Exercise No. (1)

Multiple choice questions with ONE correct answer : (Questions No. 1-10)

1. The tangent to curve of $f(x)=(x+1)^{2}$ at the point $\left(\frac{\alpha+\beta}{2}, f\left(\frac{\alpha+\beta}{2}\right)\right)$ intersects the line joining $(\alpha, f(\alpha))$ and $(\beta, f(\beta))$; where $\alpha<\beta$ and $\alpha, \beta \in R$.
(a) on left of $x=\frac{\alpha+\beta}{2}$
(b) on right of $x=\frac{\alpha+\beta}{2}$
(c) at no point
(d) at infinite points
2. If $f(x)$ and $g(x)$ are differentiable functions for all $x \in[0,1]$ such that $f(0)=g(1)=2, g(0)=0$ and $f(1)=6$, then there exists some value of $x \in(0,1)$ for which :
(a) $f^{\prime}(\alpha)=g^{\prime}(\alpha)$
(b) $f^{\prime}(\alpha)=4 g^{\prime}(\alpha)$
(c) $f^{\prime}(\alpha)=2 g^{\prime}(\alpha)$
(d) $f^{\prime}(\alpha)=3 g^{\prime}(\alpha)$
3. If $4(b+3 d)=3(a+2 c)$, then $a x^{3}+b x^{2}+c x+d=0$ will have at least one real root in :
(a) $\left(-\frac{1}{2}, 0\right)$
(b) $(-1,0)$
(c) $\left(-\frac{3}{2}, 0\right)$
(d) $(0,1)$
4. If Rolle's theorem is applicable to the function $f(x)=\int_{0}^{x} e^{t^{2}}\left(t^{2}-\alpha^{2}\right) d t$ on the interval [0, 2], then ' α ' belongs to:
(a) $(-4,4)-\{0\}$
(b) $(-3,3)-\{0\}$
(c) $(-1,1)-\{0\}$
(d) $(-2,2)-\{0\}$
5. Let $f(x)$ be a differentiable function $\forall x \in R$ and $f(1)=-2$ and $f^{\prime}(x) \geq 2 \forall x \in[1,6]$, then $f(6)$ is :
(a) more than 5
(b) not less than 5
(c) more than 8
(d) not less than 8
6. Let $f(x)=\left\{\begin{array}{cc}x^{\alpha} \ln x & ; x>0 \\ 0 & ; x=0\end{array}\right.$, then value of ' α ' for which Rolle's theorem is applicable in $[0,1]$ is :
(a) $-\frac{2}{3}$
(b) $-\frac{1}{2}$
(c) 0
(d) $1 / 2$
7. If $2 a+3 b+6 c=0$, then equation $a x^{2}+b x+c=0$ is having at least one root in the interval :
(a) $(1,2)$
(b) $(-1,0)$
(c) $(0,1)$
(d) $(-1,1 / 2)$
8. Let $f:[0,8] \rightarrow R$ is differentiable function, then for $0<\alpha, \beta<2, \int_{0}^{8} f(t) d t$ is equal to :
(a) $3\left(\alpha^{3} f\left(\alpha^{2}\right)+\beta^{3} f\left(\beta^{2}\right)\right)$.
(b) $3\left(\alpha^{3} f(\alpha)+\beta^{3} f(\beta)\right)$.
(c) $3\left(\alpha^{2} f\left(\alpha^{3}\right)+\beta^{2} f\left(\beta^{3}\right)\right)$.
(d) $3\left(\alpha^{2} f\left(\alpha^{2}\right)+\beta^{2} f\left(\beta^{2}\right)\right)$.
9. Let a, b, c be non-zero real numbers such that $\int_{0}^{1}\left(1+\sin ^{4} x\right)\left(a x^{2}+b x+c\right) d x=\int_{0}^{2}\left(1+\sin ^{4} x\right)\left(a x^{2}+b x+c\right) d x$, then quadratic equation $a x^{2}+b x+c=0$ has:
(a) exactly two real roots in $(0,2)$.
(b) no root in $(0,2)$.
(c) at least one root in $(0,1)$.
(d) at least one root in $(1,2)$.
10. If $a+b+2 c=0$, where $a c \neq 0$, then the equation $a x^{2}+b x+c=0$ has
(a) at least one root in $(0,1)$
(b) at least one root in $(-1,0)$
(c) exactly one root in $(0,1)$
(d) exactly one root in $(-1,0)$

Multiple choice questions with MORE than ONE correct answer : (Questions No. 11-15)
11. Let $f(x)=\sin \pi\left[x^{2}+1\right]+(x)^{\frac{1}{\ln x}}$ for all $x \in[2,4]$, where $[\mathrm{x}$] denotes the integral part of x, then which of the following statements are not correct?
(a) Rolle's theorem can't be applied to $f(x)$.
(b) Lagrange's Mean value theorem can be applied to $f(x)$.
(c) Rolle's theorem can be applied to $f(x)$.
(d) Lagrange's Mean value theorem can't be applied to $f(x)$.
12. Let $f(x)=\min \{\ln (\tan x), \ln (\cot x)\}$, then which of the following statements are correct :
(a) Lagrange's mean value theorem is applicable on $f(x)$ for $x \in\left[\frac{\pi}{8}, \frac{\pi}{4}\right]$.
(b) $f(x)$ is continuous for $x \in\left(0, \frac{\pi}{2}\right)$.
(c) Rolle's theorem is applicable on $f(x)$ for $x \in\left[\frac{\pi}{8}, \frac{3 \pi}{8}\right]$.
(d) Rolle's theorem is not applicable on $f(x)$ for $x \in\left[\frac{\pi}{4}, \frac{3 \pi}{8}\right]$.
13. Let $f(x)$ be thrice differentiable function and $f(1)=1, f(2)=8$ and $f(3)=27$, then which of the following statements are correct :
(a) $f^{\prime}(x)=3 x^{2}$ for at least two values in $x \in(1,3)$.
(b) $f^{\prime \prime}(x)=6 x$ for at least one value in $x \in(1,3)$.
(c) $f^{\prime \prime \prime}(x)=6 \forall x \in R$.
(d) $f^{\prime}(x)=3 x^{2}$ for at least one value in $x \in(2,3)$.
14. If $f(x)=a x^{3}+b x^{2}+11 x-6$ satisfy the conditions of Rolle's theorem in $[1,3]$ and $f^{\prime}\left(2+\frac{1}{\sqrt{3}}\right)=0$, then values of ' a ' and ' b ' satisfy:
(a) $a-b=8$
(b) $4 a-b=10$
(c) $\ln a=1+\operatorname{sgn}(b)$
(d) $a b=2$
15. Let $f(x)$ be a non-constant twice differentiable function defined on R such that $f(x)-f(4-x)=0$ and $f^{\prime}(1)=0$, then :
(a) $f^{\prime}(x)$ vanishes at least thrice in $[0,4]$.
(b) $f^{\prime \prime}(x)$ vanishes at least twice in $[0,4]$.
(c) $f^{\prime}(x)$ vanishes at least once in $[2,4]$.
(d) $f^{\prime \prime \prime}(x)$ vanishes at least once in $[0,4]$.

Assertion Reasoning questions :
 (Questions No. 16-20)

Following questions are assertion and reasoning type questions. Each of these questions contains two statements, Statement 1 (Assertion) and Statement 2 (Reason). Each of these questions has four alternative answers, only one of them is the correct answer. Select the correct answer from the given options :
(a) Both Statement 1 and Statement 2 are true and Statement 2 is the correct explanation of Statement 1.
(b) Both Statement 1 and Statement 2 are true but Statement 2 is not the correct explanation of Statement 1.
(c) Statement 1 is true but Statement 2 is false.
(d) Statement 1 is false but Statement 2 is true.
16. Statement 1 : If $f(x)$ and $g(x)$ are continuous and differentiable functions for all real x, then there exists some value of ' β ' in (α, γ) such that $\frac{f^{\prime}(\beta)}{f(\alpha)-f(\beta)}+\frac{g^{\prime}(\beta)}{g(\gamma)-g(\beta)}=1$

because

Statement $2:(f(\alpha)-f(x))(g(\gamma)-g(x)) e^{2 x}$ is continuous and differentiable function in R.
17. Statement 1 : Let functions $f(x)$ and $g(x)$ be continuous in $[a, b]$ and differentiable in (a, b), then there exists at least one value $x=c$ in (a, b) such that

$$
\left|\begin{array}{ll}
f(a) & f(b) \\
g(a) & g(b)
\end{array}\right|=(b-a)\left|\begin{array}{ll}
f(a) & f^{\prime}(c) \\
g(a) & g^{\prime}(c)
\end{array}\right|
$$

because

Statement 2 : Lagrange's mean value theorem is applicable for function $h(x)=f(a) g(x)-g(a) f(x)$ in $[a, b]$.
18. Statement 1 : Let $f(x)$ be twice differentiable function such that $f(1)=1, f(2)=4$ and $f(3)=9$, then $f^{\prime \prime}(x)=2$ for all $x \in(1,3)$

because

Statement 2: Function $h(x)=f(x)-x^{2}$ is continous and differentiable for all $x \in[1,3]$.
19. Statement 1 : Let $f:[0,4] \rightarrow R$ be differentiable function, then there exists some values of ' a ' and ' b ' in $(0,4)$ for which $(f(4))^{2}-(f(0))^{2}=8 f^{\prime}(a) f(b)$

because

Statement 2 : Rolle's theorem is applicable for $f(x)$ in $[0,4]$.
20. Statement 1: Let $f(x)$ be twice differentiable function and $f^{\prime \prime}(x)<0 \quad \forall x \in[a, b]$, then there exists some x_{1}, x_{2} in (a, b) for which $f\left(\frac{x_{1}+x_{2}}{2}\right)<\frac{f\left(x_{1}\right)+f\left(x_{2}\right)}{2}$

because

Statement 2 : Lagrange's mean value theorem is applicable for $f(x)$ in $[a, b]$.

Comprehension based Multiple choice questions with ONE correct answer :

Comprehension passage (1)

(Questions No. 21-23)
Let $f(x)$ be thrice differentiable function such that $f(p)=f(t)=0, f(q)=f(s)=4$ and $f(r)=-1$, where $t>s>r>q>p$, then answer the following questions.
21. If $g(x)=f(x) \cdot f^{\prime \prime}(x)+\left(f^{\prime}(x)\right)^{2}$, then minimum number of roots of $y=g(x)$ in the interval $x \in[p, t]$ are:
(a) 8
(b) 4
(c) 6
(d) 10
22. If $h(x)=f(x) \cdot f^{\prime \prime \prime}(x)+f^{\prime}(x) \cdot f^{\prime \prime}(x)$, then minimum number of roots of $y=h(x)$ in the interval $x \in[q, t]$ is/are :
(a) 2
(b) 1
(c) 3
(d) 4
23. If $\phi(x)=\left(f^{\prime \prime}(x)\right)^{2}+f^{\prime}(x) \cdot f^{\prime \prime \prime}(x)$, then minimum number of roots of $y=\phi(x)$ in the interval $x \in[p, s]$ is/are :
(a) 1
(b) 2
(c) 4
(d) 3

1. (c)	2. (c)	3. (b)	4. (d)	5. (d)
6. (d)	7. (c)	8. (c)	9. (d)	10. (c)
11. (a, d)	12. $(\mathrm{a}, \mathrm{b}, \mathrm{d})$	13. $(\mathrm{a}, \mathrm{b}, \mathrm{d})$	14. (b, c)	15. (a $, \mathrm{b}, \mathrm{c}, \mathrm{d})$
16. (b)	17. (a)	18. (d)	19. (c)	20. (d)
21. (c)	22. (c)	23. (b)		

Monotonocity

Exercise No. (1)

Multiple choice questions with ONE correct answer :

 (Questions No. 1-10)1. Let $f(x)$ be non-zero function and $\int_{0}^{x} f(t) d t=f^{2}(x)-1$ $\forall x \in R$, then $f(x)$ is :
(a) constant function.
(b) non-monotonous.
(c) strictly increasing.
(d) non-decreasing.
2. If $\phi(x)=3 f\left(\frac{x^{2}}{3}\right)+f\left(3-x^{2}\right) \forall x \in(-3,4)$, where $f^{\prime \prime}(x)>0 \quad \forall x \in(-3,4)$, then $\phi(x)$ is:
(a) increasing in $\left(-\frac{3}{2}, 4\right)$ (b) decreasing in $(-3,3)$
(c) increasing in $\left(-\frac{3}{2}, 0\right)$
(d) decreasing in $(0,3)$
3. Let $f(x)=\int_{x^{2}}^{x^{2}+1} e^{-t^{2}} d t$, then $f(x)$ increases for:
(a) $x \in(-2, \infty)$
(b) $x \in R$
(c) $x \in R^{+}$
(d) $x \in R^{-}$
4. Let $f(x)$ be twice differentiable function and $f^{\prime \prime}(x)<0 \quad \forall x \in R$, then $g(x)=f\left(\sin ^{2} x\right)+f\left(\cos ^{2} x\right)$, where $|x| \leq \pi / 2$, increases in :
(a) $\left[0, \frac{\pi}{2}\right]$
(b) $\left[-\frac{\pi}{2}, 0\right]$
(c) $\left[0, \frac{\pi}{4}\right]$
(d) $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$
5. Let function $f(x)$ is defined for all real x and $f(0)=1, f^{\prime}(0)=-1, f(x)>0 \quad \forall x \in R$, then
(a) $f^{\prime \prime}(x)>0 \quad \forall x \in R$
(b) $f^{\prime \prime}(x)<-2 \quad \forall x \in R$
(c) $-1<f^{\prime \prime}(x)<0 \forall x \in R$
(d) $-2 \leq f^{\prime \prime}(x) \leq-1 \forall x \in R$
6. Let the function $f: R \rightarrow\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ be defined as $f(x)=\frac{\pi}{2}-2 \tan ^{-1}\left(e^{x}\right)$, then $f(x)$ is :
(a) odd function and strictly increasing in $(0, \infty)$.
(b) odd function and strictly decreasing in $(-\infty, \infty)$.
(c) even function and strictly decreasing in $(-\infty, \infty)$.
(d) neither even nor odd but strictly increasing in $(-\infty, \infty)$.
7. If $\tan (\pi \cos \theta)=\cot (\pi \sin \theta)$, where $\theta \in\left(0, \frac{\pi}{2}\right)$ and $f(x)=(\sin \theta+\cos \theta)^{x}$, then $f(x)$ is :
(a) increasing for all $x \in R$.
(b) decreasing for all $x \in R$.
(c) strictly decreasing for all $x \in R$.
(d) non-increasing for all $x \in R$.
8. Let $f(x)=\frac{x^{2}}{2-2 \cos ^{2} x}$ and $g(x)=\frac{x^{2}}{6 x-6 \sin x}$, where $x \in(0,1)$, then :
(a) both $f(x)$ and $g(x)$ are increasing.
(b) $f(x)$ is increasing and $g(x)$ is decreasing.
(c) $f(x)$ is decreasing and $g(x)$ is increasing.
(d) both $f(x)$ and $g(x)$ are decreasing.
9. If $f(x)=(k+2) x^{3}-3 k x^{2}+9 k x-1$ is decreasing function for all $x \in R$, then exhaustive set of values of ' k ' is given by
(a) $[-3,-2]$
(b) $(-\infty,-3]$
(c) $(-\infty,-3)$
(d) $[0, \infty)$
10. If $f(x)=2 e^{x}-a e^{-x}+(2 a+1) x-3$ is increasing for all $x \in R$, then ' a ' belongs to :
(a) R
(b) $[0, \infty)$
(c) R^{-}
(d) $[1, \infty)$

Multiple choice questions with MORE than ONE correct answer : (Questions No. 11-15)
11. Let $f(x)$ and $g(x)$ be differentiable functions for all real values of x. If $f^{\prime}(x) \leq g^{\prime}(x)$ and $f^{\prime}(x) \geq g^{\prime}(x)$ holds for all , $x \in(-\infty, 2)$ and $x \in(2, \infty)$ respectively, then which of the following statements are always true ?
(a) $f(x) \geq g(x)$ holds $\forall x \in R$ if $f(2) \geq g(2)$.
(b) $f(x) \leq g(x)$ holds $\forall x \in R$ if $f(2) \leq g(2)$.
(c) $f(x) \geq g(x)$ holds for some real x if $f(2) \leq g(2)$.
(d) $f(x)<g(x)$ holds for some real x if $f(2) \geq g(2)$.
12. For function $f(x)=x \cos \left(\frac{1}{x}\right), x \geq 1$,
(a) for at least one x in interval $[1, \infty), f(x+2)-f(x)<2$
(b) $\lim _{x \rightarrow \infty} f^{\prime}(x)=1$
(c) for all x in the interval $[1, \infty), f(x+2)-f(x)>2$
(d) $f^{\prime}(x)$ is strictly decreasing in the interval $[1, \infty)$
13. Let 'S' be the set of real values of x for which the inequality $f(1-5 x)<1-f(x)-f^{3}(x)$ holds true. If $f(x)=1-x^{3}-x$ for all real x, then set 'S' contains :
(a) $\left(-\frac{3}{2},-\frac{1}{2}\right)$
(b) (e, ∞)
(c) $(\sqrt{2}, 2)$
(d) $(-\sqrt{3},-\sqrt{2})$
14. Let $f(x)=\frac{x^{3}}{3}-2 x^{2}-x \cot ^{-1} x-\ln \sqrt{1+x^{2}} \quad \forall x \in R$. If ' S ' denotes the exhaustive set of values of x for which $f(x)$ is strictly increasing, then set ' S^{\prime} contains:
(a) $[-2,-1]$
(b) $[0,2]$
(c) $[5,10]$
(d) $[2,3]$
15. Let $f(x)$ be monotonically increasing function for all $x \in R$ and $f^{\prime \prime}(x)$ is non-negative, then which of the following inequations hold true :
(a) $\frac{f\left(x_{1}\right)+f\left(x_{2}\right)}{2}>f\left(\frac{x_{1}+x_{2}}{2}\right)$
(b) $\frac{f^{-1}\left(x_{1}\right)+f^{-1}\left(x_{2}\right)}{2}>f^{-1}\left(\frac{x_{1}+x_{2}}{2}\right)$
(c) $\frac{f\left(x_{1}\right)+f\left(x_{2}\right)}{2}<f\left(\frac{x_{1}+x_{2}}{2}\right)$
(d) $\frac{f^{-1}\left(x_{1}\right)+f^{-1}\left(x_{2}\right)}{2}<f^{-1}\left(\frac{x_{1}+x_{2}}{2}\right)$

Assertion Reasoning questions :
 (Questions No. 16-20)

Following questions are assertion and reasoning type questions. Each of these questions contains two statements, Statement 1 (Assertion) and Statement 2 (Reason). Each of these questions has four alternative answers, only one of them is the correct answer. Select the correct answer from the given options :
(a) Both Statement 1 and Statement 2 are true and Statement 2 is the correct explanation of Statement 1.
(b) Both Statement 1 and Statement 2 are true but Statement 2 is not the correct explanation of Statement 1.
(c) Statement 1 is true but Statement 2 is false.
(d) Statement 1 is false but Statement 2 is true.
16. Statement 1 : If $f: R \rightarrow R$ be defined as $f(x)=2 x+\sin x$, then function is injective in nature

because

Statement 2 : For a differentiable function in domain ' D^{\prime}, if $f^{\prime}(x)>0$, then function is injective in nature.
17. Consider the function $f(x)=\sqrt{|x|}$ for all $x \in R$.

Statement 1: If $\alpha<\beta<0$, then

$$
\frac{f(\alpha)+f(\beta)}{2}<f\left(\frac{\alpha+\beta}{2}\right)
$$

because

Statement 2 : for all $x \in R^{-}, f^{\prime}(x)$ and $f^{\prime \prime}(x)$ are negative.
18. Consider the function
$f(x)=2 \sin ^{3} x-3 \sin ^{2} x+12 \sin x+5$ for all $x \in R$.
Statement 1:f(x) is increasing in nature for all $x \in\left(0, \frac{\pi}{2}\right)$.

because

Statement 2: $y=\sin x$ is increasing in nature for all $x \in\left(0, \frac{\pi}{2}\right)$
19. Let $f: R \rightarrow R$ be strictly increasing function such that $f^{\prime \prime}(x)>0$ and the inverse of $f(x)$ exists, then

Statement 1: $\frac{d^{2}\left(f^{-1}(x)\right)}{d x^{2}}<0 \forall x \in R$

because

Statement 2 : Inverse function of an increasing concave up graph is convex up graph.
20. Let $f(x)$ be twice differentiable function $\forall x \in(a, b)$.
Statement 1: $f^{\prime}(x)$ vanishes at most once in (a, b) if $f^{\prime \prime}(x)<0 \forall x \in(a, b)$

because

Statement 2: $f^{\prime}(x)$ vanishes at least once in (a, b) if $f^{\prime \prime}(x)>0 \quad \forall x \in(a, b)$.

Matrix Matching Questions :

(Questions No. 21-22)
21. Match the following functions in column (I) with their monotonic behaviour in column (II).

Column (I)

Column (II)

(a) $f(x)=\int_{0}^{x^{2}} e^{t}\left(t^{2}-5 t+4\right) d t$.
(p) increasing in $(2, \infty)$
(b) $f(x)=e^{-x}+x$
(q) decreasing in $(-1,0)$
(c) $f(x)=\left|x^{2}-2 x\right|$
(r) decreasing in $(-\infty,-2)$
(d) $f(x)=x e^{x(1-x)}$
(s) increasing in $(0,1)$
22. Let $f(x)$ be differentiable function such that $f^{\prime}(x) \leq 2 \alpha f(x) \quad \forall x \in R$ where $\alpha \in R^{+}$and $f(1)=0$. If $f(x)$ is nonnegative for all $x \geq 1$ and $f(x)$ is non-positive for all $x \leq 1$, then match the following columns for the functioning values and their nature.

Column (I)

(a) $f(\ln 2)$ is
(b) $f(\sqrt{\pi})$ is
(c) $f\left(\sqrt{e^{2}+e}\right)$ is
(d) $f(\sin 4)$ is

Column (II)

(p) positive.
(q) non-negative.
(r) negative.
(s) non-positive.
(t) zero.

Monotonocity

rANSWERS

1. (c)
2. (c)
3. (b)
4. (c)
5. (b)
6. (c)
7. (a)
8. (a, c)
9. (b, c, d)
10. (c)
11. (a)
12. (a, b, d)
13. (b)
14. (a)
15. (b)
(a)
16. (d)
17. (a) $\rightarrow \mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}$
18. (a) \rightarrow q, s, t
(b) $\rightarrow \mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}$
(b) $\rightarrow \mathrm{q}, \mathrm{s}, \mathrm{t}$
(c) \rightarrow p, q, r, s
(c) \rightarrow q, s, t
(d) $\rightarrow \mathrm{r}, \mathrm{s}$
(d) \rightarrow q, s, t

Maxima and Minima

Exercise No. (1)

Multiple choice questions with ONE correct answer :

 (Questions No. 1-15)1. Let $f: R \rightarrow R$ be real valued function defined by $f(x)=\left|x^{2}-4\right| x|+3|$, then which one of the following option is incorrect :
(a) $f^{\prime}(2)=f^{\prime}(-2)=0$.
(b) local maxima exists at $x=0$.
(c) $f^{\prime}(3)$ and $f^{\prime}(1)$ don't exist.
(d) $x=0$ is not a critical point.
2. Let $f(x)=\left\{\begin{array}{ccc}|x-2|-1 & ; & x \neq 2 \\ 1 & ; & x=2\end{array}\right.$, then
(a) $|f(x)|$ is discontinous at $x=2$.
(b) $f(|x|)$ is differentiable at $x=0$.
(c) local maxima exists for $f(x)$ at $x=2$.
(d) local minima exists for $|f(|x|)|$ at $x=0$.
3. Minimum value of function $f(x)=\max \{x, x+1,2-x\}$, is
(a) $1 / 2$
(b) $3 / 2$
(c) 0
(d) 1
4. Let $f(x)=\min \{1, \cos x, 1-\sin x\} \forall x \in[-\pi, \pi]$, then $f(x)$ is :
(a) differentiable at $x=\frac{\pi}{2}$
(b) non-differentiable at $x=0$
(c) having local maxima at $x=\frac{\pi}{2}$
(d) having local minima at $x=0$
5. If $\alpha, \beta \in R$, then minimum value of $(\alpha-\beta)^{2}+\left(\sqrt{1-\alpha^{2}}-\sqrt{4-\beta^{2}}\right)^{2}$ is equal to :
(a) 14
(b) 6
(c) 1
(d) 4
6. A line segment of fixed length ' K ' slides along the co-ordinate axes and meets the axes at $A(a, 0)$ and $B(0, \mathrm{~b})$, then minimum value of $\left\{\left(a+\frac{1}{a}\right)^{2}+\left(b+\frac{1}{b}\right)^{2}\right\}$ is given by :
(a) 8
(b) $K^{2}+\frac{4}{K^{2}}-4$
(c) $K^{2}+\frac{4}{K^{2}}+6$
(d) $K^{2}+\frac{4}{K^{2}}+4$
7. If $f(x)=|1-x|$ and $g(x)=\left|x^{2}-2\right|$, then number of critical location(s) for composite function $f(g(x))$ is/are
(a) 0
(b) 6
(c) 7
(d) 5
8. Let $f(x)=\left\{\begin{array}{cl}(x+2)^{3} & ;-3<x \leq-1 \\ x^{2 / 3} & ;-1<x \leq 2\end{array}\right.$, then the local maxima exists at :
(a) $x=0$
(b) $x=1$
(c) $x=-1$
(d) $x=\frac{3}{2}$
9. Let ' P ' be any point on the curve $x^{2}+3 y^{2}+3 x y=1$ and ' O ' being the origin, then minimum value of $O P$ is :
(a) $\sqrt{\frac{2}{2+\sqrt{13}}}$
(b) $\sqrt{\frac{2}{2+\sqrt{3}}}$
(c) $\sqrt{\frac{2}{4+\sqrt{13}}}$
(d) $\sqrt{\frac{2}{\sqrt{3}}}$
10. If $f(x)=\left\{\begin{array}{cc}2-\left|x^{2}+5 x+6\right| & ; x \neq-2 \\ a^{2}+1 & ; x=-2\end{array}\right.$, then range of values of ' a ' for which $f(x)$ has local maxima at $x=-2$ is given by :
(a) $a \in(-1,1)$
(b) $a \in R /(-1,1)$
(c) $a \in R /[-1,1]$
(d) $a \in[-1,1]$
11. Let function $f(x)=\int_{-1}^{x} t\left(e^{t}-1\right)(t-1)(t-2)^{3}(t-3)^{5} d t$, then $f(x)$ has point of inflection at location x equals to :
(a) 1
(b) 2
(c) 0
(d) none of these
12. Function $f(x)=x+x^{2} \tan x$ has :
(a) one local maxima point in $\left(0, \frac{\pi}{2}\right)$
(b) one local minima point in $\left(0, \frac{\pi}{2}\right)$
(c) no point of extremum in $\left(0, \frac{\pi}{2}\right)$
(d) one point of inflection in $\left(0, \frac{\pi}{2}\right)$
13. Let $x \in N$ and $f(x)=\left(\frac{x^{2}}{200+x^{3}}\right)$, then maximum value of $f(x)$ is equal to :
(a) $\frac{64}{712}$
(b) $\frac{49}{543}$
(c) $\frac{57}{628}$
(d) $\frac{58}{625}$
14. Let $f(x)=(a-1) x+\left(a^{2}-3 a+2\right) \cos \frac{x}{2}$, then set of all values of ' a ' for which $f(x)$ doesn't possess any critical point is :
(a) $[1, \infty)$
(b) $(-2,4)$
(c) $(1,3) \cup(3,5)$
(d) $(0,1) \cup(1,4)$
15. The maximum value of the function $f(x)=2 x^{3}-15 x^{2}+36 x-48$ on the set $A=\left\{x / x^{2}+20 \leq 9 x, x \in R\right\}$ is :
(a) 6
(b) 7
(c) 5
(d) 4

Multiple choice questions with MORE than ONE correct answer : (Questions No. 16-20)

16. Let $f(x)=a x^{3}+b x^{2}+x+d$ has local extrema at $x=\alpha \quad$ and $\quad x=\beta$, where $\quad \alpha \beta<0 \quad$ and $f(\alpha) f(\beta)>0$, then equation $f(x)=0$ has only one root which is :
(a) positive if $a f(\alpha)>0$
(b) negative if $a f(\alpha)>0$
(c) positive if $a f(\beta)<0$
(d) negative if $a f(\beta)<0$
17. Let $f(x)=\frac{\tan x+\cot x}{2}-\left|\frac{\tan x-\cot x}{2}\right|$, then
(a) $f(x)$ is discontinuous at $x=\frac{n \pi}{2} ; n \in I$
(b) $f(x)$ is non-differentiable at $x=\frac{n \pi}{4} ; n \in I$
(c) $f(x)$ has local maxima at $x=(2 n+1) \frac{n \pi}{4} ; n \in I$
(d) $f(x)$ has local minima at $x=(2 n+1) \frac{\pi}{4} ; n \in I$
18. $f(x)$ is cubic polynomial which has local maxima at $x=-1$. If $f(2)=18, f(1)=-1$ and $f^{\prime}(x)$ has local minima at $x=0$, then
(a) The distance between $(-1,2)$ and $(a, f(a))$, where $x=a$ is the point of local minima is $2 \sqrt{2}$
(b) $f(x)$ is increasing for all $[1,2 \sqrt{5}]$
(c) $f(x)$ has local minima at $x=1$
(d) the value of $f(0)$ is 5
19. Let $f(x)=\left\{\begin{array}{ll}2+\left|x^{2}-6 x+8\right| & ; x \neq 4 \\ \left(a^{2}-2\right) & ; x=4\end{array}\right.$, then
(a) $f^{\prime}(3)=0$.
(b) at $x=2$ local minima exists.
(c) at $x=4$, local maxima exists if $a \in R-(-2,2)$.
(d) at $x=4$, local minima exists if $a \in[-2,2]$.
20. Let $f(x)=\left\{\begin{array}{c}{\left[\tan ^{2} x\right] ;-\frac{\pi}{4} \leq x \leq \frac{\pi}{3}} \\ 2+\left(x-\frac{\pi}{3}\right)^{2} ; x>\frac{\pi}{3}\end{array}\right.$, where [.] represents the step-function. For function $f(x)$ in $\left[-\frac{\pi}{4}, \infty\right)$, which of the following statement(s) is/are true :
(a) Total number of points of discontinuity are four.
(b) $x=\frac{\pi}{3}$ is the location of local maxima.
(c) Total number of points of discontinuity are three.
(d) $f^{\prime}\left(\frac{\pi^{+}}{4}\right)=f^{\prime}\left(\frac{\pi^{-}}{4}\right)$

Assertion Reasoning questions :

(Questions No. 21-25)

Following questions are assertion and reasoning type questions. Each of these questions contains two statements, Statement 1 (Assertion) and Statement 2 (Reason). Each of these questions has four alternative answers, only one of them is the correct answer. Select the correct answer from the given options :
(a) Both Statement 1 and Statement 2 are true and Statement 2 is the correct explanation of Statement 1.
(b) Both Statement 1 and Statement 2 are true but Statement 2 is not the correct explanation of Statement 1.
(c) Statement 1 is true but Statement 2 is false.
(d) Statement 1 is false but Statement 2 is true.
21. Consider the function $f: R \rightarrow R$ defined as $f(x)=x^{3}-3 x+3$.

Statement 1: For function $f(x), x=0$ is not the location of point of inflection

because

Statement 2: $x=0$ is not the critical point for function $f(x)$.
22. Let $f(x)=\left\{\begin{array}{cc}1-\sin 2 x & ; x \neq \pi / 2 \\ 1 & ; x=\pi / 2\end{array}\right.$, then

Statement 1: $y=f(x)$ is having local maximum value at $x=\frac{\pi}{2}$

because

Statement 2: $y=|f(x)|$ is having local minimum value at $x=\frac{\pi}{2}$.
23. Let $f(x)=\frac{x^{3}}{3}-x \tan ^{-1} x+\frac{1}{2} \ln \left(1+x^{2}\right)$ for all $x \in R$

Statement 1: $y=f(x)$ is having exactly one point of local maxima and one point of local minima

because

Statement 2: $y=f(x)$ is having exactly one point of inflection which lies in $\left(0, \frac{1}{2}\right)$.
24. Consider $f(x)=\sin |x| \forall x \in[-2 \pi, 2 \pi]$

Statement 1 : For $y=f(x)$, local maximum and local minimum values can be equal

because

Statement 2 : There exists exactly two points of inflection for $y=f(x)$.
25. Statement 1 : If $x, y \in R^{+}$and satisfy the condition $x^{2}+y^{2}+99=4(3 x+4 y)$, then minimum value of $\log _{3}\left(x^{2}+y^{2}\right)$ is 4

because

Statement : maximum value of $\left(x^{2}+y^{2}\right)$ is 121 .

Comprehension based Multiple choice questions with ONE correct answer :

Comprehension passage (1)
 (Questions No. 1-3)

Let $f(x)=\left\{\begin{array}{cll}a x-b & ; x<1 \\ x^{2}+b x+5 & ; x \geq 1\end{array}\right.$ be continuous and differentiable function $\forall x \in R$. If tangent to the curve of $y=f(x)$ at $x=1$ cuts the coordinate axes at P and Q, then answer the following questions.

1. If ' O ' represents the origin, then maximum area (in square units) of the rectangle which can be inscribed in the incircle of triangle $O P Q$ is equal to :
(a) $\frac{32}{9+4 \sqrt{2}}$
(b) $\frac{12}{5+2 \sqrt{5}}$
(c) $\frac{9}{12+\sqrt{5}}$
(d) $\frac{16}{7+3 \sqrt{5}}$
2. Total number of solutions of the equation $f(x)-\left|\sin \frac{\pi}{4} x\right|=0$ is/are :
(a) Infinitely many
(b) 0
(c) 1
(d) finitely many
3. If $g(x)=|2-f(x)| \forall x \in R$, then total number of points of extremum for function $y=g(x)$ is/are :
(a) 2
(b) 1
(c) 4
(d) 3

Comprehension passage (2) (Questions No. 4-6)

Let function $f: R \rightarrow R$ be defined as $f(x)=\left(\lambda-\frac{1}{\lambda}-x\right)\left(4-3 x^{2}\right)$, where ' λ ' is non-zero real parameter, then answer the following questions.
4. If $x=\alpha$ and $x=\beta$ are the locations for local maxima and local minima respectively, then minimum value of $\left(\alpha^{2}+\beta^{2}\right)$ is equal to :
(a) $4 / 9$
(b) $8 / 9$
(c) $2 / 27$
(d) $16 / 27$
5. If $\lambda \in R^{+}$and $f(\alpha), f(\beta)$ are the values of local maxima and local minima respectively, then $f(\alpha)-f(\beta)$ is equal to :
(a) $\frac{2}{9}\left(\lambda-\frac{1}{\lambda}\right)^{3}$
(b) $\frac{4}{9}\left(\lambda+\frac{1}{\lambda}\right)^{3}$
(c) $\frac{2}{9}\left(\lambda+\frac{1}{\lambda}\right)^{3}$
(d) $\frac{4}{9}\left(\lambda-\frac{1}{\lambda}\right)^{3}$
6. If $\lambda=-1$ and $g(x)=\left\{\begin{array}{ll}|f(x)| & ; x \geq 0 \\ f(x)-1 & ; x<0\end{array}\right.$, then which one of the following statement is true :
(a) $x=\frac{2}{\sqrt{3}}$ is the location of local maxima.
(b) $x=0$ is the location of point of inflection.
(c) $x=0$ is the location of local minima.
(d) $x=-\frac{2}{3}$ is the location of local minima.

Comprehension passage (3)
 (Questions No. 7-9)

Let the fixed points A, B, C and D lie on a straight line such that $A B=B C=C D=2$ units. The points A and C are joined by a semi-circle of radius 2 units, where ' P ' is variable point on the semicircle such that $\angle P B D=\alpha$. If ' R ' is the region bounded by the line segments $A D, P D$ and the arc $\overparen{A P}$, then answer the following questions.
7. Maximum area (in square units) of the region ' R ' is equal to :
(a) $\frac{3 \pi}{2}+2 \sqrt{2}$
(b) $2+\frac{5 \pi}{3}$
(c) $\frac{4 \pi}{3}+2 \sqrt{3}$
(d) $\frac{4 \pi}{3}+4 \sqrt{3}$
8. Maximum perimeter of the region ' R ' is equal to :
(a) $\left(4+\frac{2 \pi}{3}+2 \sqrt{2}\right)$ units.
(b) $\left(3+\frac{2 \pi}{3}+4 \sqrt{3}\right)$ units.
(c) $\left(8+\frac{2 \pi}{3}+4 \sqrt{2}\right)$ units.
(d) $\left(6+\frac{4 \pi}{3}+2 \sqrt{3}\right)$ units.
9. If the area of circle inscribed in the triangle $P A B$ is maximum, then value of $\sin ^{-1}\left(\frac{1}{2} \cos \frac{\alpha}{2}\right)$ is equal to :
(a) $\sin ^{-1}\left(\frac{1}{3}\right)$
(b) $\sin ^{-1}\left(\frac{1}{4}\right)$
(c) $\sin ^{-1}\left(\frac{1}{10}\right)$
(d) $\sin ^{-1}\left(\frac{1}{8}\right)$

Questions with Integral Answer :
 (Questions No. 10-15)

10. In a triangle $A B C, A B=A C$ and the length of median from B to the side $A C$ is 1 unit. If the area of triangle $A B C$ is minimum, then value of $10(\cos A)$ is equal to
\qquad
11. If the location of local minima of $f(x)=\lambda^{2} x-x^{3}+1$ satisfies the inequatity $\frac{x^{2}+2 x+3}{x^{2}+5 x+6}<0$, then minimum positive integral value of ' λ ' is equal to \qquad
12. Let area of triangle formed by x-axis, tangent and normal at point $\left(t, t^{2}+1\right)$ on the curve $y=x^{2}+1$ be ' A ' square units. If $t \in[1,3]$, then minimum value of ' A ' is equal to \qquad ..
13. If $a \in R^{+}$and $f(x)=x^{3}+3(a-7) x^{2}+3\left(a^{2}-9\right) x-2$ is having point of local maxima at $x=x_{0}$, where $x_{0} \in R^{+}$, then the least possible integral value of ' a ' is equal to \qquad
14. Let the perimeter of $\triangle A B C$ be 12 units, where $A B=A C$. If the volume of solid generated by revolving the triangle $A B C$ about its side $B C$ is maximum, then length $(2 A B)$ is equal to ... \qquad
15. Let a variable line through $(1,2)$ is having negative slope and meet the axes at P and Q. If ' O ' is origin and area of triangle $O P Q$ is ' A ' square units, then minimum value of A is equal to \qquad

Matrix Matching Questions : (Questions No. 16-18)
16. Match the following Columns (I) and (II)

Column (I)

(a) If three sides of trapezium are of equal length $3 / 5$ units and its area is maximum, then perimeter of trapezium is :
(b) If $x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and $f(x)=p \sin ^{2} x+\sin ^{3} x$ is having exactly one location of local minima, then value(s) of ' p ' can be :
(c) Number of points of inflection in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ for the function $f(x)=\cos ^{2} x$ is/are
(d) If $f(x)=|1-x|+|x-3| \quad \forall x \in[0,5]$, then global minima exists at x equal to :

Column (II)

(p) 1
(q) 0
(r) 2
(s) 3
(t) $-1 / 2$

Maxima and Minima

17. Let $f(x)=x^{2}-b x+c$, where b is odd positive integer and $f(x)=0$ is having two distinct roots which are prime numbers. If $b+c=23$, then match the following columns (I) and (II).

Column (I)

(a) Global minimum value of $f(x)$ in $[3,8]$ is equal to :
(b) Global maximum value of $y=|f(x)|$ in $[0,8]$ is equal to :
(c) Local maximum value of $y=f(|x|)$ is equal to:
(d) If $y=|f(|x|)|$, and $x=\alpha$ is the location for critical points, then values of ' α ' can be :

Column (II)

(p) 0
(q) 14
(r) $9 / 2$
(s) $-25 / 4$
(t) -7
18. Match the functions of column (I) with their corresponding behaviour in column (II).

Column (I)

(a) If $f(x)=x^{4}-4 x^{3}+2, x \in(-1,4)$, then
(b) If $f(x)=x^{2 / 3}(x-5), x \in(-2,4)$, then
(c) If $f(x)=\left(\frac{x}{1+x \tan x}\right)^{-1}, x \in\left(0, \frac{\pi}{2}\right)$, then
(d) $f(x)=\frac{x^{3}}{3}-x \cot ^{-1} x-\frac{1}{2} \ln \left(1+x^{2}\right), x \in(-\sqrt{\pi}, \sqrt{\pi})$, then

Column (II)

(p) $f(x)$ has exactly one point of local maxima.
(q) $f(x)$ has exactly one point of local minima.
(r) $f(x)$ has exactly one point of inflection.
(s) $f(x)$ has no critical point.
(t) $f(x)$ has exactly two points of inflection.

「ANSWERS

1. (d)	2. (c)	3. (b)	4. (b)	5. (c)
6. (d)	7. (c)	8. (c)	9. (c)	10. (b)
11. (c)	12. (c)	13. (b)	14. (d)	15. (d)
16. (b, c)	17. (a , b , c)	18. (b, c)	19. (a , b, d)	20. (a, b , d)
21. (d)	22. (c)	23. (b)	24. (b)	25. (b)

1. (d)
2. (c)
3. (d)
4. (b)
5. (b)
6. (b)
7. (c)
8. (d)
9. (b)
10. (8)
11. (4)
12. (5)
13. (a) $\rightarrow s$
14. (a) $\rightarrow s$
15. (4)
16. (9)
17. (4)
18. (a) $\rightarrow \mathrm{q}, \mathrm{t}$
(b) $\rightarrow \mathrm{p}, \mathrm{t}$
(c) $\rightarrow \mathrm{r}$
(d) $\rightarrow \mathrm{p}, \mathrm{r}, \mathrm{s}$
(b) $\rightarrow q$
(c) $\rightarrow q$
(d) \rightarrow p,r,t
(b) \rightarrow p, q, r
(c) $\rightarrow \mathrm{q}$
(d) \rightarrow p, q, r

Indefinite Integral

Multiple choice questions with ONE correct answer : (Questions No. 1-15)

1. Value of $\int \frac{\left(x\left(x^{2}-1\right)-2\right)}{x^{2} \sqrt{1+x+x^{3}}} d x$ is :
(a) $\frac{2}{x^{2}} \sqrt{x^{3}+x+1}+c$.
(b) $-\frac{2}{x} \sqrt{x+x^{3}+1}+c$.
(c) $\frac{1}{x} \sqrt{x^{3}+x+1}+c$.
(d) $\frac{2}{x} \sqrt{1+x+x^{3}}+c$.
2. Let $f^{\prime}(x)=g(x)$ and $g^{\prime}(x)=-f(x) \quad \forall x \in R$ and $f(2)=f^{\prime}(2)=4$, then $f^{2}(4)+g^{2}(4)$ is equal to :
(a) 32
(b) 8
(c) 16
(d) 64
3. If $\int f(x) d x=F(x)$, then $\int x^{3} f\left(x^{2}\right) d x$ equals to:
(a) $\frac{1}{2}\left[x^{2}(F(x))^{2}-\int(F(x))^{2} d x\right]$
(b) $\frac{1}{2}\left[x^{2} F\left(x^{2}\right)-\int F\left(x^{2}\right) d\left(x^{2}\right)\right]$
(c) $\frac{1}{2}\left[x^{2} F(x)-\frac{1}{2} \int(F(x))^{2} d x\right]$
(d) $\frac{1}{2}\left[x^{2} F\left(x^{2}\right)+\int F\left(x^{2}\right) d\left(x^{2}\right)\right]$
4. Let $f(x)$ be strictly increasing function satisfying $f(0)=2, f^{\prime}(0)=3$ and $f^{\prime \prime}(x)=f(x)$, then $f(4)$ is equal to :
(a) $\frac{5 e^{8}+1}{2 e^{4}}$
(b) $\frac{5 e^{8}-1}{2 e^{4}}$
(c) $\frac{2 e^{4}}{5 e^{8}-1}$
(d) $\frac{2 e^{4}}{5 e^{8}+1}$
5. If $f^{\prime}(x)=\frac{\left(x^{2}+\sin ^{2} x\right)}{1+x^{2}} \sec ^{2} x ; f(0)=0$, then $f(1)$ is equal to :
(a) $1-\frac{\pi}{4}$
(b) $\frac{\pi}{4}-1$
(c) $\tan 1-\frac{\pi}{4}$
(d) none of these
(d) $\frac{1}{(1+n)}\left(\frac{x^{n}+1}{x^{n}}\right)^{\frac{n-1}{n}}+c$
6. $\int \frac{e^{x}\left(1+e^{2 x}\right) d x}{e^{4 x}-e^{2 x}+1}$ is equal to :
(a) $\tan ^{-1}\left(e^{x}+e^{-x}\right)+c$
(b) $\tan ^{-1}\left(e^{x}-e^{-x}\right)+c$
(c) $\tan ^{-1}\left(e^{-2 x}+e^{2 x}\right)+c$
(d) $\tan ^{-1}\left(e^{-x}-e^{x}\right)+c$
7. $\int \frac{(\sin x-\cos x) d x}{(\sin x+\cos x) \sqrt{\sin x \cos x+\sin ^{2} x \cos ^{2} x}}$ is equal to :
(a) $\cot ^{-1}\left\{\sqrt{\sin ^{2} 2 x-\sin x}\right\}+c$
(b) $\cot ^{-1}\left\{\sqrt{\sin ^{2} 2 x+2 \sin 2 x}\right\}+c$
(c) $\tan ^{-1}\left\{\sqrt{\sin ^{2} 2 x+2 \sin x}\right\}+c$
(d) $\tan ^{-1}\left\{\sqrt{\sin ^{2} 2 x-\sin x}\right\}+c$
8. $\int \frac{d x}{x^{n}\left(1+x^{n}\right)^{1 / n}}$ is equal to :
(a) $(1-n)\left(\frac{x^{n}}{x^{n}+1}\right)^{\frac{n-1}{n}}+c$
(b) $\frac{1}{(n-1)}\left(\frac{x^{n}}{1+x^{n}}\right)^{\frac{n-1}{n}}+c$
(c) $\frac{1}{(1-n)}\left(\frac{x^{n}}{x^{n}+1}\right)^{\frac{1-n}{n}}+c$

Indefinite Integral

9. $\int \frac{\left(x+\sqrt{a^{2}+x^{2}}\right)^{n}}{\sqrt{a^{2}+x^{2}}} d x$ is equal to :
(a) $\frac{\left(x+\sqrt{x^{2}+a^{2}}\right)^{n}}{n}+C$
(b) $\frac{\left(x+\sqrt{x^{2}+a^{2}}\right)^{n+1}}{(n+1)}+C$
(c) $\frac{\left(x+\sqrt{x^{2}+a^{2}}\right)^{n-1}}{(n-1)}+C$
(d) none of these
10. $\int \frac{x^{3}-x}{x^{6}+1} d x$ is equal to :
(a) $\frac{1}{8} \ln \left|\frac{x^{4}-x^{2}+1}{\left(1+x^{2}\right)^{2}}\right|+c$
(b) $\frac{1}{6} \ln \left|\frac{x^{4}+x^{2}-1}{\left(1-x^{2}\right)^{2}}\right|+c$
(c) $\frac{1}{4} \ln \left|\frac{x^{4}-x^{2}+1}{\left(1+x^{2}\right)^{2}}\right|+c$
(d) none of these
11. $\int \frac{\left(x+\sqrt[3]{x^{2}}+\sqrt[6]{x}\right)}{x(1+\sqrt[3]{x})} d x$ is equal to :
(a) $\frac{3}{2}(x)^{2 / 3}+\tan ^{-1}\left(x^{6}\right)+c$
(b) $\frac{3}{2}(x)^{2 / 3}+6 \tan ^{-1}\left(x^{1 / 6}\right)+c$
(c) $\frac{3}{2}(x)^{2 / 3}+\tan ^{-1}\left(x^{1 / 6}\right)+c$
(d) none of these
12. If $\int \frac{\left(x^{2}+1\right) d x}{x^{3}-6 x^{2}+11 x-6}=\ln \left|(x-1)^{A} \cdot(x-2)^{B} \cdot(x-3)^{C}\right|+k$ then $4(A+B+C)$ is :
(a) 0
(b) 2
(c) 5
(d) 4
13. If $\int \frac{d x}{x^{2}-2 \pi x+1}=K f(x)+c$ then $f(x)$ is
(a) logrithm function
(b) inverse tangent function
(c) cosine function
(d) tangent function
14. $\int \frac{2 \theta+\sin 2 \theta}{1+\cos 2 \theta} d \theta$ is equal to :
(a) $\frac{\theta \sin ^{2} \theta}{\cos \theta}+c$
(b) $\theta \cos ^{2} \theta+c$
(c) $\frac{\theta \tan \theta}{\sec ^{2} \theta}+c$
(d) $\frac{\theta \sin \theta}{\cos \theta}+c$
15. $\int \frac{\left(x^{2}-1\right) d x}{\left(x^{4}+3 x^{2}+1\right) \tan ^{-1}\left(\frac{1+x^{2}}{x}\right)}$ is equal to :
(a) $\ln \left|\tan \left(x+\frac{1}{x}\right)\right|+c$
(b) $\ln \left|\tan ^{-1}\left(x-\frac{1}{x}\right)\right|+c$
(c) $\ln \left|\tan ^{-1}\left(x+\frac{1}{x}\right)\right|+c$
(d) $\ln \left|\tan ^{-1}\left(x-\frac{2}{x}\right)\right|+c$

Multiple choice questions with MORE than ONE

 correct answer : (Questions No. 16-20)16. Let $y^{2}=x^{2}-x+1 \quad$ and $\quad I_{n}=\int \frac{x^{n}}{y} d x, \quad$ if $\alpha I_{3}+\beta I_{2}+\gamma I_{1}=y x^{2}$, then:
(a) $\alpha+2 \beta+\gamma=0$
(b) $\alpha-\beta=4$
(c) $\gamma-2 \beta=8$
(d) $\alpha-\gamma=1$
17. Let $f(x)=\int \frac{e^{x}}{x} d x$ and
$\int \frac{e^{x-1} \cdot 2 x}{x^{2}-5 x+4} d x=\alpha f(x-4)+\beta f(x-1)+\gamma$, then :
(a) $\ln 3 \alpha=3$
(b) $4+3 \beta=\ln 3 \alpha$
(c) $3 \beta+2=0$
(d) $\ln 3 \alpha=3+\ln 8$
18. Let $f(x)=\int \frac{x^{3} d x}{\sqrt{1+x^{2}}}$, where $f(\sqrt{2})=0$, then which of the following statements are incorrect?
(a) $f(-1)=\frac{2}{\sqrt{3}}$
(b) $f(\sqrt{5})=\sqrt{6}$
(c) $f(0)=\frac{1}{3}$
(d) $f(1)=-\frac{\sqrt{2}}{3}$
19. Let $\int \sin (\ln x) d x=f(x) \cdot \sin \left(g(x)-\frac{\pi}{4}\right)+c$, where ${ }^{\prime} c^{\prime}$ is constant, $f(x)$ and $g(x)$ are two distinct functions, then :
(a) $\tan ^{-1}\left(\frac{1}{f(1)}\right)=\frac{\pi}{4}$
(b) $\sin ^{-1}(g(1))=\frac{\pi}{4}$
(c) $\tan ^{-1}(f(1) \cdot g(1))=0$
(d) $\tan ^{-1}\left(\frac{1}{f(1)}-1\right)=\frac{\pi}{8}$
20. Let $\int \frac{x^{4}+1}{1+x^{6}} d x=f(x)+\frac{1}{3} f(g(x))+c$, where $g(x)$ is polynomial function and ' c ' is constant value, then which of the following statements are true :
(a) $\tan \left(\frac{1}{3} f(g(1))\right)=2-\sqrt{3}$
(b) number of solutions of $g(x)-x=0$ are two.
(c) number of solution of $f(x)-x=0$ is one.
(d) $\sin (2 f(\sqrt{2}))=\frac{2 \sqrt{2}}{3}$

Assertion Reasoning questions :
 (Questions No. 21-25)

Following questions are assertion and reasoning type questions. Each of these questions contains two statements, Statement 1 (Assertion) and Statement 2 (Reason). Each of these questions has four alternative answers, only one of them is the correct answer. Select the correct answer from the given options :
(a) Both Statement 1 and Statement 2 are true and Statement 2 is the correct explanation of Statement 1.
(b) Both Statement 1 and Statement 2 are true but Statement 2 is not the correct explanation of Statement 1.
(c) Statement 1 is true but Statement 2 is false.
(d) Statement 1 is false but Statement 2 is true.
21. Let $f(x)=\sin ^{6} x+\cos ^{6} x \forall x \in R$, and $g(x)=\int \frac{d x}{f(x)}$, where $g\left(\frac{\pi}{4}\right)=0$.

