

Reg. No. :

Name :

SAY / IMPROVEMENT EXAMINATION, JULY – 2022

Part – III

Time : 2 Hours

MATHEMATICS (SCIENCE) Cool-off time : 15 Minutes

Maximum : 60 Scores

General Instructions to Candidates :

- There is a 'Cool-off time' of 15 minutes in addition to the writing time.
- Use the 'Cool-off time' to get familiar with questions and to plan your answers.
- Read questions carefully before answering.
- Read the instructions carefully.
- Calculations, figures and graphs should be shown in the answer sheet itself.
- Malayalam version of the questions is also provided.
- Give equations wherever necessary.
- Electronic devices except non-programmable calculators are not allowed in the Examination Hall.

വിദ്യാർത്ഥികൾക്കുള്ള പൊതുനിർദ്ദേശങ്ങൾ :

- നിർദ്ദിഷ്ട സമയത്തിന് പുറമെ 15 മിനിറ്റ് 'കുൾ ഓഫ് ടൈം' ഉണ്ടായിരിക്കും.
- 'കൂൾ ഓഫ് ടൈം' ചോദ്യങ്ങൾ പരിചയപ്പെടാനും ഉത്തരങ്ങൾ ആസൂത്രണം ചെയ്യാനും ഉപയോഗിക്കുക.
- ഉത്തരങ്ങൾ എഴുതുന്നതിന് മുമ്പ് ചോദ്യങ്ങൾ ശ്രദ്ധാപൂർവ്വം വായിക്കണം.
- നിർദ്ദേശങ്ങൾ മുഴുവനും ശ്രദ്ധാപൂർവ്വം വായിക്കണം.
- കണക്ക് കൂട്ടലുകൾ, ചിത്രങ്ങൾ, ഗ്രാഫുകൾ, എന്നിവ ഉത്തരപേപ്പറിൽ തന്നെ ഉണ്ടായിരിക്കണം.
- ചോദ്യങ്ങൾ മലയാളത്തിലും നല്ലിയിട്ടുണ്ട്.
- ആവശ്യമുള്ള സ്ഥലത്ത് സമവാകൃങ്ങൾ കൊടുക്കണം.
- പ്രോഗ്രാമുകൾ ചെയ്യാനാകാത്ത കാൽക്കുലേറ്ററുകൾ ഒഴികെയുള്ള ഒരു ഇലക്ട്രോണിക് ഉപകരണവും പരീക്ഷാഹാളിൽ ഉപയോഗിക്കുവാൻ പാടില്ല.

PART-I

A.	Answer any 5 questions from 1 to 9. Eac	h carries 1 score.	$(5 \times 1 = 5)$
1.	Which of the following functions is one-or	ne?	
	(a) $f: R \to R, f(x) = x^2$	(b) $f: R \to R, f(x) = x $	
	(c) $f: R \to R, f(x) = \sin x$	(d) $f: R \to R, f(x) = x^3$	
2.	$\sin^{-1} x + \cos^{-1} x =$		
	(a) π	(b) $\frac{\pi}{2}$	
	(c) 0	(d) 1	
3.	If $ A = 5$ where A is a 3×3 matrix, then	2A =	
4.	If A and B are independent events with F	P(A) = 0.3 and $P(B) = 0.4$, then F	$P(A \cap B) =$
5.	The area bounded by the curve $y = x^3$ betw	teen $x = 0$, $x = 1$ and x-axis is	
	(a) $\frac{1}{4}$	(b) 1	
	(c) $\frac{3}{2}$	(d) 2	
6.	Slope of the normal to the curve $y = x^2 - 1$	at the point (1, 0) is	
7.	If \overrightarrow{a} and \overrightarrow{b} are any two vectors then whi	ch of the following is not a vector	?
	$(a) \rightarrow \rightarrow \rightarrow b$	$(h) \rightarrow \dot{h}$	

(a) $\overrightarrow{a} + \overrightarrow{b}$ (b) $\overrightarrow{a} - \overrightarrow{b}$ (c) $\overrightarrow{a} \cdot \overrightarrow{b}$ (d) $\overrightarrow{a} \times \overrightarrow{b}$

