RRV GIRLS HIGHER SECONDARY SCHOOL, KILIMANOOR
SECOND YEAR HIGHER SECONDARY PRE MODEL EXAMINATION - 2023 MATHEMATICS (SCIENCE)

Time: 2 Hours

Answer any 6 questions from 1 to 8. Each carries 3 scores. ($6 \times 3=18$)

1. (a) The maximum number of ordered pairs to form a non-zero reflexive relation on a set of 4 elements
(i) $\quad 2^{4}$
(ii) 4
(iii) 2
(iv) 8
(b) Show that the relation R in the set $\{1,2,3\}$ given by $\mathrm{R}=\{(1,1),(2,2),(3,3),(1,3)$, $(3,2)\}$ is reflexive but not symmetric nor transitive
2. (a) If $\left[\begin{array}{ll}x & 0 \\ 1 & y\end{array}\right]=\left[\begin{array}{cc}-2 & 0 \\ 1 & 5\end{array}\right]$

Find the value of x and y .
(b) If $\mathrm{A}^{1}=\left[\begin{array}{cc}1 & 2 \\ -1 & 3 \\ 0 & 4\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{ccc}3 & 4 & -1 \\ 2 & 1 & 3\end{array}\right]$

Find A-B.
3. (a) The value of $\left|\begin{array}{cc}x & x-1 \\ x+1 & x\end{array}\right|$ is \qquad
(b) Find the value of λ if $\mathrm{A}=\left[\begin{array}{ll}\lambda & 1 \\ 6 & 3\end{array}\right]$ is singular
4. Find the value of k , so that the function $\mathrm{f}(x)=\left\{\begin{array}{cc}k x^{2}, & \text { If } x \geq 1 \\ 4, & \text { If } x<1\end{array}\right.$

Is continuous at $x=1$
5. Find $\frac{d y}{d x}$ if $\mathrm{x}^{\mathrm{y}}=\mathrm{y}^{\mathrm{x}}$
6. Consider two vectors $\vec{a}=\hat{l}-\hat{\jmath}+\hat{k}$

And $\overrightarrow{\mathrm{b}}=\hat{l}+\hat{\jmath}-\hat{k}$
(i) \quad Find $|\vec{a}|$ and $|\vec{b}|$
(ii) Find $\vec{a} \cdot \vec{b}$
(iii) Find the angle between $\vec{a} \& \vec{b}$
7. Find the cartescan equation of the line which passes through the point $(-2,4,-5)$ and is parallel to the line.

$$
\begin{equation*}
\frac{x+3}{3}=\frac{y-4}{-5}=\frac{z+8}{6} \tag{3}
\end{equation*}
$$

8. (a) If $\mathrm{P}(\mathrm{A})-=0.4, \mathrm{P}(\mathrm{B})=\mathrm{k}$ and $\mathrm{P}(\mathrm{A} \cup \mathrm{B})=0.7$ find k if A and B are independent events.
(b) If A and B are two events such that $\mathrm{P}(\mathrm{A})=\frac{1}{4}, \mathrm{P}(\mathrm{B})=\frac{1}{2}$ and $\mathrm{P}(\mathrm{A} \eta \mathrm{B})=\frac{1}{8}$ Find $P(\operatorname{not} A$ and not $B)$

