SSLC Examination March 2023 Mathematics - English Version. Detailed Solutions with Questions. Prepared by Dr.V. S. Raveendra Math.

Question. 1

7, 13, 19, ... is an arithmetic sequence.

(a) What is its common difference ?

(b) Find its 11th term.

Solution.

Sequence = 7, 13, 19, a) Common difference = $x_2 - x_1$ = 13 - 7 = 6.. b) 11th term = f + 10 d = 7 + 10 x 6 = 67. drvsr

Question. 2.

Weights of 11 players of a football team are given in kilograms :

55, 65, 56, 70, 62, 54, 64, 58, 68, 65, 60

Find the median of the weights of players.

Solution.

Arrange the weight in ascending order54,55,56,38,60,62,64,65,65 ,66,70.

The given data br odd numbers

$$\therefore \text{Median} = \left(\frac{n+1}{2}\right)^{\text{th}} \text{term} .$$
$$= \left(\frac{11+1}{2}\right)^{\text{th}} \text{term} = \left(\frac{12}{2}\right)^{\text{th}} \text{term}$$
$$6^{\text{th}} \text{term} = 62.$$

.....drvsr

-2-

Question. 3.

A dot is put inside the circle without looking it.

- (a) What is the probability that the dot to be within the unshaded part?
- (b) What is the probability that the dot to be within the shaded part?

Solution.

a)
$$\frac{120}{360} = \frac{1}{3}$$

b) $1 - \frac{1}{3} = \frac{2}{3}$.

Question. 4.

-3-

AB is a chord of a circle of radius 3 centimetres. Chord AB makes a rightangle at the centre. What is the length of AB?

Solution. Given OB = 3.(radius) In rt. $\triangle AOB$, angles are 45,45,90.ie., 1 : 1: √2 . ie., 3: 3: 3√2. Hence AB = $3\sqrt{2}$.

A(3, 9), C(8, 12) are the coordinates of two opposite vertices of a rectangle whose sides are parallel to the coordinate axes.

- (a) Find the coordinates of other two vertices of the rectangle.
- (b) Find the lengths of the sides of the rectangle.

Solution.

Given two vertice A(3,9) ; C(8,12). a) Other two vertices of the rectangle be B(8,9) ; D(3,12). b) Length of AB = | 8 - 3 | = 5. Length of BC = | 12 - 9 | = 3. Length of DC = 5 [opposide of the rectangle]

Question. 6.

Draw a circle of radius 4 centimetres.

Draw a triangle whose vertices are on this circle and two of the angles 40° and 60°.

Solution.

Construction

Draw a circle with radius 4cm. Draw any radius and make an angle

 $80^{\circ}(2 \times 40 = 80^{\circ})$ and then make an angle 120° .(2 x 60=120°).and join all vertices.

.....drvsr.

Question. 7.

Find the lengths of the sides of the rectangle whose perimeter is 80 centimetres and area 351 square centimetres.

Solution. Given perimeter = 80cm. Area = 351 cm². ie., 2(l+b) =80 l+b=40Let length be x. b=40-x Given Area =351 ie., x(40-x)=351 $x^2 - 40x = -351$ $x^{2}-40x+20^{2} = -351+20^{2}$ [Using square completion method]

Question. 8.

(4, 5) and (8, 11) are coordinates of two points on a line.

- (a) Find the slope of the line.
- (b) Find the equation of the line.Solution.

Given two points are (4,5) and (8, 11). a) Slope = $\frac{y_2 - y_1}{x_2 - x_1} = \frac{11 - 5}{8 - 4}$

$$= \frac{6}{4} = \frac{3}{2}.$$

b) Equation of the line
$$= y - y_1 = m(x - x_1)$$

$$= y - 5 = \frac{3}{2} (x - 4)$$

$$2y - 10 = 3x - 12.$$

$$3x - 2y - 12 + 10 = 0.$$

$$3x - 2y - 2 = 0.$$

Question. 9.