8. Write the vector equation of the line $\frac{x}{2} = \frac{y-2}{3} = \frac{z+1}{1}$.

9. Write the order of the differential equation $x \frac{dy}{dx} + y = 0$.

PART-I

- 1 മുതൽ 9 വരെയുള്ള ചോദ്യങ്ങളിൽ ഏതെങ്കിലും 5 എണ്ണത്തിന് ഉത്തമെഴുതുക. A. 1 സ്റോർ വീതം. $(5 \times 1 = 5)$ താഴെ കൊടുത്തിരിക്കുന്ന ഫങ്ങ്ഷൻസിൽ വൺ-വൺ ഫങ്ങ്ഷൻ ഏതാണെന്ന് 1. എഴുതുക. (a) $f: R \to R, f(x) = x^2$ (b) $f: R \rightarrow R, f(x) = |x|$ (c) $f: R \rightarrow R, f(x) = \sin x$ (d) $f: R \to R, f(x) = x^3$ $\sin^{-1} x + \cos^{-1} x =$ _____. 2. (b) $\frac{\pi}{2}$ (a) π (d) 1 (c) 0 A ഒരു 3×3 മെട്രിക്സ് ആണ്. |A| = 5 ആയാൽ |2A| =_____ 3. A യും B യും രണ്ട് ഇൻഡിപെൻഡന്റ് ഇവന്റുകൾ ആണ്. P(A) = 0.3, P(B) = 0.4,4. ആയാൽ $P(A \cap B) =$. $y = x^3$ എന്ന വക്രം x = 0, x = 1, x-അക്ഷം എന്നിവയുമായി ഉണ്ടാക്കുന്ന പരപ്പളവ് 5. (a) $\frac{1}{4}$ (b) 1 (c) $\frac{3}{2}$ (d) 2 6. $y = x^2 - 1$ എന്ന വക്രത്തിലെ (1, 0) എന്ന ബിന്ദുവിലുള്ള നോർമലിന്റെ ചരിവ് = → → a , b ഇവ രണ്ട് വെക്ടറുകളായാൽ ചുവടെ കൊടുത്തിരിക്കുന്നതിൽ ഏതാണ് ഒരു 7. വെക്ടറല്ലാത്തത്? (a) $\overrightarrow{a} + \overrightarrow{b}$ (b) $\overrightarrow{a} - \overrightarrow{b}$ $(d) \quad \stackrel{\rightarrow}{a} \times \stackrel{\rightarrow}{b}$ (c) $\overrightarrow{a} \cdot \overrightarrow{b}$
- 8. ചുവടെ കൊടുത്തിരിക്കുന്ന വരയുടെ വെക്ടർ സമവാക്യം എഴുതുക

$$\frac{x}{2} = \frac{y-2}{3} = \frac{z+1}{1}$$
.

9. $x \frac{dy}{dx} + y = 0$ എന്ന ഡിഫറൻഷ്യൽ സമവാക്യത്തിന്റെ ഓർഡർ എഴുതുക.

SAY-727

3

P.T.O.

- **B.** Answer all questions from 10 to 13. Each carries 1 score. $(4 \times 1 = 4)$
- 10. The value of $\csc^{-1}(2) =$ _____

11. The vertices of the triangle ABC are (x_1, y_1) , (x_2, y_2) , (x_3, y_3) . If the area of triangle ABC is 10 sq. units, then area of the triangle whose vertices are $(x_1 + 2, y_1)$, $(x_2 + 2, y_2)$, $(x_3 + 2, y_3)$ is _____.

- (a) 12 (b) 20
- (c) 10 (d) 40
- 12. *l*, m and n are direction cosines of a vector and $l = \frac{3}{5}$ and $m = \frac{4}{5}$. Find the value of n.
- 13. Derivative of $e^{\sin x}$ is _____.

PART-II

A. Answer any 2 questions from 14 to 17. Each carries 2 scores. $(2 \times 2 = 4)$

- 14. If $A = \begin{bmatrix} 1 & 3 \\ 2 & 0 \end{bmatrix}$, find A^2 .
- 15. An edge of a cube is increasing at the rate of 4 cm/s. How fast is the volume increasing when the edge is 20 cm ?
- 16. Find the interval in which the function $f(x) = x^2 6x + 5$ is increasing.

17. Solve the differential equation
$$\frac{dy}{dx} = 4xy^2$$
.

B. 10 മുതൽ 13 വരെയുള്ള എല്ലാ ചോദ്യങ്ങൾക്കും ഉത്തരം എഴുതുക. 1 സ്കോർ വീതം.

 $(4 \times 1 = 4)$

10. cosec⁻¹ (2) ന്റെ വില =_____

11. മൂലകൾ $(x_1, y_1), (x_2, y_2), (x_3, y_3)$ ആയ ഒരു ത്രികോണത്തിന്റെ പരപ്പളവ് 10 ചതുരശ്ര യൂണിറ്റ് ആയാൽ മൂലകൾ $(x_1 + 2, y_1), (x_2 + 2, y_2), (x_3 + 2, y_3)$ ആയ ത്രികോണത്തിന്റെ പരപ്പളവ് = _____.