Statement $1: \tan \left(g\left(\frac{3 \pi}{8}\right)\right)=2$

because

Statement 2 : all possible values of $f(x)$ lies in $[1 / 4,1]$.
22. Statement 1 : If $x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, then

$$
\int\left(\ln \left(\tan \left(\frac{\pi}{4}+\frac{x}{2}\right)\right)+x \sec x\right) d x=x \ln \left(\tan \left(\frac{\pi}{4}+\frac{x}{2}\right)\right)+c
$$

because

Statement 2 : $\int\left(x f^{\prime}(x)+f(x)\right) d x=x f(x)+c$, where ' c ' is integration constant.
23. Let $I_{n}=\int \tan ^{n} x d x$, where $n \in W$ and integration constant is zero, then
Statement 1 : Summation of
$I_{0}+I_{1}+2\left(I_{2}+\ldots .+I_{8}\right)+I_{9}+I_{10}$ is equal to $\sum_{r=1}^{10} \frac{(\tan x)^{r}}{r}$
because
Statement 2: $I_{n}+I_{n+2}=\frac{(\tan x)^{n+1}}{n+1} \forall n \in W$
24. Let $f: R \rightarrow R$ be defined as $f(x)=a x^{2}+b x+c$, where $a, b, c \in R$ and $a \neq 0$.
Statement 1: If $f(x)=0$ is having non-real roots, then $\int \frac{d x}{f(x)}=\lambda \tan ^{-1}(g(x))+\mu$, where λ, μ are constants and $g(x)$ is linear function of x

because

Statement 2: $\tan \left(\tan ^{-1}(g(x))=g(x) \forall x \in R\right.$.
25. Statement 1: If $\int \frac{\left(e^{3 x}+e^{x}\right) d x}{e^{4 x}-e^{2 x}+1}=\tan ^{-1}(f(x))+c$, where ' c ' is integration constant, then $\tan ^{-1}(f(-x))=-\tan ^{-1}(f(x))$

because

Statement 2: $y=f(x)$ and $y=\tan ^{-1} x$ are both odd functions.

Comprehension based Multiple choice questions with ONE correct answer :

Comprehension passage (1)

(Questions No. 26-28)
Consider the indefinite integral $I=\int \frac{\left(x^{3}-x-1\right)}{\sqrt{x^{2}+2 x+2}} d x$.
If $I=f(x) \sqrt{x^{2}+2 x+2}+\alpha \int \frac{d x}{\sqrt{x^{2}+2 x+2}}$, where
$f(x)$ is quadratic function and ' α ' is a constant, then answer the following questions.
26. Total number of critical points for $y=|f(x)|$ is/are :
(a) 1
(b) 2
(c) 3
(d) 0
27. Value of $\tan \left(\sin ^{-1}(\alpha)\right)$ is equal to :
(a) $\frac{1}{\sqrt{3}}$
(b) 1
(c) $\sqrt{3}$
(d) $\sqrt{2}-1$

Indefinite Integral

28. Value of $\lim _{n \rightarrow \infty}\left\{\sum_{r=0}^{n}(-1)^{r}{ }^{n} C_{r}(f(3))^{r}\right\}$ is :
(a) 1
(b) 0
(c) e
(d) infinite

Comprehension passage (2)

 (Questions No. 29-31)Let $\quad I_{n}=\int_{0}^{\pi / 2} x \cdot \sin ^{n} x d x=\frac{1}{n^{2}}+f(n) I_{n-2}, \quad$ where $n \in N$, then answer the following questions.
29. Value of $f(4)$ is equal to :
(a) $\frac{2}{3}$
(b) $\frac{5}{4}$
(c) $\frac{3}{4}$
(d) $\frac{5}{3}$
30. Value of $8 I_{8}-7 I_{6}$ is equal to :
(a) $\frac{1}{7}$
(b) $\frac{1}{8}$
(c) $\frac{1}{49}$
(d) $\frac{1}{64}$
31. Value of $10 I_{10}-\sum_{n=0}^{4} I_{2 n}$ is equal to :
(a) $\frac{147}{120}$
(b) $\frac{159}{120}$
(c) $\frac{137}{120}$
(d) $\frac{149}{120}$

1. (d)	2. (a)	3. (b)	4. (b)	5. (c)
6. (b)	7. (b)	8. (c)	9. (a)	10. (d)
11. (b)	12. (d)	13. (a)	14. (d)	15. (c)
16. (a, d)	17. (c, d)	18. (a, c)	19. (c , d)	20. (a, c, d)
21. (b)	22. (a)	23. (d)	24. (b)	25. (a)
26. (c)	27. (a)	28. (b)	29. (c)	30. (b)
31. (c)				

Definite Integral

Exercise No. (1)

Multiple choice questions with ONE correct answer : (Questions No. 1-30)

1. If $I_{1}=\int_{0}^{\pi / 2} \ln (\sin x) d x$ and $I_{2}=\int_{-\pi / 4}^{\pi / 4} \ln (\sin x+\cos x) d x$, then :
(a) $I_{1}=I_{2}$
(b) $I_{1}=2 I_{2}$
(c) $I_{2}=2 I_{1}$
(d) $I_{2}=4 I_{1}$
2. Let $f:(0, \infty) \rightarrow R$ and $F(x)=\int_{0}^{x} f(t) d t$, if
$F\left(x^{2}\right)=(1+x) x^{2}$, then $f(16)$ is equal to :
(a) 4
(b) 8
(c) 7
(d) 9
3. If $\int_{0}^{x} f(t) d t=x+\int_{x}^{1} t f(t) d t$, then value of $f(1)$ is :
(a) $\frac{1}{2}$
(b) 0
(c) 1
(d) $-\frac{1}{2}$
4. Let $f(x)$ be periodic function with fundamental period ' T^{\prime} and $\int_{0}^{x} f(t) d t=x^{2}+\int_{x}^{x+T} t f(t) d t$, then $f(T-1)$ is equal to :
(a) 2
(b) $-\frac{1}{2}$
(c) -2
(d) 1
5. The number of solutions of $x+\int_{0}^{x} \ln t d t=\frac{x^{2}}{3}$, where $x \in R^{+}$, is/are :
(a) 0
(b) 1
(c) 2
(d) 3
6. If $c \neq 0$, then value of the integral
$c \int_{1+c}^{a+c}(f(c x)+1) d x-\int_{c}^{a c} f\left(x+c^{2}\right) d x$ is equal to :
(a) 0
(b) $c(a-1)$
(c) $a c$
(d) $a(c+1)$
7. Let $I=\int_{0}^{1} \frac{\sin x}{1+x} d x$, then value of integral $\int_{4 \pi-2}^{4 \pi} \frac{\sin (x / 2)}{4 \pi+2-x} d x$ is equal to :
(a) $2 I$
(b) $-I$
(c) I
(d) $I / 2$
8. For $x>0$, let $f(x)=\int_{1}^{x} \frac{\ln t}{1+t} d t$, then $y=\sqrt{2\left(f(x)+f\left(\frac{1}{x}\right)\right)}$ is differentiable for :
(a) $x \in R$
(b) $x \in R^{+}$
(c) $x \in R^{+} /\{1\}$
(d) $x \in R^{+} /\{e\}$
9. Let $I_{1}=\int_{-4}^{-5} \exp \left((x+5)^{2}\right) d x \& I_{2}=\int_{1 / 3}^{2 / 3} \exp \left((3 x-2)^{2}\right) d x$, then $I_{1}+3 I_{2}$ is equal to :
(a) e
(b) $3 e$
(c) $2 e$
(d) 0
10. If $f(x)$ is continuous function for all $x \in R$, $I_{1}=\int_{\sin ^{2} t}^{1+\cos ^{2} t} x f(x(2-x)) d x$ and $I_{2}=\int_{\sin ^{2} t}^{1+\cos ^{2} t} f(x(2-x)) d x$, then $\frac{I_{1}}{I_{2}}$ is equal to :
(a) 0
(b) 1
(c) 2
(d) 3

Definite Integral

11. If $f\left(\frac{1}{x}\right)+x^{2} f(x)=0 \forall x>0$ and $I=\int_{1 / x}^{x} f(z) d z$ for all $\frac{1}{2} \leq x \leq 2$, then I is equal to :
(a) $f(2)-f\left(\frac{1}{2}\right)$
(b) $f\left(\frac{1}{2}\right)-f(2)$
(c) $f(2)+f\left(\frac{1}{2}\right)$
(d) none of these
12. $\int_{-\pi / 2}^{\pi / 2} \frac{e^{|\sin x|} \cdot \cos x}{\left(1+e^{\tan x}\right)} d x$ is equal to :
(a) $e+1$
(b) $1-e$
(c) $e-1$
(d) none of these
13. If $I_{n}=\int_{0}^{\pi / 4} \tan ^{n} x d x \forall n \in N$, then
(a) $I_{1}=I_{3}+2 I_{5}$
(b) $I_{n}+I_{n-2}=\frac{1}{n}$
(c) $I_{n}+I_{n-2}=\frac{1}{n+1}$
(d) none of these
14. If $f(x)$ is periodic function with fundamental period ' T^{\prime} and $f(x)$ is also an odd function, then value of $\left\{\int_{a+T}^{b+2 T} f(x) d x-\int_{a}^{b} f(x) d x\right\}$ is equal to :
(a) 1
(b) 2
(c) T
(d) 0
15. If $I=\int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{\pi}{2}$, then $\int_{0}^{\infty} \frac{\sin ^{3} x}{x} d x$ is equal to :
(a) $\frac{\pi}{2}$
(b) $\frac{\pi}{4}$
(c) 1
(d) 0
16. If $\beta+2 \int_{0}^{1} x^{2} e^{-x^{2}} d x=\int_{0}^{1} e^{-x^{2}} d x$, then value of β is :
(a) e
(b) 1
(c) 0
(d) $1 / e$
17. Let $f(x)$ be continuous for all x and not every where zero, such that $\{f(x)\}^{2}=\int_{0}^{x} \frac{f(t) \sin t}{2+\cos t} d t$, then $f(x)$ is equal to :
(a) $\frac{1}{2} \ln \left(\frac{3}{2+\sin x}\right)$
(b) $\frac{1}{2} \ln \left(\frac{3}{2+\cos x}\right)$
(c) $\frac{1}{2} \ln \left(\frac{2}{3+2 \cos x}\right)$
(d) $\frac{1}{2} \ln (3-\cos x)$
18. The least value of $F(x)=\int_{x}^{2}-\log _{3} t d t \forall x \in\left[\frac{1}{10}, 4\right]$ is equal to :
(a) $\log _{3} e-2 \log _{3} 2$
(b) $1-\log _{3} 2$
(c) $\frac{1+2 \ln 2}{\ln 3}$
(d) $\log _{2} 3+1$
19. If $I_{n}=\int_{0}^{\infty} e^{-x} x^{n-1} d x$ and $\lambda \in R^{+}$then $\int_{0}^{\infty} e^{-\lambda x} x^{n-1} d x$ is equal to
(a) λI_{n}
(b) $\frac{I_{n}}{\lambda}$
(c) $\frac{I_{n}}{\lambda^{n}}$
(d) $\lambda^{n} I_{n}$
20. If $\{x\}$ represents the fractional part of x, and $I=\int_{-3}^{3} x^{8}\left\{x^{7}\right\} d x$, then value of I is equal to :
(a) 0
(b) 1
(c) 3^{7}
(d) 3^{16}
21. If $\int_{0}^{\pi / 2} \ln (\sin x) d x=\frac{\pi}{2} \ln \left(\frac{1}{2}\right)$, then $\int_{0}^{\pi / 2}\left(\frac{x}{\sin x}\right)^{2} d x$ is equal to :
(a) $\frac{\pi}{2} \ln 2$
(b) $2 \pi \ln 2$
(c) $\pi \ln 2$
(d) none of these
22. If $f(2-\alpha)=f(2+\alpha) \forall \alpha \in R$, then $\int_{2-a}^{2+a} f(x) d x$ is equal to :
(a) $2 \int_{2}^{a+2} f(x) d x$
(b) $2 \int_{0}^{a} f(x) d x$
(c) $2 \int_{0}^{2 a} f(x) d x$
(d) $4 \int_{0}^{a} f(x / 2) d x$
23. Let $x \in\left(0, \frac{\pi}{4}\right)$ and $f(x)=\tan x, g(x)=\cot x$, where $I_{1}=\int_{0}^{\pi / 4}(f(x))^{f(x)} d x, I_{2}=\int_{0}^{\pi / 4} e^{-x^{2}}(f(x))^{g(x)} d x$, $I_{3}=\int_{0}^{\pi / 4}(g(x))^{f(x)} d x \& I_{4}=\int_{0}^{\pi / 4} \sec ^{2} x .(g(x))^{g(x)} d x$, then :
(a) $I_{1}>I_{2}>I_{3}>I_{4}$
(b) $I_{4}>I_{3}>I_{1}>I_{2}$
(c) $I_{3}>I_{1}>I_{2}>I_{4}$
(d) $I_{4}>I_{1}>I_{3}>I_{2}$
24. Let $I_{1}=\int_{0}^{a} f(2 a-x) d x, I_{2}=\int_{0}^{a} f(x) d x$, then $\int_{0}^{2 a} f(x) d x$ is equal to :
(a) $2 I_{1}-I_{2}$
(b) $I_{1}-I_{2}$
(c) $I_{1}+I_{2}$
(d) $I_{1}+2 I_{2}$
25. Let $p \notin I,\{x\}=x-[x]$, where [.] represents greatest integer function, then value of $\int_{0}^{p^{2}}(x-[x]) d x$ is equal to :
(a) $\frac{1}{2}\left[p^{2}\right]$
(b) $\frac{1}{2}\left[p^{2}\right]+\frac{1}{2} p^{2}$
(c) $\frac{1}{2}\left(\left[p^{2}\right]+\left\{p^{2}\right\}^{2}\right)$
(d) $\frac{1}{2}\left[p^{2}\right]+\left\{p^{2}\right\}$
26. Let f be a non-negative function defined on interval $[0,1]$. If $\int_{0}^{x} \sqrt{1-\left(f^{\prime}(t)\right)^{2}} d t=\int_{0}^{x} f(t) d t, 0 \leq x \leq 1$, and $f(0)=0$, then :
(a) $f\left(\frac{1}{2}\right)<\frac{1}{2}$ and $f\left(\frac{1}{3}\right)>\frac{1}{3}$
(b) $f\left(\frac{1}{2}\right)>\frac{1}{2}$ and $f\left(\frac{1}{3}\right)>\frac{1}{3}$
(c) $f\left(\frac{1}{2}\right)>\frac{1}{2}$ and $f\left(\frac{1}{3}\right)<\frac{1}{3}$
(d) $f\left(\frac{1}{2}\right)<\frac{1}{2}$ and $f\left(\frac{1}{3}\right)<\frac{1}{3}$
27. Let $f: R \rightarrow R$ be a continuous function which satisfies $f(x)=\int_{0}^{x} f(t) d t$, then value of $f(\ln 5)$ is :
(a) 4
(b) 2
(c) 0
(d) -1
28. Let [.] represents the greatest integer function and $I=\int[\cot x] d x$, then value of $[I]$ is equal to :
(a) 0
(b) 1
(c) -1
(d) -2
29. Interval containing the value of definite integral $\int_{1}^{5}\left\{\prod_{i=1}^{5}(x-i)\right\} d x$ is given by :
(a) $\left(0, \frac{\pi}{2}\right)$
(b) $\left(\frac{\pi}{8}, \frac{5 \pi}{4}\right)$
(c) $\left(0, \frac{\pi}{8}\right)$
(d) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
30. Let $f(x)$ be continuous positive function for all $x \in[0,1]$. If $\int_{0}^{1} f(x) d x=1, \int_{0}^{1} x f(x) d x=\lambda$ and $\int_{0}^{1} x^{2} f(x) d x=\lambda^{2}, \lambda>1$ then number of possible function(s) $f(x)$ is/are:
(a) 0
(b) 2
(c) 1
(d) infinite

Multiple choice questions with MORE than ONE

 correct answer : (Questions No. 31-35)31. Let $f(x)$ be continuous function for which $f(2+x)=f(2-x)$ and $f(4-x)=f(4+x)$.
If $\int_{0}^{2} f(x) d x=5$, then $\int_{0}^{50} f(x) d x$ is equal to :
(a) $\int_{1}^{51} f(x) d x$
(b) 125
(c) $\int_{2}^{52} f(x) d x$
(d) $\int_{-4}^{46} f(x) d x$.
32. Let $f: R \rightarrow R$ be an invertible polynomial function of degree ' n '. If the equation $f(x)-f^{-1}(x)=0$ is having only two distinct real roots ' α ' and ' β ', where $\alpha<\beta$, then :
(a) $\int_{\alpha}^{\beta}\left(f(x)+f^{-1}(x)\right) d x=\beta^{2}-\alpha^{2}$.
(b) $f^{\prime \prime}(x)=0$ has at least one real root in (α, β).
(c) If $g(x)=f(x)+f^{-1}(x)-2 x$, then $g^{\prime}(x)=0$ has at least one real root in (α, β).
(d) Minimum degree ' n ' of $f(x)$ is 5 .
33. Let $S_{n}=\sum_{k=1}^{n} \frac{n}{n^{2}+k n+k^{2}} \& T_{n}=\sum_{k=0}^{n-1} \frac{n}{n^{2}+k n+k^{2}}$, for $n=1,2,3, \ldots$, then
(a) $S_{n}<\frac{\pi}{3 \sqrt{3}}$
(b) $S_{n}>\frac{\pi}{3 \sqrt{3}}$
(c) $T_{n}<\frac{\pi}{3 \sqrt{3}}$
(d) $T_{n}>\frac{\pi}{3 \sqrt{3}}$
34. Let $f(x)$ be a non-constant twice differentiable function defined on $(-\infty, \infty)$ such that $f(x)=f(1-x)$ and $f^{\prime}(1 / 4)=0$, then
(a) $f^{\prime \prime}(x)$ vanishes at least twice on $(0,1)$
(b) $f^{\prime}\left(\frac{1}{2}\right)=0$
(c) $\int_{-1 / 2}^{1 / 2} f\left(x+\frac{1}{2}\right) \sin x d x=0$
(d) $\int_{0}^{1 / 2} f(t) e^{\sin \pi t} d t=\int_{1 / 2}^{1} f(1-t) e^{\sin \pi t} d t$
35. Let $f(x), f^{\prime}(x)$ and $f^{\prime \prime}(x)$ be continuous positive functions for all $x \in[1,6]$, then
(a) $f(1)+f(6)-2 f\left(\frac{7}{2}\right)>0$.
(b) $\int_{1}^{6} f(x) d x<\frac{5}{2}(f(1)+f(6))$.
(c) $3 f^{-1}(4)-f^{-1}(2)-2 f^{-1}(5)>0$.
(d) $\int_{1}^{6} f(x) d x>5 f(1)$.

Assertion Reasoning questions :
 (Questions No. 36-40)

Following questions are assertion and reasoning type questions. Each of these questions contains two statements, Statement 1 (Assertion) and Statement 2 (Reason). Each of these questions has four alternative answers, only one of them is the correct answer. Select the correct answer from the given options :
(a) Both Statement 1 and Statement 2 are true and Statement 2 is the correct explanation of Statement 1.
(b) Both Statement 1 and Statement 2 are true but Statement 2 is not the correct explanation of Statement 1.
(c) Statement 1 is true but Statement 2 is false.
(d) Statement 1 is false but Statement 2 is true.
36. Statement 1: Let $f(x)=||x|-2|-1$ for all $|x| \leq 3$ then $\int_{-2}^{2} f(x) d x=0$

because

Statement 2 : If $f(x)$ is odd continuous function, then $\int_{-a}^{a} f(x) d x$ is always zero.
37. Statement 1 : If $f(x)=1+x-x^{2}$ for all $x \in R$ and

$$
g(x)=\max \{f(t) ; 0 \leq t \leq x\}, 0 \leq x \leq 1
$$

then $\int_{0}^{1} g(x) d x=\frac{29}{24}$

because

Statement 2: $f(x)$ is increasing in $\left(0, \frac{1}{2}\right)$ and decreasing in $\left(\frac{1}{2}, 1\right)$.
38. Statement 1: Let $f: R \rightarrow R$ be a continuous function and $f(x)=f(2 x) \forall x \in R$. If $f(1)=3$, then value
of $\int_{-1}^{1} f(f(x)) d x=6$
because
Statement 2: $f(x)$ is constant function.
39. Statement 1 : Let $I_{n}=\int_{0}^{1} x^{n} \tan ^{-1} x d x$, if
$\alpha_{n} I_{n+2}+\beta_{n} I_{n}=\gamma_{n} \forall n \in N$, then $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots \ldots$ are in A.P.

because

Statement 2: $\gamma_{1}, \gamma_{2}, \gamma_{3}, \ldots . .$. are in H.P.
40. Statement 1 : Let $f(x)=\int_{0}^{x} t^{3}\left(t^{2}-4\right)\left(e^{t}-1\right) d t$, then
$f(x)$ has local maxima at location of $x=0$

because

Statement 2 : $x=0, \pm 2$ are the critical locations for $f(x)$.

Comprehension based Multiple choice questions with ONE correct answer :

Comprehension passage (1) (Questions No. 1-3)

Let $f(x)$ be a function which satisfy the functional relationship $(x-y) f(x+y)-(x+y) f(x-y)=2\left(x^{2} y-y^{3}\right)$ for all $x, y \in R$ and $f(3)=12$. On the basis of definition for $f(x)$, answer the following questions.

1. If $I_{1}=\int_{0}^{1} \frac{d x}{\sqrt{4-x f(x)}}$, then value of ' I_{1} ' lies in the interval :
(a) $\left(\frac{\pi}{4 \sqrt{2}}, 1\right)$
(b) $\left(\frac{\pi}{12 \sqrt{2}}, \frac{\pi}{6}\right)$
(c) $\left(\frac{\pi}{6}, \frac{\pi}{4 \sqrt{2}}\right)$
(d) $\left(0, \frac{\pi}{12 \sqrt{2}}\right)$
2. If $I_{2}=\int_{-1}^{1} \tan ^{-1}\left(\frac{1}{1+f(x)}\right) d x$, then value of ' I_{2}^{\prime} is :
(a) greater than $2 \tan ^{-1}(2)$
(b) greater than $\tan ^{-1}(2)$
(c) less than $\tan ^{-1}(2)$
(d) less than $\tan ^{-1}(1)$
3. If $\int_{-1}^{\alpha} f(x) d x>0$, then ' α ' belongs to interval:
(a) $(-\infty, 0)$
(b) $\left(\frac{1}{4}, \infty\right)$
(c) $\left(\frac{1}{2}, \infty\right)$
(d) $\left(-\frac{1}{2}, \frac{1}{2}\right)$

Comprehension passage (2)
 (Questions No. 4-6)

Let $f: R \rightarrow R$ be defined by $f(x)=\frac{1-p x+x^{2}}{1+p x+x^{2}}$, where $p \in(0,2)$ and $g(x)=f^{\prime}(x)$ for all $x \in R$. On the basis of given information, answer the following questions :
4. Value of $\int_{-2 \pi}^{2 \pi} \ln (f(x)|\sin x|) d x$ is equal to :
(a) 0
(b) $4 \pi \ln \frac{1}{4}$
(c) $2 \pi \ln \frac{1}{8}$
(d) $\pi \ln \frac{1}{16}$
5. Let $\phi(x)=\int_{0}^{e^{x}} \frac{g(t)}{1+t^{2}} d t$, then
(a) $\phi(x)$ is strictly increasing function
(b) $\phi(x)$ has local maxima at location of $x=0$
(c) $\phi(x)$ has local minima at location of $x=0$
(d) $\phi(x)$ is strictly decreasing function
6. Value of $\int_{-3}^{3} \frac{\left(x^{2}+1\right) d x}{1+2^{\ln (f(x))}}$ is equal to :
(a) 0
(b) 6
(c) 12
(d) 3

Comprehension passage (3)
 (Questions No. 7-9)

Consider the function defined implicitly by the equation $y^{3}-3 y+x=0$ on various intervals in the real line. If $x \in(-\infty,-2) \cup(2, \infty)$, the equation defines a unique real valued differentiable function $y=f(x)$. If $x \in(-2,2)$, the equation implicitly defines a unique real valued differentiable function $y=g(x)$ satisfying $g(0)=0$.
7. If $f(-10 \sqrt{2})=2 \sqrt{2}$, then $f^{\prime \prime}(-10 \sqrt{2})$ is equal to :
(a) $\frac{4 \sqrt{2}}{7^{3} 3^{2}}$
(b) $-\frac{4 \sqrt{2}}{7^{3} 3^{2}}$
(c) $\frac{4 \sqrt{2}}{7^{3} 3}$
(d) $-\frac{4 \sqrt{2}}{7^{3} 3}$
8. The area of the region bounded by the curve $y=f(x)$, the x-axis and lines $x=a$ and $x=b$, where $-\infty<a<b<-2$, is
(a) $\int_{a}^{b} \frac{x}{3\left((f(x))^{2}-1\right)} d x+b f(b)-a f(a)$
(b) $\int_{a}^{b} \frac{x}{3\left(1-(f(x))^{2}\right)} d x+b f(b)-a f(a)$
(c) $\int_{a}^{b} \frac{x}{3\left((f(x))^{2}-1\right)} d x-b f(b)+a f(a)$
(d) $\int_{a}^{b} \frac{x}{3\left(1-(f(x))^{2}\right)} d x-b f(b)+a f(a)$
9. $\int_{-1}^{1} g^{\prime}(x) d x$ is equal to :
(a) $2 g(-1)$
(b) 0
(c) $-2 g(1)$
(d) $2 g(1)$

Questions with Integral Answer :
 (Questions No. 10-15)

10. Let $\alpha \in R^{+}$and $f(\alpha)=\int_{0}^{\infty} \frac{\ln x d x}{x^{2}+\alpha x+\alpha^{2}}$, where $\alpha f(\alpha)-f(1)=\frac{\pi}{\sqrt{3}}$, then value of $(\alpha)^{\ln 4}$ is $\ldots \ldots . . .$.
11. Let $f: R^{+} \rightarrow R$ be a differentiable function with $f(1)=3$ and satisfying the equation,
$\int_{1}^{x y} f(t) d t=y \int_{1}^{x} f(t) d t+x \int_{1}^{y} f(t) d t$ for all $x, y \in R^{+}$,
then value of $\frac{1}{57} f\left(e^{37}\right)$ is equal to \qquad
12. Let $f(x)$ be continuous and twice differentiable function for all values of x and $f(\pi)=2$, if $\int_{0}^{\pi}\left(f(x)+f^{\prime \prime}(x)\right) \sin x d x=6$, then value of $f(0)$ is equal to \qquad
13. Let [.] represents the greatest integer function and $I=\int_{0}^{\pi} \frac{5 x^{3} \cos ^{4} x \cdot \sin x}{\left(\pi^{2}-3 \pi x+3 x^{2}\right)} d x$, then value of $[I]$ is equal to \qquad
14. Let $f(x)$ be a differentiable function such that $f(x)=x^{2}+\int_{0}^{x} e^{-t} f(x-t) d t$, then value of $\frac{1}{2} f(3)$ is equal to \qquad
15. Let ' α ' and ' β ' be two distinct real roots of the equation $\tan x-x=0$, then $\int_{0}^{1} \sin (\alpha x) \cdot \sin (\beta x) d x$ is equal to \qquad

Matrix Matching Questions :
 (Questions No. 16-17)

16. Match Column (I) and (II), where [.] represent greatest integer function.

Column (I)

Column (II)

(a) $\int_{-2}^{2}(x-[x]) d x$.
(p) 0
(b) $\int_{-3}^{3} x|x| d x$.
(q) 1
(c) $\int_{-1 / 2}^{1 / 2} \frac{\sin ^{-1}(x)}{1+x^{2}} d x$
(r) 2
(d) $\int_{-1}^{1} \min \{|x+1|,|x-1|\} d x$
(s) $\frac{4 \pi+1}{3}$

Definite Integral

17. If $a \in R^{+}$, then match columns (I) and (II) .

Column (I)

(a) If $f(2 a-x)=f(x)$, then $\int_{0}^{2 a} f(x) d x$ is
(b) If $f(2 a-x)=-f(x)$, then $\int_{0}^{a} f(x) d x$ is
(c) If $f(-x)=f(x)$, then $\int_{-a}^{a} f(x) d x$ is
(d) If $f(-x)=-f(x)$, then $\int_{-a}^{a} f(x) d x$ is

Column (II)

(p) 0
(q) $2 \int_{0}^{a} f(x) d x$.
(r) $2 \int_{a}^{2 a} f(x) d x$
(s) $\int_{2 a}^{a} f(x) d x$.
18. Macht the following columns (I) and (II).

Column (I)

(a) If $S_{n}=\frac{1}{2 n}+\frac{1}{\sqrt{4 n^{2}-1}}+\frac{1}{\sqrt{4 n^{2}-4}}+\ldots .+\frac{1}{\sqrt{4 n-1}}$,
then $\lim _{n \rightarrow \infty} S_{n}$ is
(b) If $f(x)$ is bijective in nature for all $x \in[a, b]$,
then $\frac{\int_{a}^{b}\left((f(x))^{2}-(f(a))^{2}\right) d x}{\int_{f(a)}^{f(b)} x\left(f^{-1}(x)-b\right) d x}$ is
(q) 2
(r) $\frac{\pi}{2}$
(c) $\lim _{n \rightarrow \infty}\left\{\prod_{r=1}^{n-1} \sin \left(\frac{r \pi}{2 n}\right)\right\}^{1 / n} \quad$ is equal to
(d) $\int_{0}^{4}| ||x-2|-1|-1| d x$ is
(t) $\frac{1}{2}$

「ANSWERS

1. (b)	2. (c)	3. (a)	4. (c)	5. (c)
6. (b)	7. (b)	8. (c)	9. (d)	10. (b)
11. (d)	12. (c)	13. (a)	14. (d)	15. (b)
16. (d)	17. (b)	18. (a)	19. (c)	20. (c)
21. (c)	23. (b)	24. (c)	25. (c)	
26. (d)	22. (a)	29. (d)	30. (a)	
31. (b, c, d)	32. (a, b, c)	33. (a, d)	34. (a, b, c, d)	35. (a, b, c, d)
36. (b)	37. (b)	38. (a)	39. (c)	40. (d)

ANSWERS

Exercise No. (2)

1. (c)
2. (c)
(c) $\rightarrow p$
(d) \rightarrow q
3. (2)
4. (a) $\rightarrow r$
(b) $\rightarrow \mathrm{p}$
5. (b)
6. (4)
7. (a) \rightarrow q, r
(b) $\rightarrow \mathrm{s}$
(c) \rightarrow q
8. (b)
9. (c)
10. (a)
11. (3)
12. (a) $\rightarrow i$
(b) $\rightarrow p$
(c) \rightarrow t
(d) \rightarrow q
(d) $\rightarrow \mathrm{p}$
13. (d)
14. (d)
15. (8)

Area Bounded by Curves

Exercise No. (1)

Multiple choice questions with ONE correct answer :

(Questions No. 1-20)

1. Area enclosed by curve $y=x^{3}$ with its normal at point $(1,1)$ and x-axis is :
(a) $\frac{7}{4}$ sq. units
(b) $\frac{9}{4}$ sq. units
(c) $\frac{5}{4}$ sq. units
(d) $\frac{11}{2}$ sq. units
2. Area (in sq. units) of region bounded by $y=2 \cos x$, $y=3 \tan x$ and y-axis is :
(a) $1+3 \ln \left(\frac{2}{\sqrt{3}}\right)$
(b) $1+\frac{3}{2} \ln 3-3 \ln 2$
(c) $1+\frac{3}{2} \ln 3-\ln 2$
(d) $\ln \left(\frac{3}{2}\right)$
3. Let $f(x)=|4-|10-x||$, then area (in sq. units) bounded by $f(x)$ with x-axis is :
(a) 32
(b) 16
(c) 64
(d) 8
4. Let the slope of tangent to curve $y=f(x)$ at $(x, f(x))$ is $1-2 x$ and curve passes through point $(2,-2)$. If area bounded by curve and line $y=\alpha x$ is $\frac{32}{3}$ square units, then value of ' α ' is:
(a) -3
(b) -3 or 5
(c) -5
(d) 3 or 5
5. Area bounded by $|y|=\sqrt{x}$ and $x=|y|+2$ is equal to :
(a) $\frac{22}{3}$ sq. units.
(b) $\frac{20}{3}$ sq. units.
(c) $\frac{16}{3}$ sq. units.
(d) $\frac{14}{3}$ sq. units.
6. Area (in square units) bounded by the curves $f(x)=\max \{2+|x-2|, 3-|x-2|\}$ and $g(x)=\min \{2+|x-2|, 3-|x-2|\}$ is given by :
(a) 1
(b) $\frac{1}{2}$
(c) $\frac{3}{2}$
(d) 2
7. Let $y=f(x)$ be a function such that $f(x)=\min \{\sqrt{x(2-x)},(2-x)\}$, then area (in sq. units) bounded by $y=f(x)$ and x-axis is given by
(a) $\frac{\pi}{2}+\frac{1}{4}$
(b) $\frac{\pi}{4}+\frac{1}{4}$
(c) $\frac{\pi}{4}+\frac{1}{2}$
(d) $\frac{\pi}{4}+\frac{1}{8}$
8. Let $f(x)$ be continuous function such that the area bounded by curve $y=f(x), x$-axis and two ordinates $x=0$ and $x=a$ is $\left(\frac{a^{2}}{2}+\frac{a}{2} \sin a+\frac{\pi}{2} \cos a\right)$, where $a \in R^{+}$, then $f\left(\frac{\pi}{2}\right)$ is :
(a) $\frac{1}{2}$
(b) $\frac{\pi^{2}}{8}+\frac{\pi}{4}$
(c) $\frac{\pi+1}{2}$
(d) $\frac{2 \pi+1}{4}$
9. If area of the region bounded by the curve $y=e^{x}$ and the lines $x(y-e)=0$ is ' A ' square units, then incorrect value of ' A ' is given by :
(a) $\int_{1}^{e} \ln (e+1-y) d y$
(b) $\int_{1}^{e} \ln y d y$
(c) $e-\int_{0}^{1} e^{y} d y$
(d) $e-1$
10. The area (in square units) bounded by curves $y=x^{2}+2$ and $y+\cos \pi x=2|x|$ is equal to :
(a) $\frac{1}{3}$
(b) $\frac{2}{3}$
(c) $\frac{8}{3}$
(d) $\frac{4}{3}$

Area Bounded by Curves

11. If point ' P ' moves inside the triangle formed by $A(0,0), B(1, \sqrt{3})$ and $C(2,0)$ such that $\min \{P C, P B, P A\}=1$, then area (in square units) bounded by the curve which is traced by moving point ' P ' is given by :
(a) $\sqrt{3}-\frac{\pi}{2}$
(b) $2 \sqrt{3}+\frac{\pi}{2}$
(c) $\sqrt{3}-\pi$
(d) $\frac{\sqrt{3}+\pi}{2}$
12. Let area bounded by the curves $y=x^{2}$ and $y=2^{x}$ in the $I^{5 t}$ quadrant be A_{1} square units, then A_{1} is equal to :
(a) 0
(b) $\int_{0}^{2}\left(2^{x}-x^{2}\right) d x$
(c) $\frac{56}{3}-\frac{12}{\ln 2}$
(d) $\frac{64}{3}-\frac{2}{\ln 2}$
13. Area (in square units) bounded by the curve $y-x=\sin x$ and its inverse function, satisfying the condition $x^{2}-2 \pi x \leq 0$, is given by :
(a) 8
(b) 16
(c) 2
(d) none of these
14. If $\int_{1}^{2} e^{\alpha^{2}} d \alpha=\beta$, then area bounded by the curve $x=\sqrt{\ln y}$ and the lines $x=0, y=e$ and $y=e^{4}$ is equal to :
(a) $e^{4}-\beta+e$
(b) $2 e^{4}-\beta-e$
(c) $2 e^{4}+\beta-e$
(d) $e^{4}+\beta+e$
15. If $\alpha \in R^{+}$and the area bounded by the parabolic curves $y=x-\alpha x^{2}$ and $\alpha y-x^{2}=0$ is maximum , then ' α ' is equal to:
(a) 2
(b) $\frac{1}{2}$
(c) 1
(d) 4
16. The area of the region between the curves $y=\left(\frac{1+\sin x}{\cos x}\right)^{\frac{1}{2}}$ and $y=\left(\frac{1-\sin x}{\cos x}\right)^{\frac{1}{2}}$ bounded by the lines $x=0$ and $x=\frac{\pi}{4}$ is:
(a) $\int_{0}^{\sqrt{2}+1} \frac{4 t d t}{\left(1+t^{2}\right) \sqrt{1-t^{2}}}$
(b) $\int_{0}^{\sqrt{2}-1} \frac{4 t d t}{\left(1+t^{2}\right) \sqrt{1-t^{2}}}$
(c) $\int_{0}^{\sqrt{2}+1} \frac{t d t}{\left(1+t^{2}\right) \sqrt{1-t^{2}}}$
(d) $\int_{0}^{\sqrt{2}-1} \frac{t d t}{\left(1+t^{2}\right) \sqrt{1-t^{2}}}$
17. Let $f(x)=\min \left\{e^{x}, 1+e^{-x}, \frac{3}{2}\right\}$ for all real values of x. Area (in sq. units) bounded by $f(x)$ with x-axis and the lines $x=\ln \left(\frac{3}{2}\right), x=\ln 2$ is given by:
(a) $\ln \frac{8}{3}$
(b) $\ln 8-\ln \sqrt{3}$
(c) $\ln \frac{8}{3 \sqrt{3}}$
(d) $\ln 3 \sqrt{3}-\ln 2$
18. Let point ' P ' moves in the plane of a regular hexagon such that the sum of the squares of its distances from the vertices of the hexagon is 24 square units. If the radius of circumcircle of the hexagon is 1 units , then the area (in square units) bounded by the locus of point ' P ' is equal to:
(a) π
(b) 2π
(c) 3π
(d) 6π
19. Area (in square units) bounded by the curves $y=|x-2|$ and $y\left(x^{2}-4 x+5\right)-2=0$ is given by :
(a) $\pi-2$
(b) $\pi-1$
(c) $\pi-3$
(d) $5-\pi$
20. Area (in square units) bounded by the curves $y=[2 \sin x]$ and $y=-\left|\frac{12 x}{\pi}-18\right|$, where [.] represents the greatest integer function, is equal to :
(a) 0
(b) $\frac{\pi}{3}$
(c) $\frac{\pi}{6}$
(d) none of these

Multiple choice questions with MORE than ONE

 correct answer : (Questions No. 21-25)21. Let area (in square units) bounded by the curve $y=2^{x^{2}}$ and the pair of lines $y^{2}-18 y+32=0$ be given by ' A ', then which of the following statements are correct :
(a) value of ' A ' is not greater than 56
(b) Value of ' A ' is not less than 42
(c) value of ' A ' is equal to $\int_{2}^{16} \sqrt{\log _{2} x} d x$
(d) value of ' A ' is equal to $\int_{1}^{8}\left\{16\left(1+\log _{2} x\right)\right\}^{\frac{1}{2}} d x$
22. Let A_{n} be the area bounded by the curve $y=(\tan x)^{n}$ and the lines $x=0, y=0$ and $4 x-\pi=0$, where $n \in N-\{1,2\}$, then :
(a) $A_{n+2}+A_{n}=\frac{1}{(n+1)}$
(b) $\frac{1}{2 n+2}<A_{n}<\frac{1}{2 n-2}$
(c) $A_{n}<A_{n+2}$
(d) $A_{n} \ngtr \tan ^{-1}(\sqrt{2}-1)$
23. Let the tangent to curve $f(x)=x^{2}+\lambda x-\lambda$ at point $(1,1)$ meet the x-axis and y-axis at A and B respectively. If the area of triangle $A O B$ is 2 square units, where ' O ' is origin, then the values of λ can be :
(a) 3
(b) -3
(c) $1+2 \sqrt{2}$
(d) $1-2 \sqrt{2}$
24. Let the two branches of the curve $(y-x)^{2}=\sin x$ be $y=f(x)$ and $y=g(x)$, where $f(x) \geq g(x) \quad \forall \quad x \in R$. If the area bounded by $f(x)$ and $g(x)$ in between the lines $x=0$ and $x=\pi$ is ' A ' square units, then :
(a) $2<A<4$
(b) $4<A<2 \pi$
(c) $A>\int_{0}^{\pi / 2} 4 \sin ^{2} x d x$
(d) $A=\int_{0}^{\pi / 2} 4 \sqrt{\cos x} d x$
25. Let $f(x)=x^{2}-2|x| \quad \forall x \in R$ and $g(x)=\left\{\begin{array}{ll}\min \{f(t):-2 \leq t \leq x\} & ; x \in[-2,0) \\ \max \{f(t): 0 \leq t \leq x\} & ; x \in[0,3)\end{array}\right.$, then which of the following statements are correct :
(a) Area bounded by $f(x)$ with x-axis is $\frac{8}{3}$ square units.
(b) Area bounded by $g(x)$ with the curve $y=x^{2}-2 x$ is $\frac{4}{3}$ square units.
(c) Area bounded by $g(x)$ with the curve $y=1-|x-1|$ is 2 square units.
(d) Area bounded by $g(x)$ with the pair of lines $y+x y=0$ is $\frac{2}{3}$ square units.

Assertion Reasoning questions :
 (Questions No. 26-30)

Following questions are assertion and reasoning type questions. Each of these questions contains two statements, Statement 1 (Assertion) and Statement 2 (Reason). Each of these questions has four alternative answers, only one of them is the correct answer. Select the correct answer from the given options :
(a) Both Statement 1 and Statement 2 are true and Statement 2 is the correct explanation of Statement 1.
(b) Both Statement 1 and Statement 2 are true but Statement 2 is not the correct explanation of Statement 1.
(c) Statement 1 is true but Statement 2 is false.
(d) Statement 1 is false but Statement 2 is true.
26. Statement 1 : Area (in square units) bounded by the curves $y=\sin ^{-1} x, y=\cos ^{-1} x$ and $y=0$ is given by $\cot \left(\frac{3 \pi}{8}\right)$

because

Statement 2 :

$\int_{0}^{\pi / 4}(\cos y-\sin y) d y=\left\{\int_{0}^{\frac{1}{\sqrt{2}}} \sin ^{-1} x d x+\int_{\frac{1}{\sqrt{2}}}^{1} \cos ^{-1} x d x\right\}=\tan \left(\frac{\pi}{8}\right)$.
27. Statement 1 : Let $f(x)=\lim _{n \rightarrow \infty}(\sin x)^{4 n} \quad$ and $g(x)=x^{2}-6 x+8$, then area bounded by $f(x)$ and $g(x)$ is given by $\frac{4}{3}$ square units

because

Statement 2: $\lim _{n \rightarrow \infty}(\sin x)^{4 n}=[|\sin x|] \forall x \in R$, where [.] represents the greatest integer function.

Area Bounded by Curves

28. Statement 1 : Area bounded by the curves $C_{1}: x^{2}-y-1=0$ and $C_{2}: y-|x|=0$ is divided by the y-axis in two equal parts

because

Statement 2 : Curves ${ }^{\prime} C_{1}{ }^{\prime}$ and ${ }^{\prime} C_{2}{ }^{\prime}$ are symmetrical about the y-axis.
29. Let $f:[0,1] \rightarrow[0,1]$ be defined by the function $f(x)=1-\sqrt{1-x^{2}}$.
Statement 1 : Area bounded by the curves $y=f(x)$ and $y=f^{-1}(x)$ is given by $\left(2-\frac{\pi}{2}\right)$ square units
because

Statement 2: If a function is bijective in nature, then its inverse always exist.
30. Statement 1 : Area bounded by the curves $y=3 x^{2}$ and $y=3^{x}$ in between the lines $x=3$ and $x=4$ is given by $\left(54 \log _{3} e-37\right)$ square units

because

Statement 2: Total number of solutions for the equation $x^{4}-\left(3^{x-1}-1\right) x^{2}-3^{x-1}=0$ are three.

Exercise No. (2)

Comprehension based Multiple choice questions with ONE correct answer :

Comprehension passage (1)
 (Questions No. 1-3)

Let $f(x)=x^{n} \tan ^{-1}(x) \quad \forall x \in R$ and $n \in W$. If area bounded by $y=f(x)$ with x-axis and lines $x=0$, $x=1$ is represented by A_{n}, then answer the following questions.

1. Value of $(n+1) A_{n}+(n+3) A_{n+2}$ is equal to :
(a) $\frac{\pi}{2}-\frac{1}{n+1}$
(b) $\frac{\pi}{2}-\frac{1}{n+2}$
(b) $\frac{\pi}{2}+\frac{2}{n}$
(d) $\frac{\pi}{2}+\frac{1}{n}$
2. Value of $\sum_{r=1}^{4}(r+1) A_{r}$ is equal to :
(a) $\pi-\frac{7}{12}$
(b) $\pi+\frac{5}{12}$
(c) $2 \pi-\frac{1}{12}$
(d) $\frac{\pi}{2}-\frac{1}{4}$
3. Value of A_{4} is equal to :
(a) $\frac{\pi-1+\ln 4}{10}$
(b) $\frac{\pi+1-\ln 4}{20}$
(c) $\frac{\pi-\ln 4}{15}$
(d) $\frac{\pi+2-\ln 4}{10}$

Comprehension passage (2)
 (Questions No. 4-6)

In figure no. (1), the graph of two curves $C_{1}: y=f(x)$ and $C_{2}: y=\sin x$ are given, where ' $C_{1}{ }^{\prime}$ and ' $C_{2}{ }^{\prime}$ meet at $A(a, f(a)), B(\pi, 0)$ and $C(2 \pi, 0)$. If A_{1}, A_{2} and A_{3} are the bounded area as shown in figure no. (1) and $A_{1}=(a-1) \cos a-\sin a+1$, then answer the following questions.

4. Area (in square units) A_{2} is equal to :
(a) $\pi-1-\sin 1$
(b) $\pi+1-\sin 1$
(c) $\pi+1+\sin 1$
(d) $\pi-2+\sin 1$
5. If [.] represents the greatest integer function, then value of $\left[A_{3}\right]$ is equal to :
(a) 4
(b) 7
(c) 8
(d) 5
6. Let tangent to $y=f(x)$ at point ' A ' meets the x-axis at $(K, 0)$, then ' K ' is equal to :
(a) $\tan 1$
(b) $\cot 1$
(c) $\sin 1$
(d) none of these

Comprehension passage (3)

(Questions No. 7-9)

Let $f(x)=\frac{p x^{2}+q x+4}{x^{2}+1}$, where $f(x)=f(|x|) \forall x \in R$ and $\lim _{x \rightarrow \infty} f(x)=-1$, then answer the following questions.
7. If $g(x)=[\alpha f(x)]$ for all $|x| \leq 2$, where [.] represents the greatest integer function, and total number of points of dicontinuity for $y=g(x)$ are 31, then value of ' α ' is equal to :
(a) 3
(b) 4
(c) 5
(d) 6
8. If the vertices of rectangle ' R ' lie on curve $y=f(x)$ and other two vertices lies on the line $y+1=0$, then maximum area (in square units) of rectangle ' R ' is equal to :
(a) 8
(b) 6
(c) 5
(d) 10
9. Let $h(x)=\left\{\begin{array}{cc}f(x) & ; x \leq 1 \\ -x+k^{2}-2 k-\frac{1}{2} ; & x>1\end{array}\right.$ and minimum value of $h(x)$ exists at $x=1$, then ' k ' belongs to :
(a) $[-1,3]$
(b) $R-(-1,3)$
(c) $R-[-1,3]$
(d) $(-1,3)$
figure no. (1)

Area Bounded by Curves

Questions with Integral Answer :
 (Questions No. 10-14)

10. Let $d(P, L)$ represents the distance of any point ' P ' from the line ' L ' on $x-y$ plane. If $A(-3,0), B(3,0)$, $C(3,4)$ and $D(-3,4)$ are the vertices of rectangle $A B C D$, and the moving point ' P ' satisfy the condition $d(P, A B) \leq \min \{d(P, B C), d(P, C D), d(P, A D)\}$, then area (in square units) of the region in which point ' P ' moves is equal to \qquad
11. Let $a \in R^{+}$and the area of curvilinear trapezoid bounded by the curve $y=\frac{x}{6}+\frac{1}{x^{2}}$ and the lines whose joined equation is $y\left(x^{2}-3 a x+2 a^{2}\right)=0$ be ' A ' square units. If ' A ' is having the least value, then ' a ' is equal to . \qquad
12. The area enclosed by the parabolic curve $(y-2)^{2}=x-1$, the tangent to parabola at $(2,3)$ and the x-axis is equal to \qquad
13. Let the area of region bounded by the curves $y=x^{2}, y=\left|2-x^{2}\right|$ and $y-2=0$, which lies to the right of the line $x-1=0$, be ' A ' square units. If [.] represents the greatest integer function, then value of $[A]$ is equal to \qquad
14. Let the area enclosed by the loop of the curve $2 y^{2}+x^{2}(x-2)=0$ be ' A ' square units, then the least integer which is just greater than ' A ' is equal to
\qquad

Matrix Matching Questions :
 (Questions No. 15-17)

15. Match the following columns (I) and (II).

Column (I)

(a) Area of region enclosed by the curve $\left(y-\sin ^{-1} x\right)^{2}=x-x^{2}$
(b) Area of the finite portion of the figure bounded by $y=2 x^{2} e^{x}$ and $y+x^{3} e^{x}=0$
(c) Area of curvilinear trapezoid bounded by $y=\left(x^{2}+2 x\right) e^{-x}$ and the x-axis
(d) Area of figure bounded by the curves $x=\sqrt{4-y^{2}}$ and $|y|=x$

Column (II)

(p) $\frac{18-2 e^{2}}{e^{2}}$
(q) π
(r) $\pi / 4$
(s) 4
16. Let area (in square units) bounded by function $f(x)$ with the x-axis and the lines $x=0 ; x=1$ be represented by ' A '. Match the following columns for function $f(x)$ and the interval in which area ' A ' lies.