6th term of an arithmetic sequence is 46. Its common difference is 8.

- (a) What is its 16th term ?
- (b) Find its 21st term.

Solution.

Given6th term = 46; d = 8. $ie_m f + 5d = 46$ f = 46 - 5d $f = 46 - 5 \times 8$ = 46 - 40 = 6. a) 16^{th} term = f + 15d $= 6 + 15 \times 8$ = 6 + 120 = 126OR , $x_{16} = x_6 + 10g$ $= 46 + 10 \times 8$ = 46 + 80 = 126b) 21dt term = f + 20d $= 6 + 20 \times 8$

The sides of a right triangle are 9 centimetres, 12 centimetres and 15 centimetres.

- (a) Find the area of the triangle.
- (b) Calculate the in radius of the triangle.

Solution.

Given sides are 9cm,12cm and 15cm.

a) Aera = $\frac{1}{2} \times bh = \frac{1}{2} \times 9 \times 12$ = 54cm². b) Radius = $\frac{A}{S} = \frac{54}{\frac{9+12+15}{2}}$ = $\frac{94}{18} = 3$ cm.

Question. 11.

 $\mathbf{P}(x) = x^2 - 4x + 4$

- (a) What is P(1)?
- (b) Write a first degree factor of P(x) P(1)
- (c) Write the polynomial P(x) P(1) as the product of two first degree polynomials.

Solution.

Given, $P(x) = x^2 - 4x + 4$.

Question. 12.

A cone is made by rolling up a semicircle of radius 20 centimetres.

- (a) What is the slant height of the cone ?
- (b) Find the radius of the cone.
- (c) Calculate the curved surface area of the cone.

Solution.

Givebm radius of the semi circle = 20cm.

- = 10cm.
- c) CSA = $\pi r l = \pi \times 10 \times 20$ = 200 πcm^2 .

.....drvsr

Question. 13.

Draw a circle of radius 2.5 centimetres. Mark a point 6.5 centimetres away from the centre.

Draw the tangents to the circle from this point.

Measure and write the lengths of the tangents.

Solution.

Construction

Draw a circle with given radius 2.5cm O as the center. Draw OP as 6.5cm.away from the center. Draw a perpendicular to OP and cut at M. Draw a circle OM as radius abd cut at S and

T respectively. Join PS and PT as the tangents. The length of thr tangent PS = PT = 6cm.

.....drvsr.

Question. 14.

Sum of first 7 terms of an arithmetic sequence is 140.

Sum of first 11 terms of the same arithmetic sequence is 440.

- (a) What is the 4th term of this arithmetic sequence ?
- (b) Find its 6th term.
- (c) What is the common difference ?
- (d) Find the first term of this sequence.

Solution.

Sum of the first 7 term = 140. Sum of the first 11 term = 440.

a) 4 th	term (x4)	$=\frac{S_{7}}{7}$	<u>140</u> 7	
b) 6 th	term (x ₆)	$= \frac{S_{11}}{11} =$	= <mark>20</mark> . <u>440</u> 11	
c) Cor	nmon diff	= 40. erence (d	d)	
=	$\frac{x_6 - x_4}{6 - 4} =$	<u>40-20</u> 2	= <u>20</u> 2	
d) Fir	est term o	d the se	= 10.	
$(x_1) = x_4 - 43d$				
$= 20 - 3 \times 10$ = 20 - 30 = - 10.				
	•••••	•••••	drvsr	

Question. 15.

A box contains 4 slips numbered 1, 2, 3, 4 and another contains 5 slips numbered 1, 2, 3, 4, 5. One slip is taken from each box without looking it.

- (a) In how many different ways we can choose the slips?
- (b) What is the probability of both numbers being odd ?
- (c) What is the probability of both numbers being the same ?

Solution.

Box - 1. \rightarrow 1, 2, 3, 4. Box - 2. \rightarrow 1, 2, 3, 4, 5.

