GAT	E EC	www.nodia.co.in www.nodia.co.in www.nodia.co.in	www.nodia.co.in www.nodia.co.in www.nodia.co.in www.nodia.co.in www.nodia.co.in www.nodia.co.in	www.nodia.co.in www.nodia.co.in www.nodia.co.in	www.nodia.co.in www.nodia.co.in www.nodia.co.in	www.nodia.co.in www.nodia.co.in www.nodia.co.in www.nodia.co.in www.nodia.co.in www.nodia.co.in
0000	www.nodia.co.in	www.nodia.co.in	www.nodia.co.in www.nodia.co.in	www.nodia.co.in	www.nodia.co.in	www.nodia.co.in www.nodia.co.in
2003						
2003	www.nodia.co.in					
www.nodia.co.in						

Q. 1-30 Carry One Mark Each

MCQ 1.1 The minimum number of equations required to analyze the circuit shown in the figure is

SOL 1.1 Hence (B) is correct option. Number of loops = b - n + 1 = minimum number of equation Number of branches = b = 8Number of nodes = n = 5Minimum number of equation = 8 - 5 + 1 = 4

- **MCQ 1.2** A source of angular frequency 1 rad/sec has a source impedance consisting of 1 Ω resistance in series with 1 H inductance. The load that will obtain the maximum power transfer is
 - (A) 1 Ω resistance
 - (B) 1 Ω resistance in parallel with 1 H inductance
 - (C) 1 Ω resistance in series with 1 F capacitor
 - (D) 1 Ω resistance in parallel with 1 F capacitor
- **SOL 1.2** For maximum power transfer $Z_L = Z_S^* = R_s - jX_s$

Thus $Z_L = 1 - 1j$ Hence (C) is correct option.

MCQ 1.3 A series RLC circuit has a resonance frequency of 1 kHz and a quality factor Q = 100. If each of R, L and C is doubled from its original value, the new Q of the circuit is

SOL 1.3 Hence (B) is correct option.

$$Q = \frac{1}{R} \sqrt{\frac{L}{C}}$$

When R, L and C are doubled,

$$Q' = \frac{1}{2R} \sqrt{\frac{2L}{2C}} = \frac{1}{2R} \sqrt{\frac{L}{C}} = \frac{Q}{2}$$
$$Q' = \frac{100}{2} = 50$$

Thus

MCQ 1.4 The Laplace transform of i(t) is given by $I(s) = \frac{2}{s(1+s)}$

At
$$t \to \infty$$
, The value of $i(t)$ tends to **C**
(A) 0
(B) 1
(C) 2

SOL 1.4 From the Final value theorem we have $\lim_{t \to \infty} i(t) = \lim_{s \to 0} sI(s) = \lim_{s \to 0} s \frac{2}{s(1+s)} = \lim_{s \to 0} \frac{2}{(1+s)} = 2$ Hence (C) is correct answer

MCQ 1.5 The differential equation for the current i(t) in the circuit of the figure is

$$i(t) = 2 \Omega \qquad 2 H$$

$$sint = 1 F$$

$$(A) 2 \frac{d^2 i}{dt^2} + 2 \frac{di}{dt} + i(t) = sin t$$

$$(B) \frac{d^2 i}{dt^2} + 2 \frac{di}{dt} + 2i(t) = cos t$$

$$(C) 2 \frac{d^2 i}{dt^2} + 2 \frac{di}{dt} + i(t) = cos t$$

$$(D) \frac{d^2 i}{dt^2} + 2 \frac{di}{dt} + 2i(t) = sin t$$
Applying KVL we get,
$$sin t = Ri(t) + L \frac{di(t)}{dt} + \frac{1}{C} \int i(t) dt$$

Brought to you by: <u>Nodia and Company</u> PUBLISHING FOR GATE

	or $\sin t = 2i(t) + 2\frac{di(t)}{dt} + \int i(t) dt$	tt
	Differentiating with respect to t, we get $\cos t = \frac{2di(t)}{dt} + \frac{2d^2i(t)}{dt^2} + i(t)$	
	Hence (C) is correct option.	
MCQ 1.6	n-type silicon is obtained by doping silic(A) Germanium(C) Boron	con with (B) Aluminium (D) Phosphorus
SOL 1.6	Pentavalent make n -type semiconducte Hence option (D) is correct.	or and phosphorous is pentavalent.
MCQ 1.7	The Bandgap of silicon at 300 K is (A) 1.36 eV (C) 0.80 eV	(B) 1.10 eV(D) 0.67 eV
SOL 1.7	Hence option (B) is correct. For silicon at 0 K $E_{g0} = 1.21$ eV At any temperature $E_{gT} = E_{g0} - 3.6 \times 10^{-4} T$ At $T = 300$ K, $E_{g300} = 1.21 - 3.6 \times 10^{-4} \times 300$ This is standard value, that must be rem	1.1 eV
MCQ 1.8		licon sample at 300 K is 1.5×10^{16} /m ³ . If arriers is 5×10^{20} /m ³ , the minority carrier (B) 3.333×10^{4} /m ³ (D) 3.00×10^{-5} /m ³
SOL 1.8	By Mass action law $np = n_i^2$ $p = \frac{n_i^2}{n} = \frac{1.5 \times 10^{16} \times 1.5 \times 10^{20}}{5 \times 10^{20}}$	$\frac{10^{16}}{10} = 4.5 \times 10^{11}$
	Hence option (A) is correct.	
MCQ 1.9		 (B) X: reverse, Y: forward (D) X: forward, Y: forward
SOL 1.9	Tunnel diode shows the negative character	eristics in forward bias. It is used in forward