Column (I)

(a) $f(x)=\sqrt{x^{3}+2}$
(b) $f(x)=x^{(\sin x+\cos x)^{2}}$
(c) $f(x)=\frac{1}{\sqrt{4-x^{2}-x^{3}}}$
(d) $f(x)=\frac{1}{\sqrt{x^{6}+1}}$

Column (II)

(p) $\left(\ln 2, \frac{\pi}{2}\right)$
(q) $\left(\frac{\pi}{6}, \frac{\pi}{4 \sqrt{2}}\right)$
(r) $\left(\frac{1}{3}, \frac{1}{2}\right)$
(s) $(\sqrt{2}, \sqrt{3})$
17. Let C_{1}, C_{2} and C_{3} be the graph of functions $y=x^{2}, y=2 x$ and $y=f(x)$ respectively for all $x \in[0,1]$ and $f(0)=0$. If point ' P ' lies on the curve ' $C_{1}{ }^{\prime}$ and the area of region $O P Q$ and $O P R$ are equal as shown in the figure, then match the following columns with reference to the function $y=f(x) \forall x \in[0,1]$.
\{Area $\left.O P Q\left(A_{1}\right)\right\}$
$=\left\{\right.$ Area $\left.O P R\left(A_{2}\right)\right\}$

Column (I)

(a) Value of global minima for $y=f(x)$.
(b) Area (in square units) bounded by $y=f(x)$ and $y=|f(x)|$
(c) If $g(x)=\min \{f(t): 0 \leq t \leq x\} ; 0 \leq x \leq 1$, then area bounded by $g(x)$ with x-axis and the line $x=1$ is equal to :
(d) Area (in square units) bounded by $y=f(x)$ and $y=\sqrt{x-x^{2}}$ is :

Column (II)

(p) $1 / 6$
(q) $\frac{3 \pi+2}{24}$
(r) $-4 / 27$
(s) $8 / 81$

ANSWERS

1. (a)
2. (b)
3. (b)
4. (b)
5. (b)
6. (b)
7. (c)
8. (a)
9. (d)
10. (c)
11. (a)
12. (c)
13. (a)
14. (b)
15. (c)
16. (b)
17. (c)
18. (c)
19. (b)
20. (b)
21. (a , b , d)
22. (a, b, d)
23. (b, c)
24. (b, c , d)
25. (a , b , d)
26. (a)
27. (b)
28. (a)
29. (d)
30. (d)

TANSWERS

Exercise No. (2)

1. (b)
2. (a)
3. (b)
4. (a)
5. (b)
6. (d)
7. (b)
8. (c)
9. (b)
10. (8)
11. (1)
12. (9)
13. (a) $\rightarrow r$
(b) $\rightarrow p$
(c) $\rightarrow \mathrm{s}$
(d) \rightarrow q
14. (a) $\rightarrow s$
(b) $\rightarrow r$
(c) $\rightarrow q$
(d) $\rightarrow \mathrm{p}$
15. (1)
16. (a) $\rightarrow r$
(b) $\rightarrow p$
(c) $\rightarrow \mathrm{s}$
(d) \rightarrow q

Exercise No. (1)

Multiple choice questions with ONE correct answer :

(Questions No. 1-15)

1. If $y_{1}(x)$ and $y_{2}(x)$ are the two solutions of $\frac{d y}{d x}+f(x) y=r(x)$, then $y_{1}(x)+y_{2}(x)$ is solution of:
(a) $\frac{d y}{d x}+f(x) y=0$
(b) $\frac{d y}{d x}+2 f(x) y=r(x)$
(c) $\frac{d y}{d x}+f(x) y=2 r(x)$
(d) $\frac{d y}{d x}+2 f(x) y=2 r(x)$
2. General solution of $\frac{d y}{d x}=y-\ln x+\frac{1}{x}$ is given by: (c ' is independent arbitrary constant)
(a) $y=x \ln x+c$.
(b) $y=e^{x} \ln x+c$.
(c) $y=\ln x+c e^{x}$.
(d) $y=x^{2} \ln x+c$.
3. The equation of curve which is passing through $(1,1)$ and having differential equation $y^{\prime}+\frac{y}{x}=y^{3}$ is given by :
(a) $2 x^{2} y^{2}-x y^{2}=1$
(b) $2 x y^{2}+x^{2} y^{2}=3$
(c) $2 x^{2} y^{2}+x y^{2}=3$
(d) $2 x y^{2}-x^{2} y^{2}=1$
4. If solution of differential equation $\sin \left(\frac{d y}{d x}\right)+x \frac{d y}{d x}=y$ satisfy $y(-1)=0$, then non-zero value of $y(1)$ is equal to :
(a) -1
(b) π
(c) $-\pi$
(d) 1
5. If the length of x-intercept of tangent to the curve $y=f(x)$ is twice the length of y-intercept and $f(1)=1$, then equation of curve is given by :
(a) $2 x+y=3$
(b) $x+2 y=3$
(c) $2 y=x+\sqrt{x}$
(d) $2 y=3 \sqrt{x}-x$
6. Let $y=(a \sin x+(b+c) \cos x) e^{x+d}$, where a, b, c, d are parameters, be the general solution of a differential equation, then order of differential equation is given by :
(a) 1
(b) 2
(c) 3
(d) 4
7. If $x d y=y(d x+y d y), y(1)=1$ and $y(x)<0$, then $y(-3)$ is equal to :
(a) 3
(b) -1
(c) -2
(d) -3
8. If a curve passes through $(1,1)$ and tangent at any point ' P ' on it cuts the axes at ' A ' and ' B ', where point ' P ' bisects the segment $A B$, then curve is given by:
(a) $x y^{2}=1$
(b) $x^{2} y=1$
(c) $x^{2}+y^{2}=2$
(d) $x y=1$
9. The degree of differential equation $y=x+1+\frac{d y}{d x}+\frac{1}{2!}\left(\frac{d y}{d x}\right)^{2}+\frac{1}{3!}\left(\frac{d y}{d x}\right)^{3}+\ldots . .+\infty$, is :
(a) undefined
(b) 1
(c) ∞
(d) n !
10. A right circular cone with radius 10 m and height 20 m contains alcohol which evaporate at a rate proportional to its surface area in contact with air. If initially the cone is completely filled and the proportionality constant is ' λ ', then the time in which the cone gets empty is equal to :
(a) $\frac{10}{\lambda}$
(b) $\frac{20}{\lambda}$
(c) $\frac{30}{\lambda}$
(d) $\frac{5}{\lambda}$
11. Solution of differential equation $2 y \sin x \frac{d y}{d x}=\sin 2 x-y^{2} \cos x$, satisfying $y\left(\frac{\pi}{2}\right)=1$ is given by :
(a) $y^{2}=\sin x$
(b) $y=\sin ^{2} x$
(c) $y^{2}=\cos x+1$
(d) $y^{2} \sin x=4 \cos ^{2} x$
12. For differential equation $\left(\frac{d y}{d x}\right)^{2}-x\left(\frac{d y}{d x}\right)+y=0$, the solution can be given by :
(a) $y=2+x$
(b) $y=2 x$
(c) $y=2 x-4$
(d) $y=2 x^{2}-4$

Differential Equations

13. Let ' c ' be independent arbitrary constant, then orthogonal trajectories of the family of curves represented by $2 y^{2}+x^{2}=y+c$ is given by :
(a) $x^{2}=k(4 y-1)$
(b) $x^{2}=k\left(4 y^{2}+1\right)$
(c) $x=k\left(4 y^{2}-1\right)$
(d) $x=k(4 y+1)$
14. For differential equation $\left(1-e^{x}\right) \sec ^{2} y d y+3 e^{x} \tan y d x=0$, if $y(\ln 2)=\frac{\pi}{4}$, then $y(\ln 3)$ is equal to :
(a) $\frac{\pi}{12}$
(b) $\frac{\pi}{8}$
(c) $\frac{\pi}{4}$
(d) none of these
15. Order of differential equation of the family of ellipse having major axis parallel to the y-axis is equal to :
(a) 2
(b) 3
(c) 4
(d) 5

Multiple choice questions with MORE than ONE correct answer : (Questions No. 16-20)

16. A tangent drawn to curve $y=f(x)$ at $P(x, y)$ meet the x-axis and y-axis at A and B respectively such that $B P: A P=3: 1$, and $f(1)=1$, then
(a) equation of curve is $x \frac{d y}{d x}-3 y=0$
(b) curve passes through $\left(\frac{1}{2}, 8\right)$
(c) normal at $(1,1)$ is $x+3 y=4$
(d) equation of curve is $x \frac{d y}{d x}+3 y=0$
17. Let a solution $y=y(x)$ of the differential equation $x \sqrt{x^{2}-1} d y-y \sqrt{y^{2}-1} d x=0$ satisfy $y(2)=\frac{2}{\sqrt{3}}$, then :
(a) $y(x)=\sec \left(\sec ^{-1}(x)-\frac{\pi}{6}\right)$
(b) $\frac{1}{y}=\frac{2 \sqrt{3}}{x}+\frac{1}{2} \sqrt{1+\frac{1}{x^{2}}}$
(c) $y(x)=\sec \left(\sin ^{-1}(x)+\frac{\pi}{6}\right)$
(d) $\frac{1}{y}=\frac{\sqrt{3}}{2 x}+\frac{1}{2} \sqrt{1-\frac{1}{x^{2}}}$
18. Let y_{1} and y_{2} be two different solutions of the differential equation $\frac{d y}{d x}+P(x) y=Q(x)$, where $P(x)$ and $Q(x)$ are functions of x, then:
(a) $y=y_{1}+k\left(y_{2}-y_{1}\right)$ is the gereral solution of given differential equation, (where k is parameter).
(b) If $\alpha y_{1}+\beta y_{2}$ is solution of given differential equation, then $\alpha+\beta=1$.
(c) If $\alpha y_{1}+\beta y_{2}$ is solution of given differential equation, then $\alpha+\beta=2$.
(d) If y_{3} is the solution of given differential equation different from y_{1} and y_{2}, then $\frac{y_{2}-y_{1}}{y_{3}-y_{1}}$ is constant.
19. Let $y=f(x)$ be a strictly increasing curve for which the length of sub-normal is twice the square of the ordinate at any point $P(x, y)$ on the curve, where $f(0)=1$, then
(a) $f^{\prime \prime}(0)=4$
(b) normal to the curve at $(0,1)$ is $2 y+x=2$
(c) $f^{\prime \prime \prime}(0)=4$
(d) curve passes through the point $(\ln 2,4)$
20. A curve passing through the point $(2,2)$ has the property that the perpendicular distance of the origin from the normal at any point P of the curve is equal to distance of P from the x-axis, then
(a) curve may be represented by a line.
(b) curve may be represented by a parabola.
(c) curve may be represented by a circle.
(d) curve may be represented by an ellipse.

Assertion Reasoning questions :
 (Questions No. 21-25)

Following questions are assertion and reasoning type questions. Each of these questions contains two statements, Statement 1 (Assertion) and Statement 2 (Reason). Each of these questions has four alternative answers, only one of them is the correct answer. Select the correct answer from the given options :
(a) Both Statement 1 and Statement 2 are true and Statement 2 is the correct explanation of Statement 1.
(b) Both Statement 1 and Statement 2 are true but Statement 2 is not the correct explanation of Statement 1.
(c) Statement 1 is true but Statement 2 is false.
(d) Statement 1 is false but Statement 2 is true.
21. Consider the differential equation

$$
E_{1}: \frac{d^{3} y}{d x^{3}}+2 \frac{d y}{d x}=\sin \left(\frac{d^{2} y}{d x^{2}}\right)+y
$$

Statement 1 : Order of differential equation E_{1} is 3

because

Statement 2 : Degree of differential equation E_{1} is 1.
22. Let the family of parabolic curves of focal length 2 units and having the axis parallel to the x-axis be represented by ' $C_{P}{ }^{\prime}$.
Statement 1 : Differential equation representing the family of curves ' C_{P} ' is having order and degree as 2 and 1 repectively

because

Statement 2 : Differential equation for ${ }^{\prime} C_{P}$ ' is given by $\frac{d^{2} y}{d x^{2}} \pm \frac{1}{4}\left(\frac{d y}{d x}\right)^{3}=0$.
23. Consider the family of curves ' $C_{1}{ }^{\prime}$ such that any tangent to the curves intersects with the y-axis at that point which is equidistant from the point of tangency and the origin.

Statement 1 : Differential equation representing the family of curves ' C_{1} ' is linear differential equation of first order and first degree

because

Statement 2: ' $C_{1}{ }^{\prime}$ represents the one parameteric family of circles which are passing through the origin.
24. Consider the differential equation
$x^{2} d y+(3-2 x y) d x=0$, where $y(1)=2$. Let the solution of differential equation with given condition be represented by curve $y=f(x)$.

Statement 1: The curve of $y=f(x)$ passes through the point $(-1,0)$

because

Statement 2: $f(x)=x^{4}+\frac{1}{x}$
25. Statement 1 : Differential equation $\left(1-x^{2}\right) \frac{d y}{d x}+x y=2 x$ can represent the family of ellipses with the centre at $(0,2)$ and the axes parallel to the coordinate axes

because

Statement 2 : Each integral curve of the equation $\left(1-x^{2}\right) \frac{d y}{d x}+x y-2 x=0$ have one constant axis whose length is equal to 2 units.

Exercise No. (2)

Comprehension based Multiple choice questions

 with ONE correct answer :
Comprehension passage (1)
 (Questions No. 1-3)

Let any point P on a curve be joined to origin $(0,0)$, then $O P$ is termed as polar radius of P. For curve C_{1} passing through $(2,2)$, the angle of inclination of tangent with x-axis at any of its point is twice the angle of inclination with x-axis formed by polar radius of the point of tangency

1. Which one of the following differential equations satisfy curve C_{1} :
(a) $\left(x^{2}+y^{2}\right) d y-2 x y d x=0$.
(b) $d\left(\frac{x}{y^{2}}\right)+d y=0$.
(c) $d\left(\frac{x^{2}}{y}\right)+d x=0$.
(d) $d\left(\frac{x^{2}}{y}\right)+d y=0$.
2. Equation of curve ' $C_{1}{ }^{\prime}$ is :
(a) $2 x+2 y^{3}-5 y^{2}=0$
(b) $x^{2}+(x-4) y=0$
(c) $x^{2}+(y-2)^{2}=4$
(d) none of these
3. Angle of inclination with x-axis of polar radius of point having x-coordinate as 1 on curve C_{1} can be given by :
(a) 30°
(b) 45°
(c) 60°
(d) 15°

Comprehension passage (2) (Questions No. 4-6)

Consider a drop of water, having the initial mass $M_{0} \mathrm{~g}$ and evaporating at a rate of $m \mathrm{~g} / \mathrm{s}$, falls freely in the air. The resistance force is proportional to the velocity of the drop (the proportionality factor being k). If initially the velocity of the water drop is zero and $k \neq 2 m$, then answer the following questions.
4. If ' g ' is the gravitational acceleration, then the differential equation defining the velocity-time relationship for the drop of water is given by :
(a) $\frac{d v}{d t}+\frac{(k-m) v}{\left(M_{0}-m t\right)}=g$.
(b) $\frac{d v}{d t}+\frac{(k+m) v}{\left(M_{0}-m t\right)}=g$.
(c) $\frac{d v}{d t}-\frac{(k-m) v}{\left(M_{0}+m t\right)}=g$.
(d) none of these.
5. Integrating factor for the differential equation defining the velocity-time relationship for the drop of water is equal to :
(a) $\left(M_{0}-m t\right)^{\frac{m+k}{m}}$
(b) $\left(M_{0}+m t\right)^{\frac{m-k}{m}}$
(c) $\left(M_{0}+m t\right)^{\frac{m+k}{m}}$
(d) $\left(M_{0}-m t\right)^{\frac{m-k}{m}}$
6. Let $V=f(t)$ represents the velocity of drop of water as function of time elapsed from the instant the drop started falling, then $f(t)$ is equal to :
(a) $\frac{g\left(M_{0}-m t\right)}{(2 m-k)}\left[\left(1-\frac{m t}{M_{0}}\right)^{\frac{k-2 m}{m}}+1\right]$
(b) $\frac{g\left(M_{0}+m t\right)}{(2 m-k)}\left[\left(1+\frac{m t}{M_{0}}\right)^{\frac{k-2 m}{m}}-1\right]$
(c) $\frac{g\left(M_{0}-m t\right)}{(2 m-k)}\left[\left(1-\frac{m t}{M_{0}}\right)^{\frac{k-2 m}{m}}-1\right]$
(d) none of these

Comprehension passage (3)
 (Questions No. 7-9)

Let the curve $y=f(x)$ passes through the point $(4,-2)$ and satisfy the differential equation $y\left(x+y^{3}\right) d x-x\left(y^{3}-x\right) d y=0$. If the curve $y=g(x)$ is defined for $x \in R$, where $g(x)=[|\sin x|+|\cos x|]$, [.] represents the greatest integer function, then answer the following questions.
7. Total number of locations of non-differentiability for the function $y=\max \{f(x),-2 x\}$ is/are :
(a) 1
(b) 2
(c) 3
(d) 4
8. Area (in square units) of the region bounded by the curves $y=f(x), y=g(x)$ and $x=0$ is equal to :
(a) $\frac{1}{2}$
(b) $\frac{1}{8}$
(c) $\frac{1}{4}$
(d) $\frac{1}{16}$
9. If [.] represents the greatest integer function, then value of $\int_{-1 / 2}^{1 / 2}[f(x)] d x$ is equal to :
(a) 0
(b) $\frac{1}{2}$
(c) $-\frac{1}{2}$
(d) -1

Questions with Integral Answer :
 (Questions No. 10-14)

10. Let the normal at any point ${ }^{\prime} P^{\prime}$ on the curve ' C_{1} ' meets the x-axis and y-axis at the points ' A ' and ' B^{\prime} respectively such that $\frac{1}{O A}+\frac{1}{O B}=1$, where O is origin. If the curve ' $C_{1}{ }^{\prime}$ pass through the points $(5,4)$ and $(4, \alpha)$, then ' α ' is equal to
11. Let $y=f(x)$ be twice differentiable function such that the equation $k^{2} y-2 k \frac{d y}{d x}+\frac{d^{2} y}{d x^{2}}=0$, provides two equal values of ' k ' for all $x \in R$, and $f(0)=1$, $f^{\prime}(0)=2$, then value of $f(\ln 3)$ is equal to
12. The bottom of a vertical cylinderical vessel with the cross-sectional area $\sqrt{5} \mathrm{~m}^{2}$ is provided with a small circular hole whose area is $0.5 \mathrm{~m}^{2}$. The hole is covered with a diaphram, and the vessel is filled with water to the height of 16 m . At time $t=0$, the diaphram starts to open, the area of the hole being proportional to the time, and the hole opens completely in 4 seconds. If the gravitational acceleration is $g=10 \mathrm{~m} / \mathrm{s}^{2}$ and the velocity of flow through opening is $\sqrt{2 g h}$, where h is height of water, then the height of water in the vessel in 4 seconds , after the experiment began, is equal to \qquad
13. Let a solution $y=y(x)$ of the differential equation $\frac{d y}{d x}=\frac{\cos x \sin y+\tan ^{2} x}{\sin x \cdot \cos y}$ satisfy $y\left(\frac{\pi}{4}\right)=\frac{\pi}{4}$, then value of $y(0)$ is equal to \qquad
14. Let a solution $y=y(x)$ of the differential equation $\frac{d y}{d x}=\frac{2 x y}{x^{2}-2 y-1}$ satisfy $y(1)=1$, then value of $\log _{e}(y(\sqrt{1-2 e}))$ is equal to \qquad

Matrix Matching Questions:
 (Questions No. 15-17)

15. Match the following differential equations in column (I) with their corresponding particular solution in column (II).

Column (I)

(a) The solution of $(2 x y) y^{\prime}=x^{2}+y^{2}$, if the curve $y=f(x)$ passes through $(1,0)$.
(b) The solution of $(2 x y) y^{\prime}=x^{2}+y^{2}+1$, if $y=f(x)$ passes through (1,0).
(c) The solution of $y+x y^{2}-x y^{\prime}=0$, if $y=f(x)$ passes through $(1,2)$.
(d) The solution of $x y^{\prime}+y=x^{2} y^{4}$, if $y=f(x)$ passes through $(1,1)$

Column (II)

(p) $x^{2}-y^{2}=x$
(q) $y=\frac{2 x}{2-x^{2}}$
(r) $x^{2} y^{3}(3-2 x)=1$
(s) $x^{2}-y^{2}=1$
(t) $x^{2}+y^{2}=2$
16. Match the family of curves in column (I) with the corresponding order of the differential equation in column (II).

Column (I)

(a) family of parabolic curves with vertex on the x-axis.
(b) family of circles touching the y-axis.
(c) family of ellipses having major axis parallel to the y-axis.
(d) family of rectangular hyperbolas with centre at origin.

Column (II)

(p) 4
(q) 2
(r) 3
(s) 5

Differential Equations

17. Let ${ }^{\prime} C_{1}{ }^{\prime}$ represents a curve in the first quadrant for which the length of x-intercept of tangent drawn at any point ' P ' on it is three times the x-coordinate of point ' P '. If $y=f(x)$ represents the curve ' C_{1} ' and $f(4)=8$, then match the following columns (I) and (II).

Column (I)

(a) Area (in square units) bounded by $y=f(x)$ with the lines $x-1=0$ and $y-2 x=0$ is equal to :
(b) If [.] represents the greatest integer function, then total number of locations of discontinuity in $[1, \infty)$ for $y=[f(x)]$
(c) If the equation $f(x)+x-k=0$ is having exactly two solutions, then values of ' k ' can be
(d) If the equation $f(x)=|x-\alpha|$ is having at most two solutions, then values of α can be :

Column (II)

(p) 16
(q) 12
(r) 15
(s) 17
(t) 8

[ANSWERS

1. (c)	2. (c)	3. (d)	4. (b)	5. (b)
6. (b)	7. (b)	8. (d)	9. (b)	10. (b)
11. (a)	12. (c)	13. (a)	14. (d)	15. (c)
16. (b, d)	17. (a, d)	18. (a, b, d)	19. (a , b, d)	20. (a , c)
21. (c)	22. (a)	23. (d)	24. (c)	25. (b)

ANSWERS

Exercise No. (2)

1. (d)
2. (c)
3. (d)
4. (a)
5. (d)
6. (c)
7. (c)
8. (b)
9. (c)
10. (5)
11. (9)
12. (9)
13. (a) $\rightarrow p$
14. (a) $\rightarrow r$
15. (0)
16. (1)
(b) $\rightarrow \mathrm{s}$
(c) \rightarrow q
(d) $\rightarrow \mathrm{r}$
(b) $\rightarrow \mathrm{q}$
(c) $\rightarrow \mathrm{p}$
(d) \rightarrow q
17. (a) $\rightarrow s$
(b) $\rightarrow \mathrm{p}$
(c) $\rightarrow \mathrm{p}, \mathrm{r}, \mathrm{s}$
(d) \rightarrow q, t

Multiple choice questions with ONE correct answer : (Questions No. 1-20)

1. If L_{1}, L_{2}, L_{3} are three non-concurrent and nonparallel lines in 2-dimesional plane, then maximum number of points which are equidistant from all the three lines is/are :
(a) 1
(b) 2
(c) 3
(d) 4
2. If circle $x^{2}+y^{2}-2 x-6 y+8=0$ meets the y-axis at ' A ' and ' B ', then circumcentre of $\triangle A B C$, where ' C^{\prime} is the centre of circle, is given by :
(a) $\left(\frac{1}{2}, 3\right)$
(b) $(0,3)$
(c) $\left(1, \frac{1}{2}\right)$
(d) $\left(\frac{1}{2}, \frac{5}{2}\right)$
3. Total number of integral points which don't lie outside the circle $x^{2}+y^{2}-25=0$ are given by :
(a) 60
(b) 80
(c) 81
(d) 120
4. If a moving point $P(x, y)$ satisfy the condition $|x-4|+|y-2|=1$, then locus of ' P ' is:
(a) rectangle
(b) square
(c) rhombus
(d) parallelogram
5. Let the vertices ' A ' and ' D ' of square $A B C D$ lie on positive x-axis and positive y-axis respectively, if the vertex ${ }^{\prime} C^{\prime}$ is the point $(12,17)$, then coordinates of vertex ' B ' is given by:
(a) $(14,16)$
(b) $(15,3)$
(c) $(17,5)$
(d) $(17,12)$
6. In $\triangle A B C$, let the centroid and circumcentre of the triangle be $(3,3)$ and $(6,2)$ respectively, if point ' P ' divides $C D$ internally in the ratio $\frac{\tan A+\tan B}{\tan C}$, where D lies on side $A B$ and $C D$ is perpendicular to $A B$, then co-ordinates of point ' P ' is given by :
(a) $(9,5)$
(b) $(3,-1)$
(c) $(-3,1)$
(d) $(-3,5)$
7. If the points $(1,1),\left(0, \sec ^{2} \theta\right)$ and $\left(\operatorname{cosec}^{2} \theta, 0\right)$ are collinear, then ' θ ' belongs to :
(a) R
(b) $R-\{n \pi\} ; n \in I$
(c) $R-\left\{(2 n+1) \frac{\pi}{2}\right\} ; n \in I$
(d) $R-\left\{\frac{n \pi}{2}\right\} ; n \in I$
8. Let $A(2,-3)$ and $B(-2,1)$ be the vertices of $\triangle A B C$, if the centroid of $\triangle A B C$ moves on the curve $y^{2}-4 x=0$, then locus of vertex ' C^{\prime} is
(a) circle
(b) line
(c) parabola
(d) ellipse
9. Let $\alpha, \beta \in R^{+}$and the side lengths of triangle $A B C$
be $3 \alpha+4 \beta, 4 \alpha+3 \beta$ and $5 \alpha+5 \beta$, then triangle $A B C$ must be :
(a) right-angled
(b) obtuse-angled
(c) acute-angled
(d) equilateral
10. Let a, b, c be in A.P., where $a \neq c$, and p, q, r be in G.P. . If the real points $A(a, p), B(b, q)$ and $C(c, r)$ satisfy the condition $|A B-C A|=B C$, then :
(a) $p=q=r$
(b) $p^{2}=q$
(c) $q^{2}=r$
(d) $r^{2}=p$
11. Let the points ' A ' and ' B ' be $(0,4)$ and $(0,-4)$ respectively, then equation of the locus of moving point $P(x, y)$ such that $|P A-P B|=6$, is given by:
(a) $9 x^{2}+7 y^{2}=63$
(b) $7 x^{2}+9 y^{2}=63$
(c) $9 x^{2}-7 y^{2}=63$
(d) $7 y^{2}-9 x^{2}=63$
12. In $\triangle A B C$, let the equation of side $B C$ be $y-4=0$ and the orthocentre and circumcentre be $(3,5)$ and $(6,7)$ respectively, then area of circumcircle of $\triangle A B C$ is given by :
(a) 16π sq. units
(b) 13π sq. units
(c) 25π sq. units
(d) 20π sq. units
13. In $\triangle A B C$, let the mid points of the sides $A B, B C$ and $C A$ be $P(-1,5), Q(1,3)$ and $R(4,5)$ respectively, then area (in sq. units) of the triangle $A B C$ is given by :
(a) 10
(b) 20
(c) 40
(d) 30

Basics of 2D-Geometry

14. Let co-ordinates of a point $' P$ ' be $(2 \alpha, 1)$ with respect to a rectangular cartesian system, and when the system is rotated through a certain angle about origin in the clockwise sense, the co-ordinates of ' P ' becomes $Q(\alpha+1,1)$ with respect to new system, then :
(a) $\alpha=0$
(b) $\alpha=1$ or $\alpha=-\frac{1}{3}$
(c) $\alpha=-1$ or $\alpha=\frac{1}{3}$
(d) $\alpha=1$ or $\alpha=-1$
15. In $\triangle A B C$, let vertex points ' A ' and ' B ' be $(1,2)$ and $(2,4)$ respectively and vertex ${ }^{\prime} C^{\prime}$ lies on the line $y-2 x-2=0$. If the area of $\triangle A B C$ is 1 square unit, then vertex point ' C ' can be :
(a) $(10,25)$
(b) $(24,100)$
(c) $(100,200)$
(d) $(49,100)$
16. Let α, β, γ be distinct real numbers, where $p \in R^{+}$, and the points $\left(\alpha, 2 p \alpha+p \alpha^{3}\right),\left(\beta, 2 p \beta+p \beta^{3}\right)$, $\left(\gamma, 2 p \gamma+p \gamma^{3}\right)$ are collinear, then :
(a) $\alpha \beta \gamma=1$
(b) $\alpha+\beta+\gamma=\alpha \beta \gamma$
(c) $\alpha+\beta+\gamma=0$
(d) $\alpha+\beta+\gamma+1=0$
17. In triangle $A B C$, if all the vertices are rational points, then which one of the following points is not necessarily a rational point?
(a) Centroid
(b) Circumcentre
(c) Orthocentre
(d) Incentre
18. Let point $P(x, y)$ moves in such a manner so that for all $\alpha \in R, x=\sqrt{3}\left(\frac{1-\alpha^{2}}{1+\alpha^{2}}\right)$ and $y=\frac{2 \alpha}{1+\alpha^{2}}$, then locus of ' P ' is :
(a) circle
(b) ellipse
(c) parabola
(d) hyperbola
19. Let $\alpha \in R$ and vertices of a variable triangle be given by $(5 \cos \alpha, 5 \sin \alpha),(3,4)$ and $(5 \sin \alpha,-5 \cos \alpha)$, then locus of the orthocentre of variable triangle is given by :
(a) $x^{2}+y^{2}+6 x+8 y-25=0$
(b) $x^{2}+y^{2}-6 x+8 y-25=0$
(c) $x^{2}+y^{2}-6 x-8 y-25=0$
(d) $x^{2}+y^{2}+6 x+8 y+25=0$
20. Let the points A, B, C be $(0,8),(0,0)$ and $(4,0)$ respectively, and ' P ' is a moving point such that area of $\triangle P A B$ is four times the area of $\triangle P B C$, then locus of point ' P ' is given by :
(a) $x-2 y=0$
(b) $x^{2}-4 y^{2}=0$
(c) $x^{2}-16 y^{2}=0$
(d) $x-4 y=0$

Multiple choice questions with MORE than ONE

 correct answer : (Questions No. 21-25)21. Let points $P(a \cos \alpha, a \sin \alpha), Q(a \cos \beta, a \sin \beta)$ and $R(a \cos \gamma, a \sin \gamma)$ form an equilateral triangle, then :
(a) $\tan \alpha+\tan \beta+\tan \gamma=0$
(b) $\sin \alpha+\sin \beta+\sin \gamma=0$
(c) $\cos \alpha+\cos \beta+\cos \gamma=0$
(d) $\cos (\alpha-\beta)+\cos (\beta-\gamma)+\cos (\gamma-\alpha)=-3 / 2$
22. Let point $P\left(\alpha, \alpha^{2}\right)$ lies inside the triangle which is having its sides along the lines $2 x+3 y-1=0$, $x+2 y-3=0$ and $6 y-5 x+1=0$. If ' S ' is the exhaustive set for the real values of α, then ' S ' contains:
(a) $\left(-2,-\frac{1}{\pi}\right)$
(b) $\left(\frac{\pi}{6}, \frac{\pi}{4}\right)$
(c) $\{\sqrt{e}\}$
(d) $\left(-\sqrt{2},-\frac{\pi}{3}\right)$
23. Let three line L_{1}, L_{2}, L_{3} intersect each other at integral points A, B and C, then $\triangle A B C$ may be:
(a) right-angled triangle.
(b) equilateral triangle.
(c) isosceles triangle.
(d) scalene triangle.
24. Let ' A ' and ' B ' be two fixed points on $x-y$ plane where $|A B|=a$. If ' P ' is moving point on the plane and
(a) $|P A+P B|=b$, where $b>a$, then locus of P ellipse.
(b) $|P A-P B|=b$, where $b>a$, then locus of P is hyperbola.
(c) $|P A+P B|=b$, where $b=a$, then locus of P is line segment.
(d) $|P A-P B|=b$, where $b=a$, then locus of P is line segment.
25. Let three of the vertices of a parallelogram be $(-3,4),(0,-4)$ and $(5,2)$, then the fourth vertex can be :
(a) $(8,-6)$
(b) $(-8,-2)$
(c) $(-10,-4)$
(d) $(2,10)$

Assertion Reasoning questions :
 (Questions No. 26-30)

Following questions are assertion and reasoning type questions. Each of these questions contains two statements, Statement 1 (Assertion) and Statement 2 (Reason). Each of these questions has four alternative answers, only one of them is the correct answer. Select the correct answer from the given options :
(a) Both Statement 1 and Statement 2 are true and Statement 2 is the correct explanation of Statement 1.
(b) Both Statement 1 and Statement 2 are true but Statement 2 is not the correct explanation of Statement 1.
(c) Statement 1 is true but Statement 2 is false.
(d) Statement 1 is false but Statement 2 is true.
26. Statement 1 : The points $(k, 2-2 k),(1-k, 2 k)$ and $(-4-k, 6-2 k)$ are collinear for all real values of ' k ' because

Statement 2 : Area of triangle formed by three collinear points is always zero.
27. Statement 1 : Let $\alpha \in\left(0, \frac{\pi}{2}\right)$ be fixed angle. If $P=(\cos \theta, \sin \theta)$ and $Q=(\cos (\alpha-\theta), \sin (\alpha-\theta))$, then Q is obtained from P by its reflection in the line through origin with slope $\tan \left(\frac{\alpha}{2}\right)$

because

Statement 2 : mirror image of point (α, β) about the line $y=x$ is given by the point (β, α).
28. Let $O(0,0), P(3,6)$ and $Q(6,0)$ be the vertices of triangle $O P Q$ and point ' R ' lies inside the triangle $O P Q$.
Statement 1 : If the triangles $O P R, P Q R, O Q R$ are of equal area, then co-ordinates of point ' R ' is $(3,2)$

because

Statement 2 : In any isosceles triangle $A B C$, if ' G^{\prime} is the centroid, then triangles $A G B, B G C$ and $C G A$ are always of equal area.
29. Let $A(2, \sqrt{3}), B(1,0), C(3,0)$ be the vertices of triangle $A B C$.
Statement 1 : The ratio of circum-radius to in-radius of
$\triangle A B C$ is $2: 1$

because

Statement 2 : In equilateral triangle the ratio of circumradius to in-radius is always $2: 1$
30. Statement 1 : Quadrilateral formed by $y=|x+2|+|x+1|+|x-1|+|x-2|$ and $y-8=0$ is isosceles trapezium

because

Statement 2 : in isosceles trapezium, the non-parallel sides are always of equal length.

1. (d)	2. (b)	3. (c)	4. (b)	5. (c)
6. (d)	7. (d)	8. (c)	9. (b)	10. (a)
11. (d)	12. (c)	13. (b)	14. (b)	15. (d)
16. (c)	17. (d)	18. (b)	19. (c)	20. (b)
21. (b , c , d)	22. (b , d)	23. (a, c , d)	24. (a , c)	25. (a , b , d)
26. (d)	27. (b)	28. (a)	29. (a)	30. (a)

Straight Lines

Exercise No. (1)

Multiple choice questions with ONE correct answer : (Questions No. 1-20)

1. In $\triangle A B C$, the vertex point A is $(-1,2)$ and $y^{2}-x^{2}=0$ represent the combined equation of the perpendicular bisectors of $A B$ and $A C$, then area of $\triangle A B C$ is given by :
(a) 4 sq. units
(b) 3 sq. units
(c) 12 sq. units
(d) 6 sq. units
2. Let $2 x+3 y=6$ meets the x-axis and y-axis at ' A ' and ' B ' respectively, a variable line $\frac{x}{a}+\frac{y}{b}=1$ meets the x-axis and y-axis at ' P ' and ' Q ' respectively in such a way that lines $B P$ and $A Q$ always meet at right angle at R, then locus of orthocentre of $\triangle A R B$ is:
(a) $x^{2}+y^{2}-3 x-2 y=0$.
(b) $x^{2}+y^{2}=4$.
(c) $x^{2}+y^{2}+3 x-2 y=0$.
(d) $x^{2}+y^{2}-3 x+2 y=0$.
3. Let ' P ' be a point on the line $y+2 x=1$ and Q, R be two points on the line $3 y+6 x=6$ such that triangle $P Q R$ is an equilateral triangle, then length of the side of triangle is :
(a) $\sqrt{\frac{15}{4}}$
(b) $\sqrt{\frac{4}{15}}$
(c) $\frac{5}{\sqrt{15}}$
(d) $\frac{3}{\sqrt{15}}$
4. If line $(y-7)+k(x-4)=0$ cuts $2 x+y+4=0$ and $4 x+2 y-12=0$ at ' P ' and ' Q ' respectively, where $|P Q|=2 \sqrt{5}$, then value of ' k ' is :
(a) $\frac{1}{2}$
(b) $-\frac{1}{2}$
(c) $\frac{1}{\sqrt{3}}$
(d) 2
5. The co-ordinates of point ' P ' on the line $2 x+3 y+1=0$, such that $|P A-P B|$ is maximum, where A is $(2,0)$ and B is $(0,2)$, is
(a) $(7,-5)$
(b) $(4,-3)$
(c) $(10,-7)$
(d) none of these
6. Let a variable line be drawn through $O(0,0)$ to meet the lines $y-x-10=0$ and $y-x-20=0$ at the points A and B respectively. If a point P is taken on variable line such that $O P=\frac{2(O A)(O B)}{(O A)+(O B)}$, then the locus of P is :
(a) $3 y-3 x-40=0$
(b) $3 x+3 y+40=0$
(c) $3 x+3 y-40=0$
(d) $3 x-3 y-40=0$
7. The line $(p+2 q) x+(p-3 q) y=p-q$, for different values of p and q passes through a fixed point which is given by :
(a) $\left(\frac{3}{2}, \frac{5}{2}\right)$
(b) $\left(\frac{2}{5}, \frac{2}{5}\right)$
(c) $\left(\frac{3}{5}, \frac{3}{5}\right)$
(d) $\left(\frac{2}{5}, \frac{3}{5}\right)$
8. If the lines $y=m_{1} x+c_{1}$ and $y=m_{2} x+c_{2}$, where $m_{1}, m_{2} \neq 0$, meet the co-ordinate axes at four concylic points, then value of $m_{1} m_{2}$ is equal to :
(a) 2
(b) -1
(c) 1
(d) -2
9. If line $y=\sqrt{5} x$ meets the lines $x-r=0$, where $r=1,2,3, \ldots \ldots n$, at points A_{r} respectively, then $\sum_{r=1}^{n}\left(O A_{r}\right)^{2}$ is equal to :
(a) $3 n^{2}+3 n$
(b) $2 n^{3}+3 n^{2}+n$
(c) $3 n^{3}+3 n^{2}+n$
(d) $3 n^{3}+3 n^{2}+2$
10. If the point $P\left(a^{2}, a\right)$ lies in region corresponding to the acute angle between lines $2 y=x$ and $4 y=x$, then ' a ' belongs to :
(a) $(2,6)$
(b) $(4,6)$
(c) $(2,4)$
(d) $(4,8)$
11. The locus of the orthocentre of the triangle formed by the lines $(1+p) x-p y+p(1+p)=0$, $(1+q) x-q y+q(1+q)=0$ and $y=0$, where $p \neq q$, is
(a) a hyperbola
(b) a parabola
(c) an ellipse
(d) a straight line

Straight Lines

12. Let triangle $A B C$ be right angled at vertex $B(x, y)$ where vertex A and C are given by $(-4,2)$ and $(-1,-2)$ respectively. If area of $\triangle A B C$ is 6 square units, then number of locations for point ' B ' is/are :
(a) 1
(b) 0
(c) 2
(d) 4
13. If the vertices of a triangle are $A(1,4), B(5,2)$ and $C(3,6)$, then equation of the bisector of the $\angle A B C$ is given by :
(a) $x-y=3$
(b) $y+x=7$
(c) $x+y=2$
(d) $y=x+1$
14. If line $K(y-3)+(x-2)=0$ forms an intercept of length 3 units in between the lines $y+2 x-2=0$ and $y+2 x-5=0$, then value of ' K ' can be :
(a) $\frac{4}{3}$ or 0
(b) only $\frac{4}{3}$
(c) only 0
(d) $\frac{4}{3}$ or ∞
15. If two equal sides $A B$ and $A C$ of an isosceles triangle are given by $x+y-3=0$ and $7 x-y+3=0$ respectively and its third side passes through $(1,-10)$, then equation of line $B C$ can be given by :
(a) $2 x+y-8=0$
(b) $3 x+2 y-17=0$
(c) $3 x+y+7=0$
(d) $x-y-11=0$
16. If a line $L \equiv O$ is drawn through point $P(1,2)$ so that its point of intersection with the line $x+y-4=0$ is at a distance of $\frac{\sqrt{6}}{3}$ units from point P, then angle of inclination of line $L \equiv O$ may be equal to :
(a) $\frac{\pi}{8}$
(b) $\frac{5 \pi}{12}$
(c) $\frac{\pi}{18}$
(d) $\frac{\pi}{6}$
17. Let the point of intersection of the lines $5 x+2 y=9$ and $K x+y=3$ be $P(\alpha, \beta)$. If $\alpha \in I$, then number of possible integral values of ' K ' is/are :
(a) 0
(b) infinite
(c) 4
(d) 8
18. If the straight lines $6 x+3 y-10=0,6 x+K y-4=0$ and $2 x+y-3=0$ are concurrent, then :
(a) $K=3$
(b) $K \in R$
(c) $K=1$
(d) $K \in \phi$
19. Let the rectangle $A B C D$ be formed by joining the points given by $\left(x^{2}-4 x\right)^{2}+\left(y^{2}-3 y\right)^{2}=0$. If a straight line of slope $\frac{1}{2}$ divides the rectangle $A B C D$ into two equal parts, then its equation is given by :
(a) $2 y=x+2$
(b) $2 y=x-1$
(c) $2 y=x+1$
(d) $4 y=2 x+3$
20. Let the line segment $P Q$ be rotated about P by an angle of 60° in the anti-clockwise direction and Q reaches to the new position Q^{\prime}. If the points P and Q are $(3,2)$ and $(4,3)$ respectively, where $Q^{\prime} \equiv(\alpha, \beta)$, then $2 \alpha \beta$ is equal to :
(a) 25
(b) 23
(c) 17
(d) none of these

Multiple choice questions with MORE than ONE

 correct answer : (Questions No. 21-25)21. Let ' α ' and ' β ' be real numbers and the lines $L_{1}=0, L_{2}=0, L_{3}=0$ form a triangle, then the equation $L_{1} L_{2}+\alpha L_{2} L_{3}+\beta L_{3} L_{1}=0$ represents
(a) a pair of straight lines if $\alpha=0$ and $\beta \neq 0$
(b) a pair of straight lines if $\alpha \neq 0$ and $\beta=0$
(c) a circle for all real values of α and β
(d) a circle for unique real values of α and β
22. If three straight lines $5 x+2 y-12=0, x+3 y-5=0$ and $3 x-\lambda y-1=0$ do not form a triangle, then ' λ ' can be :
(a) -9
(b) 5
(c) $\frac{5}{6}$
(d) $-\frac{6}{5}$
23. Let $\alpha, \beta \in R-\{0\}$, then the equation $\left(\alpha x^{2}+\beta y^{2}+\gamma\right)\left(x^{2}-6 x y+8 y^{2}\right)=0$ represents
(a) two straight lines and a circle if $\alpha=\beta$ and γ is of sign opposite to that of β.
(b) four straight lines if $\gamma=0$ and α, β are of opposite sign.
(c) two straight lines and a hyperbola if α and β are of same sign and γ is of opposite sign to that of α.
(d) the 2-dimensional plane if $a=\beta=\gamma$.
24. Let the equation $y^{3}-x^{2} y-2 y^{2}+2 x y=0$ represents three straight lines which form a triangle with vertices A, B and C, then
(a) $\triangle A B C$ is right-angled triangle.
(b) area of $\triangle A B C$ is 2 square units.
(c) circumcentre of $\triangle A B C$ is $(1,0)$.
(d) $\triangle A B C$ is isosceles triangle.
25. Let $p \in R$, then lines $(p-2) x+(2 p-5) y=0$, $(p-1) x+\left(p^{2}-7\right) y-5=0$ and $x+y-1=0$ are :
(a) concurrent for one value of p.
(b) concurrent for no value of p.
(c) parallel for one value of p.
(d) parallel for no value of p.

Assertion Reasoning questions :
 (Questions No. 26-30)

Following questions are assertion and reasoning type questions. Each of these questions contains two statements, Statement 1 (Assertion) and Statement 2 (Reason). Each of these questions has four alternative answers, only one of them is the correct answer. Select the correct answer from the given options:
(a) Both Statement 1 and Statement 2 are true and Statement 2 is the correct explanation of Statement 1.
(b) Both Statement 1 and Statement 2 are true but Statement 2 is not the correct explanation of Statement 1.
(c) Statement 1 is true but Statement 2 is false.
(d) Statement 1 is false but Statement 2 is true.
26. Statement 1 : The straight lines represented by $(y-m x)^{2}-a^{2}\left(1+m^{2}\right)=0$ and $(y-n x)^{2}-a^{2}\left(1+n^{2}\right)=0$ form a rhombus but not a square if $(m n+1)$ is nonzero

because

Statement 2 : All squares are rhombus but all rhombus are not squares.
27. Statement 1 : Let $k \in R^{+}$and the variable line $y+k x-4-9 k=0$ meets the positive axes at points ' A ' and ' B ', then absolute minimum value of $O A+O B$, where ' O^{\prime} ' is origin, is 25 units

because

Statement 2: The minimum area of triangle $A O B$ is 72 square units.
28. Let points $A(0,4), B(-4,0)$ and $C(4,0)$ forms a triangle, where ' D ' is mid-point of $B C$ and ' E ' is the foot of perpendicular from ' D ' on the side $A C$.
Statement 1: If ' M ' is the mid-point of $E D$, then circles which are described with $E M$ and $A B$ as the diameters touch each other externally

because

Statement 2:AM and $B E$ are perpendicular to each other.
29. Statement 1 : Straight lines $m^{2} x+4 y+9=0$, $x+y=1$ and $m x+2 y=3$ are concurrent for exactly one value of ' m '

because

Statement 2 : If $\Delta=\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|$, then $\Delta=0$ is the
necessary and sufficient condition for three lines to be concurrent, where the lines are given by $a_{i} x+b_{i} y+c_{i}=0, i=1,2,3$.
30. If $\triangle A B C$, let sides $A B, B C$ and $C A$ are given by $x=0, y=0$ and $x+\sqrt{3} y-3=0$ respectively. The foot of perpendicular from ' B ' to side $A C$ is ' D '.
Statement 1: The ratio $C D: D A$ is $3: 1$
because
Statement 2 : The ratio $A D: D C$ is $\tan C: \tan A$.

Exercise No. (2)

Comprehension based Multiple choice questions with ONE correct answer :

Comprehension passage (1)
 (Questions No. 1-3)

For any two points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ in the $x-y$ plane $d(A B)=\left|x_{2}-x_{1}\right|+\left|y_{2}-y_{1}\right|$. Let moving point $P(x, y)$, where $x \geq 0$ and $y \geq 0$, satisfy the condition $d(O P)+d(P Q)=9$. If point ' Q ' is $(4,3)$ and ' O ' represents the origin , then answer the following questions.