- (a) 12 (b) 20
- (c) 10 (d) 40
- 12. l, m, n ഇവ ഒരു വെക്ടറിന്റെ ഡയറക്ഷൻ കൊസൈൻസ് ആണ്. $l = \frac{3}{5}, m = \frac{4}{5}$ ആയാൽ n കണ്ടുപിടിക്കുക.
- 13. e^{sin x} ന്റെ ഡെറിവേറ്റീവ് = _____.

PART-II

- A. 14 മുതൽ 17 വരെയുള്ള ചോദ്യങ്ങളിൽ ഏതെങ്കിലും 2 എണ്ണത്തിന് ഉത്തരം എഴുതുക.
 2 സ്കോർ വീതം. (2 × 2 = 4)
- 14. $A = \begin{bmatrix} 1 & 3 \\ 2 & 0 \end{bmatrix}$ ആയാൽ A^2 കണ്ടുപിടിച്ച് എഴുതുക.
- 15. ഒരു സമചതുരക്കട്ടയുടെ വശത്തിന്റെ നീളം 4 cm/s എന്ന തോതിൽ വർദ്ധിക്കുന്നു. വശത്തിന്റെ നീളം 20 cm ആകുമ്പോൾ എത്ര വേഗത്തിലാണ് അതിന്റെ വ്യാപ്ലം കൂടുന്നത്?
- 16. $f(x) = x^2 6x + 5$ എന്ന ഫംഗ്ഷൻ ഇൻക്രീസിങ്ങ് ആകുന്ന ഇന്റർവെൽ കണ്ടുപിടിക്കുക.
- 17. $\frac{dy}{dx} = 4xy^2$ എന്ന ഡിഫറൻഷൃൽ സമവാകൃത്തിന്റെ പരിഹാരം കാണുക.

B. Answer any 2 questions from 18 to 20. Each carries 2 scores.

18. Show that the vectors $\overrightarrow{a} = \hat{i} - 2\hat{j} + 3\hat{k}$, $\overrightarrow{b} = -2\hat{i} + 3\hat{j} - 4\hat{k}$ and $\overrightarrow{c} = \hat{i} - 3\hat{j} + 5\hat{k}$ are coplanar.

19. If y = 3 sin x - 4 cos x, prove that
$$\frac{d^2 y}{dx^2} + y = 0$$

20. Find the integrating factor of the differential equation $x \frac{dy}{dx} + 2y = x^2$, $(x \neq 0)$.

PART-III

- A. Answer any 3 questions from 21 to 24. Each carries 3 scores. $(3 \times 3 = 9)$
- 21. Express the matrix $A = \begin{bmatrix} 2 & -1 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$ as the sum of a symmetric matrix and a skew

symmetric matrix.

- 22. f and g are functions defined on R as f(x) = 4x 1 and $g(x) = x^2$.
 - (a) Find $(g \circ f)(x)$ (2)
 - (b) Find $(g \circ f)(2)$ (1)
- 23. Bag 1 contains 3 red and 4 black balls while another Bag 2 contains 5 red and 6 black balls. One ball is drawn at random from one of the bags and it is found to be red. Find the probability that it was drawn from Bag 2.
- 24. Find the area of the parallelogram whose adjacent sides are determined by the vectors $\overrightarrow{a} = \overrightarrow{i} - \overrightarrow{j} + 3\overrightarrow{k}$ and $\overrightarrow{b} = 2\overrightarrow{i} - 7\overrightarrow{j} + \overrightarrow{k}$.

SAY-727

 $(2 \times 2 = 4)$

- B. 18 മുതൽ 20 വരെയുള്ള ചോദൃങ്ങളിൽ ഏതെങ്കിലും 2 എണ്ണത്തിന് ഉത്തരം എഴുതുക.
 2 സ്കോർ വീതം. (2 × 2 = 4)
- 18. $\overrightarrow{a} = \overrightarrow{i} 2\overrightarrow{j} + 3\overrightarrow{k}, \quad \overrightarrow{b} = -2\overrightarrow{i} + 3\overrightarrow{j} 4\overrightarrow{k}, \quad \overrightarrow{c} = \overrightarrow{i} 3\overrightarrow{j} + 5\overrightarrow{k}$ എന്നീ വെക്ടറുകൾ ഒരേ പ്ലയിനിൽ ആണെന്ന് തെളിയിക്കുക.

