SECOND YEAR HSS MODEL EXAMINATION FEBRUARY 2023 ANSWER KEY			14	14 It is due to the presence of incompletely filled $(n - 1)$ d orbitals with unpaired electrons and hence d – d transition.		1
						1
			15	DNA	RNA	
Q No	Value point	Mark		Pentose sugar is	Pentose sugar is	1
	<mark>1 to 5, Any 4 (4 × 1 = 4 Marks)</mark>			2 – deoxyribose	ribose	
1	Zero	1		Nitrogen bases	Nitrogen bases	
2	Lanthanoid contraction	1		A, G, C and T	A, G, C and U	1
3	EDTA	1		Double helix	Single helix	
4	(d) Benzaldehyde	1		structure	structure	
5	(a) Chloroform	1				
<mark>6 to 1</mark> 5, Any 8 (8 × 2 = 16 Marks)			$\frac{16 \text{ to } 26, \text{ Any 8 } (8 \times 3 = 24 \text{ Marks})}{16 \text{ to } 16 \text{ to } 26, \text{ Any 8 } (8 \times 3 = 24 \text{ Marks})}$			
6 (i)	For a solution of volatile liquids, the	1	16 (1)	(i) (c) Lead storage battery		
	partial vapour pressure of each		(11)	Galvanic cells used to convert the energy of combustion of fuels directly into electrical energy. Eq. $H_2 = O_2$ fuel cell		1
	component of the solution is directly					
	proportional to its mole fraction present					
(;;)	Mixture of other of and agatons	1	(iii)	Eg. $\Pi_2 = O_2$ fuel cel		1
(11)	Solutions having some espectie prossure	1	17()	$2H_2(g) + O_2(g) \rightarrow$	2H ₂ O(I)	1
7	at a given temperature or	1	17(1)	$k = A e^{-Ea/RT}$ where k is rate constant, A is the frequency factor, E_a is activation energy, R is gas constant and T is the Kelvin temperature. The minimum amount of extra energy required by a reacting molecule to get converted into product.		1
	Solutions having same concentration at					
	a given temperature. Eg. 0.9 % normal	1				
	saline solution & blood	1	(ii)			
8	Anode reaction:	1⁄2				
	$Zn(s) \xrightarrow{Oxi} Zn^{2+}(aq) + 2 e^{-}$					
	Cathode reaction:		(111)	$k = \frac{[R]_0 - [R]}{t}$ K - Rate constant [R]_0 - Initial concentration of reactant [R] - Concentration of reactant after time 't'		1
	$Cu^{2+}(aq) + 2 e^{-} \xrightarrow{Red} Cu(s)$	1⁄2				I
	Net cell reaction:					
	$Zn(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu(s)$	1				
9	$t = \frac{2.303}{\log \frac{[R]_0}{1}}$	1⁄2				
	k ¹⁰⁵ [R]	_	18(i)	Bimolecular reaction that is made to behave like a first order reaction. Eg. Inversion of cane sugar		1
	$t = \frac{2.303}{k} \log \frac{3}{3} s$	1⁄2				
	$=\frac{2.303}{100}\log 1666$ s					
	1.15×10^{-3} rog 1.000 s	1	(ii)	3	6	1
10 (a)	$= 2 \times 10^{5} \times 0.2218 \text{ s} = 4.44 \times 10^{5} \text{ s}$	1	(iii)	Order = $2 + \frac{1}{2} = 2\frac{1}{2}$	$v_2 = 5/2$	1
10(a) (b)	Totracarbonylnickal (0)	1	19 (i)	The preparation in	volves 2 steps.	
(0)	Chlanaform is also have an dised have in	1	_	1. Conversion of py	rolusite, MnO ₂ to	1
11	Chiorolorm is slowly oxidised by air	1		potassium manganate by fusion with		
	in the presence of light to an	1		KOH in presence of	air.	
10	chlorida (rhoszarz)	1		$2 \text{ MnO}_2 + 4 \text{ KOH} + \text{O}_2 \rightarrow 2 \text{ K}_2 \text{MnO}_4 + 2 \text{ H}_2 \text{O}$		
	chioride, (phosgene).	1	_	2. Conversion of po	assium manganate	
12	Phenol is resonance stabilized, which	I		electrolytic oxidation in presence of KOH.		1
	gives positive charge on oxygen of O – H					
	group, that enhances the release of H^+ ion.			Electrolytic o	Electrolytic oxidation in KOH	
	The phenoxide ion thus formed is also get	1		The resulting solu	ition on heating	
	more stabilized by resonance than phenol.	1	_	purple-coloured cry	/stals of KMnO4	
13	Conversion of aniline to benzene diazonium chloride by treating aniline with	1		separates out.		
	NaNO ₂ and HCl under ice cold condition.		(ii)	E C	72-	
	\mathbf{NH}_2 $\mathbf{N}_2\mathbf{C}\mathbf{I}$			0, 19 pm 0	0 10 pm 0 0 2-	
	NaNOa + 2HCl					
	+ NaCl + 2H ₂ O					
	Aniline Benzenediazonium			L . A.	<u> </u>	
	chloride			Dichrom	ate ion	