1. Locus of moving point ' P ' consists of the union of :
(a) two line segments.
(b) one line segment and an infinite ray parallel to y-axis.
(c) one line segment and an infinite ray parallel to x-axis.
(d) three line segments.
2. Area of region enclosed by the locus of moving point ' P ' with the line $x+y=5$ is equal to :
(a) $\frac{11}{2}$ square units
(b) $\frac{15}{2}$ square units
(c) $\frac{7}{2}$ square units
(d) $\frac{21}{2}$ square units
3. If the pair of lines $x y-3 x-4 y+12=0$ form a triangle ' Δ ' with the locus of moving point ' P ', then the circumcentre of ' Δ ' is:
(a) $\left(\frac{9}{2}, 4\right)$
(b) $\left(\frac{9}{2}, \frac{7}{2}\right)$
(c) $\left(\frac{7}{2}, 2\right)$
(d) $\left(\frac{7}{2}, \frac{5}{2}\right)$

Comprehension passage (2)

(Questions No. 4-6)
Let $\theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and $\alpha=2 \cos \theta+\sin \theta+1$, $\beta=\cos \theta+4 \sin \theta+1 \quad$ and $\quad \gamma=2 \sin \theta-3 \cos \theta-1$. If $\alpha y-\beta x+\gamma=0$ represents a family of straight lines ' L ', then answer the following questions.
4. If the family of straight lines $' L$ ' pass through a fixed point ' A ', then point ' A ' lies on the curve of :
(a) $y=\log _{3}(x+5)$
(b) $y=\min \{2|x|, \sin x\}$
(c) $y=\operatorname{sgn}\left(e^{x}\right)$
(d) $y=\frac{2^{x}+2^{-x}}{2}+\left|\frac{2^{x}-2^{-x}}{2}\right|$
5. If a member of the family of straight lines ' L ' with negative slope meets the co-ordinate axes at ' P ' and ' Q ', then minimum area of triangle $P O Q$, where ' O ' is origin, is given by :
(a) 2 square units
(b) 6 square units
(c) 4 square units
(d) 8 square units
6. If $(1+\lambda) y+(1-\lambda) x-(7+3 \lambda)=0$ represents the family of lines ' M ', then straight line which is common member of ' L ' and ' M ' is given by:
(a) $y+2 x=9$
(b) $y-2 x=1$
(c) $y=3 x-1$
(d) $x-2 y+8=0$

Comprehension passage (3)
 (Questions No. 7-9)

Consider straight lines $L_{1}: y-x=0, L_{2}: y+x=0$ and a moving point $P(x, y)$. Let $d\left(P, L_{i}\right)$ represents the distance of ' P ' from the line L_{i}, where $i \in\{1,2\}$. If point ' P ' moves in region ' R ' in such a way so that the inequality $2 \leq d\left(P, L_{1}\right)+d\left(P, L_{2}\right) \leq 4$ is satisfied, then answer the following questions.
7. If $d\left(P, L_{1}\right)=d\left(P, L_{2}\right)$, then locus of moving point ' P ' is given by :
(a) $x^{2}+y^{2}=0$
(b) $x y=0$
(c) $x^{2}-y^{2}=0$
(d) $x^{2}+y^{2}-x y=0$
8. Area (in square units) of region ' R ' is :
(a) 48
(b) 24
(c) 12
(d) 20
9. If the line $x+y=k$ divides the area of region ' R ' in the ratio $1: 3$, then value of ' k ' can be :
(a) 2
(b) $\sqrt{2}$
(c) -2
(d) $-2 \sqrt{2}$

Questions with Integral Answer :
 (Questions No. 10-14)

10. Let $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$ and $C\left(x_{3}, y_{3}\right)$ be the vertices of triangle $A B C$ and the line ' L ' is given by $a x+b x+c=0$. If the centroid of triangle $A B C$ is $(0,0)$ and the algebraic sum of the lengths of the perpendiculars from the vertices of $\triangle A B C$ on the line ' L^{\prime} is 1 , then value of $\left(\frac{a^{2}+b^{2}}{c^{2}}\right)^{1 / 2}$ is equal to
11. In triangle $A B C$, let $x-1=0$ and $x-y-1=0$ be the angular bisectors of the internal angles ' B ' and ' C ' respectively. If vertex ' A ' is $(4,-1)$ and the length of side $B C$ is $P \sqrt{P}$ units, then value of ' P ' is equal to
12. Let $x+y=k^{2}, k \neq 0$, meets the x-axis and y-axis at A and B respectively, and triangle $A P Q$ is inscribed in triangle $O A B$ with right angle at Q, where ' O ' is origin. If P and Q lie on $O B$ and $A B$ respectively, and area of triangle $O A B$ is $\frac{8}{3}$ times the area of triangle $A P Q$, then $\frac{Q A}{Q B}$ is equal to \qquad
13. If from point $P(4,4)$ perpendiculars to the straight lines $3 x+4 y+5=0$ and $y=m x+7$ meet at Q and R respectively and area of triangle $P Q R$ is maximum , then the value of $6 m$ is equal to \qquad
14. In variable triangle $P Q R$, let moving point ' P ' be (h, k) and the fixed points ' Q ' and ' R ' are $(3,0)$ and $(6,0)$ respectively. If $Q P$ and $R P$ meets the y-axis at ' M ' and ' N ' respectively and $Q N$ meets $O P$ at ' T ', then $M T$ passes through a fixed point $(p, 0)$, where ' $|p|^{\prime}$ is equal to
15. Let $L_{1}:(3 \cos \theta) x+(4 \sin \theta) y=12$ and $L_{2}:(4 \sec \theta) x-(3 \operatorname{cosec} \theta) y=7$ be two variable straight lines, where $\theta \in(0,2 \pi)-\left\{\frac{\pi}{2}, \frac{3 \pi}{2}\right\}$. Match the following columns (I) and (II).

Column (I)

(a) Minimum area (in square units) of triangle formed by line ' $L_{1}{ }^{\prime}$ with the co-ordinate axes is :
(b) Maximum area (in square units) of triangle formed by line ' $L_{2}{ }^{\prime}$ with the co-ordinate axes is:
(c) If line ' $L_{1}{ }^{\prime}$ meets the co-ordinate axes at A and B, then minimum length (in units) of $A B$ is :
(d) If ' $L_{1}{ }^{\prime}$ and ' $L_{2}{ }^{\prime}$ meets at point (α, β), then absolute maximum value of $(\alpha+\beta)$ is

Column (II)

(p) $1 \frac{1}{48}$
(q) 5
(r) 7
(s) 12
(t) 10

Straight Lines

16.

$L_{1}: p x+q y+r=0$
Consider the straight lines, $\quad L_{2}: q x+r y+p=0$

$$
L_{3}^{2}: r x+p y+q=0
$$

If $\alpha=p+q+r$ and $\beta=p^{2}+q^{2}+r^{2}-p q-q r-r p$, then match the following columns for the conditions on α, β and the nature of set of lines L_{1}, L_{2} and L_{3}.

Column (I)

(a) $\alpha=0$ and $\beta \neq 0$
(b) $\alpha \neq 0$ and $\beta \neq 0$
(c) $\alpha=0$ and $\beta=0$
(d) $\alpha \neq 0$ and $\beta=0$

Column (II)

(p) L_{1}, L_{2} and L_{3} are concurrent.
(q) L_{1}, L_{2} and L_{3} are identical.
(r) L_{1}, L_{2} and L_{3} form a triangle.
(s) L_{1}, L_{2} and L_{3} represent the complete 2-dimensional $x-y$ plane.
17. Let there exist exactly ' n ' lines which are at a distance of 4 units from point ' A ' and 1 unit from point ' B ', then match the following columns for the values of ' n ' with the points ' A ' and ' B '.

Column (I)

(a) $A \equiv(2,-2)$ and $B \equiv(6,1)$
(b) $A \equiv(-2,5)$ and $B \equiv(3,1)$
(c) $A \equiv(-1,-1)$ and $B \equiv(2,1)$
(d) $A \equiv(5,1)$ and $B \equiv(2,1)$

Column (II)

(p) $n=2$
(q) $n=4$
(r) $n=1$
(s) $n=3$
(t) $n=0$

1. (b)	2. (a)	3. (b)	4. (b)	5. (a)
6. (a)	7. (d)	8. (c)	9. (b)	10. (c)
11. (d)	12. (d)	13. (b)	14. (a)	15. (c)
16. (b)	17. (c)	18. (d)	19. (c)	20. (d)
21. (a , b, d)	22. (a , b , d)	23. (a , b)	24. (a , c , d)	25. (b , c)
26. (b)	27. (b)	28. (a)	29. (c)	30. (a)

ANSWERS

Exercise No. (2)

1. (d)
2. (b)
3. (b)
4. (d)
5. (c)
6. (c)
7. (b)
8. (b)
9. (b)
10. (3)
11. (5)
12. (3)
13. (8)
14. (2)
15. (a) $\rightarrow s$
(b) $\rightarrow \mathrm{p}$
(c) $\rightarrow \mathrm{r}$
(d) \rightarrow q
16. (a) $\rightarrow p$
(b) $\rightarrow r$
(c) $\rightarrow \mathrm{s}$
(d) \rightarrow q
17. (a) $\rightarrow s$
(b) \rightarrow q
(c) $\rightarrow \mathrm{p}$
(d) $\rightarrow \mathrm{r}$

Exercise No. (1)

Multiple choice questions with ONE correct answer :

(Questions No. 1-15)

1. One of the angular bisector of pair of lines
$a(x-1)^{2}+2 h(x-1)(y-2)+b(y-2)^{2}=0$ is $x+2 y-5=0$, then other bisector is :
(a) $y-2 x=0$
(b) $y+2 x=0$
(c) $2 x+y-4=0$
(d) $x-2 y+3=0$
2. If $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ represents a pair of straight lines equidistant from origin , then
(a) $f^{4}+g^{4}=c(b f-a g)$
(b) $f^{4}-g^{4}=c\left(b f^{2}-a g^{2}\right)$
(c) $f^{4}+g^{4}=c\left(b f^{2}+a g^{2}\right)$
(d) none of these
3. If the pair of lines $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ intersects on the y-axis, then
(a) $2 f g h=b g^{2}+c h^{2}$
(b) $b g^{2} \neq c h^{2}$
(c) $a b c=2 f g h$
(d) None of these
4. The lines represented by $3 a x^{2}+5 x y+\left(a^{2}-2\right) y^{2}=0$ are perpendicular to each other for
(a) two values of a.
(b) $\forall a \in R$.
(c) one value of a.
(d) no values of a.
5. If the pair of lines $a x^{2}+2(a+b) x y+b y^{2}=0$ lie along the diameter of a circle and divide the circle into four sectors such that area of one of the sector is thrice the area of another sector, then
(a) $3 a^{2}-2 a b+3 b^{2}=0$
(b) $3 a^{2}-10 a b+3 b^{2}=0$
(c) $3 a^{2}+2 a b+3 b^{2}=0$
(d) $3 a^{2}+10 a b+3 b^{2}=0$
6. The area (in sq. units) of quadrilateral formed by the pair of straight lines $2 x^{2}-3 x y+y^{2}=0$ and $y^{2}-3 x y+2 x^{2}-4 x+6 y-16=0$ is given by :
(a) 8
(b) 16
(c) 32
(d) 20
7. If the lines $y^{2}-5 x y+6 x^{2}=0$ and $2 y+x-4=0$ form a triangle, then its circumcentre is given by :
(a) $\left(\frac{3}{5}, \frac{6}{5}\right)$
(b) $\left(\frac{2}{5}, \frac{4}{5}\right)$
(c) $\left(\frac{2}{7}, \frac{6}{7}\right)$
(d) $(0,0)$
8. The equation of circumcircle of the triangle formed by the pair of lines $7 x^{2}+8 x y-y^{2}=0$ and the line $2 x+y=1$ is given by
(a) $5 x^{2}+5 y^{2}-18 x-12 y=0$
(b) $4 x^{2}+4 y^{2}-17 x-2 y=0$
(c) $2 x^{2}+2 y^{2}-5 x-10 y=0$
(d) none of these
9. If the lines represented by $(1+K) x^{2}-8 x y+y^{2}=0$ and $x^{2}+2 K x y+2 y^{2}=0$ are equally inclined with each other in opposite directions, then value of ' K ' is :
(a) ± 1
(b) ± 4
(c) ± 3
(d) ± 2
10. Two lines represented by the equation $x^{2}-y^{2}-2 x+1=0$ are rotated about the point $(1,0)$, the line making the bigger angle with the positive direction of the x-axis being turned by 45° in the clockwise sense and the other line being turned by 15° in the anti-clockwise sense. The combined equation of the pair of lines in their new positions is
(a) $\sqrt{3} x^{2}-x y+2 \sqrt{3} x-y+\sqrt{3}=0$
(b) $\sqrt{3} x^{2}-x y-2 \sqrt{3} x+y+\sqrt{3}=0$
(c) $\sqrt{3} x^{2}-x y-2 \sqrt{3} x+\sqrt{3}=0$
(d) $\sqrt{3} x^{2}-x y+y+\sqrt{3}=0$
11. If pair of lines $3 x^{2}-2 p x y-3 y^{2}=0$ and $5 x^{2}-2 q x y-5 y^{2}=0$ are such that each pair bisects the angle between the other pair , then $p q$ is equal to :
(a) -1
(b) -5
(c) -20
(d) -15
12. If the pair of angular bisectors of the lines $y^{2}-3 x y+2 x^{2}-4 x+6 y-16=0$ forms a triangle with the line $3 x+4 y=12$, then the orthocentre of triangle is given by :
(a) $(5,8)$
(b) $(12,10)$
(c) $(10,12)$
(d) $(8,5)$
13. If the pair of straight line given by $2 x^{2}-3 x y+y^{2}=0$ is shifted to new origin $(5,6)$ without any rotation, then new pair of straight lines is given by :
(a) $2 x^{2}+y^{2}-3 x y+2 x-3 y+4=0$.
(b) $y^{2}-3 x y+2 x^{2}-2 x-3 y-4=0$.
(c) $y^{2}-3 x y+2 x^{2}-2 x+3 y-4=0$.
(d) $x^{2}+3 x y+2 y^{2}-2 x+3 y-4=0$.
14. If the eqution $2 x^{2}-3 x y+y^{2}-4 x+6 y+32 \sin \theta=0$ represents a pair of straight lines, then possible value of ' θ ' is :
(a) $\frac{2 \pi}{3}$
(b) $\frac{5 \pi}{6}$
(c) $\frac{11 \pi}{6}$
(d) $\frac{5 \pi}{4}$
15. If the straight lines joining the origin to the points of intersection of $x-y=k$ and the curve $5 x^{2}+12 x y-8 y^{2}+8 x-4 y+12=0$ make equal angles with x-axes, then the value of ' k ' can be:
(a) 1
(b) -3
(c) 2
(d) 4

Multiple choice questions with MORE than ONE correct answer : (Questions No. 16-20)

16. Let area of triangle formed by the intersection of a line parallel to x-axis and passing through $P(\alpha, \beta)$ with pair of lines $y^{2}-x^{2}-2 y+2 x=0$ be $4 \alpha^{2}$ square units, then locus of point ' P ' is given by :
(a) $y-2 x=1$
(b) $y-2 x=2$
(c) $y+2 x=3$
(d) $y+2 x=1$
17. Let all the chords of the curve $3 x^{2}-y^{2}-2 x+4 y=0$, which subtend a right angle at the origin , pass through a fixed point ' P ', then ' P ' lie on the curves:
(a) $x^{2}+y+1=0$
(d) $y^{2}=x+2$
(c) $x^{2}+y^{2}=5$
(d) $x y+2=0$
18. Let the equations of the pair of opposite sides of parallelogram be $x^{2}-6 x+8=0$ and $y^{2}-4 y+3=0$, then equations of the diagonal of parallelogram are given by :
(a) $y-x+1=0$
(b) $y=x+2$
(c) $y+x+4=0$
(d) $x+y=5$
19. If $12 x^{2}+k x y+2 y^{2}+11 x-5 y+2=0$ represents a pair of straight lines, then angle between the lines can be given by :
(a) $\tan ^{-1}\left(\frac{31}{25}\right)$
(b) $\tan ^{-1}\left(\frac{1}{7}\right)$
(c) $\tan ^{-1}\left(\frac{29}{28}\right)$
(d) $\tan ^{-1}\left(\frac{4}{9}\right)$
20. If two of the lines represented by the equation $a x^{4}+b x^{3} y+c x^{2} y^{2}+d x y^{3}+a y^{4}=0$ bisect the angles between the other two lines, then
(a) $6 a+5 c=0$
(b) $b+d=0$
(c) $b+2 d=0$
(d) $c+6 a=0$

Assertion Reasoning questions :
 (Questions No. 21-25)

Following questions are assertion and reasoning type questions. Each of these questions contains two statements, Statement 1 (Assertion) and Statement 2 (Reason). Each of these questions has four alternative answers, only one of them is the correct answer. Select the correct answer from the given options :
(a) Both Statement 1 and Statement 2 are true and Statement 2 is the correct explanation of Statement 1.
(b) Both Statement 1 and Statement 2 are true but Statement 2 is not the correct explanation of Statement 1.
(c) Statement 1 is true but Statement 2 is false.
(d) Statement 1 is false but Statement 2 is true.
21. Statement 1 : Orthocentre of triangle formed by the pair of angular bisectors of $2 x^{2}+3 x y+y^{2}-10 x-7 y+12=0$ and the line $3 x+4 y-5=0$ is $(1,2)$.

because

Statement 2 : Angular bisectors are always perpendicular to each other and triangle formed by them with any line is right angled triangle.
22. Statement 1 : If line $3 x+4 y-5=0$ meets the curve $2 x^{2}+3 y^{2}-5=0$ at P and Q, where ' O ' is origin, then $\angle P O Q=60^{\circ}$

because

Statement 2 : The equation $10 x^{2}+15 y^{2}=(3 x+4 y)^{2}$ represents a pair of straight lines which meets at origin and passes through the points P and Q.
23. Statement 1 : Let a pair of mutually perpendicular lines $S=0$ be drawn through the origin which forms an isosceles triangle Δ with the line $2 x+3 y=6$, then area of Δ is 3 square units

because

Statement 2 : Pair of lines $S=0$ is given by $5 x^{2}-24 x y-5 y^{2}=0$
24. Statement 1 : Let the lines L_{1} and L_{2} be the angular bisectors of the pair of lines $a x^{2}+2 h x y+b y^{2}=0$, then the angular bisectors of L_{1} and L_{2} is given by $(a-b)\left(x^{2}-y^{2}\right)+2 h x y=0$

because

Statement 2 : Combined equation of L_{1} and L_{2} is given by $h\left(x^{2}-y^{2}\right)+(b-a) x y=0$.
25. Statement 1 :

If $3 k y^{2}+4 x^{2}+(2 k+6) x y-4 x-(9-k) y-3=0$ represents a pair of parallel lines, then value of ' k ' is 3
because
Statement 2 : The distance between the given pair of lines is $\sqrt{16 / 13}$ units.

1. (a)	2. (b)	3. (a)	4. (a)	5. (c)
6. (b)	7. (c)	8. (d)	9. (d)	10. (b)
11. (d)	12. (c)	13. (c)	14. (c)	15. (c)
16. (a, d)	17. $(\mathrm{a}, \mathrm{c}$, d)	18. (a, d)	19. (b, c)	20. (b, d)
21. (a)	22. (d)	23. (d)	24. (d)	25. (b)

Circles

Exercise No. (1)

Multiple choice questions with ONE correct answer : (Questions No. 1-25)

1. Let C_{1} and C_{2} be two concentric circles, smaller circle C_{1} divides the larger circle C_{2} into two regions of equal area, where radius of C_{1} is 2 units, then length of tangent from any point ' P ' on the circle C_{2} to circle C_{1} is :
(a) 1 unit
(b) $\sqrt{2}$ units
(c) 2 units
(d) 3 units
2. If tangent at any point ' P ' on the circle $x^{2}+y^{2}=9$ cuts the circle $x^{2}+y^{2}=25$ at A and B, then in-radius of $\triangle A O B$, where ' O ' being the origin , is :
(a) $\frac{3}{2}$
(b) $\frac{2}{3}$
(c) 2
(d) $\frac{4}{3}$
3. Let a variable circle touches a fixed straight line and cuts off an intercept of length 4 units on other fixed straight line which is perpendicular to the first line , then locus of the centre of circle is :
(a) hyperbola.
(b) parabola.
(c) straight line.
(d) ellipse.
4. Tangents $P Q$ and $P R$ are drawn to the circle $(x+4)^{2}+y^{2}=1$ from point $P(4,4)$, then circumcentre of $\triangle P Q R$ is :
(a) $(0,1)$
(b) $(0,2)$
(c) $(0,3)$
(d) $\left(\frac{1}{2}, 2\right)$
5. If a circle of radius 3 units is touching the pair of lines $\sqrt{3} y^{2}-4 x y+\sqrt{3} x^{2}=0$ in the $I^{\text {st }}$ quadrant, then length of chord of contact to the circle is :
(a) $\frac{\sqrt{3}+1}{2}$
(b) $\frac{\sqrt{3}+1}{\sqrt{2}}$
(c) $3\left(\frac{\sqrt{3}+1}{\sqrt{2}}\right)$
(d) $\frac{3}{2}(\sqrt{3}+1)$
6. From any point ' P ' on the circle $x^{2}+y^{2}=9$, tangents to the circle $x^{2}+y^{2}=1$ are drawn which meets $x^{2}+y^{2}=9$ at ' A ' and ' B^{\prime}, locus of the point of intersection of tangents at ' A ' and ' B ' to the circle $x^{2}+y^{2}=9$ is :
(a) $x^{2}+y^{2}=\left(\frac{27}{7}\right)^{2}$
(b) $x^{2}-y^{2}=\left(\frac{25}{6}\right)^{2}$
(c) $y^{2}-x^{2}=\left(\frac{27}{7}\right)^{2}$
(d) $x^{2}+y^{2}=\left(\frac{25}{6}\right)^{2}$
7. If common tangent is not possible for the curves $x^{2}+y^{2}=r^{2}$ and $16 x^{2}+4 y^{2}=64$, then :
(a) $r \in[2,4]$
(b) $r \in R-(2,4)$
(c) $r \in(4, \infty)$
(d) $r \in(2, \infty)$
8. If $y=m x+2 \sqrt{1+m^{2}}$, where $m \neq 0$, is common tangent to the circles $x^{2}+y^{2}=4$ and $x^{2}+y^{2}-4 a x+4 a^{2}-4=0, a>2$, then value of ' m ' is :
(a) $\frac{2}{\sqrt{a^{2}-4}}$
(b) $\frac{-2}{\sqrt{a^{2}-4}}$
(c) $\pm \frac{2}{\sqrt{a^{2}-4}}$
(d) $\frac{-4}{\sqrt{a^{2}-4}}$
9. If the line $3 x-4 y=33$ cuts the circle $x^{2}+y^{2}+2 x-2 y-98=0$ at ' A ' and ' B ', where ' C ' is the centre of the circle, then in-radius of $\triangle A B C$ is :
(a) 5 units
(b) 3 units
(c) 1 unit
(d) 8 units
10. If ' C_{2} ' is director circle of circle ' C_{1} ', then angle between the pairs of tangents drawn from any point on the director circle of ' $C_{2}{ }^{\prime}$ to ' $C_{1}{ }^{\prime}$ is :
(a) $\frac{\pi}{4}$
(b) $\frac{\pi}{6}$
(c) $\frac{\pi}{3}$
(d) $\frac{\pi}{8}$
11. If a member of family of lines $a x+b y+c=0$, where $a+b+c=0$, intersects the family of circles $x^{2}+y^{2}-4 x-4 y+\lambda=0$ such that the length of chord generated is maximum, then equation of line is :
(a) $x+y=0$
(b) $y-x+1=0$
(c) $y-x=0$
(d) $x-2 y=0$
12. The centre of smallest circle which cuts the circles $x^{2}+y^{2}=1$ and $x^{2}+y^{2}+8 x+8 y-33=0$ orthogonally is :
(a) $(2,2 \sqrt{2})$
(b) $(2 \sqrt{2}, \sqrt{3})$
(c) $(2,2)$
(d) $(\sqrt{3}, 2)$
13. Largest circle touching the curve $x y=1$ at $(1,1)$ and the co-ordinate axes is given by :
(a) $x^{2}+y^{2}+(4+\sqrt{2}) x-(4+\sqrt{2}) y=0$.
(b) $x^{2}+y^{2}-(4+\sqrt{2}) x-(4+\sqrt{2}) y-2 \sqrt{2}=0$.
(c) $x^{2}+y^{2}+\sqrt{2} x-(4+\sqrt{2}) y+6+2 \sqrt{2}=0$.
(d) none of these.
14. If a circle of diameter 6 units is inscribed in quadrilateral $A B C D$, where $C D=3 A B, \angle A=\frac{\pi}{2}$ and $A B$ is parallel to $C D$, then area of quadrilateral $A B C D$ is :
(a) 40 sq units.
(b) 48 sq units.
(c) 18 sq units.
(d) 50 sq units.
15. Let C_{1}, C_{2} and C_{3} be three circles with sides of triangle $A B C$ as their diameter. If the radical axis of the circles C_{1}, C_{2} and C_{3} in pairs meet at point ' R^{\prime}, then ' R ' is:
(a) incentre of $\triangle A B C$.
(b) circumcentre of $\triangle A B C$.
(c) centroid of $\triangle A B C$.
(d) orthocentre of $\triangle A B C$
16. From point P, if length of tangents to circles $x^{2}+y^{2}=9 ; x^{2}+y^{2}+4 x+6 y-19=0$; and $x^{2}+y^{2}-2 x-2 y-5=0$ are equal, then point ' P ' is :
(a) $(2,-1)$
(b) $(2,-2)$
(c) $(1,1)$
(d) $(1,-2)$
17. Locus of foot of perpendicular from origin to chords of circle $x^{2}+y^{2}-4 x-6 y-3=0$ which subtend 90° at origin is :
(a) $2 x^{2}+2 y^{2}-4 x-6 y-3=0$
(b) $x^{2}+y^{2}+4 x+6 y+3=0$
(c) $2 x^{2}+2 y^{2}+4 x+6 y-3=0$
(d) none of these
18. Locus of the centre of circle which externally touches the circle $x^{2}+y^{2}-6 x-6 y+14=0$ and also touches the y-axis is :
(a) $x^{2}-6 x-10 y+4=0$
(b) $x^{2}-10 x-6 y+5=0$
(c) $y^{2}-6 x-10 y+14=0$
(d) $y^{2}-10 x-6 y+14=0$
19. The centre of circle C_{1} lies on $2 x-2 y+9=0$ and cuts $x^{2}+y^{2}=4$ orthogonally, then C_{1} passes through two fixed points :
(a) $(1,1)$ and $(3,3)$
(b) $\left(-\frac{1}{2}, \frac{1}{2}\right)$ and $(-4,4)$
(c) $(0,0)$ and $(5,5)$
(d) none of these
20. The four points of intersection of lines $(2 x-y+1)(x-2 y+3)=0$ with co-ordinate axes lie on a circle, then centre of circle is :
(a) $\left(\frac{3}{4}, \frac{5}{4}\right)$
(b) $\left(-\frac{7}{4}, \frac{5}{4}\right)$
(c) $(2,3)$
(d) none of these
21. The equation of smallest circle passing through intersection of $x+y=1$ and $x^{2}+y^{2}=9$ is:
(a) $x^{2}+y^{2}+x+y-8=0$
(b) $x^{2}+y^{2}-x-y-8=0$
(c) $x^{2}+y^{2}-x+y-8=0$
(d) none of these
22. Tangents are drawn to circle $x^{2}+y^{2}=12$ at the point where it is met by $x^{2}+y^{2}-5 x+3 y-2=0$; then point of intersection of these tangents is :
(a) $\left(6, \frac{-18}{5}\right)$
(b) $\left(6, \frac{18}{5}\right)$
(c) $\left(\frac{18}{5}, 6\right)$
(d) none of these
23. Tangents drawn from the point $P(1,8)$ to the circle $x^{2}+y^{2}-6 x-4 y-11=0$ touch the circle at the points A and B. The equation of the circumcircle of the triangle $P A B$ is :
(a) $x^{2}+y^{2}+4 x-6 y+19=0$
(b) $x^{2}+y^{2}-4 x-10 y+19=0$
(c) $x^{2}+y^{2}-2 x+6 y-29=0$
(d) $x^{2}+y^{2}-6 x-4 y+19=0$
24. The centre of two circles C_{1} and C_{2} each of unit radius are at a distance of 6 units from each other. Let P be the mid point of the line segment joining the centres of C_{1} and C_{2} and C be a circle touching circles C_{1} and C_{2} externally. If a common tangent to C_{1} and C passing through P is also a common tangent to C_{2} and C, then the radius of the circle C is :
(a) 10
(b) 8
(c) 5
(d) 6
25. Two circles with radii ' a ' and ' b ' touch each other externally such that ' θ ' is the angle between the direct common tangents, $a>b \geq 2$, then angle ' θ ' is equal to :
(a) $\sin ^{-1}\left(\frac{a-b}{a+b}\right)$
(b) $\sin ^{-1}\left(\frac{a+b}{a-b}\right)$
(c) $2 \sin ^{-1}\left(\frac{a+b}{a-b}\right)$
(d) $2 \sin ^{-1}\left(\frac{a-b}{a+b}\right)$

Multiple choice questions with MORE than ONE correct answer : (Questions No. 26-30)

26. Let circles ' $C_{1}{ }^{\prime}$ and ' C_{2} ' be $x^{2}+y^{2}-2 x-2 y=0$ and $x^{2}+y^{2}+6 x-8 y=0$ respectively. If line $y=k x$ intersects the circle C_{1} and C_{2} at point ' A ' and ' B ' respectively (where A and B points are not origin) and ' S^{\prime} ' is the set of real values of ' k ', then ' S ' contains:
(a) $\left(-\frac{3}{4}, \frac{3}{4}\right)$
(b) $\left(\frac{3}{4}, 1\right)$
(c) $\left(0, \frac{1}{2}\right)$
(d) $\left(\frac{1}{2}, 1\right)$
27. Let a circle of unit radius lies in the first quadrant and touches the x-axis and y-axis at ${ }^{\prime} A '^{\prime}$ and $' B '^{\prime}$ respectively. If a variable line through origin meets the circle at points ' P ' and ' Q ', where area of $\triangle P B Q$ is not maximum, then possible values of the slope of variable line can be :
(a) $\sqrt{2}-1$
(b) 1
(c) $\frac{1}{\sqrt{3}}$
(d) $\sqrt{3}$
28. If tangent of slope $-\frac{4}{3}$ to the circle $25 x^{2}+25 y^{2}=144$ in first quadrant meets the co-ordinate axes at ' A ' and ' B^{\prime}, and ' O ' is the origin, then :
(a) Incentre and orthocentre of $\triangle A O B$ are integral points.
(b) Circumcentre and centroid of $\triangle A O B$ are integral points.
(c) Incentre of $\triangle A O B$ is irrational point.
(d) Circumcentre of $\triangle A O B$ is rational point.
29. Let a straight line through the vertex ' A ' of triangle $A B C$ meets the side $B C$ at the point ' D ' and the circumcircle of $\triangle A B C$ at the point ${ }^{\prime} E$ '. If point ' D ' is not the circumcentre of $\triangle A B C$, then :
(a) $\frac{1}{D A}+\frac{1}{D E}>\frac{4}{A E}$
(b) $\frac{1}{D A}+\frac{1}{D E}>\frac{2}{\sqrt{(D B)(D C)}}$
(c) $A E+B C>4 \sqrt{(A D)(D E))}$
(d) $\frac{1}{B D}+\frac{1}{C D}>\frac{4}{B C}$
30. Let T_{1} and T_{2} be two tangents drawn from $(0,3)$ to the circle $C_{1}: x^{2}+(y-1)^{2}=1$. If C_{2} and C_{3} are two circles with centre on y-axis and touching C_{1} externally and having T_{1} and T_{2} as their pair of tangents, then :
(a) $\left(\right.$ radius of $\left.C_{1}\right) \times\left(\right.$ radius of $\left.C_{2}\right)=1$.
(b) distance between the centres of C_{1} and C_{2} is $\frac{16}{3}$ units.
(c) sum of the area of C_{1} and C_{2} is 10π square units.
(d) maximum distance between the boundary of C_{1} and C_{2} is $\frac{26}{3}$ units.

Assertion Reasoning questions :

(Questions No. 31-40)

Following questions are assertion and reasoning type questions. Each of these questions contains two statements, Statement 1 (Assertion) and Statement 2 (Reason). Each of these questions has four alternative answers, only one of them is the correct answer. Select the correct answer from the given options :
(a) Both Statement 1 and Statement 2 are true and Statement 2 is the correct explanation of Statement 1.
(b) Both Statement 1 and Statement 2 are true but Statement 2 is not the correct explanation of Statement 1.
(c) Statement 1 is true but Statement 2 is false.
(d) Statement 1 is false but Statement 2 is true.
31. Statement 1 : Maximum number of lines which are at a distance of 3 units for point ' P ' and 2 units from point ' Q ' are four, where ' P ' and ' Q ' points are $(-2,1)$ and $(2,4)$ respectively

because

Statement 2 : Two mutually external circles can have at the most four common tangents.
32. Statement 1 : Let circles ' $C_{1}{ }^{\prime}$ and ' $C_{2}{ }^{\prime}$ intersect at two different points P and Q and a line passing through P meet the circles C_{1} and C_{2} at A and B respectively. If Y is the mid point of $A B$ and $Q Y$ meets the circle C_{1} and C_{2} at X and Z respectively, then Y divides $X Z$ in the ratio 1:1

because

Statement 2 : if a line through point M intersects a given circle at L and N, then $(M L)(M N)$ is always constant.
33. Statement 1 : Let point $P(\alpha, \beta)$ be termed as "odd point" when both α and β are odd integers. Number of "odd points" lying on the circle $x^{2}+y^{2}=2012$ is zero

because

Statement 2 : if both α and β are odd, then $\alpha^{2}+\beta^{2}$ is of form $8 k+2$, where $k \in W$.
34. Let line $L_{1}=0$ is tangential to a given circle C_{1} at fixed point ' P '. If a variable circle touches both the circle C_{1} and line L_{1}, then
Statement 1 : Locus of the centre of the variable circle is parabolic

because

Statement 2 : The locus of the centre of the variable circle is straight line if the points of contact with C_{1} and L_{1} are same.
35. Let circle ' C_{1} ' be $x^{2}+y^{2}-4 x-6 y+12=0$ and a line through point $P(-1,4)$ meets the circle ' C_{1}^{\prime} at two distinct points ' A ' and ' B '
Statement 1 : Sum of the distances $P A$ and $P B$ is not less than 6

because

Statement 2: $a+b \geq 2 \sqrt{a b}$ for $a, b \in R^{+}$.
36. Statement 1 : Let three circles with centres at A, B and C touch each other externally and ' P ' is the point of intersection of tangents to these circles at their points of contact, then ' P ' is the incentre of triangle $A B C$

because

Statement 2: $\triangle A B C$ is always an equilateral triangle in the given set of three circles.
37. Statement 1 : From an external point ' P ' if tangents $P A$ and $P B$ are drawn to a circle with centre at C, then circumcentre of $\triangle P A B$ is the mid-point of line segment CP

because

Statement 2 : The image of orthocentre of $\triangle P A B$ about the line mirror ' $A B^{\prime}$ ' lies on the circum-circle of triangle $P A B$.
38. Let ' $C_{1}{ }^{\prime}$ and ' C_{2} ' be two fixed concentric circles with C_{2} lying inside C_{1}. A variable circle ' C ' lying inside ${ }^{\prime} C_{1}{ }^{\prime}$ touches ' $C_{1}{ }^{\prime}$ internally and ' $C_{2}{ }^{\prime}$ externally.
Statement 1 : Locus of the centre of variable circle ' C^{\prime} is circular in nature

because

Statement 2 : Locus of the centre of variable circle ' C^{\prime} is elliptical in nature if ' C_{1}^{\prime} and ' C_{2}^{\prime} ' are not concentric.
39. Let A, B, C and D be four distinct points in the $x-y$ plane such that the ratio of the distance of any one of them from the point $(1,0)$ to the distance from the point $(-1,0)$ is equal to $\frac{1}{3}$.
Statement 1: Quadrilateral formed by the points A, B, C and D is concyclic

because

Statement 2 : There exists a unique circle which passes through any three given points.
40. Statement 1 : Let a variable circle with centre ' C^{\prime} always touches the x-axis and it touches the circle $x^{2}+y^{2}=1$ externally, then locus of the centre ' C^{\prime} is given by $x^{2}-2 y-1=0$, where $|x| \nless 1$

because

Statement 2 : Parabolic curve is the locus of a point which is always equidistant from a fixed point ' F ' and a fixed line ' D ', where ' F ' doesn't lie on the line ' D '.

Comprehension based Multiple choice questions

 with ONE correct answer :
Comprehension passage (1)

(Questions No. 1-3)
A circle C of radius 1 is inscribed in an equilateral triangle $P Q R$. The points of contact of C with the sides $P Q, Q R, R P$ are D, E, F respectively. The line $P Q$ is given by the equation $\sqrt{3} x+y-6=0$ and the point D is $\left(\frac{3 \sqrt{3}}{2}, \frac{3}{2}\right)$. If the origin and the centre of C are on the same side of the line $P C$, then answer the following questions..

1. The equation of circle C is :
(a) $(x-2 \sqrt{3})^{2}+(y-1)^{2}=1$
(b) $(x-2 \sqrt{3})^{2}+\left(y+\frac{1}{2}\right)^{2}=1$
(c) $(x-\sqrt{3})^{2}+(y+1)^{2}=1$
(d) $(x-\sqrt{3})^{2}+(y-1)^{2}=1$
2. Points E and F are given by :
(a) $\left(\frac{\sqrt{3}}{2}, \frac{3}{2}\right),(\sqrt{3}, 0)$
(b) $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right),(\sqrt{3}, 0)$
(c) $\left(\frac{\sqrt{3}}{2}, \frac{3}{2}\right),\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$
(d) $\left(\frac{3}{2}, \frac{\sqrt{3}}{2}\right),\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$
3. Equations of the sides $Q R, R P$ are :
(a) $y=\frac{2}{\sqrt{3}} x+1, y=-\frac{2}{\sqrt{3}} x-1$
(b) $y=\frac{1}{\sqrt{3}} x, y=0$
(c) $y=\frac{\sqrt{3}}{2} x+1, y=-\frac{\sqrt{3}}{2} x-1$
(d) $y=\sqrt{3} x, y=0$

Comprehension passage (2)
 (Questions No. 4-6)

Let tangents $P A$ and $P B$ be drawn to the circle $(x+3)^{2}+(y-4)^{2}=1$ from a variable point ' P ' on the
curve $y=\sin x$. If the locus of circumcentre of triangle $P A B$ is given by the curve $y=f(x)$, then answer the following questions :
4. If set $S=\{y: y=[f(x)], x \in R\}$, where [.] represents the greatest integer function, then total number of elements in set ' S ' is / are :
(a) 3
(b) 1
(c) 2
(d) 4
5. Let $g(x)=\lambda^{2}|f(x)-2|+(6 \lambda-8)\left|f\left(\frac{\pi}{4}+x\right)-2\right|$, where the fundamental period of $g(x)$ is $\frac{\pi}{4}$ then the values of λ can be :
(a) 2 or 3
(b) 2 or 6
(c) 2 or 4
(d) 3 or 6
6. Total number of integral solutions for the equation $f(x)-e^{-|x|}=0$ is /are :
(a) 1
(b) 0
(c) 2
(d) 4

Comprehension passage (3)

(Questions No. 7-9)
Let circle ' C ' of unit radius touches the y-axis at point A and centre Q of the circle lies in the $\mathrm{I}^{n d}$ quadrant. The tangent from origin $' O$ ' to the circle touches it at ' T ' and point ' P ' lies on it such that $\triangle O A P$ is right angled at ' A '. If the semi-perimeter of $\triangle O A P$ is 4 units, then answer the following questions.
7. Length of $Q P$ is equal to :
(a) $\frac{3}{4}$
(b) $\frac{3}{2}$
(c) $\frac{4}{3}$
(d) $\frac{5}{3}$
8. Equation of circle ${ }^{\prime} C^{\prime}$ is :
(a) $(x+1)^{2}+(y-3)^{2}=1$
(b) $(x+1)^{2}+\left(y-\frac{5}{2}\right)^{2}=1$
(c) $(x+1)^{2}+(y-2)^{2}=1$
(d) $(x+1)^{2}+(y-4)^{2}=1$
9. If circle $x^{2}+(y-2)^{2}=2$ meets the circle ' C^{\prime} at ' M ' and ' N ', then length of $M N$ is equal to :
(a) 2
(b) 1
(c) $\frac{3}{2}$
(d) $\frac{3}{4}$

Circles

Comprehension passage (4) (Questions No. 10-12)

Let line ' L ' meets the circle $x^{2}+y^{2}=25$ at the points ' A ' and ' B ', where $P A=P B=8$ and point ' P ' is $(3,4)$. If the family of circles passing through A and B is represented by C_{F}, then answer the following questions :
10. If a member of C_{F} passes through the point $(-4,-4)$, then its equation is given by :
(a) $x^{2}+y^{2}-2 x-4 y-56=0$
(b) $3 x^{2}+3 y^{2}+3 x+4 y-68=0$
(c) $2 x^{2}+2 y^{2}+5 x-6 y-68=0$
(d) $x^{2}+y^{2}+3 x-4 y-12=0$
11. If a member of C_{F} is having minimum area, then its radius is given by :
(a) 5
(b) $\frac{28}{5}$
(c) $\frac{24}{5}$
(d) $\frac{27}{4}$
12. If tangents drawn at A and B to the member of C_{F} having centre at ' P ' meets at point Q, then coordinates of ' Q ' is given by:
(a) $(-4,-3)$.
(b) $(-3,-4)$.
(c) $(-5,-2)$.
(d) $(-3,3)$.

Questions with Integral Answer :

 (Questions No. 13-17)13. Let ' C_{F} ' represents the family of circles passing through the points $A(6,5)$ and $B(3,7)$. If the common chords of circle $x^{2}+y^{2}-4 x-6 y-3=0$ and ' $C_{F}{ }^{\prime}$ passes through a fixed point $P(\alpha, \beta)$, then value of $\sqrt{\alpha+3 \beta}$ is equal to \qquad
14. Let tangents $P A$ and $P B$ be drawn from point $P(6,8)$ to the circle $x^{2}+y^{2}=r^{2}$. If area of triangle $P A B$ is maximum, then radius ' r ' is equal to \qquad ...
15. Let three circles C_{1}, C_{2} and C_{3} with radii 3,4 and 5 respectively touch each other externally at point P_{1}, P_{2} and P_{3}. If circle ' C^{\prime} is the circumcircle of $\Delta P_{1} P_{2} P_{3}$, then value of $\left\{\frac{P_{1} P_{2}}{2 \sin P_{3}}\right\}^{2}$ is equal to \qquad
16. Let circle ${ }^{\prime} C^{\prime}$ passes through the point $P(1,-1)$ and is orthogonal to the circle which is having $(-2,3)$ and $(0,-1)$ as the diametric ends. If tangent at ' P ' to the circle ' C ' is $2 x+3 y+1=0$ and the length of x-intercept for is ' l ' units, then value of $[l]$, where [.] represents the greatest integer function, is equal to
17. Let square $A B C D$ be inscribed in the circle $2 x^{2}+2 y^{2}-12 x-8 y+25=0$ and the variable points P, Q, R and S lie on the sides $A B, B C, C D$ and $D A$ respectively. If α, β, γ and δ denote the length of sides of quadrilateral $P Q R S$, then minimum value of $\alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2}$ is equal to \qquad

Matrix Matching Questions :
(Questions No. 18-21)
18. Let curves C_{1} and C_{2} be the circumscribing and inscribing circles respectively for the quadrilateral $A B C D$, where the vertex points A, B, C and D in order are given by $(2,1),(3,1),(3,2)$ and $(2,2)$. Match the following columns (I) and (II).

Column (I)

(a) Area (in square units) of ' $C_{2}{ }^{\prime}$ is
(b) Area (in square units) of the director circle of ' $C_{2}{ }^{\prime}$ is
(c) Area (in square units) of ${ }^{\prime} C_{1}{ }^{\prime}$ is
(d) Area (in square units) of incircle of $\triangle A B C$ is

Column (II)
(p) $\frac{\pi}{4}(3+2 \sqrt{2})$
(q) $\frac{\pi}{4}$
(r) $\frac{\pi}{2}$
(s) $\frac{\pi}{2}(3-2 \sqrt{2})$
19. Match the following columns (I) and (II).

Column (I)

(a) Family of circles touching $x y=4$ at point $(2,2)$
(b) Family of circles touching $x^{2}+y^{2}=5$ at $(2,1)$
(c) Family of circles touching $2 x+y-5=0$ at $(2,1)$
(d) Family of circles touching $x^{2}+y^{2}+2 x+2 y-16=0$ at $(2,2)$

Column (II)

(p) $x^{2}+y^{2}-4 x-2 y+5+\lambda\left(x^{2}+y^{2}-5\right)=0$ $\lambda \neq-1$
(q) $(x-2)^{2}+(y-2)^{2}+\lambda(x+y-4)=0 . \lambda \in R$.
(r) $(x-2)^{2}+(y-1)^{2}+\lambda(2 x+y-5)=0 . \lambda \in R$
(s) $(x-2)^{2}+(y-2)^{2}+\lambda\left((x+1)^{2}+(y+1)^{2}-18\right)=0$ $\lambda \neq-1$
20. If ' a ' and ' b ' satisfy the condition $12 a^{2}-4 b^{2}+8 a+1=0$ and the line $a x+b y+1=0$ is tangential to a fixed circle ' C^{\prime}, then match the following columns (I) and (II).

Column (I)

(a) If $x^{2}+y^{2}+2 x+4 y-k=0$ intersects circle ' C^{\prime} orthogonally, then value of k is
(b) If $x^{2}+y^{2}=12$ intersects the circle ' C^{\prime} at P and Q, then length $P Q$ is
(c) If $O A$ and $O B$ are tangents to circle ' C^{\prime}, where ' O ' is origin, and ' r ' is in-radius of $\triangle O A B$, then value of $(20)^{r}$ is
(d) If line $(y+2)=m(x+1)$ meets the circle ' C ' at ' M ' and ' N ' for some real value of m, then length $M N$ can be :

Column (II)

(p) $\sqrt{12}$
(q) 3
(r) 20
(s) $\sqrt{10}$

Circles

'ANSWERS

1. (c)
2. (a)
3. (c)
4. (c)
5. (b)
6. (a, c)
7. (d)
8. (c)
9. (d)
10. (c)
11. (c)
12. (a)
13. (a)
14. (a , b , d)
15. (a)
16. (b)
.
17. (a)
18. (b)
19. (c)
20. (b)
21. (c)
22. (b)
23. (d)
24. (b)
25. (b)
26. (b)
27. (d)
28. (a, d)
29. (a , b , c, d)
30. (a, b, d)
31. (b)
32. (a)
33. (a)
34. (d)

ANSWERS

Exercise No. (2)

1. (c)
2. (d)
3. (b)
4. (c)
5. (c)
6. (b)
7. (d)
8. (c)
9. (a)
10. (b)
11. (c)
12. (b)
13. (5)
14. (5)
15. (5)
16. (4)
17. (2)
18. (a) $\rightarrow \mathrm{q}$
19. (a) $\rightarrow \mathrm{q}, \mathrm{s}$
20. (a) $\rightarrow r$
(b) $\rightarrow r$
(b) $\rightarrow \mathrm{p}, \mathrm{r}$
(c) $\rightarrow \mathrm{r}$
(c) $\rightarrow \mathrm{p}, \mathrm{r}$
(d) $\rightarrow \mathrm{s}$
(d) \rightarrow q, s
(b) $\rightarrow \mathrm{p}$
(c) $\rightarrow \mathrm{r}$
(d) \rightarrow p, q, s

Parabola

Exercise No. (1)

Multiple choice questions with ONE correct answer : (Questions No. 1-20)

1. If straight line $y=m x+c$ is tangential to parabola $y^{2}=16(x+4)$, then exhaustive set of values of ' c ' is given by
(a) $R /(-4,4)$
(b) $R /(-8,8)$
(c) $R /(-12,12)$
(d) $R /[-4,4]$
2. Minimum distance between the parabolic curves $y=x^{2}+4$ and $x=y^{2}+4$ is
(a) $\frac{15}{4 \sqrt{2}}$
(b) $\frac{15}{2}$
(c) $\frac{15}{\sqrt{2}}$
(d) $\frac{15}{2 \sqrt{2}}$
3. Locus of the point of intersection of tangents to parabola $y^{2}=4(x+1)$ and $y^{2}=8(x+2)$ which are perpendicular to each other is given by:
(a) $x-2=0$
(b) $x+2=0$
(c) $x+3=0$
(d) $x-3=0$
4. If $\left(3 t_{i}^{2},-6 t_{i}\right)$ represents the feet of normals to the parabola $y^{2}=12 x$ from $(1,2)$, then $\sum_{i=1}^{3}\left(\frac{1}{t_{i}}\right)$ is equal to :
(a) 6
(b) $-\frac{5}{2}$
(c) $\frac{3}{2}$
(d) -3
5. If chords of contact of the pair of tangents drawn from each point on the line $y=2 x+3$ to the curve $y^{2}-8 x=0$ are concurrent, then the point of concurrency is :
(a) $(2,0)$
(b) $\left(2, \frac{3}{2}\right)$
(c) $\left(\frac{3}{2}, 2\right)$
(d) $\left(\frac{2}{3}, 1\right)$
6. In angle between the pair of tangents drawn from a point ' P ' to the parabola $y^{2}=4 a x$ is $\frac{\pi}{4}$, then locus of point ' P ' is :
(a) parabola.
(b) line.
(c) hyperbola.
(d) ellipse.
7. From a point ' P ' if common tangents are drawn to circle $x^{2}+y^{2}=8$ and parabola $y^{2}=16 x$, then the area (in sq. units) of quadrilateral formed by the common tangents, the chords of contact of circle and parabola is given by :
(a) 60
(b) 30
(c) 45
(d) 50
8. Let $P(h, k)$ lies on the curve $f(x)=x-x^{2}$, such that $h \in(0,1)$, where ' O ' and ' A ' are $(0,0)$ and $(1,0)$ respectively, then maximum area of $\triangle P O A$ is:
(a) $\frac{1}{8}$ sq. units.
(b) $\frac{1}{4}$ sq. units.
(c) $\frac{1}{2}$ sq. units.
(d) $\frac{1}{16}$ sq. units.
9. If curves $C_{1}: x^{2}+y^{2}=5$ and $C_{2}: y^{2}-4 x=0$ intersect at ' P^{\prime} and ' Q ' and tangents to curve ' $C_{1}{ }^{\prime}$ and ' $C_{2}{ }^{\prime}$ at ' P^{\prime} and ' Q ' intersect the x-axis at R and S respectively, then ratio of area of $\triangle P Q R$ and $\triangle P Q S$ is :
(a) $1: 2$
(b) $1: 3$
(c) $2: 3$
(d) $1: 4$
10. If tangent at $P(2,4)$ to parabola $y^{2}=8 x$ meets the curve $y^{2}=8 x+5$ at Q and R, then mid-point of $Q R$ is :
(a) $(2,4)$
(b) $(4,2)$
(c) $(7,9)$
(d) $(2,5)$
11. If two parabola $y^{2}=4 a x$ and $y^{2}=4 c(x-b)$ can-not have common normal other than x-axis, then :
(a) $\frac{a-c}{b}>2$
(b) $\frac{b}{a-c}>2$
(c) $\frac{b}{a+c}>2$
(d) $\frac{c}{a+b}<2$

Parabola

12. If $y-\sqrt{3} x+3=0$ cuts the parabola $2+x=y^{2}$ at A and B, where $P \equiv(\sqrt{3}, 0)$; then $P A . P B$ is :
(a) $\frac{4}{3}(2+\sqrt{3})$
(b) $\frac{4}{3}(2-\sqrt{3})$
(c) $\frac{4 \sqrt{3}}{5}$
(d) None of these
13. If $y^{2}=4 a(x-\alpha)$ and $x^{2}=4 a(y-\beta)$ always touch one another, α and β being both varying, then locus of point of contact is :
(a) $x y=4 a^{2}$
(b) $x y=4 a$
(c) $x y=a$
(d) $x y=a / 2$
14. The locus of the vertex points of the family of parabolic curve $y=\frac{a^{3} x^{2}}{3}+\frac{a^{2} x}{2}-2 a$, where ' a ' is the parameter, is given by :
(a) $x y=\frac{105}{64}$
(b) $x y=\frac{3}{8}$
(c) $x y=\frac{55}{8}$
(d) $x y=\frac{201}{10}$
15. A parabola has its vertex and focus in $\mathrm{I}^{\text {st }}$ quadrant and axis along the line $y=x$, if the distances of the vertex and focus from the origin are $\sqrt{2}$ and $2 \sqrt{2}$ respectively, then equation of parabola is
(a) $(x+y)^{2}=x-y+2$
(b) $(x-y)^{2}=x+y-2$
(c) $(x-y)^{2}=8(x+y-2)$
(d) $(x+y)^{2}=8(x-y+2)$
16. If $\theta \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, then maximum length of latus rectum of parabola whose focus is $(a \sin 2 \theta, a \cos 2 \theta)$ and directrix is $y-a=0$, is :
(a) $2 a$
(b) $4 a$
(c) $8 a$
(d) $\frac{1}{2} a$
17. Locus of all points on the curve $y^{2}=4 a\left(x+a \sin \left(\frac{x}{a}\right)\right)$ at which the tangent is parallel to x-axis is :
(a) straight line.
(b) circle.
(c) parabola.
(d) hyperbola.
18. Normals $P O, P A$ and $P B$ are drawn to parabola $y^{2}=4 x$ from $P(h, 0)$, where ' O ' is origin and $\angle A O B=90^{\circ}$, then area of quadrilateral $O A P B$ is :
(a) 12 sq. units
(b) 24 sq. units
(c) 6 sq. units
(d) 18 sq. units
19. If normals at the end of a variable chord ' $P Q$ ' of the parabola $y^{2}=4 y+2 x$ are perpendicular to each other, then locus of the point of intersection of the tangents at ' P ' and ' Q ' is given by:
(a) $5 x+2=0$
(b) $x-y+3=0$
(c) $2 x+5=0$
(d) $5 y-2=0$
20. The focal chord to $y^{2}=16 x$ is tangent to the circle $(x-6)^{2}+y^{2}=2$, then the possible values of the slope of this chord, are :
(a) $\{-1,1\}$
(b) $\{-2,2\}$
(c) $\{-2,1 / 2\}$
(d) $\{2,-1 / 2\}$

Multiple choice questions with MORE than ONE

 correct answer : (Questions No. 21-25)21. Let $P Q$ be a chord of the parabola $y^{2}=4 x$ and circle on $P Q$ as diameter passes through the vertex ' V ' of the parabola. If the area of $\triangle P V Q$ is 20 square unit, then the possible co-ordinates for ' P ' can be :
(a) $(2,-1)$
(b) $(1,-2)$
(c) $(16,8)$
(d) $(-16,8)$
22. Let $a \in R^{+}$and the curves $x^{2}=4 a(y-b)$ and $y^{2}-x^{2}=a^{2}$ intersect each other at four distinct points, then the values of ' b ' may lie in the interval :
(a) $(-2 a,-a)$
(b) $\left(a, \frac{5 a}{4}\right)$
(c) $(-a, a)$
(d) $(0, a)$
23. Let any point ' P^{\prime} lies on the parabola $y^{2}=8 x$. If tangent and normal is drawn to parabola at point ' P ' which intersects the x-axis at ' T ' and ' N ' respectively, then locus of the centroid of triangle $P T N$ is parabolic curve for which :
(a) vertex is $\left(\frac{4}{3}, 0\right)$
(b) the equation of directrix is $3 x-2=0$
(c) focus is $(2,0)$
(d) equation of latus rectum is $2 x-3=0$
24. Let a moving parabola with length of latus rectum 8 units touches a fixed equal parabola, where the axes of moving parabola and fixed parabola being parallel. If the locus of the vertex of moving parabolic curve is conic ' S ', then :
(a) eccentricity of ' S ' is 1 .
(b) length of latus rectum of ' S ' is 16 units.
(c) eccentricity of ' S ' is $\sqrt{2}$.
(d) length of latus rectum of ' S ' is 32 units.
25. Let normals drawn at points $A, B(0,0)$ and C to the parabola $y^{2}=4 x$ be concurrent at point $P(3,0)$. If tangents drawn at ' A ' and ' C ' to the parabola intersects at point ' D ', then :
(a) area of $\triangle A B C$ is 2 square units.
(b) quadrilateral $P A B C$ is cyclic.
(c) circumcentre of $\triangle A B C$ lies outside the triangle.
(d) quadrilateral $A D C P$ is cyclic.