... Probability both numbers being odd = n(F) / n(N) = $\frac{6}{20} = \frac{3}{10}$. c) Probability both numbers being same = n(F) / n(N) n(f) = 4., n(N) = 20. ... Probability both numbers being same = n(F) / n(N) = $\frac{4}{20} = \frac{1}{5}$. drvsr

Question. 16.

In a right triangle, one of the perpendicular sides is 2 centimetres more than that of the other.

Area of the triangle is 24 square centimetres.

Find the lengths of the perpendicular sides of the right triangle.

Solution.

Let one side be x

Aere = 24 cm^2 By question ie., $\frac{1}{2}$ x bh = 24 $\frac{1}{2} \times x(x + 2) = 24$ $x^2 + 2x = 48$. .[Using square completion method] $x^{2} + 2x + 1 = 48 + 1$ $(x + 1)^2 = 49.$ x + 1 = 7; x = 7 - 1 = 6. ... Sides are 6 cm. and 8 cm.drvsr

Question. 17.

Draw the co-ordinate axes and mark the points A(0, 0), B(4, 4), C(8, 0) and D(4, -4).

- (a) Write the suitable name of the quadrilateral ABCD.
- (b) Find the length of the diagonal BD.

Solution.

-21-

b) Length of the diagonal BD = 8.

.....drvdr

Question. 18.

Diagonals AC and BD of the cyclic quadrilateral ABCD cuts at P.

PA = 12 centimetres; PC = 2 centimetres; BD = 11 centimetres.

- (a) If PB = x, then write PD in terms of x.
- (b) Find the lengths of PB and PD.

Solution.

Given, PA = 12cm, PC = 2cm., BD = 11cm.

a) PB = x

From the figure we can see that PD = 11 - xb) We know that $PA \times PC=PB \times PD$ ie., $12 \times 2 = x \times (11 - x)$ \Rightarrow 24 = 11x - x². \Rightarrow x² - 11x + 24 = 0. (x - 8)(x - 3) = 0either x - 8 = 0, or x - 3 = 0. if x - 8 = 0; x - 3 = 0x = 8 ; x = 3 Here when PB = 8cm. then PD = 3cm. When PB = 3cm then PD = 8cm.drvsr

Question. 19.

BC is a chord of the circle centred at O.

BC = 10 centimetres $\angle A = 60^{\circ}$. Find the radius of the circle.

Solution.

Givn, BC = 10cm be a chord.(C) $\angle A = 60^{\circ}$. C = 2r sinA; \Rightarrow 10 = 2r sin 60. \Rightarrow 2r = $\frac{10}{\sin 60}$; \Rightarrow 2r = $\frac{10}{\frac{\sqrt{3}}{2}}$. \therefore r = $\frac{10}{\sqrt{3}}$.cm. drvsr

In the figure, co-ordinates of 3 vertices of the parallelogram ABCD are given.

- (a) Write the co-ordinates of C.
- (b) Calculate the length of the diagonal AC.
- (c) Find the co-ordinates of the point of intersection of the diagonals.

Solution.

The co-ordinates of A,B,C and D are given.

a) C (12 + 10 - 7 , 11 + 7 - 5) C (15, 13) .

b) Length of diagomal AC

[Use distance formula].

ie., AC =
$$\sqrt{(15-7)^2 + (13-5)^2}$$

= $\sqrt{8^2 + 8^2} = \sqrt{128}$
= $8\sqrt{2}$.

c) [Use mid point formula]. ie., $\left(\frac{12+10}{2}, \frac{7+11}{2}\right) = (11, 9)$.

.....drvsr.

Question. 21.

A square pyramid is made by cutting out a paper as in the figure. Side of the square is 40 centimetres. Height of the triangle is 25 centimetres.

- (a) What is the slant height of the square pyramid ?
- (b) Find the height of the pyramid.
- (c) Calculate the volume of the pyramid.