19.
$$y = 3 \sin x - 4 \cos x$$
 ആയാൽ $\frac{d^2 y}{dx^2} + y = 0$ എന്ന് തെളിയിക്കുക.

20. $x \frac{dy}{dx} + 2y = x^2$, (x ≠ 0) എന്ന ഡിഫറൻഷൃൽ സമവാകൃത്തിന്റെ ഇന്റഗ്രറ്റിങ്ങ് ഫാക്ടർ കണ്ടുപിടിക്കുക.

PART-III

A. 21 മുതൽ 24 വരെയുള്ള ചോദൃങ്ങളിൽ ഏതെങ്കിലും 3 എണ്ണത്തിന് ഉത്തരം എഴുതുക.
 3 സ്കോർ വീതം. (3 × 3 = 9)

21. A =
$$\begin{bmatrix} 2 & -1 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$$
 ആയാൽ A യെ ഒരു സിമ്മെട്രിക് മെട്രിക്സിന്റെയും സ്ക്രൂ

സിമ്മെട്രിക്സ് മെട്രിക്സിന്റെയും തുകയായി എഴുതുക.

- 22. f ഉം g യും R ൽ നിർവചിക്കപ്പെട്ട രണ്ടു ഫങ്ഷൻസാണ്. f(x) = 4x 1, g(x) = x^2 ആയാൽ,
 - (a) $(g \circ f)(x)$ കണ്ടുപിടിച്ചെഴുതുക. (2)
 - (b) $(g \circ f)(2)$ കണ്ടുപിടിച്ചെഴുതുക. (1)
- 23. ബാഗ് 1 ൽ 3 ചുവന്ന ബോളുകളും 4 കറുത്ത ബോളുകളും ഉണ്ട്. ബാഗ് 2 ൽ 5 ചുവന്ന ബോളുകളും 6 കറുത്ത ബോളുകളും ഉണ്ട്. ഈ ബാഗുകളിൽ ഒന്നിൽ നിന്ന് ഒരു ബോൾ റാൻഡമായി എടുക്കുന്നു. ഇതൊരു ചുവന്ന ബോൾ ആണെങ്കിൽ ബോൾ തിരഞ്ഞെടുത്തത് ബാഗ് 2 ൽ നിന്ന് ആവാനുള്ള സാധൃത കണ്ടുപിടിച്ച് എഴുതുക.
- 24. $\overrightarrow{a} = \hat{i} \hat{j} + 3\hat{k}, \quad \overrightarrow{b} = 2\hat{i} 7\hat{j} + \hat{k}$ എന്നിവ വശങ്ങളായ സാമാന്തരികത്തിന്റെ പരപ്പളവ് കണക്കാക്കുക.

SAY-727

P.T.O.

B. Answer any 2 questions from 25 to 27. Each carries 3 scores.

- 25. Using elementary operations, find the inverse of the matrix $A = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}$.
- 26. If * is a binary operation on R defined by a * b = $\frac{ab}{4}$, then
 - (a) Show that * is commutative. (1)

 $(2 \times 3 = 6)$

(b) Find the identity element of * if exists. (2)

27. Evaluate $\int_{0}^{3} x^2 dx$ as the limit of a sum.

PART-IV

A. Answer any 3 questions from 28 to 31. Each carries 4 scores. $(3 \times 4 = 12)$ 28. (a) Show that $\tan^{-1}\left(\frac{2}{11}\right) + \tan^{-1}\left(\frac{7}{24}\right) = \tan^{-1}\left(\frac{1}{2}\right)$. (2)

$$(11) (24) (2)$$

(b) Find the value of
$$\sin^{-1}\left(\sin\left(\frac{2\pi}{3}\right)\right)$$
. (2)

29. Find the area enclosed by the circle $x^2 + y^2 = 25$ using integration.

30. (a) Discuss the continuity of the function $f(x) = \begin{cases} x^2 + 3 & \text{if } x \le 2 \\ x^3 - 3 & \text{if } x > 2 \end{cases}$ (2)

(b) Find
$$\frac{dy}{dx}$$
 if $x = \sin 2t$ and $y = \cos t$ (2)

