Reg. No. : \qquad
Name : \qquad

SAY / IMPROVEMENT EXAMINATION, JULY - 2022

Part - III
Time : 2 Hours
MATHEMATICS (SCIENCE) Cool-off time : 15 Minutes
Maximum : 60 Scores

General Instructions to Candidates:

- There is a 'Cool-off time' of 15 minutes in addition to the writing time.
- Use the 'Cool-off time' to get familiar with questions and to plan your answers.
- Read questions carefully before answering.
- Read the instructions carefully.
- Calculations, figures and graphs should be shown in the answer sheet itself.
- Malayalam version of the questions is also provided.
- Give equations wherever necessary.
- Electronic devices except non-programmable calculators are not allowed in the Examination Hall.

 உஸை๗ிமிமคஸை.

PART-I

A. Answer any 5 questions from 1 to 9. Each carries 1 score.

1. Which of the following functions is one-one?
(a) $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}, \mathrm{f}(x)=x^{2}$
(b) $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}, \mathrm{f}(x)=|x|$
(c) $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}, \mathrm{f}(x)=\sin x$
(d) $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}, \mathrm{f}(x)=x^{3}$
2. $\sin ^{-1} x+\cos ^{-1} x=$ \qquad .
(a) π
(b) $\frac{\pi}{2}$
(c) 0
(d) 1
3. If $|\mathrm{A}|=5$ where A is a 3×3 matrix, then $|2 \mathrm{~A}|=$ \qquad .
4. If A and B are independent events with $\mathrm{P}(\mathrm{A})=0.3$ and $\mathrm{P}(\mathrm{B})=0.4$, then $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=$
\qquad .
5. The area bounded by the curve $\mathrm{y}=x^{3}$ between $x=0, x=1$ and x-axis is
(a) $\frac{1}{4}$
(b) 1
(c) $\frac{3}{2}$
(d) 2
6. Slope of the normal to the curve $\mathrm{y}=x^{2}-1$ at the point $(1,0)$ is \qquad .
7. If \vec{a} and \vec{b} are any two vectors then which of the following is not a vector?
(a) $\vec{a}+\vec{b}$
(b) $\overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}}$
(c) $\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}$
(d) $\vec{a} \times \vec{b}$
8. Write the vector equation of the line $\frac{x}{2}=\frac{y-2}{3}=\frac{z+1}{1}$.
9. Write the order of the differential equation $x \frac{d y}{d x}+y=0$.

PART－I

（ $5 \times 1=5$ ）

（a） $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}, \mathrm{f}(x)=x^{2}$
（b） $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}, \mathrm{f}(x)=|x|$
（c） $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}, \mathrm{f}(x)=\sin x$
（d） $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}, \mathrm{f}(x)=x^{3}$

2． $\sin ^{-1} x+\cos ^{-1} x=$ \qquad ．
（a）π
（b）$\frac{\pi}{2}$
（c） 0
（d） 1
 \qquad ．
 ๙ゅめった $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=$ \qquad ．
 $=$ \qquad
（a）$\frac{1}{4}$
（b） 1
（c）$\frac{3}{2}$
（d） 2

\qquad ．

（a）$\vec{a}+\vec{b}$
（b） $\overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}}$
（c） $\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}$
（d） $\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}$

$\frac{x}{2}=\frac{y-2}{3}=\frac{z+1}{1}$ ．

B. Answer all questions from 10 to 13. Each carries 1 score.

10. The value of $\operatorname{cosec}^{-1}(2)=$ \qquad
11. The vertices of the triangle ABC are $\left(x_{1}, \mathrm{y}_{1}\right),\left(x_{2}, \mathrm{y}_{2}\right),\left(x_{3}, \mathrm{y}_{3}\right)$. If the area of triangle ABC is 10 sq. units, then area of the triangle whose vertices are $\left(x_{1}+2, \mathrm{y}_{1}\right),\left(x_{2}+2, \mathrm{y}_{2}\right)$, $\left(x_{3}+2, y_{3}\right)$ is \qquad .
(a) 12
(b) 20
(c) 10
(d) 40
12. $l, \mathrm{~m}$ and n are direction cosines of a vector and $l=\frac{3}{5}$ and $\mathrm{m}=\frac{4}{5}$. Find the value of n .
13. Derivative of $\mathrm{e}^{\sin x}$ is \qquad .

