RRV GIRLS HIGHER SECONDARY SCHOOL, KILIMANOOR SECOND YEAR HIGHER SECONDARY PRE MODEL EXAMINATION – 2023 MATHEMATICS (SCIENCE)

Time: 2 Hours Cool-Off time : 15 mnt Maximum Score: 60 Answer any 6 questions from 1 to 8. Each carries 3 scores. $(6 \times 3 = 18)$ 1. (a) The maximum number of ordered pairs to form a non-zero reflexive relation on a set of 4 elements (1) 2^{4} (i) (ii) 4 2 (iv) 8 (iii) (b) Show that the relation R in the set $\{1, 2, 3\}$ given by $R = \{(1,1), (2,2), (3,3), (1,3$ (3,2)} is reflexive but not symmetric nor transitive (2)2. (a) If $\begin{bmatrix} x & 0 \\ 1 & y \end{bmatrix} = \begin{bmatrix} -2 & 0 \\ 1 & 5 \end{bmatrix}$ Find the value of x and y. (1)(b) If $A^1 = \begin{bmatrix} 1 & 2 \\ -1 & 3 \\ 0 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 4 & -1 \\ 2 & 1 & 3 \end{bmatrix}$ Find A-B. (2)3. (a) The value of $\begin{vmatrix} x & x-1 \\ x+1 & x \end{vmatrix}$ is _____. (1)(b) Find the value of λ if $A = \begin{bmatrix} \lambda & 1 \\ 6 & 3 \end{bmatrix}$ is singular (2)4. Find the value of k, so that the function $f(x) = \begin{cases} kx^2, & \text{If } x \ge 1\\ 4, & \text{If } x < 1 \end{cases}$ Is continuous at x=1(3)5. Find $\frac{dy}{dx}$ if $x^y = y^x$ (3)6. Consider two vectors $\vec{a} = \hat{l} - \hat{j} + \hat{k}$ And $\vec{b} = \hat{l} + \hat{j} - \hat{k}$ Find $|\vec{a}|$ and $|\vec{b}|$ (i) (1)Find \vec{a} . \vec{b} (ii)

(ii) Find \vec{a} . b (1) (iii) Find the angle between $\vec{a} \& \vec{b}$ (1) 7. Find the cartescan equation of the line which passes through the point (-2, 4, -5) and is parallel to the line.

$$\frac{x+3}{3} = \frac{y-4}{-5} = \frac{z+8}{6}$$
(3)

8. (a) If P(A) -= 0.4, P(B) = k and P(AvB) = 0.7 find k if A and B are independent events. (1)

(b) If A and B are two events such that $P(A) = \frac{1}{4}$, $P(B) = \frac{1}{2}$ and $P(A\eta B) = \frac{1}{8}$ Find P (not A and not B) (2)

Answer any 6 questions from 9 to 16. Each carries 4 scores. $(6 \times 4 = 24)$

- 9. (a) A function f: A → B, where A = {1, 2, 3} and B = {4, 5, 6} defined by f = {(1,6), (2,4), (3, 5)} then f is
 - (i) One one (ii) onto (iii) bijection (iv) neither one-one not onto (1)
 (ii) Show that the medulus function given by f(r) due is neither one one

(ii) Show that the modulus function given by f(x) = |x| is neither one-one nor onto. (3)

10. (a)
$$\sin^{-1} \sin \frac{2\pi}{3} =$$

(i) $\frac{2\pi}{3}$ (ii) $\frac{\pi}{4}$ (iii) $\frac{\pi}{2}$ (iv) $\frac{\pi}{3}$ (1)

(ii) Write the value of
$$\tan^{-1} [2 \sin (2 \cos^{-1} \sqrt{3}/2)]$$
 (3)

11. If
$$A = \begin{bmatrix} 3 & 3 & -1 \\ -2 & -2 & 1 \\ -4 & -5 & 2 \end{bmatrix}$$

(i) Find A+A¹ and A-A¹
(ii) Express A as the sum of a symmetric and a skew-symmetric matrix. (2)

(2)

12. (a) Find the area of the curve $y^2 = x$ and the line x=4 and the x-axis in first quadrant.

(b) Find the area of the region bounded by the curve
$$x^2+y^2=9$$
 (3)

Downloaded from www.hssreporter.com

- 13. (a) The degree of the differential equation $x^4 \frac{d^2y}{dx^2} = 1 + \left(\frac{dy}{dx}\right)^3$ is
 - (i) 1 (ii) 4 (iii) 3 (iv) 2 (1)

(b) Find the general solution of the differential equation $y \log y \, dx - x \, dy = 0$ (3)

- 14. Consider two vectors $\vec{a} = 2\hat{l} + 3\hat{j} + 4\hat{k}$ and $\vec{b} = -\hat{j} 2\hat{k}$ (i) Find $\vec{a} \times \vec{b}$ and $|\vec{a} \times \vec{b}|$ (2)
 - (ii) Find the unit vector perpendicular to the vectors \vec{a} and \vec{b} . (1)

(iii) Find the area of the parallellogram whose adjacent sides are \vec{a} and \vec{b} . (1)

15. Find the shortest distance between the lines

$$\vec{\gamma} = (\hat{l} + 2\hat{j} + \hat{k}) + \lambda (\hat{l} - \hat{j} + \hat{k})$$

and $\vec{\gamma} = (2\hat{l} - \hat{j} - \hat{k}) + \lambda (2\hat{l} + \hat{j} + 2\hat{k})$ (4)

16. A man is known to speak truth 3 out of 4 times. He throws a die and reports that it is a six. Find the probability that it is actually a six. (4)

Answer any 3 questions from 17 to 20. Each carries 6 scores $(3 \times 6 = 18)$

- 17. Consider the linear equations
- x y + z = 42x + y - 3z = 0x+y+z=2(i) Write the above equation as a matrix equation. (1)Solve the system using matrix method. (ii) (5) 18. (a) f(x) is a strictly increasing function if $f^{1}(x)$ is _____ Negative positive (i) Zero (ii) (iii) (iv) None. (1) (b) Find the intervals in which the function $f(x) = x^2 - 4x + 6$ is strictly decreasing. (2)
 - (c) Show that of all rectangles with a given area, the square has the least perimeter.

(3)

19. Evaluate

(a)
$$\int \frac{x}{(x+1)(x+2)} dx$$
 (2)

(b)
$$\int \log x \, dx$$
 (1)
 $\int \int dx \, dx$

(c)
$$\int_{0}^{\pi/2} \frac{\sin^4 x}{\sin^4 x + \cos^4 x} dx$$
 (3)

20. Consider the LPP

Maximise Z = 3 x + 2y subject to

$$x + 2y \le 10$$
$$3x + y \ge 15$$
$$x, y \ge 0$$

(a) Draw its feasible region	(3)
(b) Find the corner points of the feasible region.	(2)
(c) Find the maximum value of z	(1)

Prepared by

Shiny G S HSST Mathematics RRVGHSS Kilimanoor 9495243274