

Reg. No. :

Name :

SAY / IMPROVEMENT EXAMINATION, JULY – 2022

Part – III

ELECTRONICS

Time : 2 Hours

Cool-off time : 15 Minutes

Maximum : 60 Scores

General Instructions to Candidates :

- There is a 'Cool-off time' of 15 minutes in addition to the writing time.
- Use the 'Cool-off time' to get familiar with questions and to plan your answers.
- Read questions carefully before answering.
- Read the instructions carefully.
- Calculations, figures and graphs should be shown in the answer sheet itself.
- Malayalam version of the questions is also provided.
- Give equations wherever necessary.
- Electronic devices except non-programmable calculators are not allowed in the Examination Hall.

വിദ്യാർത്ഥികൾക്കുള്ള പൊതുനിർദ്ദേശങ്ങൾ :

- നിർദ്ദിഷ്ട സമയത്തിന് പുറമെ 15 മിനിറ്റ് 'കൂൾ ഓഫ് ടൈം' ഉണ്ടായിരിക്കും.
- 'കൂൾ ഓഫ് ടൈം' ചോദ്യങ്ങൾ പരിചയപ്പെടാനും ഉത്തരങ്ങൾ ആസൂത്രണം ചെയ്യാനും ഉപയോഗിക്കുക.
- ഉത്തരങ്ങൾ എഴുതുന്നതിന് മുമ്പ് ചോദ്യങ്ങൾ ശ്രദ്ധാപൂർവ്വം വായിക്കണം.
- നിർദ്ദേശങ്ങൾ മുഴുവനും ശ്രദ്ധാപൂർവ്വം വായിക്കണം.
- കണക്ക് കൂട്ടലുകൾ, ചിത്രങ്ങൾ, ഗ്രാഫുകൾ, എന്നിവ ഉത്തരപേപ്പറിൽ തന്നെ ഉണ്ടായിരിക്കണം.
- ചോദ്യങ്ങൾ മലയാളത്തിലും നല്ലിയിട്ടുണ്ട്.
- ആവശ്യമുള്ള സ്ഥലത്ത് സമവാക്യങ്ങൾ കൊടുക്കണം.
- പ്രോഗ്രാമുകൾ ചെയ്യാനാകാത്ത കാൽക്കുലേറ്ററുകൾ ഒഴികെയുള്ള ഒരു ഇലക്ട്രോണിക് ഉപകരണവും പരീക്ഷാഹാളിൽ ഉപയോഗിക്കുവാൻ പാടില്ല.

PART – I

A.	Answer any 5 questions from 1 to 9. Each carries 1 Score.	(5 × 1 = 5)
1.	The output voltage of 7909 voltage regulator IC is	
2.	The circuit which changes the DC voltage level of a signal is	
3.	A 4 : 1 multiplexer has number of select lines.	
4.	The maximum value of modulation index in AM is	
5.	Sky wave uses layer of atmosphere for its propagation.	
6.	The minimum sampling rate of a 1 kHz signal is	
7.	Light ray travels only through part of the optical fiber.	

(core, cladding, polymer coating)

- 8. The number of frames used in one second in TV system is _____.
- 9. The memory from which CPU receives data directly is _____.

PART – I

1 മുതൽ 9 വരെയുള്ള ചോദ്യങ്ങളിൽ ഏതെങ്കിലും 5 എണ്ണം എഴുതുക. 1 സ്കോർ വീതം. A. $(5 \times 1 = 5)$ 7909 വോൾട്ടേജ് റെഗുലേറ്റർ IC യുടെ ഔട്ട്പുട്ട് വോൾട്ടേജ് _____ ആകുന്നു. 1. ഒരു സിഗ്നലിന്റെ DC വോൾട്ടേജ് നില മാറ്റുന്ന സർക്ക്യൂട്ട് _____ ആകുന്നു. 2. ഒരു 4 : 1 മൾട്ടിപ്പക്ലറിന് _____ എണ്ണം സെലക്ട് ലൈനുകളുണ്ട്. 3. 4. AM ൽ മോഡുലേഷൻ ഇൻഡക്സിന്റെ ഏറ്റവും കൂടിയ മൂല്യം _____ ആണ്. സ്സെ വേവിന്റെ പ്രൊപ്പഗേഷന് അന്തരീക്ഷത്തിന്റെ _____ പാളിയാണ് 5. ഉപയോഗിക്കുന്നത്. 6. ഒരു 1 kHz സിഗ്നലിന്റെ ഏറ്റവും കുറഞ്ഞ സാംപ്പിങ്ങ് നിരക്ക് _____ ആണ്. 7. ഒപ്പിക്കൽ ഫൈബറിൽ പ്രകാശ രശ്മി _____ ഭാഗത്തു കൂടി മാത്രം സഞ്ചരിക്കുന്നു. (കോർ, ക്ലാഡിങ്ങ്, പോളിമർ കോട്ടിംഗ്) 8. ടി.വി. സിസ്റ്റത്തിൽ ഒരു സെക്കൻഡിൽ ഉപയോഗിക്കുന്ന ഫ്രെയിമുകളുടെ എണ്ണം _____ ആണ്.

