Section $A(1 \times 20=20)$

$1 .(c)$	$2 .(c)$	$3 .(B)$	$4(c)$	$5(d)$	$6(d)$	$7(a)$	$8(b)$	$9(d)$	$10(b)$
$11(d)$	$12(c)$	$13(c)$	$14(b)$	$15(a)$	$16(b)$	$17(d)$	$18(a)$	$19(c)$	$20(b)$

Section B (5 x $2=10$)

Q21.	Correct value of $x=-2, y=51$ mark, correct value of $m=-1$ Or correct valueof zeroes are $-5,-2$ (1mark), verify the coefficient	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$
Q22.	Fig. given ,to prove , correct proof	$\begin{aligned} & \hline 1 / 2 \\ & 1+1 / 2 \\ & \hline \end{aligned}$
Q23.	Correct fig mark and correct proof Or Use of correct Bpt , correct proof	$\begin{aligned} & \hline 1 / 2 \\ & 1+1 / 2 \\ & 1 \\ & 1 \end{aligned}$
Q24.	$\cos A=\sqrt{7 / 4, ~} \quad \tan A=3 / \sqrt{7}$	1+1
Q25.	Minor sector $=78.5 \mathrm{~cm}^{2}$, major sector $=235.5 \mathrm{~cm}^{2}$	1+1

Section C (6 x $3=18$)

Q26.	Let $3+2 \sqrt{ } 5$ is rational number $3+2 \sqrt{ } 5=p / q$ $\sqrt{ } 5=(p-3 q) / 2 q$ Contradicted our assumption and proof	1
Q27.	Correct quadratic equation $x^{2}-2 x+1$ Solution of equation Or $360 / x \quad 360 /(x+5)=1$ $X^{2}+5 x-1800=0$ Solution of equation and find answer, speed $=40 \mathrm{~km} / \mathrm{h}$	1
Q28.	Correct fig mark and correct proof	1
Q29.	Correct solution	1
Q30.	Students can use any method correct steps , use of correct identity ,correct proof	$1+1+1$
Q31.	P(red marble) $=5 / 17, \mathrm{P}($ white marble $=8 / 17, \mathrm{P}($ not green marble) $=13 / 17$	1

Section D $(4 \times 5=20)$

32.	Use of Pythagoras theorem Make quadratic equation $x^{2}-7 x-60=0$ Solution of quadratic equation and find base $=12 \mathrm{~cm}$, perpendicular $=5 \mathrm{~cm}$	1
33.	The volume of cone = volume of water in the cone $1 / 3 \pi r^{2} \mathrm{~h}=(200 / 3) \pi \mathrm{cm}^{3}$ Now, Total volume of water over flown $=(1 / 4) \times(200 / 3) \pi=(50 / 3) \pi$ The volume of lead shot $=(4 / 3) \pi r^{3}$ $=(1 / 6) \pi$ Now, π No. of lead shots = Total volume of water over flown/Volume of lead shot $=(50 / 3) \pi /(1 / 6) \pi$ $=(50 / 3) \times 6=100$ lead shots Or	$1 / 2$

	Volume of one gulab jamun = volume of cylindrical part +2 x volume of hemispherical part $=\pi r^{2} h+2 x \frac{2}{3} \pi r^{3} h \quad=13.552+11.498=25.05 \mathrm{~cm}^{3}$ Solution of sugar syrup $=338.17 \mathrm{~cm}^{3}$	$\begin{aligned} & 2+1 / 2 \\ & 2+1 / 2 \end{aligned}$
34.	Finding the mode Correct formula Correct solution ,mode $=36.8$ Finding the mean : Correct formula Correct solution ,mean $=35.3$	$\begin{gathered} 1 \\ 1+1 / 2 \\ 1 \\ 1+1 / 2 \end{gathered}$
35.	Correct figure . Given,to prove Correct proof Or Statement of BPT Correct figure . Given,to prove Correct proof	$\begin{gathered} \hline 1 \\ \\ 1 / 2 \\ 3+1 / 2 \\ 1 \\ 1 \\ 1 \\ 1 / 2 \\ 2+1 / 2 \end{gathered}$

Section Case study

36.	(i)A.P 20,19,18... (ii) Number of rows are 16 Or for 209 logs number of rows are 19 (iii)Number of logs in top row $=5$	1 2 1
37.	($1(2,25)$ (ii) $(8,20)$ (iii) $\ln 5^{\text {th }}$ line at distance 22.5 m Correct solution	$\begin{aligned} & 1 \\ & 1 \\ & 2 \end{aligned}$
38.	(1) 30° (2) Decreases (3) $45 \sqrt{3} \mathrm{~cm}$ Correct solution	1 1 2