Assertion Reasoning questions :
 (Questions No. 26-30)

Following questions are assertion and reasoning type questions. Each of these questions contains two statements, Statement 1 (Assertion) and Statement 2 (Reason). Each of these questions has four alternative answers, only one of them is the correct answer. Select the correct answer from the given options :
(a) Both Statement 1 and Statement 2 are true and Statement 2 is the correct explanation of Statement 1.
(b) Both Statement 1 and Statement 2 are true but Statement 2 is not the correct explanation of Statement 1.
(c) Statement 1 is true but Statement 2 is false.
(d) Statement 1 is false but Statement 2 is true.
26. Statement 1 : If the curve C_{1} is given parametrically by the equations $x=\sin ^{2} t+2$ and $y=1+2 \sin t$ for all real values of ' t ', then it represents the parabolic curve $y^{2}-2 y-4 x+9=0$

because

Statement 2 : The point $\left(2+\sin ^{2} t, 1+2 \sin t\right)$ lies on the curve $(y-1)^{2}=4(x-2)$ for all real values of ' t '.
27. Statement 1 : Let tangents be drawn to $y^{2}=4 a x$ from a variable point ' P ' moving on $x+a=0$, then the locus of foot of perpendicular drawn from ' P ' on the chord of contact is given by $y^{2}+(x-a)^{2}=0$

because

Statement 2 : The intercept made by any tangent with finile non-zero slope of the parabola between the directrix and point of tangency always subtends a right angle at focus.
28. Statement 1 : If normal drawn at any point ' P ' on the parabola $y^{2}=4 a x$ meets the curve again at ' Q^{\prime}, then the least distance of Q from the axis of parabola is $4 \sqrt{2} a$

because

Statement 2 : If the normal at ' t ' point meets the curve again at ' t_{1}^{\prime} 'point, then $t_{1}=\left(-t-\frac{2}{t}\right)$ and $\left|t_{1}\right| \geq 2 \sqrt{2}$.
29. Statement 1 : Let perpendicular tangents of the conic $y^{2}+8 x-4 y-4=0$ intersects each other at point (α, β), then ' α ' must be 3 and $\beta \in R$

because

Statement 2: Locus of the point of intersection of perpendicular tangents to a parabolic curve is the directrix of curve.
30. Statement 1 : Let a normal chord $P Q$ be drawn for parabola $y^{2}=4 x$ with point ' P ' being $(4,4)$. Circle described with $P Q$ as diameter passes through the focus $F(1,0)$

because

Statement 2 : normal chord $P Q$ subtends an angle of $\tan ^{-1}(5)$ at origin.

Exercise No. (2)

Comprehension based Multiple choice questions

 with ONE correct answer :
Comprehension passage (1)
 (Questions No. 1-3)

Let the locus of the circumcentre of a variable triangle having sides $x=0, y-2=0$ and $l x+m y-1=0$, where (l, m) lies on $2 y^{2}-x=0$, be curve ' C^{\prime}, then answer the following questions.

1. Curve ' C ' is symmetric about the line :
(a) $2 y+3=0$
(b) $2 y-3=0$
(c) $2 x+3=0$
(d) $2 x-3=0$
2. Length of smallest focal chord of curve ' C^{\prime} is :
(a) 2 units
(b) $\frac{1}{2}$ unit
(c) 1 unit
(d) $\frac{1}{4}$ unit
3. From point ' P ' if perpendicular pair of tangents can be drawn to the curve ' C ', then ' P ' can be :
(a) $\left(-\frac{1}{4}, 4\right)$
(b) $\left(-1, \frac{3}{2}\right)$
(c) $\left(-\frac{1}{2}, 3\right)$
(d) $\left(-\frac{3}{2}, 2\right)$

Comprehension passage (2) (Questions No. 4-6)

Let $C_{1}: y=x^{2}+2 a x+b$ and $C_{2}: y=c x^{2}+2 d x+1$ be two parabolic curves having vertex points at ' A ' and ' B ' respectively. If the projection of ' A ' and ' B ' on the x-axis is A^{\prime} and B^{\prime} respectively, as shown in the figure (1), and $A A^{\prime}=B B^{\prime}, O A^{\prime}=O B^{\prime}$, where ' O^{\prime} ' is origin, then answer the following questions.

figure (1)
4. Which one of the following inequality is correct.
(a) $b>1$
(b) $a c<0$
(c) $c d<0$
(d) $d \ngtr 0$
5. If b and c are non-zero real numbers, then value of a^{2} is equal to :
(a) $\frac{b d}{c}$
(d) $\frac{b d^{2}}{c^{2}}$
(c) $\frac{b d^{2}}{c}$
(d) $\frac{c d}{b^{2}}$
6. In figure (1), if $\angle A^{\prime} A B^{\prime}+\angle B^{\prime} B A^{\prime}=180^{\circ}$, then which one of the following equality holds true :
(a) $\left(5 d^{2}-c\right)\left(5 a^{2}+b\right)=1$
(b) $\left(5 a^{2}-b\right)\left(5 d^{2}-c\right)=16 a d$
(c) $\left(5 a^{2}-b\right)\left(5 d^{2}-c\right)=16 a^{2} d^{2}$
(d) $\left(5 a^{2}-b\right)\left(5 d^{2}+c\right)=4 b d$

Comprehension passage (3)
 (Questions No. 7-9)

Let parabolic curves ' C_{1} ' and ' C_{2} ' be given by $y+x^{2}+2=0$ and $y^{2}+x+2=0$ respectively. Curve ' C^{\prime} represents a circle with centre at ' $C_{0}{ }^{\prime}$, where $O P$ and $O Q$ are tangents from origin ' O ' to the circle ' C^{\prime} ' If circle ' C ' touches both the parabolic curves C_{1}, C_{2}, and have minimum area, then answer the following questions.
7. Equation of circle ' C ' is :
(a) $4 x^{2}+4 y^{2}+33(x+y)+19=0$
(b) $x^{2}+y^{2}+11(x+y)+10=0$
(c) $4\left(x^{2}+y^{2}\right)+11(x+3 y)+9=0$
(d) $4\left(x^{2}+y^{2}\right)+11(x+y)+9=0$
8. Area (in square units) of quadrilateral $O P C_{0} Q$ is given by :
(a) $\frac{21}{2 \sqrt{3}}$
(b) $\frac{21}{2 \sqrt{2}}$
(c) $\frac{42}{5 \sqrt{3}}$
(d) $\frac{21}{4 \sqrt{2}}$
9. A common tangent to the parabolic curves ' $C_{1}{ }^{\prime}$ and ' $C_{2}{ }^{\prime}$ can be given by :
(a) $4 x+4 y+7=0$
(b) $4 x+4 y+5=0$
(c) $4 x+8 y+7=0$
(d) $8 x+4 y+5=0$

Comprehension passage (4)
(Questions No. 10-12)
Let variable parabolic curves be drawn through the fixed diametric ends $(0, r)$ and $(0,-r)$ of the circle $x^{2}+y^{2}=r^{2}$ such that the directrix of variable parabolic curves always touch the circle $x^{2}+y^{2}=R^{2}$. If the path traced by the focus of the variable parabolic curves is represented by a conic section of eccentricity ' e ', then answer the following questions.
10. If $R^{2} \in\left(r^{2}, 2 r^{2}\right)$, then eccentricity ' e ' may be equal to :
(a) $\sqrt{\pi}$
(b) $\sin 4$
(c) $\sin 1$
(d) $\cos 2$
11. If $r^{2}-2 R^{2}>0$, then ' e ' may be equal to :
(a) $\tan 3$
(b) $\operatorname{cosec} \frac{\pi}{4}$
(c) $\sec \frac{3 \pi}{8}$
(d) $\cos 3$
12. If $r^{2} \in\left(R^{2}, 2 R^{2}\right)$, then ' e ' may be equal to :
(a) $\frac{1}{2}$
(b) $\sec \frac{3 \pi}{8}$
(c) $\sqrt{2}$
(d) $\sec \frac{\pi}{8}$

Questions with Integral Answer :
 (Questions No. 13-20)

13. Let three normals be drawn from point ' P ' with slopes α, β and γ to the parabola $y^{2}=4 x$. If locus of ' P ' with the condition $\alpha \beta=k$ is a part of the parabolic curve $y^{2}-4 x=0$, then value of ' k ' is equal to
14. Let a tangent be drawn to parabola $y^{2}-2 y-4 x+5=0$ at any point ' P ' on it. If the tangent meets the directrix at ' Q ' and the moving point ' M ', divides $Q P$ externally in the ratio $1: 2$, then locus of ' M ' passes through $(-\alpha, 0)$. The value of ' α ' is equal to \qquad
15. Let the parabola $y=a x^{2}+2 x+3$ touches the line $x+y-2=0$ at point ' P '. If a line through ' P ', parallel to x-axis , is drawn to meet $y+1=|x|$ at ' Q ' and ' R ' and the area of $\triangle O Q R$ (where ' O ' is origin) is ' A ' square units, then value of $\frac{9 A}{11}$ is equal to . \qquad
16. Let the tangent at point $P(2,4)$ to the parabola $y^{2}=8 x$ meets the parabola $y^{2}=8 x+5$ at ' A ' and ' B '. If the midpoint of $A B$ is point (α, β), then $(2 \alpha-\beta)$ is equal to \qquad
17. Let $P Q$ be the normal chord for the parabola $y^{2}-4 x-2 y+9=0$. If $P Q$ subtends an angle of 90° at the vertex of the parabola, then square of slope of the normal chord is equal to . \qquad
18. Let all the sides (or the extension of sides) of on equilateral triangle $A B C$ touch the parabola $y^{2}-4 x=0$.
If the vertices of $\triangle A B C$ lie on the curve ' C^{\prime} and curve ' C^{\prime} ' passes through the point $P(1, k)$, where ' P ' lies above the x-axis, then value of ' k ' is equal to \qquad
19. Let tangent and normal drawn to parabola at point $P\left(2 t^{2}, 4 t\right), t \neq 0$, meets the axis of parabola at points ' Q ' and ' R ' respectively. If rectangle $P Q R S$ is completed, then locus of vertex ' S ' of the rectangle is given by curve ' C^{\prime}. Total number of integral points inside the region of curve ' C ' in the first quadrant is equal to \qquad
20. Let ' P ' and ' Q ' be the end points of the latus rectum of parabolic curve $y^{2}-4 y+8 x-28=0$ and point ' R ' lies on the circle $x^{2}+y^{2}-4 x-4 y+7=0$. If $P R+R Q$ is minimum, then maximum number of locations for point ' R ' is/are \qquad .

Parabola

Matrix Matching Questions :
 (Questions No. 21-23)

21. Let points $P(-6,4), Q(-2,0), R(2,4)$ and $S(-2,8)$ form a quadrilateral $P Q R S$ and a parabolic curve ' C ' with axis of symmetry along $y-4=0$ passes through P, Q and S. With reference to curve ' C^{\prime}, match the following columns I and II.

Column (I)

(a) Length of latus rectum of curve ' C^{\prime}, is :
(b) Length of double ordinate of curve ' C ' which subtends an angle of 90° at the vertex of curve is :
(c) If ' F ' is focus of curve ' C^{\prime} 'and ' r ' is the in-radius of $\triangle Q F S$, then value of $3 r$ is equal to :
(d) Circum-radius of $\triangle Q F S$ is:
22. Match the following columns (I) and (II)

Column (I)

(a) Parabolic curve $y=x^{2}+5 x+4$ meets the x-axis at ' A ' and ' B '. Length of tangent from origin to the circle passing through ' A ' and ' B ' is equal to :
(b) Point $P(\alpha,-2)$ lies in the exterior region of both the parabolic curves $y^{2}=|x|$. If ' P^{\prime} is integral point then ' α ' can be equal to :
(c) From point $P(9,-6)$, if two normals of slope m_{1} and m_{2} are drawn to parabola $y^{2}=4 x$, then $m_{1} m_{2}$ is equal to
(d) If two distinct chords through the point $(a, 2 a)$ of a parabola $y^{2}=4 a x$ are bisected by the line $x+y=1$, then the length of latus rectum can be equal to :

Column (II)

(p) 8 .
(q) $\frac{25}{6}$.
(r) 4.
(s) $\frac{11}{4}$.

Column (II)

(p) -1
(q) 1
(r) 2
(s) 3
(t) -2
23. Let the tangents from $P(\alpha, \beta)$ to the parabolic curve $x^{2}-2 x+8 y-15=0$ be $P A$ and $P B$, where the chord of contact is $A B$. Match the possible nature of triangle $P A B$ (in column II) with the conditions on α and β (in column I).

Column (I)

(a) If $\alpha=1 ; \beta \geq 5$, then $\triangle P A B$ may be:
(b) If $\alpha \in R ; \beta=4$, then $\triangle P A B$ may be :
(c) If $\alpha^{2}-2 \alpha+8 \beta>15 ; \beta<4$, then $\triangle P A B$ may be :
(d) If $\alpha^{2}-2 \alpha+8 \beta>15 ; \beta>4$, then $\triangle P A B$ may be:

Column (II)

(p) Right-angled triangle.
(q) Acute-angled triangle.
(r) Obtuse-angled triangle.
(s) Scalene triangle.

[ANSWERS

1. (b)	2. (d)	3. (c)	4. (b)	5. (c)
6. (c)	7. (a)	8. (a)	9. (a)	10. (a)
11. (b)	12. (a)	13. (a)	14. (a)	15. (c)
16. (b)	17. (c)	18. (b)	19. (c)	20. (a)
21. (b, c)	22. (a , b)	23. (a, b , c)	24. (a, b)	25. (a , c , d)
26. (d)	27. (a)	28. (a)	29. (a)	30. (b)

「ANSWERS

Exercise No. (2)

1. (b)
2. (c)
3. (c)
4. (b)
5. (c)
6. (c)
7. (d)
8. (d)
9. (c)
10. (d)
11. (2)
12. (0)
13. (2)
14. (4)
15. (a)
16. (5)
17. (8)
18. (9)
19. (2)
20. (a) $\rightarrow r$
(b) $\rightarrow \mathrm{p}$
(c) $\rightarrow \mathrm{r}$
(d) \rightarrow q
21. (a) $\rightarrow r$
22. (a) $\rightarrow q$
(b) $\rightarrow \mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}, \mathrm{t}$
(b) $\rightarrow \mathrm{p}, \mathrm{s}$
(c) $\rightarrow \mathrm{r}$
(d) $\rightarrow \mathrm{q}, \mathrm{r}, \mathrm{s}$
(c) $\rightarrow \mathrm{r}, \mathrm{s}$
(d) $\rightarrow \mathrm{q}, \mathrm{s}$

Ellipse

Exercise No. (1)

Multiple choice questions with ONE correct answer : (Questions No. 1-20)

1. A tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is intersected by the tangents at the extremities of the major axis at ' P ' and ' Q ', then circle on $P Q$ as diameter always passes through :
(a) one fixed point
(b) two fixed points
(c) four fixed points
(d) three fixed points
2. A variable tangent of ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ meets the co-ordinate axes at A and B, then minimum area (in sq. units) of circumcircle of $\triangle A O B, O^{\prime}$ being the origin, is given by :
(a) $\frac{\pi}{4}(a-b)^{2}$.
(b) $\pi\left(a^{2}+b^{2}\right)$
(c) $\frac{\pi}{4}\left(a^{2}+b^{2}\right)$.
(d) $\frac{\pi}{4}(a+b)^{2}$.
3. Let $P(x, y)$ be any point on ellipse $9 x^{2}+25 y^{2}=225$, if ' $F_{1}{ }^{\prime}$ and ${ }^{\prime} F_{2}^{\prime}$ are the focal points of ellipse, then perimeter of $\Delta F_{1} P F_{2}$ is :
(a) 10
(b) 18
(c) 25
(d) 30
4. The chords of contact of tangents to curve $x^{2}+8 y^{2}=8$ from any point on its director circle intersect the director circle at ' C^{\prime} and ' D ', then locus of the point of intersection of tangents to circle at ' C ' and ' D ' is :
(a) $16 x^{2}+y^{2}=81$.
(b) $64 x^{2}+y^{2}=243$.
(c) $64 x^{2}+y^{2}=16$.
(d) None of these.
5. If normal at an end of latus rectum of an ellipse passes through one extremity of minor axis, then eccentricity ' e ' satisfy:
(a) $e^{4}+e^{2}-1=0$
(b) $e^{2}+e-5=0$
(c) $e^{3}=5 / 2$
(d) $e^{4}-e^{2}+1=0$
6. If tangent is drawn at ' θ ' point to the ellipse $x^{2}+27 y^{2}=27$, where $\theta \in\left(0, \frac{\pi}{2}\right)$, then value of ' θ ' such that sum of intercepts on axes made by this tangent is minimum , is :
(a) $\frac{\pi}{8}$
(b) $\frac{\pi}{12}$
(c) $\frac{\pi}{6}$
(d) $\frac{\pi}{4}$
7. The length of latus rectum of an ellipse is one third of the major axis, then eccentricity of ellipse is equal to :
(a) $\frac{2}{3}$
(b) $\sqrt{\frac{2}{3}}$
(c) $\frac{1}{\sqrt{3}}$
(d) $\frac{1}{\sqrt{2}}$
8. Minimum distance between the ellipse $x^{2}+2 y^{2}=6$ and the line $x+y-7=0$ is equal to :
(a) $4 \sqrt{2}$
(b) $2 \sqrt{2}$
(c) $\sqrt{5}$
(d) $\sqrt{10}$
9. The line passing through the extremity A of the major axis and extremity B of the minor axis of the ellipse $x^{2}+9 y^{2}=9$ meets its auxiliary circle at the point M. Then the area of the triangle with vertices at A, M and the origin O is equal to :
(a) $\frac{31}{10}$ sq. units
(b) $\frac{29}{10}$ sq. unit
(c) $\frac{21}{10}$ sq. unit
(d) $\frac{27}{10}$ sq. units
10. The normal at a point P on the ellipse $x^{2}+4 y^{2}=16$ meets the x-axis at Q. If M is the mid point of the line segment $P Q$, then the locus of M intersects the latus rectums of the given ellipse at the points
(a) $\left(\pm \frac{3 \sqrt{5}}{2}, \pm \frac{2}{7}\right)$
(b) $\left(\pm \frac{3 \sqrt{5}}{2}, \pm \frac{\sqrt{19}}{4}\right)$
(c) $\left(\pm 2 \sqrt{3}, \pm \frac{1}{7}\right)$
(d) $\left(\pm 2 \sqrt{3}, \pm \frac{4 \sqrt{3}}{7}\right)$
11. Maximum length of chord of ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, $a>b$, such that eccentric angles of the extremities of chord differ by $\frac{\pi}{2}$ is :
(a) $a \sqrt{2}$
(b) $b \sqrt{2}$
(c) $a b \sqrt{2}$
(d) $\frac{b}{a}$
12. If an ellipse with major and minor axes of length $10 \sqrt{3}$ and 10 units respectively slides along the co-ordinate axes in the first quadrant, then length of the arc which is formed by the locus of centre of ellipse is given by :
(a) 10π
(b) $\frac{5 \pi}{4}$
(c) $\frac{5 \pi}{3}$
(d) $\frac{3 \pi}{2}$
13. Area of ellipse for which focal points are $(3,0)$ and $(-3,0)$ and point $(4,1)$ lying on it , is given by :
(a) 18π sq. units
(b) $9 \sqrt{2} \pi$ sq. units
(c) $\sqrt{243} \pi$ sq. units
(d) $\sqrt{18} \pi$ sq. units
14. Let tangents drawn from point ' P ' to the ellipse $x^{2}+4 y^{2}=36$ meets the co-ordinate axes at concylic points, then locus of point ' P ' is given by
(a) $x^{2}-y^{2}=27$
(b) $x^{2}+y^{2}=27$
(c) $x^{2}-y^{2}=16$
(d) $x^{2}+y^{2}=16$
15. Let the common tangent in $\mathrm{I}^{\text {st }}$ quadrant to the circle $x^{2}+y^{2}=16$ and $4 x^{2}+25 y^{2}=100$ meet the axes at A and B, then area of $\triangle A O B$, where O is origin , is :
(a) $\frac{14}{\sqrt{3}}$
(b) $\frac{28}{\sqrt{3}}$
(c) $\frac{20}{\sqrt{3}}$
(d) none of these
16. Let ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, where $a>b$, be centered at ' O^{\prime} and having $A B$ and $C D$ as its major and minor axis respectively. If one of the focus of ellipse is ' $F_{1}{ }^{\prime}$, the in-radius of triangle $D O F_{1}$ is 1 unit and $O F_{1}=6$ units, then director circle of ellipse is given by :
(a) $x^{2}+y^{2}=100$
(b) $x^{2}+y^{2}=97 / 2$
(c) $x^{2}+y^{2}=50$
(d) $x^{2}+y^{2}=105 / 2$
17. Let normals be drawn to the ellipse $x^{2}+2 y^{2}=2$ from point $(2,3)$, then the co-normal points lie on the curve :
(a) $x y+3 x-4 y=0$
(b) $2 x y-3 x+4 y=0$
(c) $3 x+4 y-x y=0$
(d) $4 x y+4 x-3 y=0$
18. Let ' A ' be the centre of ellipse $5 x^{2}+5 y^{2}+6 x y-8=0$ and ' P ', ' Q ' points lie on the ellipse such that $A P$ and $A Q$ distances are maximum and minimum respectively, then $A P+A Q$ is equal to :
(a) 2
(b) 4
(c) 3
(d) 5
19. Let ' $A B^{\prime}$ ' be the variable chord of the ellipse $x^{2}+2 y^{2}=2$ and $\angle A O B=\frac{\pi}{2}$, where ' O ' is origin, then $\frac{O A^{2}+O B^{2}}{(O A . O B)^{2}}$ is equal to :
(a) $\frac{2}{3}$.
(b) $\frac{3}{2}$.
(c) $\frac{3}{4}$.
(d) $\frac{5}{4}$.
20. Let normal to the ellipse $4 x^{2}+5 y^{2}=20$ at point $P(\theta)$ touches the parabola $y^{2}=4 x$, then $\tan \theta$ is equal to :
(a) ± 2
(b) ± 3
(c) ± 1
(d) ± 4

Multiple choice questions with MORE than ONE correct answer : (Questions No. 21-25)

21. Let circle ' C ' with centre $(1,0)$ be inscribed in the ellipse $x^{2}+4 y^{2}=16$ and the area of circle ' C ' is maximum, then
(a) equation of director circle of ${ }^{\prime} C^{\prime}$ is given by $9(x-1)^{2}+9 y^{2}=121$
(b) equation of director circle of ${ }^{\prime} C^{\prime}$ is given by $3(x-1)^{2}+3 y^{2}=22$
(c) area of circle ' C^{\prime} is $\frac{11 \pi}{3}$ sq. units.
(d) circle ${ }^{\prime} C$ ' is auxiliary circle for the ellipse $9(x-1)^{2}+25 y^{2}=121$
22. Let one of the focus point of ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ be at $F_{1}(4,0)$ and its intersection point with positive y-axis be ' B^{\prime}. If the centre of ellipse is ' C^{\prime} and circum-radius of $\Delta C F_{1} B$ is 2.5 units, then which of the following statements are incorrect :
(a) equation of director circle of ellipse is $x^{2}+y^{2}=34$.
(b) area of ellipse is 20π square units.
(c) director circle of auxiliary circle of the ellipse is $x^{2}+y^{2}=50$.
(d) length of latus rectum of ellipse is 4 units.
23. Let ellipse $E_{1}: x^{2}+4 y^{2}=4$ is inscribed in a rectangle aligned with co-ordinate axes, which in turn is inscribed in another ellipse E_{2} that passes through the point $(4,0)$. With reference to ellipse E_{1} and E_{2} which of the following statements are true:
(a) If point (α, β) lies in between the boundary of the director circle of E_{1} and E_{2}, then

$$
15<3 \alpha^{2}+3 \beta^{2}<52
$$

(b) If point $(2 \alpha, \alpha)$ lies outside the ellipse E_{2}, then $\alpha \in R-[-1,1]$.
(c) Total number of integral points inside the ellipse E_{1} are four.
(d) If point $(2 \alpha, \alpha)$ lies inside the ellipse E_{1}, then $\alpha \in\left(-\frac{1}{2}, \frac{1}{2}\right)$.
24. Let point ' P ' lies on the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ and normal to ellipse at ' P ' meets the co-ordinate axes at A and B. If ' O ' is the origin and M is the foot of perpendicular from origin to $A B$, then
(a) maximum area of $\triangle A O B$ is 2.025 square units.
(b) maximum value of $O M$ is 2 units.
(c) maximum value of $O M$ is 1 unit.
(d) maximum area of $\triangle A O B$ is $\frac{81}{80}$ square. units.
25. Let variable point ' P ' lies on the curve $y=x^{2}$ and $P A, P B$ are tangents to the ellipse $x^{2}+3 y^{2}=9$. If $\angle A P B$ is an acute angle, then x co-ordinate of point ' P ' can be given by :
(a) $\sqrt{e+\frac{1}{e}}$
(b) $\sqrt{2}+\frac{1}{\sqrt{2}}$
(c) $\frac{3}{2} \ln 2$
(d) $\tan \left(\frac{9}{2}\right)$

Assertion Reasoning questions :

(Questions No. 26-30)

Following questions are assertion and reasoning type questions. Each of these questions contains two statements, Statement 1 (Assertion) and Statement 2 (Reason). Each of these questions has four alternative answers, only one of them is the correct answer. Select the correct answer from the given options :
(a) Both Statement 1 and Statement 2 are true and Statement 2 is the correct explanation of Statement 1.
(b) Both Statement 1 and Statement 2 are true but Statement 2 is not the correct explanation of Statement 1.
(c) Statement 1 is true but Statement 2 is false.
(d) Statement 1 is false but Statement 2 is true.
26. Statement 1 : Total number of distinct normals which can be drawn to the ellipse $\frac{x^{2}}{169}+\frac{y^{2}}{25}=1$ from point $(0,6)$ are three.

because

Statement 2 : Maximum number of normals which can be drawn to any given ellipse from a point are four.
27. Let any point ' P ' lies on the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{12}=1$ and $P M_{1}, P M_{2}$ are the distances of ' P ' from $x-8=0$ and $x+8=0$ respectively.
Statement 1: For point ' P ' maximum value of $\left(P M_{1}\right)\left(P M_{2}\right)$ cannot exceed 64 square units

because

Statement 2:Area of $\triangle P F_{1} F_{2}$, where F_{1} and F_{2} are foci of ellipse, can't exceed $4 \sqrt{3}$ square units.
28. Let C_{1} and C_{2} be two ellipse which are given by $x^{2}+4 y^{2}=4$ and $x^{2}+2 y^{2}=6$ respectively and any tangent to curve C_{1} meets the curve C_{2} at A and B.
Statement 1: If tangents drawn to curve C_{2} at points
A and B meet at point P, then $\angle A P B=\frac{\pi}{2}$

because

Statement 2: Locus of point ' P ' is the director circle of curve ' C_{1} '.

Ellipse

29. Statement 1 : Let ' L ' be variable line which is tangential to fixed ellipse with foci F_{1} and F_{2}, then locus of the foot of perpendicular from foci to line ' L ' is the auxiliary circle of ellipse

because

Statement 2 : Product of the length of perpendiculars from foci F_{1} and F_{2} to the line ' L ' is always the square of semi-minor axis of ellipse.
30. Statement 1 : If point ' P ' lies on a given ellipse with foci at F_{1} and F_{2}, then perimeter of $\Delta P F_{1} F_{2}$ is constant because

Statement 2 : Perimeter of the ellipse is given by $\left\{\frac{\pi}{2 e}\left(F_{1} F_{2}\right)\left(1+\sqrt{1-e^{2}}\right)\right\}$ units, where ' e ' is the eccentricity of ellipse.

Comprehension based Multiple choice questions

 with ONE correct answer :
Comprehension passage (1) (Questions No. 1-3)

Let tangent at any point on the curve $E_{1}: 4 x^{2}+9 y^{2}=36$ meets the curve $E_{2}: 10 x^{2}+15 y^{2}=150$ at P and Q. If tangents drawn at P and Q to curve E_{2} meets at point ' R ' and locus of ' R ' is given by the curve ' C_{1} ' then answer the following questions.

1. Locus of point from which perpendicular tangents can be drawn to curve ' C_{1} ' is :
(a) $x^{2}+y^{2}=50$
(b) $x^{2}+y^{2}=60$
(c) $y-8=0$
(d) $2 y-9=0$
2. Positive slope of the common tangent to curve ' $C_{1}{ }^{\prime}$ and $2 x^{2}+3 y^{2}=60$ is :
(a) 1
(b) $\frac{1}{\sqrt{3}}$
(c) $\sqrt{3}$
(d) $2-\sqrt{3}$
3. If from any point ' A ' on the line $2 x+3 y=30$ tangents $A B$ and $A C$ are drawn to curve ' C_{1} ', then locus of the circumcentre of $\triangle A B C$ is:
(a) $4 x+6 y=27$
(b) $2 x+3 y=15$
(c) $2 x-3 y=20$
(d) $2 x+3 y=20$

Comprehension passage (2)
 (Questions No. 4-6)

Let variable ellipse $x^{2}+4 y^{2}=4 k^{2}$, where $k \in R^{+}$, and a fixed parabola $y^{2}=8 x$ is having a common tangent which meets the co-ordinate axes at P and Q, then answer the following questions.
4. Let A be the point of contact of the common tangent with the ellipse and the eccentric angle of A is $\frac{2 \pi}{3}$, then value of ' k ' is equal to:
(a) 4
(b) 8
(c) 6
(d) 5
5. Locus of the mid-point of the intercepted length $P Q$ is :
(a) $y^{2}+4 x=0$
(b) $y^{2}+x=0$
(c) $2 y^{2}+x=0$
(d) $4 y^{2}+x=0$
6. If ' O ' is origin and the area of $\triangle O P Q$ is 2 square units, then value of ' k ' is
(a) $\frac{2}{\sqrt{3}}$
(b) $\frac{2}{\sqrt{5}}$
(c) $\sqrt{\frac{5}{4}}$
(d) $\frac{\sqrt{5}}{4}$

Comprehension passage (3)
 (Questions No. 7-9)

Let $L_{1}: y-m_{1} x=0$ and $L_{2}: y-m_{2} x=0$ be the variable lines for which $m_{1} m_{2}$ is negative, and lines L_{1} and L_{2} are tangential to the variable ellipse ' E ' at the points T_{1} and T_{2} respectively. If the ellipse ' E ' is rotating about the point $(\alpha, 0)$ and initially its equation is given by $b^{2}(x-\alpha)^{2}+a^{2} y^{2}=(a b)^{2}$, where $\alpha \in R^{+}$, then answer the following questions.
7. If $\alpha=10$ and the angle $\angle T_{1} O T_{2}$ is constant for all the positions of variable ellipse ' E ', where ' O ' is origin, then the ordered pair (a, b) can be given by :
(a) $(7,3)$
(b) $(4,6)$
(c) $(8,6)$
(d) $(12,6)$
8. If $3 a=4 b=12$ and the angle $\angle T_{1} O T_{2}$ remains acute for all the positions of the variable ellipse ' E ', where ' O ' is origin, then the possible value of ' α ' can be :
(a) $\pi-e$
(b) $\pi+\frac{1}{\pi}$
(c) e^{2}
(d) $2 \tan 1$
9. If the $\angle T_{1} O T_{2}$ remains obtuse for all the positions of the variable ellipse ' E ', where O is origin , then which one of the following relation must hold true :
(a) $\alpha^{2}-a^{2}-b^{2}>0$
(b) $\min \{2 a, 2 b\}<\alpha<\sqrt{a^{2}+b^{2}}$
(c) $\max \{a, b\}<\alpha<\sqrt{a^{2}+b^{2}}$
(d) $\frac{a+b}{2}<\alpha<\sqrt{a^{2}+b^{2}}$

Questions with Integral Answer : (Questions No. 10-15)

10. Let tangent and normal be drawn at any point ' P ' on the ellipse $x^{2}+3 y^{2}=3$, and rectangle $P A O B$ is completed, where ' O ' is the origin. Maximum area (in square units) of the rectangle $P A O B$ is \qquad

Ellipse

11. Let common tangents of the curves $y^{2}=4 x$ and $x^{2}+4 y^{2}=8$ meets on the x-axis at A and intersects the positive and negative y-axis at B and C respectively. If parabola with its axis along the x-axis and vertex at A passes through B and C, then length of latus rectum of the parabola is \qquad
12. Let points A, B and C lie on the curve $y=-\sqrt{3-\frac{3 x^{2}}{4}}$, $y=\sqrt{2 x-x^{2}}$ and $y=\sqrt{-x^{2}-2 x}$ respectively, then maximum value of $(A B+A C)$ is equal to \qquad
13. If line $2 x+3 y=\lambda$ meet the ellipse $4 x^{2}+9 y^{2}=36$ at points ' A ' and ' B ', where $\angle A O B=90^{\circ}, ~ ' O$ ' being the origin , then positive value of λ is equal to \qquad
14. Let tangents drawn at A and B points on the ellipse $4 x^{2}+9 y^{2}=36$ meet at point $P(1,3)$. If ' C ' is the centre of ellipse and the area of quadrilateral $P A C B$ is α square units, then value of $[\alpha]$, where [.] represents the greatest integer function, is equal to \qquad
15. Let $A B C D$ is a square of side length 8 units, and an ellipse of eccentricity 0.5 is drawn touching the sides of the square, where the axes of symmetry being along the diagonals of square. If the major axis and minor axis is of length ' $2 a^{\prime}$ 'and ' $2 b^{\prime}$ ' units respectively, then value of $\left\{\sec \left(\sin ^{-1}\left(\frac{b}{a}\right)\right)\right\}^{2}$ is \qquad

Matrix Matching Questions :

(Questions No. 16-18)
16. Match the following columns (I) and (II)

Column (I)

Column (II)
(a) Number of points on the ellipse $2 x^{2}+5 y^{2}=100$ from
(p) 0 which pair of perpendicular tangents can be drawn to the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ is / are :
(q) 1
(b) If the lines $y=m_{1} x+c_{1}$ and $y=m_{2} x+c_{2}$ intersect the ellipse
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at four concyclic points, then $\left(m_{1}+m_{2}\right)$ must be :
(c) If all the normals of ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ intersects or touches the circle $x^{2}+y^{2}=r^{2}$, then minimum value of ' r ' is :
(s) 4
(d) If the equation $3 x^{2}+4 y^{2}-18 x+16 y+43-k=0$ represents an ellipse, then values of ' k ' can be :
17. Let $C_{1}: x^{2}+y^{2}=a^{2}$ and $C_{2}: x^{2}+y^{2}=b^{2}$ be two circles, where $b>a>0$, and ' O^{\prime} is origin. A line $O P Q$ is drawn which meets C_{1} and C_{2} at points P and Q respectively. If ' R ' is the moving point for which $P R$ and $Q R$ is parallel to the y-axis and x-axis respectively and the locus of ' R ' is an ellipse ' E ', then match the following columns for eccentricity ' e ' of the ellipse ' E ' and the position of foci F_{1} and F_{2} of ' E '.

Column (I)

(a) If F_{1} and F_{2} lie on the circle ' $C_{1}{ }^{\prime}$, then eccentricity ' e ' can be :
(b) If F_{1} and F_{2} lie inside the circle ' $C_{1}{ }^{\prime}$, then eccentricity ' e ' can be :
(c) If F_{1} and F_{2} lie inside the circle ' $C_{2}{ }^{\prime}$, then eccentricity ' e ' can be :
(d) If F_{1} and F_{2} don't lie inside the circle ' $C_{1}{ }^{\prime}$, then eccentricity ' e ' can be :

Column (II)

(p) $\left(\sec \left(\frac{1}{2}\right)\right)^{-\frac{1}{2}}$
(q) $\sin \left(\frac{1}{2}\right)$
(r) $\cos \left(\frac{\pi}{4}\right)$
(s) $\cos (1)$

TANSWERS

Exercise No. (1)

1. (b)	2. (d)	3. (b)	4. (d)	5. (a)
6. (c)	7. (b)	8. (b)	9. (d)	10. (c)
11. (a)	12. (c)	13. (b)	14. (a)	15. (b)
16. (b)	17. (a)	18. (c)	19. (b)	20. (a)
21. (b, c)	22. (b , d)	23. (a , b)	24. (c, d)	25. (a , b , d)
26. (b)	27. (b)	28. (c)	29. (b)	30. (b)

[ANSWERS

Exercise No. (2)

1. (a)
2. (a)
3. (b)
4. (c)
5. (b)
6. (b)
7. (c)
8. (c)
9. (c)
10. (1)
11. (1)
12. (6)
13. (6)
14. (7)
15. (4)
16. (a) $\rightarrow s$
17. (a) $\rightarrow r$
(b) $\rightarrow \mathrm{p}$
(c) $\rightarrow \mathrm{q}$
(d) \rightarrow q, r, s
(b) $\rightarrow \mathrm{q}, \mathrm{s}$
(c) $\rightarrow \mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}$
(d) $\rightarrow \mathrm{p}, \mathrm{r}$

Hyperbola

Exercise No. (1)

Multiple choice questions with ONE correct answer :

 (Questions No. 1-20)1. If the chords of contact of tangents from $(-4,2)$ and $(2,1)$ to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ are at right angle, then eccentricity of the hyperbola is :
(a) $\sqrt{2}$
(b) $\sqrt{\frac{3}{2}}$
(c) $\sqrt{\frac{5}{2}}$
(d) $\sqrt{3}$
2. Let ' P ' be the point of intersection of $x y=c^{2}$ and $x^{2}-y^{2}=a^{2}$ in the first quadrant and tangents at P to both curves intersect the y-axis at $\quad Q$ ' and ' R ' respectively, then circumcentre of $\triangle P Q R$ lies on :
(a) $x+y=1$
(b) $x-y=1$
(c) x-axis
(d) y-axis
3. Slope of common tangent to the curves $y^{2}=4 a x$ and $4 x y=-a^{2}$, where $a \in R^{+}$, is given by :
(a) 1
(b) $\frac{a}{2}$
(c) $-\frac{a}{2}$
(d) a
4. A normal to hyperbola $\frac{x^{2}}{4}-\frac{y^{2}}{1}=1$ has equal intercepts on positive x and y axes and this normal touches the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, where $a>b$, then $a^{2}+b^{2}$ is equal to :
(a) $\frac{5}{9}$
(b) $\frac{75}{9}$
(c) $\frac{5}{18}$
(d) $\frac{18}{5}$
5. Number of common tangents which are possible to curves $12 y^{2}-x^{2}+12=0$ and $4 y^{2}+x^{2}-16=0$ is / are :
(a) 1
(b) 4
(c) 2
(d) 0
6. If eccentricity of hyperbola $x^{2}-y^{2} \sec ^{2} \alpha=5$ is $\sqrt{3}$ times the eccentricity of ellipse $x^{2} \sec ^{2} \alpha+y^{2}=25$, then α is equal to :
(a) $\frac{\pi}{6}$
(b) $\frac{\pi}{4}$
(c) $\frac{\pi}{3}$
(d) $\frac{\pi}{2}$
7. A common tangent to $9 x^{2}-16 y^{2}=144$ and $x^{2}+y^{2}=9$ is :
(a) $y=\frac{3 x+15}{\sqrt{7}}$
(b) $y=\frac{3 \sqrt{2} x+15}{\sqrt{7}}$
(c) $y=\frac{2 \sqrt{2} x+15}{\sqrt{7}}$
(d) None of these
8. If a hyperbola is passing through origin and the foci are $(5,12)$ and $(24,7)$, then eccentricity of hyperbola is given by :
(a) $\frac{\sqrt{386}}{12}$
(b) $\frac{\sqrt{386}}{13}$
(c) $\frac{\sqrt{386}}{25}$
(d) $\sqrt{2}$
9. If a hyperbola passes through the focus of ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ and its transverse axis and conjugate axis coincides with major and minor axes of ellipse and the product of eccentricity of ellipse and hyperbola is 1 , then the incorrect statement is :
(a) eccentricity of hyperbola is $5 / 3$.
(b) foci of hyperbola is $(\pm 5,0)$.
(c) equation of hyperbola is $\frac{x^{2}}{8}-\frac{y^{2}}{16}=1$.
(d) area enclosed by ellipse is 20π sq. units.
10. Let the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the hyperbola $\frac{x^{2}}{p^{2}}-\frac{y^{2}}{q^{2}}=1$ be confocal, where $a>b$, and the length of minor axis of ellipse is equal to the length of conjugate axis of hyperbola. If e_{1} and e_{2} represent the eccentricity of ellipse and hyperbola respectively, then the value of $\frac{e_{1}^{2}+e_{2}^{2}}{\left(e_{1} e_{2}\right)^{2}}$ is equal to :
(a) 4
(b) 6
(c) 2
(d) 1
11. Let $x \cos \theta+y \sin \theta=p$ be the equation of variable chord of the hyperbola $2 x^{2}-y^{2}=2 a^{2}$ which subtends a right angle at the centre of hyperbola. If the variable chord is always tangential to a circle of radius ' R^{\prime}, then :
(a) $R^{2}=3 a^{2}$.
(b) $R^{2}=5 a^{2}$.
(c) $R^{2}=2 a^{2}$.
(d) $R^{2}=4 a^{2}$.
12. Let $r \in\{1,2,3,4\}$ and the normals at the points $P_{r}\left(x_{r}, y_{r}\right)$ on the curve $x y=4$ be concurrent at $Q(\alpha, \beta)$, then $\frac{\left(\sum_{r=1}^{4} x_{r}\right)\left(\sum_{r=1}^{4} y_{r}\right)}{\left(\prod_{r=1}^{4} x_{r}\right)}$ is equal to :
(a) $\frac{\alpha \beta}{16}$
(b) $-\frac{\alpha \beta}{16}$
(c) $\frac{\alpha \beta}{4}$
(d) $-\frac{\alpha \beta}{4}$
13. Let ' F_{1} ' and ' F_{2}^{\prime} ' be the foci of the hyperbola $x^{2}-y^{2}=a^{2}$ and ' C^{\prime} ' be its centre. If point ' P ' lies on the hyperbola and $P F_{1} \cdot P F_{2}=\lambda C P^{2}$, then value of $\tan ^{-1}(\lambda)$ is equal to :
(a) $\frac{\pi}{8}$
(b) $\frac{\pi}{4}$
(c) $\frac{\pi}{12}$
(d) $\frac{\pi}{3}$
14. If $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ represents a hyperbola, then area of triangle formed by the asymptotes and tangent to hyperbola at point $(a, 0)$ is equal to :
(a) $4 a b$ sq. units.
(b) $2 a b$ sq. units.
(c) $a b$ sq. units.
(d) $\frac{a b}{2}$ sq. units.
15. If $x=9$ is the chord of contact of the hyperbola $x^{2}-y^{2}=9$, then the equation of the corresponding pair of tangents is :
(a) $9 x^{2}-8 y^{2}+18 x-9=0$
(b) $9 x^{2}-8 y^{2}+18 x+9=0$
(c) $9 x^{2}-8 y^{2}-18 x-9=0$
(d) $9 x^{2}-8 y^{2}-18 x+9=0$
16. If $x y-1=\cos ^{2} \theta$, where $\theta \in[0, \pi]$, represents a family of hyperbola, then maximum area of the triangle which can be formed by any tangent to the hyperbola and the co-ordinate axes, is given by :
(a) 8 sq. units.
(b) 4 sq. units.
(c) 16 sq. units.
(d) 2 sq. units.
17. If centre of the hyperbola $x y=4$ is ' C^{\prime} and tangents $C P$ and $C Q$ are drawn to the family of circles with radius 2 units and centre lying on the hyperbola, then the locus of the circumcentre of triangles $C P Q$ is given by
(a) $x y=1$.
(b) $x y=2$.
(c) $x^{2}+y^{2}=1$.
(d) $x^{2}-y^{2}=1$.
18. If the product of the perpendicular distances of a moving point ' P ' from the pair of straight lines $2 x^{2}-3 x y-2 y^{2}+x+3 y-1=0$ is equal to 10 , then locus of point ' P ' is hyperbolic in nature whose eccentricity is equal to :
(a) $\sqrt{10}$
(b) $\sqrt{2}$
(c) $\sqrt{\frac{5}{2}}$
(d) $\frac{\sqrt{10}}{2}$
19. If tangents are drawn from any point on the hyperbola $4 x^{2}-9 y^{2}=36$ to the circle $x^{2}+y^{2}=9$, then locus of the mid point of the chord of contact is given by :
(a) $\frac{x}{9}+\frac{y^{2}}{4}=\frac{\left(x^{2}-y^{2}\right)^{2}}{81}$.
(b) $\frac{4 x^{2}+9 y^{2}}{4}=\frac{\left(x^{2}+y^{2}\right)^{2}}{81}$.
(c) $4 x^{2}-9 y^{2}=\frac{4}{9}\left(x^{2}+y^{2}\right)^{2}$.
(d) $4 x^{2}+9 y^{2}=\left(x^{2}+y^{2}\right)^{2}$.
20. Let a tangent be drawn at any point ' P ' on the hyperbola $\frac{x^{2}}{4}-\frac{y^{2}}{1}=1$ which meets the co-ordinate axes at ' Q ' and ' R '. If rectangle $Q O R S$ is completed, where ' O ' is origin, then locus of vertex ' S ' is given by :
(a) $\frac{4}{x^{2}}+\frac{1}{y^{2}}=1$
(b) $\frac{4}{x^{2}}-\frac{1}{y^{2}}=1$
(c) $\frac{1}{x^{2}}+\frac{4}{y^{2}}=1$
(d) $\frac{1}{x^{2}}-\frac{4}{y^{2}}=1$

Multiple choice questions with MORE than ONE correct answer : (Questions No. 21-25)

21. Let an ellipse $E: b^{2} x^{2}+a^{2} y^{2}=a^{2} b^{2}, a>b$, intersects the hyperbola $H: 2 x^{2}-2 y^{2}=1$ orthogonally. If the eccentricity of ellipse is reciprocal to that of the hyperbola, then :
(a) ellipse and hyperbola are confocal
(b) equation of ellipse is $x^{2}+2 y^{2}=4$
(c) the foci of ellipse are $(\pm 1,0)$
(d) director circle for ellipse is $x^{2}+y^{2}=6$
22. Let a hyperbola having the transverse axis of length $2 \sin \theta$ is confocal with the ellipse $3 x^{2}+4 y^{2}=12$, then :
(a) equation of hyperbola is

$$
x^{2} \sec ^{2} \theta-y^{2} \operatorname{cosec}^{2} \theta=1
$$

(b) focal points of hyperbola remain constant with change in ' θ '.
(c) equation of hyperbola is

$$
x^{2} \operatorname{cosec}^{2} \theta-y^{2} \sec ^{2} \theta=1
$$

(d) Directrix of hyperbola remains constant with change in ' θ '.
23. If the equation $4 x^{2}-5 y^{2}-16 x-10 y+31=0$ represents a hyperbolic curve ' C^{\prime}, then which of the following statements are incorrect :
(a) eccentricity of curve ' C ' is 1.5
(b) equation of director circle for ' C^{\prime} is $x^{2}+y^{2}=1$
(c) length of latus rectum for ${ }^{\prime} C^{\prime}$ is 5 units
(d) centre of curve ${ }^{\prime} C^{\prime}$ is $(2,-2)$
24. If the circle $x^{2}+y^{2}=1$ meet the rectangular hyperbola $x y=1$ in four points $\left(x_{i}, y_{i}\right), i=1,2,3,4$, then:
(a) $x_{1} x_{2} x_{3} x_{4}=1$
(b) $y_{1} y_{2} y_{3} y_{4}=1$
(c) $x_{1}+x_{2}+x_{3}+x_{4}=0$
(d) $y_{1}+y_{2}+y_{3}+y_{4}=0$
25. A straight line touches the rectangular hyperbola $9 x^{2}-9 y^{2}=8$ and the parabola $y^{2}=32 x$. The equation of the line is:
(a) $9 x+3 y-8=0$
(b) $9 x-3 y+8=0$
(c) $9 x+3 y+8=0$
(d) $9 x-3 y-8=0$

Assertion Reasoning questions :
 (Questions No. 26-30)

Following questions are assertion and reasoning type questions. Each of these questions contains two statements, Statement 1 (Assertion) and Statement 2 (Reason). Each of these questions has four alternative answers, only one of them is the correct answer. Select the correct answer from the given options :
(a) Both Statement 1 and Statement 2 are true and Statement 2 is the correct explanation of Statement 1.
(b) Both Statement 1 and Statement 2 are true but Statement 2 is not the correct explanation of Statement 1.
(c) Statement 1 is true but Statement 2 is false.
(d) Statement 1 is false but Statement 2 is true.
26. Statement 1 : Total number of points on the curve $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ from where mutually perpendicular tangents can be drawn to the circle $x^{2}+y^{2}=a^{2}$ are four

because

Statement 2 : Circle $x^{2}+y^{2}=2 a^{2}$ intersects the curve $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at four points.
27. Statement 1 : If point $P(\theta)$ lies on the branch of hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ in the III quadrant, then eccentric angle ' θ ' belongs to $\left(\pi, \frac{3 \pi}{2}\right)$

Hyperbola

because

Statement 2: ' θ ' point on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is given by $(a \sec \theta, b \tan \theta)$, where $\theta \in[0,2 \pi)-\left\{\frac{\pi}{2}, \frac{3 \pi}{2}\right\}$.
28. Statement 1 : Two branches of a given hyperbola may have a common tangent

because

Statement 2 : The asymptotes of hyperbola always meet at the centre of the hyperbola.
29. Statement 1 : Ellipse $E: 5 x^{2}+9 y^{2}=45$ and hyperbola $H: 3 x^{2}-y^{2}=3$ intersect each other at an angle of 90° because

Statement 2 : If an ellipse and hyperbola are confocal then they always meet orthogonally.
30. Statement 1 : If chord $P Q$ of curve $x y=9$ is parallel to its transverse axis, then circle with $P Q$ as diameter always passes through two fixed points

because

Statement 2 : The transverse axis of hyperbola $x y=9$ is given by $y-x=0$

Comprehension based Multiple choice questions

 with ONE correct answer :
Comprehension passage (1)
 (Questions No. 1-3)

If the curve $x^{2}-y^{2}=8$ is rotated about its centre by 45° in anti-clockwise sense, then equation of curve changes to $C: x y=4$. Let any point ' t ' on curve ' C ' be $\left(2 t, \frac{2}{t}\right)$, where $t \in R-\{0\}$, then answer the following questions.