Answer any 6 questions from 9 to 16. Each carries 4 scores. ($6 \times 4=24$)
9. (a) A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$, where $\mathrm{A}=\{1,2,3\}$ and $\mathrm{B}=\{4,5,6\}$ defined by $\mathrm{f}=\{(1,6)$, $(2,4),(3,5)\}$ then f is
(i) One - one (ii) onto (iii) bijection (iv) neither one-one not onto
(ii) Show that the modulus function given by $f(x)=|x| \quad$ is neither one-one nor onto.
10. (a) $\sin ^{-1} \sin \frac{2 \pi}{3}=$ \qquad
$\begin{array}{lllll}\text { (i) } \frac{2 \pi}{3} & \text { (ii) } \frac{\pi}{4} & \text { (iii) } \frac{\pi}{2} & \text { (iv) } \frac{\pi}{3}\end{array}$
(ii) Write the value of $\tan ^{-1}\left[2 \sin \left(2 \cos ^{-1} \sqrt{3} / 2\right)\right]$
11. If $\mathrm{A}=\left[\begin{array}{ccc}3 & 3 & -1 \\ -2 & -2 & 1 \\ -4 & -5 & 2\end{array}\right]$
(i) Find $\mathrm{A}+\mathrm{A}^{1}$ and $\mathrm{A}-\mathrm{A}^{1}$
(ii) Express A as the sum of a symmetric and a skew-symmetric matrix.
12. (a) Find the area of the curve $y^{2}=x$ and the line $x=4$ and the x-axis in first quadrant.
(b) Find the area of the region bounded by the curve $x^{2}+y^{2}=9$
13. (a) The degree of the differential equation $x^{4} \frac{d^{2} y}{d x^{2}}=1+\left(\frac{d y}{d x}\right)^{3}$ is
(i) 1
(ii) 4
(iii) 3
(iv) 2
(b) Find the general solution of the differential equation $y \log y d x-x d y=0$
14. Consider two vectors $\overrightarrow{\mathrm{a}}=2 \hat{l}+3 \hat{\jmath}+4 \hat{k}$ and $\overrightarrow{\mathrm{b}}=-\hat{\jmath}-2 \hat{k}$
(i) Find $\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}$ and $|\overrightarrow{\mathrm{a}} x \overrightarrow{\mathrm{~b}}|$
(ii) Find the unit vector perpendicular to the vectors \vec{a} and \vec{b}.
(iii) Find the area of the parallellogram whose adjacent sides are \vec{a} and \vec{b}.
15. Find the shortest distance between the lines
$\vec{\gamma}=(\hat{l}+2 \hat{\jmath}+\hat{k})+\lambda(\hat{l}-\hat{\jmath}+\hat{k})$
and $\vec{\gamma}=(2 \hat{l}-\hat{\jmath}-\hat{k})+\lambda(2 \hat{l}+\hat{\jmath}+2 \hat{k})$
16. A man is known to speak truth 3 out of 4 times. He throws a die and reports that it is a six. Find the probability that it is actually a six.

Answer any 3 questions from 17 to 20. Each carries 6 scores ($3 \times 6=18$)

17. Consider the linear equations
$x-\mathrm{y}+\mathrm{z}=4$
$2 x+y-3 z=0$
$x+y+z=2$
(i) Write the above equation as a matrix equation.
(ii) Solve the system using matrix method.
18. (a) $\mathrm{f}(x)$ is a strictly increasing function if $\mathrm{f}^{1}(x)$ is \qquad
(i) Zero (ii) Negative (iii) positive (iv) None. (1)
(b) Find the intervals in which the function $\mathrm{f}(x)=x^{2}-4 x+6$ is strictly decreasing.
(c) Show that of all rectangles with a given area, the square has the least perimeter.
19. Evaluate
(a) $\int \frac{x}{(x+1)(x+2)} d x$
(b) $\int \log x d x$
(c) $\int_{0}^{\pi / 2} \frac{\sin ^{4} x}{\sin ^{4} x+\cos ^{4} x} d x$
20. Consider the $\mathcal{L P P}$

Maximise $\mathrm{Z}=3 x+2 \mathrm{y}$ subject to

$$
\begin{aligned}
& x+2 y \leq 10 \\
& 3 x+y \geq 15 \\
& x, y \geq 0
\end{aligned}
$$

(a) Draw its feasible region
(b) Find the corner points of the feasible region.
(c) Find the maximum value of z

Prepared by

Shiny G S HSST Mathematics RRVGHSS
 Kilimanoor 9495243274