PART-II

A. Answer any 2 questions from 14 to 17. Each carries 2 scores.
14. If $A=\left[\begin{array}{ll}1 & 3 \\ 2 & 0\end{array}\right]$, find A^{2}.
15. An edge of a cube is increasing at the rate of $4 \mathrm{~cm} / \mathrm{s}$. How fast is the volume increasing when the edge is 20 cm ?
16. Find the interval in which the function $\mathrm{f}(x)=x^{2}-6 x+5$ is increasing.
17. Solve the differential equation $\frac{d y}{d x}=4 x y^{2}$.

$$
(4 \times 1=4)
$$

10． $\operatorname{cosec}^{-1}(2)$ か（னగன வி巳 $=$ \qquad

 ఎロన్నరவூ $=$ \qquad ．
（a） 12
（b） 20
（c） 10
（d） 40

 \qquad ．

PART－II

 2 セேைoరి నiఁை．

 கృதூmm゙？

B. Answer any 2 questions from 18 to 20. Each carries $\mathbf{2}$ scores.
18. Show that the vectors $\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}, \vec{b}=-2 \hat{i}+3 \hat{j}-4 \hat{k}$ and $\vec{c}=\hat{i}-3 \hat{j}+5 \hat{k}$ are coplanar.
19. If $y=3 \sin x-4 \cos x$, prove that $\frac{d^{2} y}{d x^{2}}+y=0$.
20. Find the integrating factor of the differential equation $x \frac{\mathrm{dy}}{\mathrm{d} x}+2 \mathrm{y}=x^{2},(x \neq 0)$.

PART-III

A. Answer any 3 questions from 21 to 24. Each carries 3 scores.
21. Express the matrix $\mathrm{A}=\left[\begin{array}{ccc}2 & -1 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3\end{array}\right]$ as the sum of a symmetric matrix and a skew symmetric matrix.
22. f and g are functions defined on R as $\mathrm{f}(x)=4 x-1$ and $\mathrm{g}(x)=x^{2}$.
(a) Find $(\mathrm{g} \circ \mathrm{f})(x)$
(b) Find ($\mathrm{g} \circ \mathrm{f}$) (2)
23. Bag 1 contains 3 red and 4 black balls while another Bag 2 contains 5 red and 6 black balls. One ball is drawn at random from one of the bags and it is found to be red. Find the probability that it was drawn from Bag 2.
24. Find the area of the parallelogram whose adjacent sides are determined by the vectors $\vec{a}=\hat{i}-\hat{j}+3 \hat{k}$ and $\vec{b}=2 \hat{i}-7 \hat{j}+\hat{k}$.
 2 ตறை
$(2 \times 2=4)$

PART－III

 3 ⿷匚ைைరి నiைை．
$(3 \times 3=9)$

 ஐூயコロー

B. Answer any 2 questions from 25 to 27. Each carries $\mathbf{3}$ scores.

25. Using elementary operations, find the inverse of the matrix $A=\left[\begin{array}{ll}1 & 1 \\ 2 & 3\end{array}\right]$.
26. If $*$ is a binary operation on R defined by $\mathrm{a} * \mathrm{~b}=\frac{\mathrm{ab}}{4}$, then
(a) Show that $*$ is commutative.
(b) Find the identity element of $*$ if exists.
27. Evaluate $\int_{0}^{3} x^{2} d x$ as the limit of a sum.