1. If tangent at ' t_{1} ' point on the curve ' C ' touches the curve $y^{2}+2 x=0$, then value of ' $t{ }^{\prime}$ ' is equal to :
(a) 3
(b) 2
(c) 1
(d) $1 / 2$
2. If circle $x^{2}+y^{2}=16$ meets the curve ' C ' at t_{1}, t_{2}, t_{3} and t_{4} points, then $\sum_{i=1}^{4} t_{i}^{2}$ is equal to :
(a) 0
(b) 8
(c) 4
(d) -4
3. If t_{1} and t_{2} are the roots of the equation $x^{2}-4 x+2=0$, then point of intersection of tangents at t_{1} and t_{2} points on the curve ' C ' is :
(a) $(4,4)$
(b) $(2,1)$
(c) $(2,4)$
(d) $(6,3)$

Comprehension passage (2) (Questions No. 4-6)

Let point ' P ' moves in such a way so that sum of the slopes of the normals drawn from it to the curve $x y=16$ is equal to the sum of ordinates of the co-normal points. If the path traced by moving point ' P ' is represented by curve ' C ', then answer the following questions.
4. Equation of curve ${ }^{\prime} C^{\prime}$ is given by :
(a) $4 y-x^{2}=0$
(b) $x^{2}-12 y=0$
(c) $y^{2-} 16 x=0$
(d) $x^{2}-16 y=0$
5. If tangent to curve ' C^{\prime} meets the co-ordinate axes at M and N, then locus of the circumcentre of $\triangle M O N$, where ' O ' is origin, is given by :
(a) $x^{2}+y=0$
(b) $x^{2}+2 y=0$
(c) $y^{2}-x=0$
(d) $y+2 x^{2}=0$
6. Let normal to the curve ' C^{\prime} at point $(8, \beta)$, where $\beta \in R^{+}$, meets the co-ordinate axes at A and B, then total number of integral points inside the $\triangle A O B$ are given by :
(a) 65
(b) 60
(c) 66
(d) 55

Comprehension passage (3)

(Questions No. 7-9)
Let hyperbolic curve ' C ' and a line ' L ' be given by the equations $y^{2}-2 x^{2}-4 y+8=0$ and $y-2=0$ respectively. If tangent and normal drawn to curve ' C ' at point $P(2,4)$ meets the line ' L ' at T and N respectively, then answer the following questions.
7. Area (in square units) of $\triangle P T N$ is:
(a) 4
(b) 5
(c) 10
(d) 8
8. Area (in square units) bounded by the curve ' C ' with its tangent at ' P ' and the line ' L ' in the first quadrant is equal to :
(a) $2 \ln (\sqrt{2}+1)$
(b) $\sqrt{2} \ln (\sqrt{2}+1)+1$
(c) $\sqrt{2} \ln (\sqrt{2}+1)-1$
(d) $\sqrt{2} \ln (\sqrt{2}+1)+2$
9. Let from point $(1, k)$ a perpendicular pair of tangents can be drawn to the curve ' C^{\prime}, then
(a) exactly two real values of k exist.
(b) infinite real values of k exist.
(c) no real ' k ' exists.
(d) none of these.

Questions with Integral Answer :
 (Questions No. 10-14)

10. If the locus of the mid-points of the chords of length 4 units to the rectangular hyperbola $x y=4$ is given by the curve $\left(x^{2}+y^{2}\right)(x y-4)=\lambda x y$, then the value of ' λ ' is equal to \qquad
11. If normal at $(5,3)$ of the hyperbola $x y-y-2 x-2=0$ meet the curve again at $(p, q-29)$, then value of $\left\{\frac{q}{4 p}\right\}$ is equal to

Hyperbola

12. Let point $P(\alpha, \beta)$ lies on the hyperbola $x y=7$!, where $\alpha, \beta \in I$. If the total number of possible locations for ' P ' is N, then $\frac{N}{40}$ is equal to \qquad
13. Maximum number of different lines which are normal to parabola $y^{2}=4 x$ as well as tangent to hyperbola $x^{2}-y^{2}=1$ is / are . \qquad
14. If the chords of hyperbola $x^{2}-y^{2}=4$ touch the parabola $y^{2}=8 x$ and the locus of middle points of these chords is given by $y^{2}(x-\lambda)-x^{3}=0$, then value of λ is equal to \qquad

Matrix Matching Questions :
 (Questions No. 15-16)

15. Match the curves in column (I) with the corresponding possibility for common normal and common tangent in column (II).

Column (I)

(a) curves $x^{2}+y^{2}=8$ and $y^{2}-16 x=0$ have
(b) curves $x^{2}+16 y^{2}=16$ and $x^{2}+y^{2}=4$ have
(c) curves $x^{2}+4 y^{2}=16$ and $x^{2}-12 y^{2}=12$ have
(d) curves $x^{2}+y^{2}=1$ and $x^{2}+y^{2}-4 x-2 y-11=0$ have
16. Match the following column (I) and column (II).

Column (I)

(a) The angle between the pair of tangents drawn to the ellipse $3 x^{2}+2 y^{2}=5$ from the point $(1,2)$ is
(b) The inclination of the chord of the hyperbola $25 x^{2}-16 y^{2}=400$ which is bisected at $(6,2)$ with the x-axis is
(c) The angle between the asymptotes of the hyperbola $9 x^{2}-16 y^{2}+18 x+32 y-151=0$ is
(d) The angle between the tangents at $(9,6)$ on $y^{2}=4 x$ and the focal chord of the parabola through $(9,6)$ is

Column (II)

(p) common normal.
(q) no common tangent.
(r) two common tangents.
(s) four common tangents.

Column (II)

(p) $\tan ^{-1}\left(\frac{24}{7}\right)$
(q) $\tan ^{-1}\left(\frac{1}{3}\right)$
(r) $\tan ^{-1}\left(\frac{12}{\sqrt{5}}\right)$
(s) $\tan ^{-1}\left(\frac{75}{16}\right)$

1. (b)	2. (d)	3. (a)	4. (b)	5. (d)
6. (b)	7. (b)	8. (a)	9. (c)	10. (c)
11. (c)	12. (b)	13. (b)	14. (c)	15. (d)
16. (b)	17. (a)	18. (b)	19. (c)	20. (b)
21. (a, c)	22. (b , c)	23. (b, d)	24. (a , b , c, d)	25. (a , b , c , d)
26. (a)	27. (d)	28. (d)	29. (a)	30. (b)

ANSWERS

Exercise No. (2)

1. (b)
2. (b)
3. (b)
4. (d)
5. (b)
6. (d)
7. (b)
8. (c)
9. (c)
10. (4)
11. (5)
12. (3)
13. (0)
14. (2)
15. (a) $\rightarrow \mathrm{p}, \mathrm{r}$
16. (a) $\rightarrow r$
(b) $\rightarrow \mathrm{p}, \mathrm{s}$
(c) $\rightarrow \mathrm{p}, \mathrm{q}$
(d) $\rightarrow \mathrm{p}, \mathrm{q}$
(b) $\rightarrow \mathrm{s}$
(c) $\rightarrow \mathrm{p}$
(d) \rightarrow q

Vectors

Exercise No. (1)

Multiple choice questions with ONE correct answer :

(Questions No. 1-30)

1. If \vec{b} and \vec{c} are two non-collinear unit vectors and \vec{a} is any vector, then $(\vec{a} \cdot \vec{b}) \vec{b}+(\vec{a} \cdot \vec{c}) \vec{c}+\frac{\vec{a} \cdot(\vec{b} \times \vec{c})}{|\vec{b} \times \vec{c}|^{2}}(\vec{b} \times \vec{c})$ is equal to :
(a) $\overrightarrow{0}$
(b) \vec{a}
(c) \vec{b}
(d) \vec{c}
2. In a quadrilateral $P Q R S, \overrightarrow{P Q}=\vec{a}, \overrightarrow{Q R}=\vec{b}$ and $\overrightarrow{S P}=\vec{a}-\vec{b}, M$ is mid point of $Q R$ and X is a point on $S M$ such that $S X=k S M$, if P, X and R are collinear , then k equals to :
(a) $\frac{4}{7}$
(b) $\frac{7}{4}$
(c) $\frac{4}{5}$
(d) $\frac{5}{4}$
3. If \vec{a} and \vec{b} are unit vectors perpendicular to each other and \vec{c} is another unit vector inclined at an angle θ to both \vec{a} and \vec{b}, if $\vec{c}=\{p(\vec{a}+\vec{b})+q(\vec{a} \times \vec{b})\} ; p, q \in R$, then
(a) $\frac{\pi}{4} \leq \theta \leq \pi$
(b) $\frac{\pi}{4} \leq \theta \leq \frac{3 \pi}{4}$
(c) $0 \leq \theta \leq \frac{\pi}{4}$
(d) $\theta \in[0, \pi]$
4. If non-zero vector \vec{a} satisfy the condition $\hat{k} \times[(\vec{a}-\hat{i}) \times \hat{k}]+\hat{j} \times[(\vec{a}-\hat{k}) \times \hat{j}]+\hat{i} \times[(\hat{a}-\hat{j}) \times \hat{i}]=0$, then $|\vec{a}|$ is equal to :
(a) 1
(b) $\frac{1}{\sqrt{3}}$
(c) $\frac{3}{2 \sqrt{3}}$
(d) none of these
5. If $[\vec{a} \vec{b} \quad \vec{x}]=0 ; \vec{a} \cdot \vec{x}=7$ and $\vec{x} \cdot \vec{b}=0, \vec{a}(-1,1,1)$ and $\vec{b}(2,0,1)$, then \vec{x} is :
(a) $-3 \hat{i}+4 \hat{j}+6 \hat{k}$
(b) $-\frac{3}{2} \hat{i}+\frac{5}{2} \hat{j}+3 \hat{k}$
(c) $3 \hat{i}+16 \hat{j}-6 \hat{k}$
(d) $3 \hat{i}-5 \hat{j}-6 \hat{k}$
6. If $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar non-zero vectors and \vec{r} is any vector is space, then $(\vec{a} \times \vec{b}) \times(\vec{r} \times \vec{c})+(\vec{b} \times \vec{c}) \times(\vec{r} \times \vec{a})+(\vec{c} \times \vec{a}) \times(\vec{r} \times \vec{b})$ is :
(a) $2[\vec{a} \vec{b} \vec{c}] \vec{r}$
(b) $3[\vec{a} \vec{b} \vec{c}] \vec{r}$
(c) $\left[\begin{array}{lll}a & \vec{b} & \vec{c}\end{array}\right] \vec{r}$
(d) $\overrightarrow{0}$
7. If three concurrent edges of a parallelepiped represent the vectors $\vec{a}, \vec{b}, \vec{c}$ such that $[\vec{a} \vec{b} \vec{c}]=\lambda, \lambda \in R^{+}$, then volume of parallelepiped whose three concurrent edges are the three concurrent diagonals of three faces of given parallelepiped is :
(a) λ
(b) 2λ
(c) 3λ
(d) $\frac{\lambda}{2}$
8. If \vec{a}, \vec{b} and \vec{c} are unit vectors, then value of $|\vec{a}-\vec{b}|^{2}+|\vec{b}-\vec{c}|^{2}+|\vec{c}-\vec{a}|^{2}$ doesn't exceed :
(a) 4
(b) 9
(c) 8
(d) 6
9. For coplanar points $A(\vec{a}), B(\vec{b}), C(\vec{c})$ and $D(\vec{d})$ if $(\vec{a}-\vec{d}) \cdot(\vec{b}-\vec{c})=(\vec{b}-\vec{d}) \cdot(\vec{c}-\vec{a})=0$, then point D for $\triangle A B C$ is :
(a) Incentre
(b) Circumcentre
(c) Orthocentre
(d) Centroid

Vectors

10. A unit vector in plane of vectors $2 \hat{i}+\hat{j}+\hat{k}, \hat{i}-\hat{j}+\hat{k}$ and orthogonal to $5 \hat{i}+2 \hat{j}+6 \hat{k}$ is :
(a) $\frac{6 \hat{i}-5 \hat{k}}{\sqrt{61}}$
(b) $\frac{3 \hat{j}-\hat{k}}{\sqrt{10}}$
(c) $\frac{2 \hat{i}-5 \hat{j}}{\sqrt{29}}$
(d) $\frac{2 \hat{i}+\hat{j}-2 \hat{k}}{3}$
11. Let $|\vec{b}|=|\vec{c}|=1$ and \vec{a} is any vector, then value of $(\vec{a} \times(\vec{b}+\vec{c})) \times(\vec{b} \times \vec{c}) \cdot(\vec{b}-\vec{c})$ is always equal to :
(a) $|\vec{a}|$
(b) 1
(c) 0
(d) none of these
12. If equations $\vec{r} \times \vec{a}=\vec{b}$ and $\vec{r} \times \vec{c}=\vec{d}$ are consistent, then
(a) $\vec{a} \cdot \vec{d}+\vec{b} \cdot \vec{c}=0$
(b) $\vec{a} \cdot \vec{d}=\vec{c} \cdot \vec{d}$
(c) $\vec{b} \cdot \vec{c}=\vec{a} \cdot \vec{d}=0$
(d) $\vec{a} \cdot \vec{d}+\vec{c} \cdot \vec{d}=0$
13. Let $\vec{a}=\hat{i}+2 \hat{j}+\hat{k}, \vec{b}=\hat{i}-\hat{j}+\hat{k} \quad$ and $\vec{c}=\hat{i}+\hat{j}-\hat{k}$. A vector \vec{d} lies in plane of \vec{a} and \vec{b} and its projection on \vec{c} is of magnitude $\frac{1}{\sqrt{3}}$ units, then \vec{b} is :
(a) $2 \hat{i}+\hat{j}+2 \hat{k}$
(b) $4 \hat{i}-\hat{j}+3 \hat{k}$
(c) $3 \hat{i}-\hat{j}+2 \hat{k}$
(d) $-\hat{i}+2 \hat{j}+3 \hat{k}$
14. Let $\vec{a}, \vec{b}, \vec{c}$ be three non-coplanar vectors where $\overrightarrow{b_{1}}=\vec{b}-\frac{\vec{b} \cdot \vec{a}}{|\vec{a}|^{2}} \vec{a} \quad$ and $\quad \overrightarrow{c_{1}}=\vec{c}-\frac{\vec{c} \cdot \vec{a}}{|\vec{a}|^{2}} \vec{a}-\frac{\overrightarrow{b_{1}} \cdot \vec{c}}{\left|\overrightarrow{b_{1}}\right|^{2}} \overrightarrow{b_{1}}$, then :
(a) $\overrightarrow{b_{1}} \cdot \vec{b}=0$
(b) $\vec{a} \times \overrightarrow{b_{1}}=\overrightarrow{0}$
(c) $\overrightarrow{b_{1}} \cdot \overrightarrow{c_{1}}=0$
(d) $\vec{c} \times \overrightarrow{c_{1}}=\overrightarrow{0}$
15. For non-zero vectors $\vec{a}, \vec{b}, \vec{c}$ the equality $|(\vec{a} \times \vec{b}) \cdot \vec{c}|=|\vec{a}||\vec{b}||\vec{c}|$ holds if and only if :
(a) $\vec{a} \cdot \vec{b}=0 ; \vec{b} \cdot \vec{c}=0$.
(b) $\vec{b} \cdot \vec{c}=0 ; ~ \vec{c} \cdot \vec{a}=0$.
(c) $\vec{a} \cdot \vec{c}=\vec{a} \cdot \vec{b}=0$.
(d) $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}=\vec{c} \cdot \vec{a}=0$.
16. If a non-zero vector \vec{a} is parallel to the line of intersection of the planes determined by vectors \hat{i}, $\hat{i}+\hat{j}$ and the plane determined by $\hat{i}-\hat{j}, \hat{i}+\hat{k}$, then angle between \vec{a} and $\hat{i}-2 \hat{j}+2 \hat{k}$ is
(a) $\frac{\pi}{6}$
(b) $\frac{\pi}{3}$
(c) 0
(d) $\frac{\pi}{4}$
17. If \vec{a} and \vec{b} are non-parallel vectors and $\sqrt{3}(\hat{a} \times \vec{b})$ and $\vec{b}-(\hat{a} \cdot \vec{b}) \hat{a}$ represent two sides of a triangle, then internal angles of triangle are :
(a) $90^{\circ}, 45^{\circ}, 45^{\circ}$
(b) $90^{\circ}, 60^{\circ}, 30^{\circ}$
(c) $90^{\circ}, 75^{\circ}, 15^{\circ}$
(d) none of these
18. Let $\vec{V}=2 \hat{i}+\hat{j}-\hat{k}$ and $\vec{W}=\hat{i}+3 \hat{k}$, if \vec{U} is unit vector, then minimum value of $[\vec{U} \vec{V} \vec{W}]$ is :
(a) 0
(b) $-\sqrt{60}$
(c) $-\sqrt{59}$
(d) $-\sqrt{10}+\sqrt{6}$
19. If incident ray is along unit vector \hat{v} and the reflected ray is along unit vector \hat{w}, the normal is along unit vector \hat{a} outwards, then \hat{w} is equal to :

(a) $\vec{v}+2(\vec{a} \cdot \vec{v}) \hat{a}$
(b) $\hat{v}-2(\hat{a} \cdot \hat{v}) \hat{a}$
(c) $\hat{v}+2(\hat{a} \cdot \hat{v}) \hat{a}$
(d) none of these
20. If in a $\triangle A B C, \overrightarrow{B C}=\frac{\vec{e}}{|\vec{e}|}-\frac{\vec{f}}{|\vec{f}|}$ and $\overrightarrow{A C}=\frac{2 \vec{e}}{|\vec{e}|}$; $|\vec{e}| \neq|\vec{f}|$, then value of $(\cos 2 A+\cos 2 B+\cos 2 C)$ is:
(a) -1
(b) 0
(c) 2
(d) $-\frac{3}{2}$
21. If $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are unit vectors such that $(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})=1$ and $\vec{a} \cdot \vec{c}=\frac{1}{2}$, then
(a) $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar
(b) $\vec{b}, \vec{c}, \vec{d}$ are non-coplanar
(c) \vec{b}, \vec{d} are non-parallel
(d) \vec{a}, \vec{d} are parallel and \vec{b}, \vec{c} are parallel
22. Let $\vec{a}, \vec{b}, \vec{c}$ be non-coplanar vectors and P_{1}, P_{2}, P_{3}, P_{6} are six permutations of S.T.P. of \vec{a}, \vec{b} and \vec{c} then $\frac{P_{i}}{P_{j}}+\frac{P_{k}}{P_{l}}$, where i, j, k, l are different numbers from 1 to 6 , can not attain the value :
(a) 0
(b) 1
(c) 2
(d) -2
23. If $A(\vec{a}), B(\vec{b}), C(\vec{c})$ and $D(\vec{d})$ form a cyclic quadrilateral, then value of
$\left\{\frac{|\vec{a} \times \vec{b}+\vec{b} \times \vec{d}+\vec{d} \times \vec{a}|}{(\vec{b}-\vec{a}) \cdot(\vec{d}-\vec{a})}+\frac{|\vec{b} \times \vec{c}+\vec{c} \times \vec{a}+\vec{d} \times \vec{b}|}{(\vec{b}-\vec{c}) \cdot(\vec{d}-\vec{c})}\right\}$ is :
(a) 1
(b) 0
(c) $\frac{1}{4}$
(d) 4
24. For non-coplanar vectors $\vec{a}, \vec{b}, \vec{c}$ if $\vec{r}=(\vec{a} \cdot \vec{b}) \vec{c}-(\vec{a} \cdot \vec{c}) \vec{b}$ then which one of the following options is incorrect?
(a) $\vec{r} \cdot \vec{a}=0$
(b) $\vec{r} \cdot \vec{b} \times \vec{c}=0$
(c) $\vec{r} \cdot \vec{a} \times \vec{c}=0$
(d) $\vec{r}=(\vec{b} \times \vec{c}) \times \vec{a}$
25. If $\vec{a}=3 \hat{i}-2 \hat{j}+2 \hat{k}$ and $\vec{b}=-\hat{i}-2 \hat{k}$ are adjacent sides of a parallelogram, then angle between its diagonals is :
(a) $\frac{\pi}{6}$
(b) $\frac{\pi}{3}$
(c) $\frac{3 \pi}{4}$
(d) $\frac{2 \pi}{3}$
26. If $\vec{a}=x \hat{i}+(x-1) \hat{j}+\hat{k}$ and $\vec{b}=(x+1) \hat{i}+\hat{j}+a \hat{k}$ always form an acute angle with each other $\forall x \in R$, then
(a) $a \in(-\infty, 2)$
(b) $a \in(2, \infty)$
(c) $a \in(-\infty, 1)$
(d) $a \in(1, \infty)$
27. Let $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} be any four vectors, then $\left[\begin{array}{lll}\vec{a} \times \vec{b} & \vec{a} \times \vec{c} & \vec{d}\end{array}\right]$ is always equal to :
(a) $(\vec{a} \cdot \vec{d})[\vec{a} \vec{b} \vec{c}]$
(b) $(\vec{a} \cdot \vec{c})[\vec{a} \vec{b} \vec{c}]$
(c) $(\vec{a} \cdot \vec{b})[\vec{a} \vec{b} \vec{d}]$
(d) 0
28. Let \vec{a} and \vec{b} be two non-collinear unit vectors, if $\overrightarrow{u_{1}}=\vec{a}-(\vec{a} \cdot \vec{b}) \vec{b}$ and $\overrightarrow{u_{2}}=\vec{a} \times \vec{b}$, then $\left|\overrightarrow{u_{2}}\right|$ is equal to :
(a) $\left|\overrightarrow{u_{1}}\right|+\left|\overrightarrow{u_{1}} \cdot \vec{a}\right|$
(b) $\left|\overrightarrow{u_{1}} \cdot(\vec{a}+\vec{b})\right|$
(c) $\left|\overrightarrow{u_{1}}\right|+\left|\overrightarrow{u_{1}} \cdot \vec{b}\right|$
(d) $\left|\overrightarrow{u_{1}} \cdot(\vec{a}-\vec{b})\right|$
29. Let $\vec{r}, \vec{a}, \vec{b}$ and \vec{c} be four non-zero vectors such that $\vec{r} \cdot \vec{a}=0,|\vec{r} \times \vec{b}|=|\vec{r}||\vec{b}|$ and $|\vec{r} \times \vec{c}|=|\vec{r}||\vec{c}|$, then $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$ is equal to :
(a) 0
(b) $|\vec{a}||\vec{b}||\vec{c}|$
(c) $|\vec{a}|+|\vec{b}|+|\vec{c}|$
(d) $-|\vec{a}||\vec{b}||\vec{c}|$
30. Let $A B C D$ be parallelogram, where A_{1} and B_{1} are the midpoints of side $B C$ and $C D$ respectively, if $\overrightarrow{A A_{1}}+\overrightarrow{A B_{1}}=\lambda \overrightarrow{A C}$, then ' λ ' is equal to :
(a) $\frac{4}{3}$
(b) $\frac{3}{2}$
(c) $\frac{4}{5}$
(d) $\frac{5}{4}$

Multiple choice questions with MORE than ONE

 correct answer : (Questions No. 31-35)31. In triangle $A B C$, let $\overrightarrow{C B}=\vec{a}, \overrightarrow{C A}=\vec{b}$ and the altitude from vertex B on the opposite side meets the side $C A$ at D. If $\overrightarrow{C D}=\vec{\lambda}$ and $\overrightarrow{D B}=\vec{\mu}$, then :
(a) $\vec{\lambda}=\frac{(\vec{a} \cdot \vec{b}) \vec{a}}{|\vec{a}|^{2}}$
(b) $\vec{\lambda}=\frac{(\vec{a} \cdot \vec{b}) \vec{b}}{|\vec{b}|^{2}}$
(c) $\vec{\mu}=\frac{|\vec{b}|^{2} \vec{a}-(\vec{a} \cdot \vec{b}) \vec{b}}{|\vec{b}|^{2}}$
(d) $\vec{\mu}=\frac{\vec{b} \times(\vec{a} \times \vec{b})}{|\vec{b}|^{2}}$

Vectors

32. Let $\vec{b}=\left(\frac{e}{e^{\cos ^{2} x}}\right) \hat{i}+(\cos x) \hat{j}+[|\sin x|+|\cos x|] \hat{k}$ and $\vec{a}=\left(e^{\sin ^{2} x}\right) \hat{i}+\left(x e^{\sin x}\right) \hat{j}+\hat{k}$, where [.] represents the greatest integer function. If $\vec{a} \times \vec{b}=\overrightarrow{0}$, then :
(a) unique value of x exists in $\left(0, \frac{\pi}{2}\right)$.
(b) exactly two values of x exist in $\left(0, \frac{\pi}{2}\right)$.
(c) no value of x exist in $\left(-\frac{3 \pi}{2},-\pi\right)$.
(d) unique value of x exists in $\left(-\frac{3 \pi}{2},-\pi\right)$.
33. Let \hat{a} and \hat{b} be two unit vectors such that $\hat{a} \cdot \hat{b}>0$. A point P moves so that at any time t the position vector $\overrightarrow{O P}$ is given by $(\cos t) \hat{a}+(\sin t) \hat{b}$. When ' P^{\prime} is farthest from origin ' O ', let ' L ' be the length of $\overrightarrow{O P}$ and \hat{n} be the unit vector along $\overrightarrow{O P}$, then:
(a) $\hat{n}=\frac{\hat{a}+\hat{b}}{|\hat{a}+\hat{b}|}$
(b) $\hat{n}=\frac{\hat{a}-\hat{b}}{|\hat{a}-\hat{b}|}$
(c) $L=\sqrt{1+\hat{a} \cdot \hat{b}}$
(d) $L=\sqrt{1+2 \hat{a} \cdot \hat{b}}$
34. If $\lambda \in R, \vec{a}=\left(-\lambda^{2}\right) \hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}-\left(\lambda^{2}\right) \hat{j}+\hat{k}$ and $\vec{c}=\hat{i}+\hat{j}-\left(\lambda^{2}\right) \hat{k}$, then which of the following statements are correct?
(a) $(\vec{a} \times \vec{b}) \cdot \vec{c}$ is zero for exactly one positive value of λ.
(b) $(\vec{a} \times \vec{b}) \cdot \vec{c}$ is zero for exactly four real values of λ,
(c) $(\vec{a} \times \vec{b}) \cdot \vec{c}$ is zero for exactly one negative value of λ.
(d) $(\vec{a} \times \vec{b}) \cdot \vec{c}$ is zero for at least four real values of λ.
35. Let a, b, c be the sides of a scalene triangle and $\lambda \in R$. If angle between the vectors $\vec{\alpha}$ and $\vec{\beta}$ is not more that $\frac{\pi}{2}$, where $\vec{\alpha}=(a+b+c) \hat{i}-3 \lambda \hat{j}+a c \hat{k}$ and $\vec{\beta}=(a+b+c) \hat{i}+(a b+b c) \hat{j}-3 \lambda \hat{k}$, then exhaustive set of values of ' λ ' contains :
(a) $[-1,0]$
(b) $\left[0, \frac{4}{3}\right]$
(c) $\left(\tan \frac{\pi}{8}, \tan \frac{3 \pi}{8}\right)$
(d) $\left[1, \frac{5}{4}\right]$

Assertion Reasoning questions :
 (Questions No. 36-40)

Following questions are assertion and reasoning type questions. Each of these questions contains two statements, Statement 1 (Assertion) and Statement 2 (Reason). Each of these questions has four alternative answers, only one of them is the correct answer. Select the correct answer from the given options :
(a) Both Statement 1 and Statement 2 are true and Statement 2 is the correct explanation of Statement 1.
(b) Both Statement 1 and Statement 2 are true but Statement 2 is not the correct explanation of Statement 1.
(c) Statement 1 is true but Statement 2 is false.
(d) Statement 1 is false but Statement 2 is true.
36. Statement 1 : Let $\vec{a}, \vec{b}, \vec{c}$ be three non-zero vectors such that $\vec{a} \times(\vec{b} \times \vec{c})$ is perpendicular to $(\vec{a} \times \vec{b}) \times \vec{c}$, then value of $\vec{a} \cdot \vec{c}$ must be zero

because

Statement 2: $\vec{a} \times(\vec{b} \times \vec{c})$ reprsents a vector which lie in the plane of vectors \vec{b} and \vec{c}, and is perpendicular to \vec{a} where the magnitude of $\vec{a}, \vec{b}, \vec{c}$ is non-zero.
37. Statement 1 : Let $\vec{a}=\hat{i}+2 \hat{j}+4 \hat{k}, \vec{b}=\hat{i}-\hat{j}-6 \hat{k}$ be two vectors such that $\vec{r} \times \vec{a}=\vec{a} \times \vec{b}$ and $\vec{r} \times \vec{b}=\vec{b} \times \vec{a}$, then unit vector along the direction of \vec{r} is given by $\pm \frac{1}{9}(2 \hat{i}+\hat{j}-2 \hat{k})$

because

Statement 2: \vec{r} is parallel to $\vec{a}+\vec{b}$.
38. Statement 1 : If $\vec{u}, \vec{v}, \vec{w}$ are non-coplanar vectors and $p, q \in R$, then the equality $\left[\begin{array}{lll}3 \vec{u} & p \vec{v} & p \vec{w}\end{array}\right]-\left[\begin{array}{lll}p \vec{v} & \vec{w} & q \vec{u}\end{array}\right]-\left[\begin{array}{lll}2 \vec{w} & q \vec{v} & q \vec{u}\end{array}\right]=0$ holds for exactly one ordered pair (p, q)

because

Statement 2 : if $a x^{2}+b x y+c y^{2}=0$ where $a, b, c \in R$ and $a \neq 0, b^{2}-4 a c<0$, then $x=y=0$, provided $x, y \in R$.
39. Statement $1:$ Let \vec{a} and \vec{b} be two perpendicular unit vectors such that $\vec{r}=\vec{b}+(\vec{r} \times \vec{a})$, then $|\vec{r}|$ is equal to $\frac{\sqrt{2}}{2}$
because
Statement 2: $2 \vec{r}=\vec{b}+\vec{a} \times \vec{b}$
40. Statement 1 : Let $\vec{a}, \vec{b}, \vec{c}$ be non-coplanar and non-zero vectors such that $\vec{r}=(\vec{a} \times \vec{b}) \times(\vec{a} \times \vec{c})$, then \vec{r} and \vec{a} are linearly dependent vectors

because

Statement 2: \vec{r} is perpendicular to the vectors \vec{b} and \vec{c}.

Exercise No. (2)

Comprehension based Multiple choice questions

 with ONE correct answer :
Comprehension passage (1)
 (Questions No. 1-3)

For triangle $A B C$, let the position vector of the vertices A, B, C be $\hat{i}-2 \hat{j}+2 \hat{k}, \hat{i}+4 \hat{j}$ and $-4 \hat{i}+\hat{j}+\hat{k}$ respectively. If point D lies on the side $A C$, where $\overrightarrow{A D} \cdot \overrightarrow{B D}=0$, then answer the following questions.

1. If ' O ' represents the origin, then value of $|\overrightarrow{O D}|$ is equal to :
(a) $3 \sqrt{\frac{5}{7}}$
(b) $2 \sqrt{\frac{15}{7}}$
(c) $\sqrt{\frac{50}{7}}$
(d) $\sqrt{\frac{39}{7}}$
2. Area (in square units) of the triangle $C D B$ is equal to :
(a) $\frac{150 \sqrt{6}}{49}$
(b) $\frac{75 \sqrt{6}}{49}$
(c) $\frac{10 \sqrt{3}}{7}$
(d) $\frac{60 \sqrt{5}}{7}$
3. The angle $D B C$ is equal to :
(a) $\frac{\pi}{12}$
(b) $\cos ^{-1}\left(\frac{2 \sqrt{10}}{7}\right)$
(c) $\cos ^{-1}\left(\frac{3 \sqrt{5}}{7}\right)$
(d) $\cos ^{-1}\left(\frac{\sqrt{13}}{7}\right)$

Comprehension passage (2)

(Questions No. 4-6)

Let $P(\vec{p}), Q(\vec{p}+\vec{r}), R(\vec{r}), S(\lambda \vec{p})$ and $T(\lambda \vec{r})$ represents the vertices of a regular polygon $P Q R S T$, where the area (in square units) enclosed by the polygon is given by $\mu|\vec{p} \times \vec{r}|$. If the centre of polygon $P Q R S T$ is C_{0}, then answer the following questions.
4. The value of $\frac{|\overrightarrow{P S}|}{|\overrightarrow{Q R}|}$ is equal to :
(a) $\frac{\sqrt{5}-1}{4}$
(b) $\frac{\sqrt{5}+1}{2}$
(c) $\frac{\sqrt{5}+1}{4}$
(d) $\frac{\sqrt{5}-1}{2}$
5. The value of ' μ ' is equal to :
(a) $\frac{5-\sqrt{5}}{2}$
(b) $\frac{\sqrt{5}-1}{2}$
(c) $\frac{\sqrt{5}+1}{4}$
(d) $\frac{5+\sqrt{5}}{4}$
6. The position vector of centre ' C_{0} ' is :
(a) $\frac{5+\sqrt{5}}{10}(\stackrel{\rightharpoonup}{p}+\vec{q})$
(b) $\frac{5+\sqrt{5}}{2}(\vec{p}+\vec{q})$
(c) $\frac{5-\sqrt{5}}{5}(\vec{p}+\vec{q})$
(d) $\frac{5-\sqrt{5}}{10}(\vec{p}+\vec{q})$

Comprehension passage (3)
 (Questions No. 7-9)

Let $\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}$ and $\vec{f}_{1}, \vec{f}_{2}, \vec{f}_{3}$ be two sets of noncoplanar vectors such that $\vec{e}_{m} \cdot \vec{f}_{n}=\left\{\begin{array}{ll}1 & ; m=n \\ 0 & ; m \neq n\end{array}\right.$, where $m, n \in\{1,2,3\}$. If values of $\left[\begin{array}{lll}\vec{e}_{1} & \vec{e}_{2} & \vec{e}_{3}\end{array}\right]$ and $\left[\vec{f}_{1} \vec{f}_{2} \vec{f}_{3}\right]$ are positive, then answer the following questions.
7. The least value of $16\left[\begin{array}{lll}\vec{e}_{1} & \vec{e}_{2} & \vec{e}_{3}\end{array}\right]+9\left[\begin{array}{lll}\vec{f}_{1} & \vec{f}_{2} & \vec{f}_{3}\end{array}\right]$ is equal to :
(a) 10
(b) 24
(c) 12
(d) 20
8. Let $\alpha=\left[\begin{array}{lll}\vec{e}_{1}+\vec{e}_{2} & \vec{e}_{2}+\vec{e}_{3} & \vec{e}_{3}+\vec{e}_{1}\end{array}\right]$ and $\beta=\left[\begin{array}{lll}\vec{f}_{1}+\vec{f}_{2} & \vec{f}_{2}+\vec{f}_{3} & \vec{f}_{3}+\vec{f}_{1}\end{array}\right]$, then roots of the equation $\left[\begin{array}{llll}2 \vec{e}_{1} & 4 \vec{e}_{2} & 3 \vec{e}_{3}\end{array}\right] x^{2}+(\alpha \beta) x+\left[\begin{array}{llll}2 \vec{f}_{1} & \vec{f}_{2} & 3 \vec{f}_{3}\end{array}\right]=0$ are :
(a) real and distinct
(b) real and equal
(c) imaginary
(d) real
9. Let $\alpha=\left[\begin{array}{lll}\vec{e}_{1} \times \vec{e}_{2} & \vec{e}_{2} \times \vec{e}_{3} & \vec{e}_{3} \times \vec{e}_{1}\end{array}\right]$ and $\beta=\left[\begin{array}{lll}\vec{f}_{1} \times \vec{f}_{2} & \vec{f}_{2} \times \vec{f}_{3} & \vec{f}_{3} \times \vec{f}_{1}\end{array}\right]$, then the incorrect statement is :
(a) there exists some x such that $\sin x+\cos x=\alpha \beta$
(b) equation $x^{2}+(\alpha \beta) x+1$ is having two different roots
(c) least value of $(9 \alpha+4 \beta)$ is 12
(d) there exists some x such that $|\sin x|+|\cos x|=\alpha+\beta$

Questions with Integral Answer : (Questions No. 10-15)

10. Let \vec{a} and \vec{b} be two non-collinear unit vectors such that $\left|\frac{\vec{a}+\vec{b}}{2}+\vec{a} \times \vec{b}\right|=1$, then value of $\frac{|\vec{a}-\vec{b}|}{|\vec{a} \times \vec{b}|}$ is equal to . \qquad
11. Let $\sum_{r=1}^{3}\left(a_{r}+b_{r}+c_{r}\right)=6$, where a_{r}, b_{r}, c_{r} are nonnegative real numbers and $r \in\{1,2,3\}$. If ' V ' be the volume of the parallelepiped formed by three coterminous edges representing the vectors $a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}, b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$ and $c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$, then the maximum value of ' V ' is equal to
12. If $\vec{b}=\vec{a} \times(\hat{i} \times \vec{a})+\vec{a} \times(\hat{j} \times \vec{a})+\vec{a} \times(\hat{k} \times \vec{a})$ and $\vec{a} \cdot(\hat{i}+\hat{j}+\hat{k})=0$, then value of $\left\{\frac{|\vec{b}|^{2}}{|\vec{a}|^{4}}\right\}$ is equal to . \qquad
13. Let \vec{a} be unit vector and $\vec{b}=2 \hat{i}-2 \hat{j}-\hat{k}, \vec{c}=2 \hat{i}-\hat{j}$, where \vec{a} is non-collinear with \vec{b} and \vec{c}. If $P=\{(\vec{a}-\vec{b}) \times(\vec{a}-\vec{b}-\vec{c})\} \cdot(\vec{a}+2 \vec{b}-\vec{c})$, then maximum value of ' P ' is equal to \qquad
14. Let $\vec{u}, \vec{v}, \vec{w}$ be three non-coplanar unit vectors, where $\vec{u} \cdot \vec{v}=\cos \alpha, \vec{v} \cdot \vec{w}=\cos \beta$ and $\vec{w} \cdot \vec{u}=\cos \gamma$. If \vec{x}, \vec{y} and \vec{z} are the unit vectors along the bisector of the angles α, β and γ respectively, then value of $\left\{\frac{\left[\begin{array}{ll}\vec{u} & \vec{v} \\ \vec{w}\end{array}\right]^{2} \sec ^{2} \frac{\alpha}{2} \sec ^{2} \frac{\beta}{2} \sec ^{2} \frac{\gamma}{2}}{\left[\begin{array}{ll}\vec{x} \times \vec{y} & \vec{y} \times \vec{z}\end{array} \vec{z} \times \vec{x}\right]}\right\}^{\frac{1}{2}}$ is equal to ...
15. Match the following columns (I) and (II).