9. CPU ഡാറ്റ നേരിട്ട് സ്വീകരിക്കുന്നത് _____ മെമ്മറിയിൽ നിന്നാണ്.

B. Answer all questions from 10 to 13. Each carries 1 Score. $(4 \times 1 = 4)$

- 10. One example for a shunt voltage regulator is _____.
- 11. The modulation technique in which message is added in the carrier as frequency variation is _____.
- 12. Pulse dispersion is minimum in ______ type of optical fiber.
- 13. The network of computers arranged in a small office is called ______.

PART – II

A. Answer any 2 questions from 14 to 17. Each carries 2 Scores. $(2 \times 2 = 4)$

- 14. Draw the output of a differentiator when input is a square wave.
- 15. Write the truth table of a SR flip-flop.

16. Draw a FSK signal.

17. Write two light sources used in optical fiber communication.

B. 10 മുതൽ 13 വരെയുള്ള എല്ലാ ചോദ്യങ്ങൾക്കും ഉത്തരമെഴുതുക.1 സ്കോർ വീതം.

 $(4 \times 1 = 4)$

10. ഷണ്ട് വോൾട്ടേജ് റെഗുലേറ്ററിന് ഒരു ഉദാഹരണമാണ് _____.

- സന്ദേശത്തെ കാരിയർ സിഗ്നലിന്റെ ഫ്രീക്വൻസിയിൽ ഉള്ള മാറ്റമായി ചേർക്കുന്ന മോഡുലേഷനാണ്_____.
- 12. പൾസ് ഡിസ്പേർഷൻ ഏറ്റവും കുറഞ്ഞിരിക്കുന്നത് _____ തരം ഒപ്പിക്കൽ ഫൈബറിലാണ്.
- ഒരു ചെറിയ ഓഫീസിൽ ക്രമീകരിച്ചിരിക്കുന്ന കമ്പ്യൂട്ടറുകളുടെ നെറ്റ് വർക്കിനെ _____ എന്ന വിളിക്കുന്നു.

PART – II

- A. 14 മുതൽ 17 വരെയുള്ള ചോദ്യങ്ങളിൽ ഏതെങ്കിലും 2 എണ്ണത്തിന് ഉത്തരമെഴുതുക.
 2 സ്കോർ വീതം. (2 × 2 = 4)
- ഒരു ഡിഫറൻഷിയേറ്ററിന്റെ ഇൻപുട്ട് സ്ക്വയർ വേവ് ആയാൽ അതിന്റെ ഔട്ട് പുട് വരയ്ക്കുക.
- 15. ഒരു SR ഫ്ലിപ്പ് ഫ്ലോപ്പിന്റെ ട്രൂത്ത് ടേബിൾ എഴുതുക.
- 16. ഒരു FSK സിഗ്നൽ വരയ്ക്കുക.
- 17. ഓപ്പിക്കൽ ഫൈബർ കമ്മ്യൂണിക്കേഷനിൽ ഉപയോഗിക്കുന്ന രണ്ട് പ്രകാശ സ്രോതസുകളുടെ പേരെഴുതുക.

- **B.** Answer any 2 questions from 18 to 20. Each carries 2 Scores. $(2 \times 2 = 4)$
- 18. Briefly explain VSB.
- 19. Write two examples each for input and output devices of a computer.
- 20. Explain the basic function of a MODEM.

