m} \quad 2<\mathrm{x}<\mathrm{m}$
5. (a) Form the partial differential equation by eliminating the arbitrary function from $z=f(y)+-(x+y)$.
(b) Solve the partial differential equation $p 2 z 2 \sin 2 x+q 2 z 2 \cos 2 y=1$
(c) Solve the partial differential equation $\mathrm{q} 2 \mathrm{y} 2=\mathrm{z}(\mathrm{z}-\mathrm{px})$
6. A square plate has its faces $\mathrm{x}=0$ and $\mathrm{x}=\square(0<\mathrm{y}<\square)$ insulated. Its edges y
$=0$ and $y=\square$ are kept at temperatures 0 and $f(x)$ respectively. Derive the formula for steady state temperature.
7. (a) Find the finite Fourier cosine transform of $f(x)=\square x$ if $0<x<\square / 2$

- $-x$ if $] / 2<x<\square$
(b) Find the Fourier cosine transforms of e-ax $\sin \mathrm{ax}$.

8. (a) State and prove final value theorem
(b) Using Z-transform solve $4 \mathrm{un}-\mathrm{un}+2=0$ given that $\mathrm{u} 0=0, \mathrm{u} 1=2$.