Column (I)

(a) If $\vec{a}, \vec{b}, \vec{c}$ form sides $\overrightarrow{B C}, \overrightarrow{C A}, \overrightarrow{A B}$ of $\triangle A B C$, then
(b) If $\vec{a}, \vec{b}, \vec{c}$ are forming three adjacent sides of regular tetrahedron, then
(c) If $\vec{a} \times \vec{b}=\vec{c}, \vec{b} \times \vec{c}=\vec{a}$, where $\vec{a}, \vec{b}, \vec{c}$ are non-zero vectors, then
(d) If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors, and $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$, then

Column (II)

(p) $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}=\vec{c} \cdot \vec{a}$
(q) $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}=\vec{c} \cdot \vec{a}=0$
(r) $|\vec{a} \times \vec{b}|=|\vec{b} \times \vec{c}|=|\vec{c} \times \vec{a}|$
(s) $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}=-\frac{3}{2}$

Vectors

16. Match the following columns (I) and (II).

Column (I)

(a) If $\vec{a}, \vec{b}, \vec{c}$ are three collinear vectors, then
(b) If $\vec{a}, \vec{b}, \vec{c}$ are three coplanar vectors, then
(c) If $\vec{a}, \vec{b}, \vec{c}$ are three non-coplanar vectors, then
(d) If $\vec{a}, \vec{b}, \vec{c}$ are three non-zero vectors such that exactly two of them are collinear , then

Column (II)

(p) the vectors are position vectors of three collinear points
(q) the volume of parallelopiped formed by the vectors is non-zero
(r) the volume of parallelopiped formed by the vectors is zero
(s) there exists a plane which contain all the three vectors

1. (b)	2. (c)	3. (b)	4. (c)	5. (b)
6. (a)	7. (b)	8. (b)	9. (c)	10. (b)
11. (c)	12. (a)	13. (a)	14. (c)	15. (d)
16. (d)	17. (b)	18. (c)	19. (b)	20. (a)
21. (c)	22. (b)	23. (b)	24. (c)	25. (c)
26. (b)	27. (a)	28. (c)	29. (a)	30. (b)
31. $(\mathrm{b}, \mathrm{c}, \mathrm{d})$	32. (a, c)	33. (a, c)	34. (a, c)	35. (a, d)
36. (d)	37. (a)	38. (a)	39. (c)	40. (c)

ANSWERS

Exercise No. (2)

1. (d)
2. (d)
3. (8)
4. (a) $\rightarrow r$
(b) $\rightarrow \mathrm{p}, \mathrm{r}$
(c) $\rightarrow \mathrm{q}, \mathrm{p}, \mathrm{r}$
5. (a)
6. (b)
7. (c)
8. (9)
9. (b)
10. (d)
(d) $\rightarrow \mathrm{p}, \mathrm{r}, \mathrm{s}$
(b) $\rightarrow \mathrm{r}, \mathrm{s}$
(c) $\rightarrow \mathrm{q}$
(d) $\rightarrow \mathrm{r}, \mathrm{s}$

3-Dimensional Geometry

Exercise No. (1)

Multiple choice questions with ONE correct answer :

 (Questions No. 1-25)1. If the line of intersection of planes $\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=3$ and $\vec{r} \cdot(2 \hat{i}+3 \hat{j}+\hat{k})=9$ is normal to the plane $\vec{r} \cdot(a \hat{i}+b \hat{j}+4 \hat{k})=5$, then value of $(a+b)$ is :
(a) 4
(b) -4
(c) 8
(d) -8
2. If the line $\frac{x+4}{3}=\frac{y+6}{5}=\frac{z-1}{-2}$ and the line of intersections of plane $3 x-2 y+z+5=0$ and $2 x+3 y+4 z-K=0$ are coplanar, then value of ' K ' equals to :
(a) 4
(b) 2
(c) -1
(d) 3
3. If line $\frac{x-1}{2 k}=\frac{y+k}{1}=\frac{z-1}{-4}$ is contained by the plane $3 x+4 y+(k+2) z+1=0$, then :
(a) $k=1$
(b) $k=-2$
(c) $k=2$
(d) no real ' k ' exists
4. Minimum distance between the lines given by $\frac{x+2}{1}=\frac{y+1}{2}=\frac{z-2}{1}$ and $\frac{x-1}{-1}=\frac{y+3}{2}=\frac{z-1}{1}$ is equal to :
(a) $\sqrt{3}$
(b) $\frac{2}{\sqrt{3}}$
(c) $\frac{4}{\sqrt{5}}$
(d) none of these
5. Let $P(3,2,6)$ be a point in space and Q be a point on the line $\vec{r}=(\hat{i}-\hat{j}+2 \hat{k})+\mu(-3 \hat{i}+\hat{j}+5 \hat{k})$. Then the value of μ for which the vector $\overrightarrow{P Q}$ is parallel to the plane $x-4 y+3 z=1$ is :
(a) $\frac{1}{4}$
(b) $-\frac{1}{4}$
(c) $\frac{1}{8}$
(d) $-\frac{1}{8}$
6. A line with positive direction cosines passes through the point $P(2,-1,2)$ and makes equal angles with the coordinate axes. The line meets the plane $2 x+y+z=9$ at point Q. The length of the line segment $P Q$ equals to:
(a) 1
(b) $\sqrt{2}$
(c) $\sqrt{3}$
(d) 2
7. A plane $P_{1}=0$ passes through $(1,-2,1)$ and is normal to two planes : $2 x-2 y+z=0$ and $x-y+2 z+4=0$, then distance of the plane $P_{1}=0$ from $(1,2,2)$ is :
(a) $\sqrt{2}$
(b) $2 \sqrt{2}$
(c) $3 \sqrt{2}$
(d) 4
8. The lines whose vector equation are $\vec{r}=\vec{a}+\lambda \vec{b}$ and $\vec{r}=\vec{c}+\mu \vec{d}$ are coplanar, where $\lambda, \mu \in R$, then :
(a) $(\vec{a}-\vec{b}) \cdot(\vec{c} \times \vec{d})=0$
(b) $(\vec{a}-\vec{c}) \cdot(\vec{b} \times \vec{d})=0$
(c) $(\vec{b}-\vec{c}) \cdot(\vec{a} \times \vec{d})=0$
(d) $(\vec{b}-\vec{d}) \cdot(\vec{a} \times \vec{c})=0$
9. If the equations, $a x+b y+c z=0, b x+c y+a z=0$ and $c x+a y+b z=0$ represents the line $x=y=z$, then
(a) $a b+b c+a c=a^{2}+b^{2}+c^{2} ; a+b+c=0$
(b) $a b+b c+a c \neq a^{2}+b^{2}+c^{2} ; a+b+c=0$
(c) $a b+b c+a c=a^{2}+b^{2}+c^{2} ; a+b+c \neq 0$
(d) $a b+b c+a c \neq a^{2}+b^{2}+c^{2} ; a+b+c \neq 0$
10. Let plane $P=0$ passes through the intersection of planes $2 x-y+z-3=0$ and $3 x+y+z-5=0$. If distance of plane $P=0$ from $(2,1,-1)$ is $\frac{1}{\sqrt{6}}$ then its equation can be :
(a) $2 x-y+z+3=0$
(b) $62 x+29 y+19 z-105=0$
(c) $2 x+y-z-3=0$
(d) $62 x-29 y+19 z+105=0$
11. Let plane $P_{1}=0$ passes through the points $(1,-1,1),(1,1,1)$ and $(-1,-3,-5)$. If point ($3, \alpha, 7$) lies on the plane $P_{1}=0$, then number of possible values of ' α ' is / are :
(a) 1
(b) 2
(c) 0
(d) infinite

3-Dimensional Geometry

12. The angle between the lines whose direction cosines are given by the relations, $l^{2}+m^{2}-n^{2}=0$ and $l+m+n=0$, is given by :
(a) $\frac{\pi}{2}$
(b) $\frac{\pi}{6}$
(c) 0
(d) $\frac{\pi}{4}$
13. If a plane passing through the point $(4,-5,6)$ meets the co-ordinate axes at A, B and C such that centroid of triangle $A B C$ is the point $\left(1, K, K^{2}\right)$, then value of ' K^{\prime} can be :
(a) 1
(b) -4
(c) 3
(d) -1
14. Let a system of three planes be given by :

$$
\begin{aligned}
& \lambda x+y+z-1=0 \\
& x+\lambda y+z-\lambda=0 \\
& x+y+\lambda z-\lambda^{2}=0
\end{aligned}
$$

If no common point exists which may satisfy all the three planes simultaneously, then :
(a) $\lambda \in R-\{1\}$
(b) $\lambda \neq-2$
(c) $\lambda=-2$
(d) $\lambda \neq 1$ and -2
15. The distance of the point $(1,-2,3)$ from the plane $x-y+z-5=0$, measured parallel to the line $\frac{x}{2}=\frac{y}{3}=\frac{z-1}{-6}$, is equal to :
(a) 1 unit
(b) 2 units
(c) 3 units
(d) 5 units
16. If a variable plane passes through the point $(1,1,1)$ and meets the co-ordinate axes at A, B and C, then locus of the common point of intersection of the planes through A, B and C and parallel to the coordinate planes is given by :
(a) $x+y+z=x y z$
(b) $x y+y z+z x=x y z$
(c) $x^{2}+y^{2}+z^{2}=x y z$
(b) $x y+y z+z x=x+y+z$
17. Let $P_{1}: \vec{r} \cdot \overrightarrow{n_{1}}-d_{1}=0, P_{2}: \vec{r} \cdot \overrightarrow{n_{2}}-d_{2}=0$ and $P_{3}: \vec{r} \cdot \overrightarrow{n_{3}}-d_{2}=0$ be three planes, where $\overrightarrow{n_{1}}, \overrightarrow{n_{2}}$ and $\overrightarrow{n_{3}}$ are three non-coplanar vectors. If three lines are defined in unsymmetrical form by, $P_{1}=P_{2}=0$, $P_{2}=P_{3}=0$ and $P_{1}=P_{3}=0$, then the lines are :
(a) concurrent at a point.
(b) coincident.
(c) coplanar.
(d) parallel to each other.
18. Let $\overrightarrow{O A}=\vec{a}, \overrightarrow{O B}=\vec{b}$ and $\overrightarrow{O C}=\vec{c}$ be three unit vectors which are equally inclined to each other at an angle of $\frac{2 \pi}{5}$. The angle between line $\vec{r}=\lambda \vec{a}$ and the plane $(\vec{r}-\vec{b}) \cdot(\vec{b} \times \vec{c})=0$, where $\quad \lambda$ ' is parameter and ' O ' is origin, is given by :
(a) $\cos ^{-1}\left(\frac{\sqrt{5}+1}{\sqrt{5}-1}\right)$
(b) $\cos ^{-1}\left(\frac{\sqrt{5}-2}{\sqrt{5}+1}\right)$
(c) $\cos ^{-1}\left(\frac{3-\sqrt{5}}{2}\right)$
(d) $\cos ^{-1}\left(\frac{1}{3+\sqrt{5}}\right)$
19. Let plane $P_{1}=0$ passes through $(1,1,1)$ and parallel to the lines L_{1} and L_{2} having direction ratios $\langle 1,0,-1\rangle$ and $\langle 1,-1,0\rangle$ respectively. If plane $P_{1}=0$ intersects the co-ordinate axes at A, B and C, then volume of tetrahedron $O A B C$, where ' O ' is origin , is given by
(a) $\frac{18}{5}$ cubic units.
(b) $\frac{9}{4}$ cubic units.
(c) $\frac{9}{6}$ cubic units.
(d) $\frac{18}{4}$ cubic units.
20. If a line with direction ratios $\langle 0,2,-1\rangle$ meet the lines $\frac{x+3}{5}=\frac{y-1}{2}=\frac{z+4}{3}$ and $\frac{x-1}{1}=\frac{y+2}{3}=\frac{z-2}{-2}$ at ' A ' and ' B ' respectively, then the length of line segment $A B$ is given by :
(a) $2 \sqrt{5}$
(b) $4 \sqrt{2}$
(c) $\sqrt{5}$
(d) $3 \sqrt{5}$
21. If the plane $4 x+3 y+2=0$ is rotated about its line of intersection with the plane $z=0$ by an angle of $\frac{\pi}{4}$, then the length of perpendicular from origin to the plane in new position is given by :
(a) $\frac{2}{\sqrt{5}}$
(b) $\frac{\sqrt{3}}{5}$
(c) $\sqrt{5}$
(d) $\frac{\sqrt{2}}{5}$
22. A variable plane is at a constant distance of 2 units from the origin ' O ' and meets the co-ordinate axes at A, B and C. Locus of the centroid of the tetrahedron $O A B C$ is given by :
(a) $x^{2}+y^{2}+z^{2}=1$
(b) $\frac{1}{x^{2}}+\frac{1}{y^{2}}+\frac{1}{z^{2}}=16$
(c) $\frac{1}{x^{2}}+\frac{1}{y^{2}}+\frac{1}{z^{2}}=4$
(d) $x^{2}+y^{2}+z^{2}=4$
23. If the planes $x-c y-b z=0, c x-y+a z=0$ and $b x+a y-z=0$ pass through a unique straight line, then value of $a^{2}+b^{2}+c^{2}+2 a b c$ is equal to :
(a) 0
(b) 2
(c) 1
(d) 4
24. Let plane $P_{1}=0$ passes through the point $P(\alpha, \beta, \gamma)$ and meets the co-ordinate axes at A, B and C. If ' O ' is origin and $O P$ is normal to plane $P_{1}=0$, then area of $\triangle A B C$, where $O P=\delta$, is given by :
(a) $\frac{\delta^{3}}{|2 \alpha \beta \gamma|}$
(b) $\frac{\delta^{5}}{|\alpha \beta \gamma|}$
(c) $\frac{2 \delta^{5}}{|\alpha \beta \gamma|}$
(d) $\frac{\delta^{5}}{|2 \alpha \beta \gamma|}$
25. To form a rectanglar parallelopiped if planes are drawn through the points $(5,0,2)$ and $(3,-2,5)$ parallel to the coordinate planes, then volume of the parallelopiped, in cubic units, is given by :
(a) 20
(b) 8
(c) 12
(d) 15

Multiple choice questions with MORE than ONE correct answer : (Questions No. 26-30)

26. Let $P_{1}: \vec{r} \cdot \hat{a}_{1}-d_{1}=0, P_{2}: \vec{r} \cdot \hat{a}_{2}-d_{2}=0$
and $P_{3}: \vec{r} \cdot \hat{a}_{3}-d_{3}=0$ be the vector equations of three distinct non-parallel planes such that $\vec{a}_{1} .\left(\vec{a}_{2} \times \vec{a}_{3}\right)=0$, where $d_{1}^{2}+d_{2}^{2}+d_{3}^{2} \neq 0$, then which of the following statements are incorrect:
(a) for point $P\left(\vec{r}_{1}\right)$, if $\vec{r}_{1} \cdot \hat{a}_{1}-d_{1}=0, \vec{r}_{1} \cdot \hat{a}_{2}-d_{2}=0$ and $\quad \vec{r}_{1} \cdot \hat{a}_{3}-d_{3} \neq 0$, then there exists infinitely many points which are equidistant from the given three planes.
(b) for point $P\left(\vec{r}_{1}\right)$, if $\vec{r}_{1} \cdot \hat{a}_{1}-d_{1}=0, \vec{r}_{1} \cdot \hat{a}_{2}-d_{2}=0$ and $\vec{r}_{1} \cdot \hat{a}_{3}-d_{3}=0$, then $P_{2}=\lambda P_{1}+\mu P_{3}$ for some scalar quantities λ and μ.
(c) number of common solutions of the plane $\vec{r} \cdot \hat{n}-d_{4}=0$ with given three planes P_{1}, P_{2} and P_{3} is either zero or one.
(d) for point $P\left(\vec{r}_{1}\right)$, if $\vec{r}_{1} \cdot \hat{a}_{1}-d_{1}=0, \vec{r}_{1} \cdot \hat{a}_{2}-d_{2}=0$ and $\vec{r}_{1} \cdot \hat{a}_{3}-d_{3}=0$, then point ' P ' can be origin (i.e. $(0,0,0))$.
27. If the planes $k x+4 y+z=0,4 x+k y+2 z=0$ and $2 x+2 y+z=0$ intersects in a straight line, then possible values of ' k ' are
(a) 2
(b) 6
(c) 1
(d) 4
28. Let $\vec{a}=\hat{i}+2 \hat{j}+\hat{k}, \vec{b}=\hat{i}-\hat{j}+\hat{k}$ and $\vec{c}=\hat{i}+\hat{j}-\hat{k}$. If $\vec{r} \cdot(\vec{a} \times \vec{b})=0$ and projection of \vec{r} on \vec{c} is $\frac{1}{\sqrt{3}}$, then \vec{r} can be given by :
(a) $-2 \hat{i}+5 \hat{j}-2 \hat{k}$
(b) $\hat{i}+\hat{j}+\hat{k}$
(c) $2 \hat{i}+\hat{j}+2 \hat{k}$
(d) $-\hat{i}+\hat{j}-\hat{k}$
29. Let a variable plane be passing through the point $(1,1,1)$ and meeting the positive direction of coordinate axes at A, B and C, then volume of tetrahedron $O A B C$, where ' O ' represents the origin, can be :
(a) 4 cubic units
(b) 5 cubic units
(c) 8 cubic units
(d) 3 cubic units
30. Let A, B, C, D be four non-coplanar points and at the maximum N different planes are possible which are equidistant from A, B, C and D, then
(a) N is prime number
(b) N is even integer
(c) N is more than 4
(d) N is less than 6

Assertion Reasoning questions :

(Questions No. 31-35)

Following questions are assertion and reasoning type questions. Each of these questions contains two statements, Statement 1 (Assertion) and Statement 2 (Reason). Each of these questions has four alternative answers, only one of them is the correct answer. Select the correct answer from the given options :
(a) Both Statement 1 and Statement 2 are true and Statement 2 is the correct explanation of Statement 1.
(b) Both Statement 1 and Statement 2 are true but Statement 2 is not the correct explanation of Statement 1.
(c) Statement 1 is true but Statement 2 is false.
(d) Statement 1 is false but Statement 2 is true.
31. Consider the following planes,

$$
\begin{aligned}
& P_{1}: a x+b y+c z=0 \\
& P_{2}: b x+c y+a z=0 \\
& P_{3}: c x+a y+b z=0
\end{aligned}
$$

Statement 1: If a, b, c are three distinct rcal numbers, then the planes P_{1}, P_{2}, P_{3} have a common line of intersection when $a+b+c=0$.

because

Statement 2: $\frac{a^{2}+b^{2}+c^{2}}{a b+b c+c a}>1$, if a, b, c are three distinct real numbers.
32. Let the vector equation of the lines L_{1} and L_{2} be given by $\vec{r}=(\hat{i}+2 \hat{j}+3 \hat{k})+\lambda(2 \hat{i}+3 \hat{j}+4 \hat{k})$ and $\vec{r}=(2 \hat{i}+4 \hat{j}+5 \hat{k})+\mu(4 \hat{i}+6 \hat{j}+8 \hat{k})$ respectively.
Statement 1: Shortest distance between L_{1} and L_{2} is equal to $\frac{5}{\sqrt{29}}$ units

because

Statement 2 : for L_{1} and L_{2} there exists infinite lines of shortest distance.
33. In tetrahedron $O A B C$, let the position vectors of A, B, C be \vec{a}, \vec{b} and \vec{c} respectively, where $\vec{c}+(\vec{c} \times \vec{a})=\vec{b}$

Statement 1 : If $|\vec{a}|=|\vec{b}|=|\vec{c}|=1$, then maximum volume of the tetrahedron $O A B C$ is $\frac{1}{12}$ cubic units because

Statement 2: the volume of tetrahedron $O A B C$ is maximized if the faces $O A B$ and $O A C$ form right angled trianges.
34. Let A, B, C be the internal angles of triangle $A B C$, and the plane $\frac{x}{\sin A}+\frac{y}{\sin B}+\frac{z}{\sin C}=1$ meet the co-ordinate axes at P, Q and R. If ' O ' represents the origin, then
Statement 1 : volume of tetrahedron $O P Q R$ cannot exceed $\frac{\sqrt{3}}{16}$ cubic units

because

Statement 2: maximum value of $\sin A \sin B \sin C$
is $\frac{3 \sqrt{3}}{8}$, where $A+B+C=\pi$.
35. Statement 1 : Let the direction cosines of a variable line in two adjacent positions be l, m, n and $l+\delta l, m+\delta m, n+\delta n$, where $\delta \theta$ is the small angle in radians between the two positions of the line, then $(\delta \theta)^{2}=(\delta l)^{2}+(\delta m)^{2}+(\delta n)^{2}$
because
Statement 2: $\sin ^{2}\left(\frac{\delta \theta}{2}\right)=\frac{1}{2}\left((\delta l)^{2}+(\delta m)^{2}+(\delta n)^{2}\right)$

Exercise No. (2)

Comprehension based Multiple choice questions with ONE correct answer :

Comprehension passage (1)

(Questions No. 1-3)

If the planes , $\pi_{1}=0, \pi_{2}=0$ and $\pi_{3}=0$ have common line of intersection, where
$\pi_{1}: x+y+3 z-4=0 ; \pi_{2}: x+2 y+z+1=0$ and $\pi_{3}: \lambda x+3 y+\mu z-3=0$, then answer the following questions.

1. Value of $(\lambda+3 \mu)$ is:
(a) 10
(b) 12
(c) 14
(d) 20
2. Common line of intersection of the planes $\pi_{1}=0, \pi_{2}=0, \pi_{3}=0$ can be given by :
(a) $\frac{x-1}{5}=\frac{y+1}{-2}=\frac{z-1}{-1}$
(b) $\frac{x+1}{5}=\frac{y-1}{-2}=\frac{z+1}{-1}$
(c) $\frac{x+1}{-5}=\frac{y+1}{2}=\frac{z-2}{1}$
(d) none of these
3. If plane $3 x+\beta y+7 z+\alpha=0$ contains the common line of intersection of planes $\pi_{1}=0, \pi_{2}=0$ and $\pi_{3}=0$, then value of $(\alpha+2 \beta)$ is :
(a) 0
(b) 1
(c) -1
(d) 2

Comprehension passage (2)

(Questions No. 4-6)
Let the line of intersection of the planes $3 x+y-2 z+3=0$ and $x+y+z-7=0$ be ' L_{1}^{\prime} 'and the incident ray along L_{1} meet the plane mirror $2 x+2 y-z-2=0$ at point ' A '. If the reflected ray is along the line ${ }^{\prime} L_{2}{ }^{\prime}$, then answer the following questions.
4. Minimum distance of point ' A ' from the surface of sphere $(x-3)^{2}+(y-1)^{2}+(z-2)^{2}=4$ is equal to :
(a) 1
(b) 4
(c) 5
(d) $\sqrt{3}$
5. Equation of line ' $L_{2}{ }^{\prime}$ can be given by :
(a) $\frac{x+1}{2}=\frac{y+2}{4}=\frac{z+8}{12}$
(b) $\frac{x-18}{17}=\frac{y+5}{-7}=\frac{z-6}{2}$
(c) $\frac{x-8}{-7}=\frac{y+3}{5}=\frac{z-2}{2}$
(d) $\frac{x-1}{5}=\frac{y-2}{19}=\frac{z-4}{21}$
6. If the plane ' P ' contains the point $' A$ ' then the maximum distance of plane $' P '^{\prime}$ from the origin is equal to :
(a) $\frac{27}{\sqrt{35}}$
(b) $\frac{49}{\sqrt{18}}$
(c) $\frac{23}{\sqrt{27}}$
(d) none of these

Comprehension passage (3)
 (Questions No. 7-9)

Consider four spherical balls S_{1}, S_{2}, S_{3} and S_{4} which are touching each other externally, where the radius of all the four balls is $\sqrt{12}$ units. Let the centre of the spherical balls S_{1}, S_{2}, S_{3} and S_{4} be $C_{1}(-\sqrt{12},-2,0)$, $C_{2}(\sqrt{12},-2,0), C_{3}\left(x_{3}, y_{3}, 0\right), C_{4}\left(x_{4}, y_{4}, z_{4}\right)$ respectively, where y_{3} and z_{4} is positive in nature. If the spherical ball ' S ' of minimum volume enclose all the spherical balls S_{1}, S_{2}, S_{3} and S_{4}, where the points of contact are respectively P_{1}, P_{2}, P_{3} and P_{4}, then answer the following questions.
7. The radius of spherical ball ' S ' is equal to :
(a) $4 \sqrt{3}-2 \sqrt{2}$
(b) $3 \sqrt{2}+2 \sqrt{3}$
(c) $4 \sqrt{2}-\sqrt{3}$
(d) $\sqrt{3}+\sqrt{2}$
8. If the centre of 'S' is (α, β, γ), then value of $\log _{2} \gamma$ is equal to :
(a) 1
(b) $1 / 2$
(c) $1 / 3$
(d) $1 / 4$
9. If the point ${ }^{\prime} P_{3}{ }^{\prime}$ is (a, b, c), then value of b is equal to :
(a) $2-\sqrt{\frac{3}{2}}$
(b) $6-2 \sqrt{\frac{3}{2}}$
(c) $4+\sqrt{\frac{2}{3}}$
(d) $4+4 \sqrt{\frac{2}{3}}$
10. Let the faces of tetrahedron $A B C D$ be represented by the planes $x+y=0, y+z=0, z+x=0$ and $x+y+z=2 \sqrt{6}$. The shortest distance between any two opposite edges of the tetrahedron $A B C D$ is equal to

3-Dimensional Geometry

11. Let the lines L_{1} and L_{2} for which the direction cosines are given by the relation $l+m+n=0$ and $6 l m-5 m n+2 n l=0$, include an angle α, then value of $\left\{\frac{3 \tan \alpha}{11}\right\}^{2}$ is equal to \qquad
12. Let the image of line $\frac{x-1}{2}=\frac{y-2}{1}=\frac{z-3}{4}$ with respect to the plane mirror $2 x+y+z-6=0$ passes through the point $(-1, \alpha, \beta)$, then the value of $(2 \beta-\alpha)$ is equal to
13. Let plane ' P ' contain the lines $\frac{x-3}{2}=\frac{y+1}{-3}=\frac{z+2}{1}$ and $\frac{x-7}{3}=\frac{y}{-1}=\frac{z+7}{-2}$, then the minimum distance of plane ' P ' from the surface of the sphere $x^{2}+y^{2}+z^{2}-2 \sqrt{3}(x+y+z)+8=0$ is equal to \qquad
14. If the line of shortest distance between the lines $\frac{x-1}{1}=\frac{y+1}{-1}=\frac{z+1}{1} \quad$ and $\quad \frac{x+2}{-1}=\frac{y-1}{-1}=\frac{z-2}{1}$ passes through the point $(\alpha, 3, \beta)$, then value of $8(\alpha+\beta)$ is equal to \qquad

Matrix Matching Questions :
 (Questions No. 15-17)

15. Match the following columns (I) and (II)

Column (I)

(a) If the straight lines $\vec{r}=\vec{r}_{1}+\lambda \vec{a}$ and $\vec{r}=\vec{r}_{2}+\mu \vec{b}$ are coplanar, where λ, μ are scalars, and $\vec{c} \cdot(\vec{a} \times \vec{b})=0$, then \vec{c} is equal to
(b) If the straight lines $\vec{r}=\vec{r}_{1}+\lambda \vec{a}$ and $\vec{r}=\vec{r}_{2}+\mu \vec{b}$ are intersecting at a point, where λ, μ are scalars , then
(c) If $\vec{r}=\vec{r}_{1}+\lambda \vec{a}$ and $\vec{r}=\vec{r}_{2}+\mu \vec{b}$ are two skew lines, then vector along the line of shortest distance is parallel to
(d) If line joining $P\left(\vec{r}_{1}\right)$ and $Q\left(\vec{r}_{2}\right)$ is L_{1} and point with position vector $\vec{a} \times \vec{b}$ lies on the line L_{1}, then

Column (II)

(p) $\left(\vec{r}_{1}-\vec{r}_{2}\right)$
(q) $\vec{a} \times \vec{b}$
(r) $\left(\vec{r}_{1}-\vec{r}_{2}\right) \cdot(\vec{a} \times \vec{b})=0$
(s) $\left(\vec{r}_{1}+\vec{r}_{2}\right) \cdot(\vec{a} \times \vec{b})=0$
(t) $\left(\vec{r}_{1} \times \vec{r}_{2}\right) \cdot(\vec{a} \times \vec{b})=0$

Column (II)

(p) the equations represent planes meeting only at a single point.
(q) the equations represent the line $x=y=z$.
(r) the equations represent identical planes.
(s) the equations represent the whole of the three dimensional space.
17. Let the points A, B, C and D form a regular tetrahedron $A B C D$ in 3-dimensional space, where the edge length of the tetrahedron is $\sqrt{2}$ units, then match the following columns (I) and (II).

Column (I)

(a) The angle between any two faces of the tetrahedron
$A B C D$ is
(b) The angle between any edge and a face not containing that edge is
(c) The angle between two opposite edges of the tetrahedron is
(d) The volume (in cubic units) of the tetrahedron is more than
(r) $\cos ^{-1}(1 / 2)$

Column (II)

(p) $\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
(q) $\tan ^{-1}(2-\sqrt{3})$
(s) $\sin ^{-1}\left(\frac{\sqrt{5}-1}{4}\right)$
(t) $\sin ^{-1}(1)$

ANSWERS

1. (b)	2. (a)	3. (c)	4. (d)	5. (a)
6. (c)	7. (b)	8. (b)	9. (b)	10. (b)
11. (d)	12. (c)	13. (c)	14. (c)	15. (a)
16. (b)	17. (a)	18. (c)	19. (d)	20. (c)
21. (d)	22. (c)	24. (c)	25. (c)	
26. (c, d)	27. (a , d)	28. (a, c , d)	29. (b, c)	30. (a, c)
31. (b)	32. (d)	33. (a)	34. (a)	35. (c)

1. (c)
2. (c)
3. (b)
4. (a)
5. (b)
6. (d)
7. (b)
8. (b)
9. (d)
10. (4)

11. (3)

12. (5)
13. (2)
14. (2)
15. (a) $\rightarrow p$
16. (a) $\rightarrow r$
(b) $\rightarrow \mathrm{r}$
(c) \rightarrow q
(b) $\rightarrow \mathrm{q}$
(c) $\rightarrow \mathrm{p}$
17. (a) $\rightarrow r$
(d) \rightarrow t
(d) $\rightarrow \mathrm{s}$
(b) $\rightarrow \mathrm{p}$
(c) $\rightarrow \mathrm{t}$
(d) $\rightarrow \mathrm{q}, \mathrm{s}$

Claver Trigonometric Ratios and Identities

Exercise No. (1)

Multiple choice questions with ONE correct answer :

 (Questions No. 1-20)1. $\left\{\cos 43^{\circ}+\cos 29^{\circ}-\sin 11^{\circ}-\cos 65^{\circ}\right\}$ is equal to :
(a) $\sin 7^{\circ}$
(b) $\cos 36^{\circ}$
(c) $\sin 83^{\circ}$
(d) none of these
2. If $x \in R$, then maximum value of the expression
$\left\{a \sin ^{2} x+b \sin x \cdot \cos x+c \cos ^{2} x-\frac{1}{2}(a+c)\right\}$ is :
(a) $\frac{1}{2} \sqrt{a^{2}+b^{2}+c^{2}}$
(b) $\frac{1}{2} \sqrt{a^{2}+b^{2}+c^{2}-2 a c}$
(c) $\frac{1}{2} \sqrt{a^{2}+b^{2}+c^{2}-2 b c}$
(d) $\frac{1}{2} \sqrt{a^{2}+b^{2}+c^{2}-2 a b}$
3. If $(2-\cos \beta) \cos \alpha=2 \cos \beta>1 ; 0<\alpha<\beta<\pi$, then value of $\frac{\tan \beta / 2}{\tan \alpha / 2}$ is equal to:
(a) $\frac{1}{\sqrt{3}}$
(b) $\sqrt{3}$
(c) 1
(d) $\frac{1}{\sqrt{2}}$
4. The value of $\left\{32 \cdot \cos \frac{2 \pi}{15} \cdot \cos \frac{4 \pi}{15} \cdot \cos \frac{8 \pi}{15} \cdot \cos \frac{16 \pi}{15}\right\}$ is equal to :
(a) -2
(b) 1
(c) -1
(d) 2
5. If $a \cos \alpha+b \sin \alpha=c$ and $a \cos \beta+b \sin \beta=c$, then value of $\tan \left(\frac{\alpha+\beta}{2}\right)$ is equal to :
(a) $\frac{a}{b}$
(b) $\frac{b}{c}$
(c) $\frac{b}{a}$
(d) $\frac{b+c}{a}$
6. If $\tan \alpha, \tan \beta$ are the roots of quadratic equation $x^{2}+p x+q=0$, then value of expression $\left\{\sin ^{2}(\alpha+\beta)+q \cos ^{2}(\alpha+\beta)+p \sin (\alpha+\beta) \cdot \cos (\alpha+\beta)\right\}$ is equal to :
(a) $\frac{p+q}{2 q}$
(b) $\frac{p}{q}$
(c) $p-q$
(d) q
7. If $\tan \theta=\frac{1+\sqrt{1-p}}{1+\sqrt{1+p}}$, then $\cos (8 \theta)$ is equal to :
(a) $2 p^{2}-1$
(b) $-2 p \sqrt{1-p^{2}}$
(c) $2 p^{2}+p$
(d) none of these
8. The value of $\left\{\sin 144^{\circ} . \sin 108^{\circ} \cdot \sin 72^{\circ} . \sin 36^{\circ}\right\}$ is equal to :
(a) $\frac{3}{16}$
(b) $\frac{5}{16}$
(c) $\frac{7}{16}$
(d) $\frac{1}{16}$
9. The value of $\tan ^{6} 20^{\circ}-33 \tan ^{4} 20^{\circ}+27 \tan ^{2} 20^{\circ}$ is :
(a) 2
(b) 4
(c) 3
(d) none of these
10. The value of
$\left(1+\cos \frac{\pi}{10}\right)\left(1+\cos \frac{3 \pi}{10}\right)\left(1+\cos \frac{7 \pi}{10}\right)\left(1+\cos \frac{9 \pi}{10}\right)$ is equal to :
(a) $\frac{1}{8}$
(b) $\frac{1}{16}$
(c) $\frac{1}{32}$
(d) none of these
11. If $\frac{\cos A}{\cos B}=n, \frac{\sin A}{\sin B}=m$, then $\sin ^{2} B$ is equal to :
(a) $\frac{1+n^{2}}{m^{2}-n^{2}}$
(b) $\frac{1-n^{2}}{m^{2}-n^{2}}$
(c) $\frac{1-n}{m+n}$
(d) $\frac{1+n}{m^{2}+n^{2}}$
12. If $f(\theta)=\left(a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta\right)^{1 / 2}+\left(a^{2} \sin ^{2} \theta+b^{2} \cos ^{2} \theta\right)^{1 / 2}$ then maximum value of $f(\theta)$ is :
(a) $\sqrt{a^{2}+b^{2}}$
(b) $\sqrt{2\left(a^{2}+b^{2}\right)}$
(c) $2 \sqrt{a^{2}+b^{2}}$
(d) none of these
13. Let $f(x)=\frac{\tan x}{\tan 3 x}$ and $x \neq n \pi$ or $\frac{n \pi}{3} ; n \in I$, then inteval in which $f(x)$ lies is :
(a) $R-\left(\frac{1}{2}, 2\right)$
(b) $R-\left[\frac{1}{3}, 3\right]$
(c) $R-\left(\frac{1}{3}, 3\right)$
(d) $R-\left[\frac{1}{2}, 2\right]$
14. If $\cos ^{6} \alpha+\sin ^{6} \alpha+K \sin ^{2}(2 \alpha)=1 ; 0<\alpha<\frac{\pi}{2}$, then value of K is equal to :
(a) $\frac{3}{4}$
(b) $\frac{1}{4}$
(c) $\frac{1}{3}$
(d) $\frac{1}{8}$
15. The value of $\cos ^{2} 10^{\circ}-\cos 10^{\circ} \cdot \cos 50^{\circ}+\cos ^{2} 50^{\circ}$ is :
(a) $\frac{4}{3}$
(b) $\frac{1}{3}$
(c) $\frac{3}{4}$
(d) 3
16. If $A+B+C=0$, then value of the expression $\left\{\sin ^{2} A+\cos C(\cos A \cos B-\cos C)+\cos B(\cos A \cos C-\cos B)\right\}$ is equal to :
(a) 1
(b) 2
(c) 0
(d) -1
17. Value of $\left(\tan 40^{\circ}+2 \tan ^{\circ} 10\right)$ is:
(a) $\cot 50^{\circ}$
(b) $\cot 40^{\circ}$
(c) $\cot 10^{\circ}$
(d) $\cot 20^{\circ}$
18. $\sum_{r=1}^{18} \sin ^{2}(5 r)^{\mathrm{o}}$ is equal to :
(a) 9
(b) $\frac{19}{2}$
(c) $\frac{21}{2}$
(d) $\frac{17}{2}$
19. If $f(\theta)=\sin ^{2} \theta+\sin ^{2}\left(\frac{2 \pi}{3}+\theta\right)+\sin ^{2}\left(\frac{4 \pi}{3}+\theta\right)$; then value of $f\left(\frac{\pi}{15}\right)$ is equal to :
(a) $\frac{2}{3}$
(b) $\frac{3}{2}$
(c) $\frac{1}{3}$
(d) 1
20. If $\cot A, \cot B, \cot C$ are in A.P. for $\triangle A B C$, then $2 \sin A \cos B \sin C$ is :
(a) $\tan ^{2} B$
(b) $\sin ^{2} B$
(c) $\sec ^{2} B$
(d) $\cot ^{2} B$
21. Let $\theta_{i}, \phi_{i} \in R$ for all $i \in\{1,2,3\}$. if $\sin ^{2} \alpha=\frac{\left(\sum_{i=1}^{3} \sin ^{2} \theta_{i}\right)\left(\sum_{i=1}^{3} \cos ^{2} \phi_{i}\right)}{\left(\sum_{i=1}^{3} \sin \theta_{i} \cdot \cos \phi_{i}\right)^{2}}$ and $\cos ^{2} \beta=\frac{\left(\sum_{i=1}^{3} \sin ^{2} \phi_{i}\right)\left(\sum_{i=1}^{3} \cos ^{2} \phi_{i}\right)}{\left(\sum_{i=1}^{3} \sin \phi_{i} \cdot \cos \phi_{i}\right)^{2}}$, then
(a) $\sin ^{2} \alpha+\cos ^{2} \beta=1$.
(b) $\sin ^{4} \alpha+\cos ^{4} \beta=1$.
(c) $\sin ^{4} \alpha+\cos ^{8} \beta=2$.
(d) $\sin ^{8} \alpha+\cos ^{8} \beta=1$.
22. Let $\sqrt{2} \cos A=\cos B+\cos ^{3} B$ and $\sqrt{2} \sin A=\sin B-\sin ^{3} B$, then $\sin ^{2}(2 B)$ is :
(a) $\frac{1}{25}$
(b) $\frac{8}{9}$
(c) $\frac{1}{4}$
(d) $\frac{1}{36}$
23. Let for all $x \in R, \tan \theta=\left\{\frac{x^{2}-x+1}{x^{2}+x+1}\right\}^{1 / 2}$, where $\theta \in(0,2 \pi)-\left\{\frac{\pi}{2}, \frac{3 \pi}{2}\right\}$, then value of ' θ ' can be :
(a) $\frac{3 \pi}{8}$
(b) $\frac{5 \pi}{12}$
(c) $\frac{6 \pi}{5}$
(d) $\frac{13 \pi}{12}$
24. The minimum value of $\left\{(81)^{\sin x+1 / 2}+(27)^{\cos x+2 / 3}\right\}$ is equal to :
(a) $\sec \left(\frac{\pi}{3}\right)$
(b) $\tan \left(\frac{\pi}{8}\right)$
(c) $\sin \left(\frac{\pi}{12}\right)$
(d) $\operatorname{cosec}\left(\frac{2 \pi}{3}\right)$
25. Let $\alpha, \beta \in R^{+}$and $\alpha+\beta=\frac{\pi}{2}$, then maximum value of $\{\sin \alpha+\sin \beta\}$ is equal to :
(a) 1
(b) 2
(c) $\sqrt{3}$
(d) $\sqrt{2}$

Multiple choice questions with MORE than ONE correct answer : (Questions No. 26-30)

26. Let $f_{n}(\theta)=\tan \theta \cdot\left\{\prod_{r=1}^{n}\left(1+\sec \left(2^{r} \theta\right)\right)\right\}$, then
(a) $f_{2}\left(\frac{\pi}{16}\right)=1$
(b) $f_{3}\left(\frac{\pi}{64}\right)=\sqrt{2}-1$
(c) $f_{2}\left(\frac{\pi}{48}\right)=2-\sqrt{3}$
(d) $f_{5}\left(\frac{\pi}{128}\right)=\sqrt{3}-1$
27. Which of the following are rational numbers ?
(a) $\sin \frac{\pi}{12} \cdot \cos \frac{\pi}{12}$
(b) $\sqrt{3} \cdot \operatorname{cosec} \frac{\pi}{9}-\sec \frac{\pi}{9}$
(c) $\sin \frac{\pi}{10} \cdot \cos \frac{\pi}{5}$
(d) $\sin 12^{\circ} \cdot \sin 48^{\circ} \cdot \sin 54^{\circ}$
28. Solution set $\{x, y\}$ for the system of equations $x-y=\frac{1}{3}$ and $\cos ^{2}(\pi x)-\sin ^{2}(\pi y)=\frac{1}{2}$ can be given by :
(a) $\left\{\frac{7}{6}, \frac{5}{6}\right\}$
(b) $\left\{\frac{2}{3}, \frac{1}{3}\right\}$
(c) $\left\{-\frac{5}{6},-\frac{7}{6}\right\}$
(d) $\left\{\frac{13}{6}, \frac{11}{6}\right\}$
29. If $\sin ^{3} x \cdot \sin 3 x=\sum_{m=0}^{6} a_{m} \cos ^{m} x$, where $a_{0}, a_{1}, a_{2}, \ldots a_{6}$ are constants, then
(a) $a_{1}=a_{3}=a_{5}=0$
(b) $a_{0}+a_{2}+a_{4}+a_{6}=0$
(c) $a_{2}-a_{6}+2 a_{0}=0$
(d) $\sum_{r=1}^{6} a_{r}=0$
30. Value of $\left\{\prod_{r=1}^{10}\left(1+\tan \left(r^{\mathrm{o}}\right)\right)\right\} \cdot\left\{\prod_{r=46}^{55}\left(1+\cot \left(r^{\mathrm{o}}\right)\right)\right\}$ is equal to :
(a) 1024
(b) $\sum_{r=0}^{10}{ }^{10} C_{r}$
(c) 2^{20}
(d) $\sum_{r=0}^{20}{ }^{20} C_{r}$

Assertion Reasoning questions :

(Questions No. 31-35)
Following questions are assertion and reasoning type questions. Each of these questions contains two statements, Statement 1 (Assertion) and Statement 2 (Reason). Each of these questions has four alternative answers, only one of them is the correct answer. Select the correct answer from the given options :
(a) Both Statement 1 and Statement 2 are true and Statement 2 is the correct explanation of Statement 1.
(b) Both Statement 1 and Statement 2 are true but Statement 2 is not the correct explanation of Statement 1.
(c) Statement 1 is true but Statement 2 is false.
(d) Statement 1 is false but Statement 2 is true.
31. In a triangle $A B C$ with fixed base $B C$, the vertex A moves such that $\cos B+\cos C=4 \sin ^{2}\left(\frac{A}{2}\right)$.
If a, b and c denote the side lengths of triangle opposite to the angles A, B and C respectively, then
Statement 1 : locus of vertex point A is an ellipse

because

Statement 2 : In the given $\triangle A B C, b, a$ and c form an arithmetic progression.
32. Let $\frac{\sin ^{4} \theta}{3}+\frac{\cos ^{4} \theta}{7}=\frac{1}{10}$, where $\theta \in R$, then Statement 1 : Value of $\left\{\frac{\sin ^{8} \theta}{27}+\frac{\cos ^{8} \theta}{343}\right\}$ is equal to $\operatorname{sgn}\left(\ln \frac{1}{2}\right) \cdot \log _{\sqrt[3]{10}} 10$

because

Statement 2: Value of $\tan ^{2} \theta=\frac{3}{7}$.
33. Let $\theta_{1}, \theta_{2}, \theta_{3} \in R$, and $\cos \theta_{1}=\frac{a}{b+c}, \cos \theta_{2}=\frac{b}{a+b}$ and $\cos \theta_{3}=\frac{c}{a+b}$, where the sides a, b, c of triangle $A B C$ are in A.P.

Statement 1 : Value of $\tan ^{2}\left(\frac{\theta_{1}}{2}\right)+\tan ^{2}\left(\frac{\theta_{3}}{2}\right)$ is equal to $\frac{2}{3}$
because
Statement 2: $\sum_{p=1}^{3} \tan ^{2}\left(\frac{\theta_{p}}{2}\right)=1$ and $\tan ^{2}\left(\frac{\theta_{2}}{2}\right)=\frac{1}{3}$
34. Statement 1 : For triangle $A B C$, if $\sin ^{2} A+\sin ^{2} B+\sin ^{2} C=2$, then triangle must be right angled

because

Statement 2: In any triangle $P Q R$,
$\sin ^{2} P+\sin ^{2} Q+\sin ^{2} R=(2+4 \cos P \cdot \cos Q \cdot \cos R)$
35. Consider any triangle $A B C$ having internal angles α, β and γ, where $\alpha, \beta, \gamma \neq \frac{\pi}{2}$.

Statement 1: If $\tan \alpha+\tan \beta+\tan \gamma=6-4 x+x^{2}$ for all $x \in R$, then triangle $A B C$ is essentially an acute angled triangle

because

Statement 2 : In any triangle except the right-angled, sum of the tangent of internal angles is always equal to the product of tangent of internal angles.

Comprehension based Multiple choice questions

 with ONE correct answer :
Comprehension passage (1)

(Questions No. 1-3)
Let $\alpha \neq \frac{n \pi}{2}+3 \theta$; where $n \in I$, and
$\frac{\cos ^{3} \theta}{\cos (\alpha-3 \theta)}=\frac{\sin ^{3} \theta}{\sin (\alpha-3 \theta)}=\lambda$.
On the basis of given relation, answer the following questions.

1. Using the identity $\cos ^{4} \theta-\sin ^{4} \theta=\cos 2 \theta$, the value of $\tan 2 \theta$ which is obtained from the given relation (1) of passage is equal to :
(a) $\frac{1+\lambda \cos \alpha}{\sin \alpha}$
(b) $\frac{1-\lambda \cos \alpha}{\lambda \sin \alpha}$
(c) $\frac{1+\lambda \cos \alpha}{\lambda \sin \alpha}$
(d) $\frac{1+\lambda \sin \alpha}{\lambda \cos \alpha}$
2. Using the identity $\sin \theta \cdot \cos ^{3} \theta+\cos \theta \sin ^{3} \theta=\sin \theta \cos \theta$, the value of $\tan 2 \theta$ which is obtained from the given relation ...(1) of passage is equal to :
(a) $\frac{2 \lambda \cos \alpha}{1-2 \lambda \sin x}$
(b) $\frac{2 \lambda \sin \alpha}{1+\cos x}$
(c) $\frac{2 \lambda \sin \alpha}{1+2 \lambda \cos \alpha}$
(d) $\frac{\lambda \sin \alpha}{1+\cos \alpha}$
3. If ' θ ' is eliminated from relation ...(1) of passage, then quadratic in λ which is obtained, is equal to :
(a) $2 \lambda^{2}+\lambda \cos \alpha+1=0$
(b) $2 \lambda^{2}-\lambda \sin \alpha+1=0$
(c) $2 \lambda^{2}-\lambda \cos \alpha-1=0$
(d) $2 \lambda^{2}-\lambda \sin \alpha-1=0$

Comprehension passage (2)

(Questions No. 4-6)

Let value of $\tan \left(\frac{19 \pi}{24}\right)=a+\sqrt{a}-\sqrt{b}-\sqrt{a b}$, where $b>a>0$, then answer the following questions.
4. The value of $\left\{\cos \frac{2 \pi}{15} \cdot \cos \frac{4 \pi}{15} \cdot \cos \frac{8 \pi}{15} \cdot \cos \frac{14 \pi}{15}\right\}$ is equal to :
(a) $\frac{b}{a^{2}}$
(b) $\frac{1}{a^{4}}$
(c) $\frac{1}{b^{4}}$
(d) $\frac{a+b}{b^{3}}$
5. The value of $\left\{\prod_{r=0}^{3}\left(1+\cos (2 r+1) \frac{\pi}{8}\right)\right\}$ is equal to :
(a) $\frac{1}{b^{3}}$
(b) $\frac{1}{2 a+b}$
(c) $\frac{1}{2 b+a}$
(d) $\frac{b}{a+b}$
6. The value of $\left\{\tan 6^{\circ} \cdot \tan 42^{\circ} \cdot \tan 66^{\circ} \cdot \tan 78^{\circ}\right\}$ is equal to :
(a) $\frac{b+1}{a^{2}}$
(b) $\frac{b+2}{a}$
(c) $\frac{2 b+1}{3 a}$
(d) $\frac{a}{b+1}$

Questions with Integral Answer :
 (Questions No. 7-10)

7. If $T_{n}=\left\{\frac{\sin ^{n} x+\cos ^{n} x}{n}\right\}$, then value of $\frac{1}{2}\left\{T_{4}-T_{6}\right\}^{-1}$ is equal to \qquad
8. If $\sin \left(\frac{\pi}{14}\right)$ is a root of the cubic equation $8 x^{3}-4 x^{2}-4 x+\alpha=0$ and [.] represents the greatest integer function, then value of $\left[\frac{\alpha}{2}\right]$ is equal to. \qquad
9. If $\prod_{r=1}^{7}\left\{\sin \left(\frac{(2 r-1) \pi}{14}\right)\right\}=\left(\frac{1}{\sqrt{2}}\right)^{n}$, then value of $\left(\frac{n}{4}\right)^{2}$ is equal to. \qquad
10. Let $\alpha^{2}+3 \alpha+8, \alpha^{2}+2 \alpha$ and $2 \alpha+3$ be three sides of a triangle, then least possible integral value of ' α ' is equal to .

Matrix Matching Questions :
 (Questions No. 11-12)

11. Let $\sin \theta+\sin \phi=a$ and $\cos \theta+\cos \phi=b$, where $a \neq b$, then match the following columns (I) and (II).

Column (I)

(a) $\tan \theta+\tan \phi$
(b) $\cos \theta \cdot \cos \phi$
(p) $\frac{\left(a^{2}+b^{2}\right)^{2}-4 b^{2}}{4\left(a^{2}+b^{2}\right)}$
(q) $\frac{2 a b}{\left(a^{2}+b^{2}\right)}$
(c) $\cos (\theta+\phi)$
(r) $\frac{8 a b}{\left(a^{2}+b^{2}\right)^{2}-4 b^{2}}$
(d) $\sin (\theta+\phi)$
(s) $\frac{4 a b}{\left(a^{2}+b^{2}\right)^{2}+2 b^{2}}$
(t) $\frac{b^{2}-a^{2}}{b^{2}+a^{2}}$

Column (II)

12. Match the following columns (I) and (II).

Column (I)

(a) If $x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, then the output set of
$f(x)=4^{\sin x}-2^{1+\sin x}+4$ contain the interval(s)
(b) If $x \in\left[-\frac{\pi}{2}, 0\right]$, then the output set of
$f(x)=\sin ^{6} x+3 \sin ^{4} x+5 \sin ^{2} x+2 \cos ^{2} x$
(r) $(5,9]$
contain the interval(s)
(c) If $x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, then the output set of
(s) $[3,4)$
$f(x)=\tan ^{6} x+4 \tan ^{3} x+5$ contain the interval(s)
(d) If $x \in\left(\frac{\pi}{2}, \pi\right]$, then output set of
(t) $[1,4)$

Column (II)

(p) $(1,2]$
(q) $[4,5)$
(5,9]
(s)
-
$f(x)=9^{\sec x}-4(3)^{\sec x}+5$ contain the interval(s)

1. (c)	2. (b)	3. (a)	4. (d)	5. (c)
6. (d)	7. (a)	8. (b)	9. (c)	10. (b)
11. (b)	12. (b)	14. (a)	15. (c)	
16. (c)	17. (b)	18. (b)	19. (b)	20. (b)
21. (c)	23. (c)	24. (d)	25. (d)	
26. (a, b, c)	27. (a $, \mathrm{b}, \mathrm{c}$, d)	28. (a, c d)	29. (a, b, c)	30. (a, b)
31. (a)	32. (b)	33. (a)	34. (c)	35. (a)

ANSWERS

1. (b)
2. (c)
3. (c)
4. (b)
5. (c)
6. (a)
7. (6)
8. (0)
9. (9)
10. (6)
11. (a) $\rightarrow r$
(b) $\rightarrow \mathrm{p}$
(c) \rightarrow t
(d) \rightarrow q
12. (a) $\rightarrow s$
(b) $\rightarrow \mathrm{q}, \mathrm{r}, \mathrm{s}$
(c) $\rightarrow \mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}, \mathrm{t}$
(d) \rightarrow q

Exercise No. (1)

Multiple choice questions with ONE correct answer :

(Questions No. 1-15)

1. Total number of integral values of ' n ' such that the equation $(\cos x+\sin x) \sin x=n$ is having atleast one real solution is/are :
(a) 3
(b) 1
(c) 2
(d) 0
2. The equation $\cos x-x+2=0$ is having one real root in the interval :
(a) $\left(0, \frac{\pi}{2}\right)$
(b) $\left(\frac{\pi}{2}, \pi\right)$
(c) $\left(\pi, \frac{3 \pi}{2}\right)$
(d) $\left(\frac{3 \pi}{2}, 2 \pi\right)$
3. The equation $\tan ^{4} x-2 \sec ^{2} x+a^{2}=0$ will have at least one solution , if :
(a) $|a| \leq 2$
(b) $|a| \leq 4$
(c) $|a| \leq \sqrt{3}$
(d) $|a| \leq 1$
4. The number of solutions of the equation $\max \{\sec x, \operatorname{cosec} x\}=3$ in interval $[0,2 \pi]$ are given by :
(a) 4
(b) 8
(c) 6
(d) 10
5. If $4 \sin ^{2} x+\tan ^{2} x+\operatorname{cosec}^{2} x+\cot ^{2} x-6=0$, then for all $n \in I, x$ belongs to :
(a) $n \pi \pm \frac{\pi}{4}$
(b) $2 n \pi \pm \frac{\pi}{4}$
(c) $n \pi+\frac{\pi}{4}$
(d) $n \pi-\frac{\pi}{4}$
6. If $x \in[0,2 \pi]$, then total number of solutions of equation $\sin ^{4} x+\cos ^{4} x=\sin x \cdot \cos x$ is equal to :
(a) 0
(b) 1
(c) 2
(d) 4
7. General solution of the trinometric equation, $(\sqrt{3}-1) \sin \theta+(\sqrt{3}+1) \cos \theta=2$ is :
(a) $n \pi+(-1)^{n} \frac{\pi}{4}+\frac{\pi}{12} ; n \in I$
(b) $n \pi+(-1)^{n} \frac{\pi}{4}-\frac{\pi}{12} ; n \in I$
(c) $2 n \pi \pm \frac{\pi}{4}+\frac{\pi}{12} ; n \in I$
(d) $2 n \pi \pm \frac{\pi}{4}-\frac{\pi}{12} ; n \in I$
8. If $4 \sin ^{2} x-8 \sin x+3 \leq 0$ and $x \in[0,2 \pi]$, then the solution set for x is :
(a) $\left[0, \frac{\pi}{6}\right]$
(b) $\left[\frac{5 \pi}{6}, \frac{11 \pi}{6}\right]$
(c) $\left[\frac{\pi}{3}, \frac{2 \pi}{3}\right]$
(d) $\left[\frac{\pi}{6}, \frac{5 \pi}{6}\right]$
9. Let $x \in\left(-\frac{\pi}{2}, \frac{7 \pi}{2}\right)$ and $y \in R$, then number of ordered pairs (x, y) which satisfy the inequation $2^{\sec ^{2} x}\left\{\sqrt{\frac{1}{2}-y^{2}+y^{4}}\right\} \leq 1$ are given by :
(a) 4
(b) 8
(c) 12
(d) 16
10. If $\cos ^{6} x+\sin ^{6} x+\lambda \sin ^{2} 2 x=1$, where $x \in\left(0, \frac{\pi}{2}\right)$, then ' λ ' is equal to :
(a) $\frac{1}{4}$
(b) $\frac{3}{4}$
(c) $\frac{2}{3}$
(d) $\frac{1}{3}$
11. Number of solutions of the pair of equations, $2 \sin ^{2} \theta-\cos 2 \theta=0$ and $2 \cos ^{2} \theta-3 \sin \theta=0$, in the interval $[0,2 \pi]$ is/are :
(a) 0
(b) 2
(c) 4
(d) 3
12. If $x \in\left[0, \frac{\pi}{2}\right]$, then number of solutions of the equation $2 \sin ^{2} x \cdot \cos ^{2}\left(\frac{x}{2}\right)=2^{x}+2^{-x}$ is/are :
(a) 0
(b) 1
(c) 2
(d) 3
13. The number of ordered pairs (p, q), where $p, q \in(-\pi, \pi) \quad, \quad$ satisfying the conditions $\cos (p+q)=\lim _{\alpha \rightarrow 1}(1+\sin \pi \alpha)^{\cot \pi \alpha}$ and $\cos (p-q)=1$ is/are :
(a) 0
(b) 1
(c) 2
(d) 4
14. Let ' α ' be the smallest positive number for which the equation $\cos (\alpha \sin x)-\sin (\alpha \cos x)=0$ is having a solution for $x \in[0,2 \pi]$, then $\tan \left(\frac{\alpha}{2 \sqrt{2}}\right)$ is :
(a) 1
(b) $\sqrt{2}-1$
(c) $\sqrt{3}-1$
(d) $2-\sqrt{3}$
15. The smallest positive root of the equation $\sqrt{\sec ^{2} x-1}-x=0$ lies in :
(a) $\left(0, \frac{\pi}{2}\right)$
(b) $\left(\frac{\pi}{2}, \pi\right)$
(c) $\left(\pi, \frac{3 \pi}{2}\right)$
(d) $\left(\frac{3 \pi}{2}, 2 \pi\right)$

Multiple choice questions with MORE than ONE

 correct answer : (Questions No. 16-20)16. Let $\theta \in\left(0, \frac{\pi}{2}\right)$, then the solutions of the equation $\sum_{p=1}^{6} \operatorname{cosec}\left(\theta+(p-1) \frac{\pi}{4}\right) \cdot \operatorname{cosec}\left(\theta+p \frac{\pi}{4}\right)=4 \sqrt{2}$ is / are :
(a) $\frac{\pi}{8}$
(b) $\frac{\pi}{12}$
(c) $\frac{3 \pi}{8}$
(d) $\frac{5 \pi}{12}$
17. If the equation $4|\sin x \cos x|-2|x|-\lambda=0$ is having atleast two real solutions, then possible values of the parameter ' λ ' can be :
(a) $\tan \left(\frac{\pi}{8}\right)$
(b) $\tan \left(\frac{13 \pi}{12}\right)$
(c) $\sin \left(\frac{\pi}{10}\right)$
(d) $\cos \left(\frac{\pi}{5}\right)$
18. Let $f(x)=2 \sin x+3 \cos (\lambda x)$, where $\lambda \in R$. If the equation $f(x)-\sec \left(\sin ^{-1}\left(\frac{12}{13}\right)\right)-\tan \left(\cos ^{-1}\left(\frac{5}{13}\right)\right)=0$ is having atleast one real solution, then values (s) of ' λ ' can be equal to :
(a) $\frac{8}{5}$
(b) $-\frac{4}{3}$
(c) $\frac{2}{3}$
(d) $\frac{12}{17}$
19. If 'S' represents the exhaustive set of values of x in $(-\pi, \pi]$ which satisfy the inequality $2 \sin ^{2} x+|\sin x|-1 \leq 0$, then set ' S ' contains :
(a) $\left[\frac{\pi}{12}, \frac{\pi}{4}\right]$
(b) $\left[-\frac{\pi}{6}, \frac{-\pi}{8}\right]$
(c) $\left[\frac{5 \pi}{6}, \frac{7 \pi}{8}\right]$
(d) $\left(-\frac{5 \pi}{6},-\pi\right)$
20. If the inequality $x+\sin x \geq|p| x^{2}$ is satisfied for all $x \in\left[0, \frac{\pi}{2}\right]$, then the possible value(s) of ' p ' can be :
(a) $\frac{\pi+4}{\pi^{2}}$
(b) $\tan \left(\frac{7 \pi}{8}\right)$
(c) $\frac{\pi+4}{\pi}$
(d) $\frac{2 \pi+4}{\pi^{2}}$
Assertion Reasoning questions :
(Questions No. 21-25)

Following questions are assertion and reasoning type questions. Each of these questions contains two statements, Statement 1 (Assertion) and Statement 2 (Reason). Each of these questions has four alternative answers, only one of them is the correct answer. Select the correct answer from the given options :
(a) Both Statement 1 and Statement 2 are true and Statement 2 is the correct explanation of Statement 1.
(b) Both Statement 1 and Statement 2 are true but Statement 2 is not the correct explanation of Statement 1.
(c) Statement 1 is true but Statement 2 is false.
(d) Statement 1 is false but Statement 2 is true.
21. Statement 1 : The equation $2 \cos ^{2} x+\sqrt{3} \sin x+1=0$ is having four solutions in $[-3 \pi, \pi]$ because

Statement $2: \sin x=\frac{-\sqrt{3}}{2} \Rightarrow x=n \pi-(-1)^{n+3} \cdot \frac{\pi}{3}$, where $n \in I$.
22. Statement 1 : If $x \in(0,2 \pi)$, then the equation $\tan x+\sec x=2 \cos x$ is having 3 distinct solutions because

Statement 2: The graphs of $y=1+\sin x$ and $y=2+\cos ^{2} x$ intersect each other at three distinct locations if $x \in(0,2 \pi)$.
23. Statement 1 : If $\sin ^{4} x-\cos ^{6} 3 x=1$, then no solution exists for the equation in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
because
Statement 2: $\cos x+\sec x=2 \Rightarrow \sin ^{4} x+\sin ^{6} x=0$.
24. Statement 1 : If [.] denotes the greatest integer function, then the equation $2+[\sin x]+[\cos x]=0$ is having infinitely many solutions is $\left(-\pi,-\frac{\pi}{2}\right)$
because
Statement 2 : The values of both $\sin x$ and $\cos x$ lies in between -1 and 0 for all $x \in\left(-\pi,-\frac{\pi}{2}\right)$.
25. Statement 1 : If [.] denotes the greatest integer function, then number of solutions of the system of equations $2 y=[\cos x+[\cos x]]$ and $[y+[y+[y]]]=6 \sin x$, where $x \in[-2 \pi, 2 \pi]$, are two

because

Statement 2 : The graphs of $y=2 \cos x$ and $y=[\sin x]$ intersect each other at two location for $x \in[-2 \pi, 2 \pi]$.