PART – III

A. Answer any 3 questions from 21 to 24. Each carries 3 Scores. $(3 \times 3 = 9)$

- 21. Draw the block diagram of a regulated power supply.
- 22. Draw the frequency spectrum of AM signal.
- 23. Compare TDM and FDM.
- 24. Compare centralised SPC and distributed SPC.
- **B.** Answer any 2 questions from 25 to 27. Each carries 3 Scores. $(2 \times 3 = 6)$
- 25. Draw the circuit of a one bit comparator.
- 26. Draw bus, star and ring topologies of networking.
- 27. Explain the concept of frequency re-use in mobile communication.

- B. 18 മുതൽ 20 വരെയുള്ള ചോദ്യങ്ങളിൽ ഏതെങ്കിലും 2 എണ്ണത്തിന് ഉത്തരമെഴുതുക.
 2 സ്കോർ വീതം. (2 × 2 = 4)
- 18. VSB എന്താണെന്ന് ചുരുക്കി വിശദീകരിക്കുക.
- 19. കമ്പ്യൂട്ടറിന്റെ ഇൻപുട്ട്, ഔട്ട്പുട്ട് ഉപകരണങ്ങൾക്ക് ഓരോന്നിനും രണ്ട് വീതം ഉദാഹരണങ്ങളെഴുതുക.
- 20. ഒരു മോഡത്തിന്റെ അടിസ്ഥാന ധർമ്മങ്ങൾ എഴുതുക.

PART – III

- A. 21 മുതൽ 24 വരെയുള്ള ചോദ്യങ്ങളിൽ ഏതെങ്കിലും 3 എണ്ണത്തിന് ഉത്തരമെഴുതുക.
 3 സ്കോർ വീതം. (3 × 3 = 9)
- 21. ഒരു റെഗുലേറ്റഡ് പവർ സപ്പൈയുടെ ബ്ലോക്ക് ഡയഗ്രം വരയ്ക്കുക.
- 22. ഒരു AM സിഗ്നലിന്റെ ഫ്രീക്വൻസി സ്പെക്ട്രം വരയ്ക്കുക.
- 23. TDM, FDM എന്നിവ തമ്മിൽ താരതമ്യം ചെയ്യുക.
- 24. സെൻട്രലൈസ്ഡ് SPC, ഡിസ്രിബ്യൂട്ടഡ് SPC എന്നിവ താരതമൃം ചെയ്യുക.
- B. 25 മുതൽ 27 വരെയുള്ള ചോദ്യങ്ങളിൽ ഏതെങ്കിലും 2 എണ്ണത്തിന് ഉത്തരമെഴുതുക.
 3 സ്കോർ വീതം. (2 × 3 = 6)
- 25. 1-ബിറ്റ് കമ്പറ്റേറിന്റെ സർക്ക്യൂട്ട് വരയ്ക്കുക.
- 26. നെറ്റ് വർക്കിങ്ങിന്റെ ബസ്, സ്റ്റാർ, റിങ്ങ് ടോപ്പോളജികൾ വരക്കുക.
- 27. മോബൈൽ കമ്മ്യൂണികേഷനിലെ ഫ്രീക്വൻസി റീയൂസ് എന്ന ആശയം വിശദീകരിക്കുക.

PART – IV

A.	Ans	swer any 3 questions from 28 to 31. Each carries 4 Scores.	(3 × 4 = 12)
28.	(a)	Draw the frequency response of LPF, HPF and BPF.	(3)
	(b)	A signal contains frequencies from 0 Hz to 5 kHz. Which filter will you you want to remove frequencies from 0 Hz to 3 kHz from this signal ?	suggest if (1)

29. Draw the circuit of a positive clipper and explain its working.

31. What is critical frequency in sky wave propagation ? Write its equation.

B. Answer any one question from 32 to 33. Carries 4 Scores.	$(1 \times 4 = 4)$
--	--------------------

- 32. Draw the circuit of a zener voltage regulator. What property of zener diode helps in voltage regulation ?
- 33. Write four differences between static RAM and dynamic RAM.