31. Find the shortest distance between the lines

$$\overrightarrow{\mathbf{r}} = \overrightarrow{\mathbf{i}} + 2\overrightarrow{\mathbf{j}} + \overrightarrow{\mathbf{k}} + \lambda(\overrightarrow{\mathbf{i}} - \overrightarrow{\mathbf{j}} + \overrightarrow{\mathbf{k}}) \text{ and } \overrightarrow{\mathbf{r}} = 2\overrightarrow{\mathbf{i}} - \overrightarrow{\mathbf{j}} - \overrightarrow{\mathbf{k}} + \mu(2\overrightarrow{\mathbf{i}} + \overrightarrow{\mathbf{j}} + 2\overrightarrow{\mathbf{k}}).$$

- B. 25 മുതൽ 27 വരെയുള്ള ചോദൃങ്ങളിൽ ഏതെങ്കിലും 2 എണ്ണത്തിന് ഉത്തരം എഴുതുക. 3 സ്കോർ വീതം. (2 × 3 = 6)
- 25. A = $\begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}$ ആയാൽ എലമെന്ററി ഓപ്പറേഷൻ ഉപയോഗിച്ച് A യുടെ ഇൻവേ്് കണ്ടുപിടിച്ച് എഴുതുക.
- 26. * എന്നത് R ൽ നിർവചിക്കപ്പെട്ടിട്ടുള്ള ഒരു ബൈനറി ഓപറേഷനാണ് a * b = $\frac{ab}{4}$, ആയാൽ
 - (a) * കമ്യൂട്ടേറ്റിവ് ആണന്ന് തെളിയിക്കുക. (1)
 - (b) 🔹 ന് എഡെന്റിറ്റി എലമെന്റ് ഉണ്ടെങ്കിൽ കണ്ടുപിടിച്ചെഴുതുക. (2)
- 27. തുകയുടെ ലിമിറ്റ് എന്ന ആശയം ഉപയോഗിച്ച് $\int_{0}^{3} x^{2} dx$ ന്റെ വില കണ്ടുപിടിക്കുക.

PART-IV

A. 28 മുതൽ 31 വരെയുള്ള ചോദ്യങ്ങളിൽ ഏതെങ്കിലും 3 എണ്ണത്തിന് ഉത്തരം എഴുതുക.
 4 സ്കോർ വീതം. (3 × 4 = 12)

28. (a)
$$\tan^{-1}\left(\frac{2}{11}\right) + \tan^{-1}\left(\frac{7}{24}\right) = \tan^{-1}\left(\frac{1}{2}\right)$$
 ആണെന്ന് തെളിയിക്കുക. (2)

(b)
$$\sin^{-1}\left(\sin\left(\frac{2\pi}{3}\right)\right)$$
ന്റെ വില കണ്ടുപിടിച്ച് എഴുതുക. (2)

29. $x^2 + y^2 = 25$ എന്ന വൃത്തത്തിന്റെ പരപ്പളവ് ഇന്റഗ്രേഷൻ ഉപയോഗിച്ച് കണ്ടുപിടിക്കുക.

30. (a)
$$f(x) = \begin{cases} x^2 + 3 & \text{if } x \le 2 \\ x^3 - 3 & \text{if } x > 2 \end{cases}$$
 എന്ന ഫങ്ങ്ഷന്റെ കണ്ടിന്യൂവിറ്റി പരിശോധിക്കുക. (2)

(b)
$$x = \sin 2t, y = \cos t$$
 ആയാൽ $\frac{dy}{dx}$ കണ്ടത്തുക. (2)

31. ചുവടെ കൊടുത്തിരിക്കുന്ന വരകൾ തമ്മിലുള്ള ഏറ്റവും കുറഞ്ഞ ദൂരം കണക്കാക്കുക.

 $\overrightarrow{r} = \overrightarrow{i} + 2\overrightarrow{j} + \overrightarrow{k} + \lambda(\overrightarrow{i} - \overrightarrow{j} + \overrightarrow{k})$ $\overrightarrow{r} = 2\overrightarrow{i} - \overrightarrow{j} - \overrightarrow{k} + \mu(2\overrightarrow{i} + \overrightarrow{j} + 2\overrightarrow{k}).$

SAY-727

P.T.O.