PART-IV

A. Answer any 3 questions from 28 to 31. Each carries 4 scores. $\quad(3 \times 4=12)$
28. (a) Show that $\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{7}{24}\right)=\tan ^{-1}\left(\frac{1}{2}\right)$.
(b) Find the value of $\sin ^{-1}\left(\sin \left(\frac{2 \pi}{3}\right)\right)$.
29. Find the area enclosed by the circle $x^{2}+y^{2}=25$ using integration.
30. (a) Discuss the continuity of the function $\mathrm{f}(x)=\left\{\begin{array}{lll}x^{2}+3 & \text { if } & x \leq 2 \\ x^{3}-3 & \text { if } & x>2\end{array}\right.$.
(b) Find $\frac{d y}{d x}$ if $x=\sin 2 t$ and $y=\cos t$
31. Find the shortest distance between the lines
$\vec{r}=\hat{i}+2 \hat{j}+\hat{k}+\lambda(\hat{i}-\hat{j}+\hat{k})$ and $\vec{r}=2 \hat{i}-\hat{j}-\hat{k}+\mu(2 \hat{i}+\hat{j}+2 \hat{k})$.

$$
(2 \times 3=0)
$$

 ๙ூயைா

PART-IV

 4 ⿷匚ைைరి నiఁை.
($3 \times 4=12$)

$$
\begin{aligned}
\vec{r} & =\hat{i}+2 \hat{j}+\hat{k}+\lambda(\hat{i}-\hat{j}+\hat{k}) \\
\vec{r} & =2 \hat{i}-\hat{j}-\hat{k}+\mu(2 \hat{i}+\hat{j}+2 \hat{k})
\end{aligned}
$$

B. Answer any 1 question from 32 - 33. Carries 4 scores.
32. A random variable X has the following probability distribution :

\mathbf{X}	0	1	2	3	4	5	6	7
$\mathbf{P}(\mathbf{X})$	0	k	2 k	2 k	3 k	k^{2}	$2 \mathrm{k}^{2}$	$7 \mathrm{k}^{2}+\mathrm{k}$

(i) Determine value of k.
(ii) Determine $\mathrm{P}(\mathrm{X}<3)$.
33. (a) Find the equation of the plane which is at a distance of 2 units from the origin and its normal vector from the origin is $2 \hat{i}-2 \hat{j}+\hat{k}$.
(b) Find the angle between the above plane and the line

$$
\begin{equation*}
\vec{r}=\hat{i}+\hat{j}+2 \hat{k}+\lambda(2 \hat{i}-3 \hat{j}+6 \hat{k}) \tag{2}
\end{equation*}
$$

PART-V

Answer any 2 questions from 34 to 36. Each carries 6 scores.
34. Solve the following system of equations by matrix method :

$$
\begin{array}{r}
3 x-2 y+3 z=8 \\
2 x+y-z=1 \\
4 x-3 y+2 z=4
\end{array}
$$

35. Find the following integrals :
(a) $\int \frac{2 x}{1+x^{2}} \mathrm{~d} x$
(b) $\int_{0}^{\mathrm{a}} \frac{\sqrt{x}}{\sqrt{x}+\sqrt{\mathrm{a}-x}} \mathrm{~d} x$
(c) $\int \frac{\mathrm{d} x}{x^{2}-6 x+13} \mathrm{~d} x$
36. Solve the following linear programming problem graphically :

Minimise $Z=200 x+500 y$
Subject to

$$
\begin{aligned}
x+2 y & \geq 10 \\
3 x+4 y & \leq 24 \\
x, y & \geq 0
\end{aligned}
$$

\mathbf{X}	0	1	2	3	4	5	6	7
$\mathbf{P (X)}$	0	k	2 k	2 k	3 k	k^{2}	$2 \mathrm{k}^{2}$	$7 \mathrm{k}^{2}+\mathrm{k}$

(i) k @ூல

PART-V

 ($2 \times 6=12$)

$$
\begin{array}{r}
3 x-2 y+3 z=8 \\
2 x+y-z=1 \\
4 x-3 y+2 z=4
\end{array}
$$

(a) $\int \frac{2 x}{1+x^{2}} \mathrm{~d} x$
(b) $\int_{0}^{a} \frac{\sqrt{x}}{\sqrt{x}+\sqrt{a-x}} \mathrm{~d} x$
(c) $\int \frac{\mathrm{d} x}{x^{2}-6 x+13} \mathrm{~d} x$

Minimise $Z=200 x+500 y$
Subject to

$$
\begin{array}{r}
x+2 y \geq 10 \\
3 x+4 y \leq 24 \\
x, y \geq 0
\end{array}
$$