PART – IV

- A. 28 മുതൽ 31 വരെയുള്ള ചോദ്യങ്ങളിൽ ഏതെങ്കിലും 3 എണ്ണത്തിന് ഉത്തരമെഴുതുക.
 4 സ്കോർ വീതം. (3 × 4 = 12)
- 28. (a) LPF, HPF, BPF എന്നീ ഫിൽട്ടറുകളുടെ ഫ്രീക്വൻസി റസ്പോൺസ് വരക്കുക. (3)
 - (b) ഒരു സിഗ്നലിൽ 0 Hz മുതൽ 5 kHz വരെയുള്ള ഫ്രീക്വൻസികൾ അടങ്ങിയിരിക്കുന്നു. ഇതിൽ നിന്ന് 0 Hz മുതൽ 3 kHz വരെയുള്ള ഫ്രീക്വൻസികളെ ഒഴിവാക്കാൻ ഏതു തരം ഫിൽട്ടറാണ് നിങ്ങൾ നിർദേശിക്കുക? (1)
- 29. ഒരു പോസിറ്റീവ് ക്ലിപ്പറിന്റെ സർക്ക്യൂട്ട് വരച്ച് പ്രവർത്തനം വിശദീകരിക്കുക.

- സ്റ്റൈ വേവ് പ്രൊപ്പഗേഷനിൽ ക്രിട്ടിക്കൽ ഫ്രീക്വൻസി എന്നാൽ എന്താണ് ? അതിന്റെ സമവാകൃം എഴുതുക.
- B. 32 മുതൽ 33 വരെയുള്ള ചോദ്യങ്ങളിൽ ഏതെങ്കിലും ഒന്നിന് ഉത്തരം എഴുതുക.
 4 സ്കോർ. (1 × 4 = 4)
- 32. സെനർ വോൾട്ടേജ് റെഗുലേറ്ററിന്റെ സർക്ക്യൂട്ട് വരക്കുക. സെനർ ഡയോഡിന്റെ എന്തു സവിശേഷതയാണ് വോൾട്ടേജ് റെഗുലേഷനിൽ സഹായിക്കുന്നത് ?
- 33. സ്റ്റാറ്റിക്ക് RAM ഉം ഡൈനാമിക് RAM ഉം തമ്മിലുള്ള നാല് വൃത്യാസങ്ങളെഴുതുക.

PART – V

	Ans	wer any 2 questions from 34 to 36. Each carries 6 Scores.	$(2 \times 6 = 12)$
34.	A ca	arrier of 100 W is AM modulated with 0.2 index. Calculate the total	power of AM
	and	power in one side band.	
35.	(a)	Draw the structure of optical fiber.	(2)
	(b)	What is total internal reflection ?	(2)
	(c)	How light ray is travelling through the fiber ?	(2)
36.	(a)	How interlaced scanning differs from normal scanning ?	(3)
	(b)	Discuss the merit of interlaced scanning.	(2)
	(c)	What is the total band-width of a TV channel ?	(1)

PART – V

	34 മുതൽ 36 വരെയുള്ള ചോദൃങ്ങളിൽ ഏതെങ്കിലും 2 എണ്ണത്തിന് ഉത്തരമെഴുതുക.			
	6 cq	പ്പാർ വീതം. (2 × 6 =	12)	
34.		W പവർ ഉള്ള ഒരു കാരിയറിനെ 0.2 ഇൻഡക്സിൽ AM മോഡുലേഷൻ ചെയ്തു. AM നലിന്റെ ആകെ പവറും ഒരു സൈഡ് ബാന്റിന്റെ പവറും കണ്ടുപിടിക്കുക.		
35.	(a)	ഒപ്പിക്കൽ ഫൈബറിന്റെ ഘടന വരക്കുക.	(2)	
	(b)	ടോട്ടൽ ഇൻടേണൽ റിഫ്ലക്ഷൻ എന്നാൽ എന്താണ് ?	(2)	
	(c)	ഒപ്പിക്കൽ ഫൈബറിലൂടെ പ്രകാശ രശ്മി സഞ്ചരിക്കുന്നത് എങ്ങിനെ ?	(2)	
36.	(a)	ഇന്റർലെയ്സ്ഡ് സ്കാനിംഗ് സാധാരണ സ്കാനിങ്ങിൽ നിന്ന് വൃതൃസ്തമാകുന്ന		
		തെങ്ങിനെ ?	(3)	
	(b)	ഇന്റർലെയ്സ്ഡ് സ്കാനിങ്ങിന്റെ നേട്ടം എഴുതുക.	(2)	
	(c)	ഒരു TV ചാനലിന്റെ ആകെ ബാന്റ് വിഡ്ത്ത് എത്ര ?	(1)	