 $= \sqrt{625 - 400} = \sqrt{225} = 15$ cm.

Question. 22.

The daily wages of 99 workers in a factory is shown in the table.

Daily wages	Number of Workers
500-600	8
600-700	13
700-800	20
800-900	25
900-1000	19
1000-1100	14

- (a) If the workers are arranged on the basis of their daily wages, at what position does the median wage fall ?
- (b) What is the median class ?
- (c) Find the median of the wages.

Solution.

Daily Wages	Number	Daily Wages	cf
	of		
	workers		
500-600	8	Up to 600	8
600-700	13	Up to 700	21
700-800	20	Up to800	41
800-900	25	Up to900	66
900-1000	19	Up to1000	85
1000-1100	14	Up to 1100	99
Total	99		

N = 99
a) Median
$$\left(\frac{n+1}{2}\right)^{th}$$
 workers wage

$$= \left(\frac{99+1}{2}\right) \text{th workers wage}$$

= 50th workers wage.
 \therefore Median position = 50.
b) Median class = 800 - 900.
c) Since d = 900 - 800 /25
= 100/25 = 4
SO, X₄₂ = 800 + $\frac{d}{2}$ = 800+ $\frac{4}{2}$
= 900 + 2 = 802.
 \therefore Median = x₅₀ .
= x₄₂ + 8d
= 802 + 8 × 4
Wages = Rs.834/-.

Question. 23.

Draw a rectangle of area 24 square centimetres. Draw a square of area equal to the area of this rectangle.

Solution.

Question. 24.

SSLC Examination March 2023

In the figure, (0, 6) and (8, 0) are coordinates of the points A and B. A circle of diameter AB is to be drawn.

- (a) Find the coordinates of the centre of the circle.
- (b) Find the radius of the circle.
- (c) What is the equation of the circle ?

Solution.

Given A = (0, 6); B = (8, 0)

a) Centre of the circle

[find the mid point]

ie.,
$$\left(\frac{x_1 + y_1}{2}, \frac{x_2 + y_2}{2}\right)$$

 $\Rightarrow \left(\frac{0 + 8}{2}, \frac{6 + 0}{2}\right) = (4, 3).$

b) Given, AB diameter $AB = \sqrt{8^2+6^2}$.; $\sqrt{64+36} = 10$. [Using distance formula]

$$\therefore$$
 Radius = $\frac{10}{2}$ = 5.

c) Equation of the circle $(x - a)^2 + (y - b)^2 = r^2$. $\Rightarrow (x - 4)^2 + (y - 3)^2 = 5^2$. $\Rightarrow x^2 - 8x + 16 + y^2 - 6y + 9 = 25$. $\Rightarrow x^2 + y^2 - 8x - 6y = 0$.

Question. 25.

PA and PB are two tangents to the circle centred at O. **ZACB=105°**. Find the angles given below.

(a) ZADB = _____

5.

- (b) ZAOB = ____
- (c) ZAPB _____
- (d) ∠ABP = ____
- (e) ŻABO _____

Solution.

Question. 26.

There are two cylindrical wooden blocks with diameter 60 centimetres and height

60 centimetres. A largest cone is carved out from one block and a largest sphere from the other.

- (a) What is the volume of the cylinder ?
- (a) What is the volume of the core.(b) Find the volume of the cone.
- (c) Find the radius of the sphere.
- (d) Calculate the volume of the sphere.
- (e) Find the ratio of the volumes of the cone and the sphere.

Solution.

Given, heighr of the cylindrical block = 60cm.

Diametre = 60cm.; r = 30cm.