B. Answer any 1 question from 32 – 33. Carries 4 scores.

 $(1 \times 4 = 4)$

X	0	1	2	3	4	5	6	7
P(X)	0	k	2k	2k	3k	k ²	2k ²	$7k^{2} + k$

- 32. A random variable X has the following probability distribution :
 - (i) Determine value of k.
 - (ii) Determine P(X < 3).
- 33. (a) Find the equation of the plane which is at a distance of 2 units from the origin and its normal vector from the origin is $2\hat{i} 2\hat{j} + \hat{k}$. (2)
 - (b) Find the angle between the above plane and the line

$$\overrightarrow{\mathbf{r}} = \overrightarrow{\mathbf{i}} + \overrightarrow{\mathbf{j}} + 2\overrightarrow{\mathbf{k}} + \lambda(2\overrightarrow{\mathbf{i}} - 3\overrightarrow{\mathbf{j}} + 6\overrightarrow{\mathbf{k}}).$$
(2)

PART-V

Answer any 2 questions from 34 to 36. Each carries 6 scores. $(2 \times 6 = 12)$ 34. Solve the following system of equations by matrix method :

- 3x 2y + 3z = 82x + y z = 14x 3y + 2z = 4
- 35. Find the following integrals :

(a)
$$\int \frac{2x}{1+x^2} dx$$
 (1)

(b)
$$\int_{0}^{a} \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx$$
 (2)

(c)
$$\int \frac{\mathrm{d}x}{x^2 - 6x + 13} \,\mathrm{d}x$$
 (3)

36. Solve the following linear programming problem graphically :

Minimise Z = 200x + 500ySubject to $x + 2y \ge 10$

$$3x + 4y \le 24$$
$$x, y \ge 0$$

- B. 32 മുതൽ 33 വരെയുള്ള ചോദ്യങ്ങളിൽ ഏതെങ്കിലും 1 എണ്ണത്തിന് ഉത്തരമെഴുതുക.
 4 സ്കോർ. (1 × 4 = 4)
- 32. X എന്ന റാൻഡം വേരിയബിളിന്റെ പ്രോബബിലിറ്റി ഡിസ്ട്രിബ്യൂഷൻ താഴെ കൊടുത്തിരിക്കുന്നു :

X	0	1	2	3	4	5	6	7
P(X)	0	k	2k	2k	3k	k ²	2k ²	$7k^2 + k$

k യുടെ വില കണ്ടത്തി എഴുതുക.

(ii) P(X < 3) കണക്കാക്കുക.

- 33. (a) ഒരു പ്ലയിൻ, ഒറിജിനിൽനിന്ന് 2 യൂണിറ്റ് അകലത്തിലാണ്. ഒറിജിനിൽനിന്ന് ഈ പ്ലയിനിലേക്കുള്ള നോർമൽ വെക്ടറാണ് 2[°]i 2[°]j + [°]k. ഈ പ്ലയിനിന്റെ സമവാകൃം കണ്ടുപിടിക്കുക. (2)
 - (b) മേൽ പറഞ്ഞ പ്ലയിനും $\vec{r} = \hat{i} + \hat{j} + 2\hat{k} + \lambda(2\hat{i} 3\hat{j} + 6\hat{k})$ എന്ന വരയും തമ്മിലുള്ള കോണളവ് കണക്കാക്കുക. (2)

PART-V

34 മുതൽ 36 വരെയുള്ള ചോദ്യങ്ങളിൽ ഏതെങ്കിലും 2 എണ്ണത്തിന് ഉത്തരം എഴുതുക. 6 സ്കോർ വീതം. (2 × 6 = 12)

34. താഴെ കൊടുത്തിരിക്കുന്ന സമവാകൃങ്ങൾ മെട്രിക്സ് രീതി ഉപയോഗിച്ച് പരിഹരിക്കുക :

$$3x - 2y + 3z = 8$$
$$2x + y - z = 1$$
$$4x - 3y + 2z = 4$$

35. താഴെ കൊടുത്തിരിക്കുന്ന ഇന്റഗ്രൽസ് കണ്ടുപിടിക്കുക :

(a) $\int \frac{2x}{1+x^2} dx$ (1)

(b)
$$\int_{0}^{a} \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx$$
 (2)

(c)
$$\int \frac{\mathrm{d}x}{x^2 - 6x + 13} \,\mathrm{d}x$$
 (3)

 താഴെ കൊടുത്തിരിക്കുന്ന ലീനിയർ പ്രോഗ്രാമിംഗ് പ്രോബ്ലം ഗ്രാഫ് ഉപയോഗിച്ച് പരിഹരിക്കുക :

> Minimise Z = 200x + 500ySubject to $x + 2y \ge 10$ $3x + 4y \le 24$ $x, y \ge 0$