Comprehension based Multiple choice questions

 with ONE correct answer :
Comprehension passage (1)
 (Questions No. 1-3)

Consider the system of equations :
$4|\sin x| \sin y+1=0$, and
$\cos (x+y)+\cos (x-y)=3 / 2$
If $x \in[0,2 \pi]$ and $y \in[\pi, 2 \pi]$, then answer the following questions

1. Let the ordered pair (x, y) satisfy the given system of equations, then number of ordered pair(s) for which $x \in(0, \pi)$, is/are :
(a) 2
(b) 1
(c) 0
(d) 4
2. Number of ordered pairs (x, y) which satisfy the given system of equations and hold the conditions $y-x=0$, is/are :
(a) 4
(b) 1
(c) 2
(d) 0
3. Number of ordered pairs (x, y) which satisfy the given system of equations and hold the condition $y-x \geq \frac{\pi}{4}$, is/are :
(a) 2
(b) 1
(c) 0
(d) 4

Comprehension passage (2)
 (Questions No. 4-6)

Let ' α ' be a real parameter for which the equation $\sin ^{4} x+\cos ^{4} x+(\sin x+\cos x)^{2}+\alpha-1=0$ is having atleast one real solution. If ' β ' is another real parameter for which the equation $\sin ^{4} x+\cos ^{4} x=\beta$ is having real solution, then answer the following questions.
4. Exhaustive set of values of ' α ' belong to :
(a) $\left[-\frac{3}{2}, \frac{3}{2}\right]$
(b) $\left[-\frac{1}{2}, \frac{1}{2}\right]$
(c) $\left[-\frac{3}{2},-\frac{1}{2}\right]$
(d) $\left[-\frac{3}{2}, \frac{1}{2}\right]$
5. If the exhaustive set of permissible values of α and β are represented by A and B respectively, then number of integral element(s) which lies in $A \cap B$ is/are :
(a) 2
(b) 0
(c) 1
(d) 4
6. Let for some permissible values of ' α ' and ' β ' the given system of equations in the passage is having common solution, then the common solution can be :
(a) $\frac{\pi}{4}$
(b) $\frac{5 \pi}{4}$
(c) $\frac{3 \pi}{4}$
(d) $\frac{\pi}{2}$

Questions with Integral Answer : (Questions No. 7-10)

7. Let $\frac{k \pi}{32}$ be the smallest angle in $[0,2 \pi]$ for which the equation $16 \sin ^{10} x+16 \cos ^{10} x=29 \cos ^{4} 2 x$ is satisfied, then value of ' k ' is equal to . \qquad
8. Total number of values of x in $(-\pi, \pi)$ for which the equation $(\sqrt{3} \sin x+\cos x)^{\sqrt{\sqrt{3} \sin 2 x-\cos 2 x+2}}=4$ is satisfied is/are \qquad
9. Total number of solution(s) of the equation $|4 \sin \pi x|-x^{2}+2 x=1$ is/are. \qquad
10. If the equation $K \cos x-3 \sin x=K+1$ is solvable for x, then maximum possible integral value of ' K ' is equal to \qquad

Matrix Matching Questions :
 (Questions No. 11-12)

11. Match the equations in column (I) with their number of solutions in column (II).

Column (I)

Column (II)
(a) $3 x+2 \tan x=\frac{5 \pi}{2}, x \in[0,2 \pi]$
(p) 4
(b) $\sin \{x\}=\cos \{x\}, x \in[0,2 \pi],\{$.$\} denotes the$
(q) 3
fractional part of x.
(c) $\cos 2 x=|\sin x|, x \in\left(-\frac{\pi}{2}, \pi\right)$
(s) 6
(d) $\sin (\cos x)-\cos (\sin x)=0, x \in[0,2 \pi]$
(t) 1
12. Match columns (I) and (II).

Column (I)

Column (II)

(a) If the equation $2 \cot ^{2} x-5 \operatorname{cosec} x-1=0$ is having
(p) 8 at least seven distinct solutions in $[0, n \pi]$, then natural number ' n ' can be
(b) Number of solution(s) of the equation
(q) 0
$\frac{\tan x+\cot x}{2}+\left|\frac{\tan x-\cot x}{2}\right|=x$ for
$x \in\left[0, \frac{3 \pi}{2}\right)$ is/are
(r) 2
(c) Number of ordered pairs (x, y) satisfying the equation
(s) 7
$|x|+|y|=1$ and $\sin (x+y)-\sin x-\sin y=0$ is/are
(d) If the equation $4 \operatorname{cosec}^{2}(\pi(\lambda+x))+\lambda^{2}-4 \lambda=0$ is
(t) 6
having real solution, then ' λ ' can be

ANSWERS

Exercise No. (1)

1. (c)
2. (c)
3. (b)
4. (c)
5. (a)
6. (a, b, c)
7. (b , d)
8. (c)
9. (d)
10. (c)
11. (a)
12. (a)
13. (b)
14. (d)
15. (b)
16. (b)
17. (d)
18. (b)
19. (b)
20. (a , b , d)
21. (b , c)
22. (a, b, d)
23. (b)

ANSWERS

Exercise No. (2)

1. (a)
2. (c)
3. (a)
4. (d)
5. (b)
6. (c)
7. (4)
8. (2)
9. (7)
10. (4)
11. (a) \rightarrow q
12. (a) $\rightarrow p, s$
(b) $\rightarrow s$
(c) \rightarrow q
(d) $\rightarrow \mathrm{r}$
(b) $\rightarrow r$
(c) $\rightarrow t$
(d) $\rightarrow r$

Solution of Triangle

Exercise No. (1)

Multiple choice questions with ONE correct answer : (Questions No. 1-20)

1. In $\triangle A B C$, if angles A, B, C are in geometric sequence with common ratio 2 , then $\left(\frac{1}{b}+\frac{1}{c}-\frac{1}{a}\right)$ is :
(a) $\frac{1}{3}$
(b) $\frac{1}{2}$
(c) 0
(d) 2
2. Let $A B C$ and $A B C^{\prime}$ be two non-congruent triangles with sides $A B=4, A C=A C^{\prime}=2 \sqrt{2}$ and angle $B=30^{\circ}$. The absolute value of the difference between the area of these triangles is :
(a) 8
(b) 4
(c) 6
(d) 2
3. In an isosceles triangle if one angle is 120° and radius of its incircle is $\sqrt{3}$, then area of the triangle in square units is :
(a) $7+12 \sqrt{3}$
(b) $12-7 \sqrt{3}$
(c) $12+7 \sqrt{3}$
(d) 4π
4. If a, b and c denote the length of the sides opposite to angles A, B and C of a triangle $A B C$, then the correct relation is given by :
(a) $(b+c) \sin \left(\frac{B+C}{2}\right)=a \cos \left(\frac{A}{2}\right)$
(b) $(b-c) \cos \left(\frac{A}{2}\right)=a \sin \left(\frac{B-C}{2}\right)$
(c) $(b-c) \cos \left(\frac{A}{2}\right)=2 a \sin \left(\frac{B-C}{2}\right)$
(d) $(b-c) \sin \left(\frac{B-C}{2}\right)=a \cos \left(\frac{A}{2}\right)$
5. Three circular coins each of radii 1 cm are kept in an equilateral triangle so that all the three coins touch each other and also the sides of the triangle. Area of the triangle is
(a) $(4+2 \sqrt{3}) \mathrm{cm}^{2}$
(b) $\left(\frac{1}{4}\right)(12+7 \sqrt{3}) \mathrm{cm}^{2}$
(c) $\left(\frac{1}{4}\right)(48+7 \sqrt{3}) \mathrm{cm}^{2}$
(d) $(6+4 \sqrt{3}) \mathrm{cm}^{2}$
6. If the angles of a triangle are in the ratio $4: 1: 1$, then the ratio of the longest side to the perimeter is :
(a) $\sqrt{3}:(2+\sqrt{3})$
(b) $1: \sqrt{3}$
(c) $1:(2+\sqrt{3})$
(d) $2: 3$
7. In a triangle $A B C$, let $\angle C=\pi / 2$. If r is the in-radius and R is the circum-radius of the triangle then $2(r+R)$ is equal to
(a) $a+b$
(b) $b+c$
(c) $c+a$
(d) $a+b+c$
8. In a triangle $A B C, \angle B=\pi / 3$ and $\angle C=\pi / 4$. Let D divides $B C$ internally in the ratio $1: 3$ then $\frac{\sin \angle B A D}{\sin \angle C A D}$ equal to :
(a) $1 / \sqrt{6}$
(b) $1 / 3$
(c) $1 / \sqrt{3}$
(d) $\sqrt{2 / 3}$
9. If $\angle B=\frac{\pi}{4}, \angle C=\frac{\pi}{3}$ and $a=(2 \sqrt{3}+2)$ units , then area (in sq. units) of traingle $A B C$ is :
(a) $6+2 \sqrt{3}$
(b) 4
(c) $\sqrt{3}+1$
(d) $2 \sqrt{3}+4$
10. Let r, R be respectively the radii of the inscribed and circumscribed circles of a regular polygon of n sides such that $\frac{R}{r}=\sqrt{5}-1$, then n is equal to :
(a) 5
(b) 6
(c) 10
(d) 8
11. In a triangle $A B C, \frac{r_{1}}{b c}+\frac{r_{2}}{c a}+\frac{r_{3}}{a b}$ is equal to :
(a) $\frac{1}{2 R}-\frac{1}{r}$
(b) $2 R-r$
(c) $r-2 R$
(d) $\frac{1}{r}-\frac{1}{2 R}$

Solution of Triangle

12. If for a triangle $A B C,\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|=0$ then $\sin ^{3} A+\sin ^{3} B+\sin ^{3} C$ is equal to :
(a) $\sin A+\sin B+\sin C$
(b) $3 \sin A \sin B \sin C$
(c) $\sin 3 A+\sin 3 B+\sin 3 C$
(d) $\sin ^{3} A \sin ^{3} B \sin ^{3} C$
13. In a triangle $A B C$ if $\frac{a}{4}=\frac{b}{5}=\frac{c}{6}$, then ratio of the radius of the circumcircle to that of the incircle is
(a) $15 / 4$
(b) $11 / 5$
(c) $16 / 7$
(d) $16 / 3$
14. In a triangle $A B C$ let $A D$ be the altitude form A. If $b>c, \angle C=23^{\circ}$ and $A D=\frac{a b c}{b^{2}-c^{2}}$ then $\angle B$ is equal to

(a) 113°
(b) 123°
(c) 147°
(d) 157°
15. In triangle $A B C$, if
$\frac{2 \cos A}{a}+\frac{\cos B}{b}+\frac{2 \cos C}{c}=\frac{a}{b c}+\frac{b}{c a}$, then
(a) $A=90^{\circ}$
(b) $B=90^{\circ}$
(c) $C=90^{\circ}$
(d) $C=75^{\circ}$
16. In a triangle $A B C$, if $\frac{1}{a+c}+\frac{1}{b+c}=\frac{3}{a+b+c}$ then $\angle C$ is equal to :
(a) 30°
(b) 60°
(c) 75°
(d) 90°
17. In a triangle with one angle $\frac{2 \pi}{3}$, the lengths of the sides form an A.P. If the length of the greatest side is 7 cm , the radius of the circumcircle of the triangle is
(a) $\frac{7 \sqrt{3}}{3} \mathrm{~cm}$
(b) $\frac{5 \sqrt{3}}{3} \mathrm{~cm}$
(c) $\frac{2 \sqrt{3}}{3} \mathrm{~cm}$
(d) $\sqrt{3} \mathrm{~cm}$
18. If D is the mid-point of side $B C$ of a triangle $A B C$ and $A D$ is perpendicular to $A C$, then
(a) $3 b^{2}=a^{2}-c^{2}$
(b) $3 a^{2}=b^{2}-3 c^{2}$
(c) $b^{2}=a^{2}-c^{2}$
(d) $a^{2}+b^{2}=5 c^{2}$
19. If two sides of a triangle are the roots of the equation $4 x^{2}-(2 \sqrt{6}) x+1=0$ and the included angle is 60°, then the third side is
(a) $\sqrt{3}$
(b) $\sqrt{3} / 2$
(c) $1 / \sqrt{3}$
(d) $2 / \sqrt{3}$
20. In a triangle $A B C$, if $(a+b+c)(b+c-a)=\lambda b c$, then :
(a) $\lambda<0$
(b) $\lambda>6$
(c) $0<\lambda<4$
(d) $\lambda>4$

Multiple choice questions with MORE than ONE correct answer : (Questions No. 21-25)

21. Internal bisector of angle A of triangle $A B C$ meets side $B C$ at D. A line drawn through D perpendicular to $A D$ intersects the side $A C$ at E and the side $A B$ at F. If a, b, c represent sides of $\triangle A B C$, then
(a) $A E$ is H.M. of b and c
(b) $A D=\frac{2 b c}{b+c} \cos \frac{A}{2}$
(c) $E F=\frac{4 b c}{b+c} \sin \frac{A}{2}$
(d) the triangle $A E F$ is isosceles
22. If a triangle $A B C$ with side $a=12$ units is inscribed in a circle of radius 10 units, then in-radius of triangle $A B C$ can be :
(a) 4 units
(b) 8 units
(c) 5 units
(d) 2 units
23. Let the two adjacent sides of a cyclic quadrilateral be 2,5 and the angle between them is $\frac{\pi}{3}$. If the area of quadrilateral is $4 \sqrt{3}$ square units, then the remaining sides can be :
(a) 2
(b) 4
(c) 3
(d) 6
24. Which of the following expressions on solving reduce to the area of triangle $A B C$? (all the notations are having their usual meaning).
(a) $\sqrt{r\left(r_{1} r_{2} r_{3}\right)}$
(b) $r_{1} r_{2} \sqrt{\frac{4 R-\left(r_{1}+r_{2}\right)}{r_{1}+r_{2}}}$
(c) $r^{2} \cot \frac{A}{2}+2 \operatorname{Rr}(\sin A)$
(d) $r_{1} r\left(\frac{r_{3}-r_{2}}{c-b}\right)$
25. For triangle $A B C$, which of the following statements are true?
(a) Product of all the side lengths of $\triangle A B C=2(r s R)$.
(b) $\frac{1}{r}=\frac{1}{r_{1}}+\frac{1}{r_{2}}+\frac{1}{r_{3}}$
(c) If $2 R=r_{1}-r$, then $\triangle A B C$ is right-angled.
(d) If $R=2 r$, then $\triangle A B C$ is equilateral.

Assertion Reasoning questions :
 (Questions No. 26-30)

Following questions are assertion and reasoning type questions. Each of these questions contains two statements, Statement 1 (Assertion) and Statement 2 (Reason). Each of these questions has four alternative answers, only one of them is the correct answer. Select the correct answer from the given options :
(a) Both Statement 1 and Statement 2 are true and Statement 2 is the correct explanation of Statement 1.
(b) Both Statement 1 and Statement 2 are true but Statement 2 is not the correct explanation of Statement 1.
(c) Statement 1 is true but Statement 2 is false.
(d) Statement 1 is false but Statement 2 is true.
26. Let A_{1} be the area of n-sided regular polygon inscribed in a circle ' C^{\prime} of unit radius and A_{2} be the area of n-sided regular polygon circumscribing the circle ' C '.

Statement 1 : If $\frac{A_{2}}{A_{1}}=4(2-\sqrt{3})$, then the number of sides ' n ' of the regular polygon are 12

because

Statement 2: $\frac{A_{2}}{A_{1}}=4 \tan \left(\frac{\pi}{n}\right)$.
27. In triangle $A B C$, let the side lengths be $a=6, b=8$ and $c=10$.
Statement 1 : Distance between the circum-centre and in-centre of $\triangle A B C$ is equal to $\sqrt{5}$ units

because

Statement 2 : For any triangle, distance between the circum-centre and in-centre is equal to $\sqrt{R^{2}-2 r R}$, where R, r represents the circum-radius and in-radius of the triangle.
28. Consider an acute-angled triangle $A B C$ in which the altitudes are $A P, B Q$ and $C R$.
Statement 1 : Incentre of triangle $P Q R$ is the orthocentre of triangle $A B C$

because

Statement 2: orthocentre of triangle $I_{1} I_{2} I_{3}$ is the in-centre of triangle $A B C$, where I_{1}, I_{2}, I_{3} denote the centre of escribed circles for triangle $A B C$.
29. Consider a triangle $A B C$, having side lengths a, b, c and circum-radius (R). If r_{1}, r_{2}, r_{3} denote the ex-radii of triangle $A B C$, then

Statement 1: $\left\{\frac{a b}{r_{3}}+\frac{a c}{r_{2}}+\frac{b c}{r_{1}}\right\} \geq 6 R$
because
Statement $2:\left\{\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\right\} \geq 6$
30. Statement 1 : In triangle $A B C$, if the sides b, c and the angle $\angle A B C$ is known, then a unique triangle can only be formed if $\sin B=\frac{b}{c}$ and $\angle B$ is acute
because
Statement 2: If $\sin B=\frac{b}{c}$ and $\angle B$ is obtuse, then $\triangle A B C$ doesn't exist.

Exercise No. (2)

Comprehension based Multiple choice questions with ONE correct answer :

Comprehension passage (1)
 (Questions No. 1-3)

Let circum-radius of $\triangle A B C$ be ' R^{\prime} and the line joining the circum-centre ' O^{\prime} ' and in-centre ' I ' is parallel to side $B C$. If R_{1}, R_{2}, R_{3} are the radii of circumcircles of triangles $O B C, O C A$ and $O A B$ respectively, then answer the following questions.

1. Value of $\left\{\frac{a}{R_{1}}+\frac{b}{R_{2}}+\frac{c}{R_{3}}\right\}$ is equal to :
(a) $\frac{a+b+c}{R}$
(b) $\frac{a b c}{R^{3}}$
(c) $\left(\frac{a b c}{R}\right)^{2}$
(d) $\frac{a^{2}+b^{2}+c^{2}}{R^{2}}$
2. Value of $(\cos B+\cos C)$ is :
(a) 1
(b) $3 / 2$
(c) $1 / 2$
(d) $1 / 3$
3. For given $\triangle A B C$ the in-radius is given by
(a) $R \cos B$
(b) $R \cos A$
(c) $R \cos C$
(d) none of these

Comprehension passage (2) (Questions No. 4-6)

In triangle $A B C$, let the altitude, internal angular bisector and the median from vertex A meet the opposite side $B C$ at D, E and F respectively. If $\angle B A D=\alpha$, and $\angle D A E=\angle E A F=\angle C A F=\alpha$, then answer the following questions.
4. If $\{p\}$ denotes the fractional part of p, where $p=[p]+\{p\}$, then :
(a) $\{\tan B\}=0$
(b) $\{\sin A\}=1 / 2$
(c) $\{\cos B\}=\frac{1}{2}$
(d) $\{\tan B\}=\{\tan C\}$
5. Value of $\tan \left(\frac{1}{2} \cos ^{-1}(\cos (2 C))\right)$ is equal to :
(a) $\tan \left(\frac{B}{2}\right)$
(b) $\tan \left(\frac{3 A}{4}\right)$
(c) $\sin (2 B)$
(d) $\tan B+\tan C$
6. If $B C=4$ units and the area of $\triangle A B C$ is ' δ ' square units, then :
(a) $\tan \left(\sin ^{-1}\left(\frac{4}{\delta}\right)\right)=1$
(b) $\tan \left(2 \tan ^{-1}\left(\frac{\delta-2}{2}\right)\right)=1$
(c) $\cot \left(2 \tan ^{-1}\left(\frac{\delta+2}{2}\right)\right)=1$
(d) $\tan \left(3 \tan ^{-1}(\delta+1)\right)=1$

Comprehension passage (3)

(Questions No. 7-9)

Let triangle $A B C$ of area \triangle square units be inscribed in a circle of radius 4 units, where $\Delta \in(0,12 \sqrt{3}]$. If p_{1}, p_{2} and p_{3} denote the length of altitudes of triangle $A B C$ from the vertices A, B and C respectively, then answer the following questions.
7. The value of $4\left\{\frac{\cos A}{p_{1}}+\frac{\cos B}{p_{2}}+\frac{\cos C}{p_{3}}\right\}$, is equal to :
(a) 2
(b) 1
(c) 3
(d) 4
8. If sides a, b, c are in A.P., then maximum value of $\left\{\frac{1}{p_{1}}+\frac{1}{p_{2}}+\frac{1}{p_{3}}\right\}$ is equal to :
(a) $\frac{18}{\Delta}$
(b) $\frac{24}{\Delta}$
(c) $\frac{6}{\Delta}$
(d) $\frac{12}{\Delta}$
9. Minimum value of the expression $\left\{\frac{a^{2} p_{3}}{b}+\frac{b^{2} p_{1}}{c}+\frac{c^{2} p_{2}}{a}\right\}$ is equal to :
(a) 4Δ
(b) 6Δ
(c) 8Δ
(d) 2Δ

Questions with Integral Answer : (Questions No. 10-14)

10. Let a, b, c represent the sides of triangle $A B C$, where $(b-a)=(c-b)=1$ and $a, b, c \in N$. If $\angle C=2 \angle A$, then value of $(3 c-b-a)$ is equal to \qquad
11. If sides of a triangle are three consecutive natural numbers and its largest angle is twice the smallest one , then the largest side of triangle is \qquad
12. Let a, b and c represent the sides of triangle $A B C$ opposite to the vertices A, B and C respectively.
If $a^{4}+b^{4}+c^{4}+b^{2} c^{2}-2 a^{2}\left(b^{2}+c^{2}\right)=0, \quad$ then value of $\sec ^{2}(A)$ is equal to \qquad
13. Let three circles touch one-another externally and the tangents at their points of contact meet at a point whose distance from any point of contact is 2 units. If ratio of the product of radii to the sum of radii of cricles is $k: 1$, then k is equal to \qquad
14. If Δ_{0} is the area of Δ formed by joining the points of contact of incircle with the sides of the given triangle whose area is Δ, similarly Δ_{1}, Δ_{2} and Δ_{3} are the corresponding area of the Δ formed by joining the points of contact of excircles with the sides , then value of $\frac{\Delta_{1}}{\Delta}+\frac{\Delta_{2}}{\Delta}+\frac{\Delta_{3}}{\Delta}-\frac{\Delta_{0}}{\Delta}$ is equal to \qquad

Matrix Matching Questions :
 (Questions No. 15-17)

15. In triangle $A B C$, let the orthocentre (H) and circum-centre $\left(C_{0}\right)$ be $(3,3)$ and $(4,3)$ respectively. If side $B C$ of the triangle lies on line $y-2=0$ and internal angles are $\angle A=\alpha, \angle B=\beta, \angle C=\gamma$, then match the following columns (I) and (II).

Column (I)

(a) $\left(A C_{0}\right) \cos \alpha$
(b) $H B$
(c) $H A$
(d) $H C$

Column (II)

(p) $\sec \gamma$
(q) 2
(r) 4
(s) $\sec \beta$
(t) 1
16. In triangle $A B C$, let $C H$ and $C M$ be the lengths of the altitude and median to base $A B$. If side lengths $a=5, b=\sqrt{97}$ and $c=12$, then match the following columns I and II.

Column (I)

(a) Value of $\cos \left(\tan ^{-1}(\sqrt{M H})\right)$ is
(b) Length of in-radius of triangle $M H C$ is
(c) If $B C$ is extended to P such that triangle $A P B$ is right angled at P, and area of $\triangle A P C$ is ' δ ' square units, then integer(s) less than $\left(\frac{\delta}{M H}\right)$ can be
(d) If $\angle A P H=\theta$, then value of $\tan \theta$ is more than

Column (II)

(p) 2
(q) 1
(r) 5
(s) 3
(t) $1 / 2$

1. (c)
2. (b)
3. (c)
4. (b)
5. (d)

6. (c)	7. (a)	8. (a)	9. (a)	10. (a)
11. (d)	12. (b)	13. (c)	14. (a)	15. (a)
16. (b)	17. (a)	18. (a)	19. (b)	20. (c)
21. (a , b , c, d)	22. (a , d)	23. (a, c)	24. (a, b, c, d)	25. (b, c , d)
26. (c)	27. (a)	28. (b)	29. (a)	30. (d)

FANSWERS

Exercise No. (2)

$\bigcirc \mathrm{O}_{0}$

1. (b)
2. (a)
3. (b)
4. (d)
5. (b)
6. (b)
7. (b)
8. (d)
9. (b)
10. (9)
11. (6)
12.(4)
12. (4)
13. (2)
14. (a) $\rightarrow t$
(b) $\rightarrow \mathrm{p}$
(c) $\rightarrow \mathrm{q}$
15. (a) $\rightarrow t$
(d) \rightarrow s
(c) $\rightarrow \mathrm{p}, \mathrm{q}, \mathrm{s}$
(d) $\rightarrow \mathrm{p}, \mathrm{q}, \mathrm{t}$

Exercise No. (1)

Multiple choice questions with ONE correct answer :

 (Questions No. 1-25)1. If $1<x<\sqrt{2}$, then number of solutions of equation $\tan ^{-1}(x-1)+\tan ^{-1}(x)+\tan ^{-1}(x+1)=\tan ^{-1}(3 x)$ is :
(a) 0
(b) 1
(c) 2
(d) 3
2. If $\frac{1}{2} \sin ^{-1}\left(\frac{3 \sin 2 \theta}{5+4 \cos 2 \theta}\right)=\tan ^{-1} x$, then x is equal to :
(a) $\tan 3 \theta$
(b) $3 \tan \theta$
(c) $\frac{1}{3} \tan \theta$
(d) $3 \cot \theta$
3. If $\tan ^{-1}\left(\frac{1}{3}\right)+\tan ^{-1}\left(\frac{1}{7}\right)+\tan ^{-1}\left(\frac{1}{13}\right)+\ldots \ldots . n$ terms is equal to $\tan ^{-1}(\theta)$, then θ is equal to:
(a) $\frac{n}{n+1}$
(b) $\frac{n+1}{n+2}$
(c) $\frac{n}{n+2}$
(d) $\frac{n-1}{n+2}$
4. A root of the quadratic equation $17 x^{2}+17 x \tan \left(2 \tan ^{-1}\left(\frac{1}{5}\right)-\frac{\pi}{4}\right)-10=0$ is :
(a) $\frac{10}{17}$
(b) -1
(c) $-\frac{7}{17}$
(d) 1
5. The value of $\left\{\sin \left(2 \tan ^{-1}\left(\frac{1}{3}\right)\right)+\cos \left(\tan ^{-1}(2 \sqrt{2})\right)\right\}$ is :
(a) $\frac{14}{13}$
(b) $\frac{14}{15}$
(c) $\frac{15}{7}$
(d) $\frac{1}{2}$
6. If $4 \sin ^{-1}(x)+\cos ^{-1}(x)=\pi$, then x is equal to :
(a) $\frac{1}{2}$
(b) $\frac{1}{3}$
(c) $\frac{1}{4}$
(d) $\frac{1}{5}$
7. Sum of infinite series :
$\cot ^{-1}(2)+\cot ^{-1}(8)+\cot ^{-1}(18)+\cot ^{-1}(32)+\ldots \ldots .$. is equal to :
(a) $\frac{\pi}{2}$
(b) $\frac{\pi}{6}$
(c) $\frac{\pi}{4}$
(d) $\frac{\pi}{8}$
8. Which one of the following is equivalent to $2 \tan ^{-1}(-3)$?
(a) $\pi+\cos ^{-1}\left(\frac{4}{5}\right)$
(b) $-\frac{\pi}{2}+\tan ^{-1}\left(-\frac{4}{3}\right)$
(c) $\frac{\pi}{2}+\sin ^{-1}\left(\frac{3}{5}\right)$
(d) $-\frac{\pi}{2}+\tan ^{-1}\left(\frac{4}{3}\right)$
9. The principal value of $\sin ^{-1}(\sin 10)-\cos ^{-1}(\cos 5)$ is :
(a) $\pi+5$
(b) $25+\pi$
(c) $\pi-5$
(d) $2 \pi-10$
10. Complete solution set of $\sin ^{-1} x \leq \cos ^{-1} x$ is :
(a) $x \in\left[\frac{1}{\sqrt{2}}, 1\right]$
(b) $x \in\left[-\frac{1}{\sqrt{2}}, 1\right]$
(c) $x \in\left[-1, \frac{1}{\sqrt{2}}\right]$
(d) $x \in\left[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right]$
11. If $3 \sin ^{-1} x=-\pi-\sin ^{-1}\left(3 x-4 x^{3}\right)$, then
(a) $x \in\left[-1,-\frac{1}{2}\right]$
(b) $x \in\left[\frac{1}{2}, 1\right]$
(c) $|x| \leq 1$
(d) none of these
12. If $\cot ^{-1} x+\cot ^{-1} y+\cot ^{-1} z=\frac{\pi}{2}$, then $(x+y+z)$ is :
(a) $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$
(b) $x y z$
(c) $x y+y z+z x$
(d) $\frac{x y z}{x+y+z}$
13. The value of $\cos ^{-1}\left(\sqrt{\frac{2}{3}}\right)-\cos ^{-1}\left(\frac{\sqrt{6}+1}{2 \sqrt{3}}\right)$ is :
(a) $\frac{\pi}{3}$
(b) $\frac{\pi}{4}$
(c) $\frac{\pi}{2}$
(d) $\frac{\pi}{6}$
14. If $x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, then value of the summation $\tan ^{-1}\left(\frac{\tan x}{4}\right)+\tan ^{-1}\left(\frac{3 \sin 2 x}{5+3 \cos 2 x}\right)$ is :
(a) $\frac{x}{2}$
(b) $2 x$
(c) $3 x$
(d) x
15. If $x_{1}=2 \tan ^{-1}\left(\frac{1+x}{1-x}\right) ; x_{2}=\sin ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)$, where $x \in(0,1)$, then $\left(x_{1}+x_{2}\right)$ is equal to :
(a) 0
(b) 2π
(c) π
(d) $-\pi$
16. $\cos ^{-1}\left(\cos \left(2 \cot ^{-1}(\sqrt{2}-1)\right)\right)$ is equal to :
(a) $\sqrt{2}-1$
(b) $\frac{\pi}{4}$
(c) $\frac{3 \pi}{4}$
(d) $\frac{\pi}{8}$
17. The maximum value of $\left(\sec ^{-1} x\right)^{2}+\left(\operatorname{cosec}^{-1} x\right)^{2}$ is :
(a) $\frac{\pi^{2}}{2}$
(b) $\frac{\pi^{2}}{4}$
(c) π^{2}
(d) none of these
18. Range of $f(x)=\sin ^{-1} x+\tan ^{-1} x+\sec ^{-1} x$ is :
(a) $\left\{\frac{\pi}{4}, \frac{3 \pi}{4}\right\}$
(b) $\left[\frac{\pi}{4}, \frac{3 \pi}{4}\right]$
(c) $\left(-\frac{\pi}{4}, 0\right)$
(d) none of these
19. The value of $\sin ^{-1}(\sin 12)+\cos ^{-1}(\cos 12)$ is equal to :
(a) 0
(b) $24-2 \pi$
(c) $4 \pi-24$
(d) none of these
20. If $\sin ^{-1}\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{4}-\ldots\right)+\cos ^{-1}\left(x^{2}-\frac{x^{4}}{2}+\frac{x^{6}}{4}-\ldots\right)=\frac{\pi}{2}$, for $0<|x|<\sqrt{2}$, then x equals to :
(a) $1 / 2$
(b) 1
(b) $-1 / 2$
(d) -1
21. If $x \in\left(\frac{\pi}{2}, \pi\right)$, then value of the expression $\sin ^{-1}\left(\cos \left(\cos ^{-1}(\cos x)+\sin ^{-1}(\sin x)\right)\right)$ is equal to :
(a) $\frac{\pi}{2}$
(b) $-\pi$
(c) π
(d) $-\frac{\pi}{2}$
22. Complete solution set of $\tan ^{2}\left(\sin ^{-1} x\right)>1$ is :

$$
\text { (a) }\left(-1,-\frac{1}{\sqrt{2}}\right) \cup\left(\frac{1}{\sqrt{2}}, 1\right)
$$

(b) $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)-\{0\}$
(c) $(-1,1)-\{0\}$
(d) none of these
23. The value of $\sin \left(\frac{1}{4} \sin ^{-1}\left(\frac{\sqrt{63}}{8}\right)\right)$ is :
(a) $\frac{1}{\sqrt{3}}$
(b) $\frac{1}{\sqrt{10}}$
(c) $\frac{1}{\sqrt{8}}$
(d) $\frac{1}{3 \sqrt{3}}$
24. If $x \in\left(\pi, \frac{3 \pi}{2}\right)$, then $\tan ^{-1}\left\{\frac{\sqrt{1+\cos x}+\sqrt{1-\cos x}}{\sqrt{1+\cos x}-\sqrt{1-\cos x}}\right\}$ is :
(a) $\frac{\pi}{4}+\frac{x}{2}$
(b) $-\frac{x}{2}$
(c) $\frac{\pi}{4}-\frac{x}{2}$
(d) $\frac{\pi}{2}-x$
25. If $x \in\left(0, \frac{\pi}{4}\right)$, then the value of summation $\tan ^{-1}\left(\frac{1}{2} \tan 2 x\right)+\tan ^{-1}(\cot x)+\tan ^{-1}\left(\cot ^{3} x\right)$ is :
(a) 0
(b) π
(c) $\frac{\pi}{2}$
(d) $\frac{\pi}{4}$

Multiple choice questions with MORE than ONE correct answer : (Questions No. 26-30)

26. Let $\sin \left(2 \cos ^{-1}\left\{\cot \left(2 \tan ^{-1} \alpha\right)\right\}\right)=0$, then possible values of ' α ' can be :
(a) $\sqrt{2}+1$
(b) $2+\sqrt{3}$
(c) $\operatorname{sgn}(\pi)$
(d) $1-\sqrt{2}$
27. Let the equation $\sin ^{-1}(x)-|x-\alpha|=0$ is having at least one real solution, then possible values of ' α ' can be :
(a) $\tan ^{-1}(\tan 3)$
(b) $\cos ^{-1}(\cos 2)$
(c) $\sin ^{-1}(\sin 4)$
(d) $\operatorname{cosec}^{-1}(\operatorname{cosec} 7)$
28. Let the system of equations $\cos ^{-1} x+\left(\sin ^{-1} y\right)^{2}=\frac{n \pi^{2}}{4}$ and $\left(\sin ^{-1} y\right)^{2}-\cos ^{-1} x=\frac{\pi^{2}}{16}$ be consistent, where $n \in R$, then :
(a) Least positive integral value of n is 2 .
(b) Greatest positive integral value of k, where $k=4 n$, is 7 .
(c) Possible number of integral values of $2 n$ are 3 .
(d) Least positive integral value of n is 1 .
29. If $[\alpha]$ represents the greatest integer just less than or equal to α, then solution set of the equation $\left[\cot ^{-1} x\right]+2\left[\tan ^{-1} x\right]=0$ contains :
(a) $\left[\frac{3}{4}, \frac{5}{4}\right]$
(b) $(\cot 1,1)$
(c) $(1, \tan 1]$
(d) $[\sin 1, \sin 2]$
30. Let $P(x, y)$ satisfy the equation

$$
\cos ^{-1}(a x y)+\cos ^{-1}(y)-\cos ^{-1}(b x)=0 .
$$

If $a=0$ and $b=1$ then P lies on curve C_{1}. For curve C_{1} which of the following statements are correct:
(a) C_{1} passes through origin and have constant slope of $\operatorname{sgn}(e)$.
(b) all points on C_{1} are equidistant from origin.
(c) C_{1} bounds a region of π square unit area.
(d) C_{1} bounds a region of $\frac{\pi}{4}$ square units with coordinate axes.

Assertion Reasoning questions : (Questions No. 31-35)

Following questions are assertion and reasoning type questions. Each of these questions contains two statements, Statement 1 (Assertion) and Statement 2 (Reason). Each of these questions has four alternative answers, only one of them is the correct answer. Select the correct answer from the given options :
(a) Both Statement 1 and Statement 2 are true and Statement 2 is the correct explanation of Statement 1.
(b) Both Statement 1 and Statement 2 are true but Statement 2 is not the correct explanation of Statement 1.
(c) Statement 1 is true but Statement 2 is false.
(d) Statement 1 is false but Statement 2 is true.
31. Statement 1 : Sum of the infinite series:
$S=\left\{\cot ^{-1}(3)+\cot ^{-1}\left(\frac{9}{2}\right)+\cot ^{-1}\left(\frac{33}{4}\right)+\cot ^{-1}\left(\frac{129}{8}\right)+\ldots \ldots \ldots\right\}$
is equal to $\frac{\pi}{4}$

because

Statement 2 : If $S_{n}=\sum_{r=1}^{n} \tan ^{-1}\left(\frac{2^{r-1}}{1+2^{2 r-1}}\right)$, then
$S_{n}=\left(\tan ^{-1}\left(2^{n-1}\right)-\frac{\pi}{4}\right)$, and hence $\lim _{n \rightarrow \infty} S_{n}=\frac{\pi}{4}$.
32. Let $p=\cot \left[\frac{1}{2} \sin ^{-1}\left\{\cos \left(3 \tan ^{-1}(\sqrt{3}+2)\right)\right\}\right]$ and $q=\tan \left[\frac{1}{2} \cos ^{-1}\left\{\cos \left(2 \cot ^{-1}(\sqrt{2}-1)\right)\right\}\right]$, then

Statement 1: $p+q=0$

because

Statement 2: $p=(\sqrt{2}+1)$ and $q=-(\sqrt{2}+1)$.

Inverse Trigonometric Functions

33. Statement 1 : If $\left[\cos ^{-1} x\right]+\left[\cot ^{-1} x\right] \leq\left[\sin ^{2} x\right]$, where [.] represents the greatest integer function, then exhaustive set of values of ' x ' is $(\cot 1,1$]
because
Statement 2: $\left[\sin ^{2} x\right]=0 \forall|x| \leq 1$.
34. Consider the ordered pairs (x, y) satisfying the conditions $|y|-\cos x=0$ and $y=\sin ^{-1}(\sin x)$.

Statement 1 : If $x \in[-\pi, 3 \pi]$, then four ordered pairs of (x, y) exist

because

Statement 2: $|y|=\cos x$ and $y^{2}-x^{2}=0$ intersects at four distinct points.
35. Consider a triangle $A B C$, where $\angle B=90^{\circ}$, and $M=\tan ^{-1}\left(\frac{a}{b+c}\right)+\tan ^{-1}\left(\frac{c}{a+b}\right)$.
Statement $1:$ Value of $\cot \left(\frac{M}{3}\right)=\sqrt{3}+2$
because
Statement 2 : Value of M is 45°.

Comprehension based Multiple choice questions

 with ONE correct answer :
Comprehension passage (1)
 (Questions No. 1-3)

Consider the functions $f(x)=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$ and $g(x)=(x-1)^{2}+k$ for all $x \in R$, where ' k ' is a parameter. On the basis of definitions of $f(x)$ and $g(x)$ answer the following questions.

1. If [.] represents the greatest integer function, and α, β are the maximum and minimum values respectively of $y=[f(x)]$, then $(\alpha-\beta)$ is equal to :
(a) 7
(b) 4
(c) 3
(d) 2
2. If the equation $f(x)-g(x)=0$ is having at least one real solution then complete set of values of k is :
(a) $\left(-\infty, \frac{\pi}{2}\right]$
(b) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
(c) $\left[-\frac{\pi}{2}, \infty\right)$
(d) $(-\infty, \infty)$
3. Number of values of x satisfying the equation $\left(\tan ^{-1} x\right)^{2}+f^{2}(x)=2 f(x)\left(\tan ^{-1} x\right)$ is/are :
(a) 0
(b) 1
(c) 3
(d) 4

Comprehension passage (2)

(Questions No. 4-6)
Let P and Q be the positive integral ordered pairs of (x, y), where $x<y$, which satisfy the equation $\tan ^{-1}(x)+\cos ^{-1}\left(\frac{y}{\sqrt{1+y^{2}}}\right)=\sin ^{-1}\left(\frac{3}{\sqrt{10}}\right)$.
On $x-y$ plane if $O P<O Q$, where ' O ' is origin, then answer the following questions.
4. Let points ' R ' and ' S ' be the reflection of ' P ' and ' Q ' respectively about the line mirror $y-x=0$, then area (in square units) of the quadrilateral $P R S Q$ is equal to :
(a) 8
(b) 10
(c) 18
(d) 4
5. Let points ' P ' and ' Q ' be (a, b) and (c, d) respectively, where $f:[a, c] \rightarrow[b, d]$ is linear function which is surjective in nature, then $f(x)$ can be :
(a) $2 x-3$
(b) $5 x-2$
(c) $12-5 x$
(d) $6-2 x$
6. Diametric length of circle passing through ' P ' and ' Q ' and orthogonal to $x^{2}+y^{2}=10$, is :
(a) $\sqrt{130}$
(b) $\sqrt{150}$
(c) $\sqrt{105}$
(d) 10

Questions with Integral Answer : (Questions No. 7-10)

7. Let $\sum_{r=1}^{\infty} \tan ^{-1}\left(\frac{1}{2 r^{2}}\right)=\alpha$, then the least integer just greater than the value of $\cot \left(\frac{\alpha}{3}\right)$ is equal to. \qquad
8. Let the equation $\left(\sin ^{-1} x\right)^{3}+\left(\cos ^{-1} x\right)^{3}=\frac{p \pi^{3}}{8}$ is having real solution of x, where $p \in I$, then total number of possible values of p are \qquad
9. If $\frac{1}{\pi} \cos ^{-1}(\cos x)=\left|\log _{12}\right| x| |$, then number of solutions of ' x ' is/are \qquad
10. Let $\quad u=\tan \left(2 \tan ^{-1}(\sqrt{2}-1)+\frac{1}{2} \cos ^{-1}\left(\frac{1}{4}\right)\right) \quad$ and $v=\tan \left(3 \tan ^{-1}(2-\sqrt{3})-\frac{1}{2} \cos ^{-1}\left(\frac{1}{4}\right)\right)$, then value of $(u+v)$ is equal to \qquad

Matrix Matching Questions : (Questions No. 11-12)

11. Match the following columns (I) and (II).

Column (I)

Column (II)

(a) If $n \pi-\tan ^{-1}(3)$ is a solution of the equation
(p) 1
(q) 2
(b) If $\cot ^{-1}\left(\frac{n^{2}-10 n+7 \pi}{\pi}\right)>\frac{\pi}{4}$, then value of n can be
(c) Value of $\tan ^{-1}(\tan 3)+\sin ^{-1}(\sin 2)$ is
(s) 4
(d) Maximum value of $\frac{3}{\pi} \cdot \sec ^{-1}\left(\frac{7-5\left(3+x^{2}\right)}{2\left(2+x^{2}\right)}\right)$ is less than
(t) 5
12. Match the following columns (I) and (II)

Column (I)

Column (II)
(a) If $x \in(-\infty, 0)$, then value of $2 \tan ^{-1} x+\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)$ is
(p) 0
(b) If $x \in\left(\frac{\sqrt{3}}{2}, 1\right)$, then value of $2 \sin ^{-1} x+\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right)$ is :
(q) π
(c) If $x \in(-\pi,-e)$, then value of $\tan ^{-1}\left(\frac{1}{x}\right)-\cot ^{-1}(x)$ is :
(r) $-\pi$
(d) If $x \in(1, \infty)$, then value of $3 \tan ^{-1} x-\tan ^{-1}\left(\frac{3 x-x^{3}}{1-3 x^{2}}\right)$ is :
(s) 2π
(t) -2π

ANSWDRS

1. (a)	2. (c)	3. (c)	4. (d)	5. (b)
6. (a)	7. (c)	8. (b)	9. (c)	10. (c)
11. (a)	12. (b)	13. (d)	14. (d)	15. (c)
16. (c)	17. (d)	18. (a)	19. (a)	20. (b)
21. (d)	22. (a)	24. (c)	25. (b)	
26. (a, c, d)	27. (a , b, d)	28. (b, c, d)	29. (a, b, d)	30. (b, d)
31. (c)	32. (c)	33. (b)	34. (b)	35. (a)

CANSWERS

1. (c)
2. (a)
3. (a)
4. (c)
5. (c)
6. (c)
7. (4)
8. (7)
9. (8)
10. (8)
11. (a) $\rightarrow \mathrm{p}, \mathrm{r}, \mathrm{t}$
12. (a) $\rightarrow p$
(b) $\rightarrow \mathrm{r}, \mathrm{s}, \mathrm{t}$
(c) $\rightarrow \mathrm{p}$
(d) \rightarrow r, s, t
(b) $\rightarrow \mathrm{q}$
(c) $\rightarrow \mathrm{r}$ (d) \rightarrow q