- a) Volume of the cylinder = $\pi r^2 h = \pi \times 30^2 \times 60$ = 54000 π cm³.
- **b)** Volume of the cone
- $=\frac{1}{3} \times \pi r^2 h = \frac{1}{3} \times 54000\pi$

 $= 18000\pi \ \mathrm{cm}^3$.

c) Radius of the sphere

Here diameter of yje cylinder be equak to the diameter of the sphere

∴Radius = 30 cm.

d) Vloume of rhe sphere $= \frac{4}{3} \times \pi r^{3} \Rightarrow \frac{4}{3} \times \pi \times 30^{3} \Rightarrow \frac{1}{3} = \frac{36000 \pi \text{ cm}^{3}}{3} \Rightarrow \frac{4}{3} \times \pi \times 30^{3} \Rightarrow \frac{4}{3} \times 10^{3} \Rightarrow \frac{4}{3} \times 10^{3}$

Question. 27.

- (a) Find the sum of first 20 natural numbers.
 - (b) Write the algebraic expression of the arithmetic sequence 5, 9, 13, ______
 - (c) Find the sum of first 20 terms of the arithmetic sequence 5, 9, 13, ______
 (c) Find the sum of first 20 terms of the arithmetic sequence 5, 9, 13, ______

Solution. Given first 20 natural numbers.

2

a) $S_{20} = \frac{n(n+1)}{2} = \frac{20(20+1)}{2}$ $= 10 \times 21 = 210$ b) Given sequence = 5, 9, 13, f = 5; d = 9 - 5 = 4. Algibraic expression $x_n = dn + (f - d)$ = 4n + (5 - 4). = 4n + 1c) Given sequence = 5, 9, 13, n = f = 5, d = 9 - 5 = 4. $S_{20} = \frac{n}{2} [2 + (n - 1) d]$

$$= \frac{20}{2} [2 \times 5 + (20 - 1) 4]$$

= 10 [10 + 19 × 4]
= 10 × 86 = 860.

OR Do it yourself by this formula. $\frac{d}{2}n^2 + (f - \frac{d}{2})n$

.....drvsr

Question. 28.

A child sees the top of a telephone tower at an elevation of 80°. Stepping 20 metres back, he sees it at an elevation of 40°.

(a) Draw a rough figure.

(b) Calculate the height of the tower.

 $\begin{bmatrix} \sin 40^\circ = 0.64 ; \cos 40^\circ = 0.77 ; \tan 40^\circ = 0.84 \\ \sin 80^\circ = 0.98 ; \cos 80^\circ = 0.17 ; \tan 80^\circ = 5.7 \end{bmatrix}$

b) sin 80 =
$$\frac{h}{20}$$

h = sin 80 x 20. \Rightarrow 0.98 x 20
Height of the tower = 19.6..
drvsr

Question. 29.

Diagonals of a quadrilateral are the lines joining its opposite vertices.

What about the diagonals of a polygon?

The lines from one vertex to the adjacent two vertices are not diagonals. They are the sides of the polygon. Lines to all other vertices are diagonals.

In a quadrilateral, only one diagonal can be drawn from one vertex. If we draw from all 4 vertices, we get 4 diagonals. But 2 among them are the same. In a pentagon, from one vertex, 2 diagonals can be drawn.

Therefore total number of lines is $5 \times 2 = 10$.

But 5 among them are the same.

So number of diagonals in a pentagon = $\frac{5 \times 2}{2} = 5$.

Now complete the table given below :

Polygon	Polygon Number of sides		Total number of diagonals
Quadrilateral	4	1	$\frac{4\times 1}{2} = 2$
Pentagon	5	2	$\frac{5\times 2}{2} = 5$
Hexagon	6	3	$\frac{6\times3}{2} = 9$
Heptagon	7		
Decagon	10		
n sided polygon n		n-3	

Solution.

Heptagon	7	4	$\frac{7\times4}{2}=14$
Decagon	10	7	$\frac{10\times7}{2} = 35$
N side polygon	n	n - 3	<u>n(n-3)</u> 2

drvsr SSLC Examination March 2023 Mathematics - English Version. Detailed Solutions with Questions. Prepared by Dr.V.S. Raveendra Math.

.