Page 4		GATE I	EC 2003	wv	ww.gatehelp.com
	bias. Avalanche photo Hence option (C)		everse bias.		
MCQ 1.10	For an n – channel enhancement type MOSFET, if the source is connected at a higher potential than that of the bulk (i.e. $V_{SB} > 0$), the threshold voltage V_T of the MOSFET will (A) remain unchanged (B) decrease				
	(C) change polari	ty	(D) increa	se	
SOL 1.10	Hence option (D)	is correct.			
MCQ 1.11 SOL 1.11	Choose the correct match for input resistance of various amplifier configurations shown below : Configuration Input resistance CB : Common Base LO : Low CC : Common Collector MO : Moderate CE : Common Emitter HI : High (A) CB - LO, CC - MO, CE - HI (B) CB - LO, CC - HI, CE - MO (C) CB - MO, CC - HI, CE - MO (D) CB - HI, CC - LO, CE - MO For the different combinations the table is as follows				
	CE	CE	CC	CB	
	A_i	High	High	Unity	
	A_v	High	Unity	High	
	R_i	Medium	High	Low	
	R_o	Medium	Low	High	
	Hence (B) is corr	ect option.			

The circuit shown in the figure is best described as a MCQ 1.12

(A) bridge rectifier (B) ring modulator

(C) frequency discriminator

(D) voltage double

This circuit having two diode and capacitor pair in parallel, works as voltage SOL 1.12

doubler. Hence (D) is correct option.

MCQ 1.13 If the input to the ideal comparators shown in the figure is a sinusoidal signal of 8 V (peak to peak) without any DC component, then the output of the comparators has a duty cycle of

SOL 1.13

If the input is sinusoidal signal of 8 V (peak to peak) then $V_i = 4 \sin \omega t$

The output of comparator will be high when input is higher than $V_{ref} = 2$ V and will be low when input is lower than $V_{ref} = 2$ V. Thus the waveform for input is shown below

From fig, first crossover is at ωt_1 and second crossover is at ωt_2 where $4\sin\omega t_1 = 2V$

Thus $\omega t_1 = \sin^{-1} \frac{1}{2} = \frac{\pi}{6}$

$$\omega t_2 = \pi - \frac{\pi}{6} = \frac{5\pi}{6}$$

Duty Cycle = $\frac{\frac{5\pi}{6} - \frac{\pi}{6}}{2\pi} = \frac{1}{3}$

Thus the output of comparators has a duty cycle of $\frac{1}{3}$. Hence (B) is correct option.

MCQ 1.14If the differential voltage gain and the common mode voltage gain of a differential
amplifier are 48 dB and 2 dB respectively, then common mode rejection ratio is
(A) 23 dB(A) 23 dB(B) 25 dB

Brought to you by: <u>Nodia and Company</u> PUBLISHING FOR GATE

Page 6		GATE EC 2003	www.gatehelp.com
SOL 1.14	(C) 46 dB Hence (C) is correct opti	(D) 50 dB	
	$CMMR = \frac{A}{A}$		
	or $20 \log CMMR = 2$ = 48 - 2 = Where $A_d \rightarrow \text{Differential V}$ and $A_C \rightarrow \text{Common Mode}$	Voltage Gain	
MCQ 1.15	Generally, the gain of a t(A) internal capacitances(B) coupling capacitor at(C) skin effect(D) coupling capacitor at	t the input	igh frequencies due to the
SOL 1.15	The gain of amplifier is $A_i = \frac{-g_m}{g_b + j\omega C}$		
	•	usion capacitance and transi	requencies due to the internal ition capacitance.
MCQ 1.16	The number of distinct E (A) 16 (C) 1023	Boolean expressions of 4 vari (B) 256 (D) 65536	iables is
SOL 1.16	The number of distinct b $2^{2^4} = 2^{16} = 65.$ Hence (D) is correct answ		able is 2^{2n} . Thus
MCQ 1.17		f comparators required to bu (B) 63 (D) 256	uild an 8-bits flash ADC is
SOL 1.17	In the flash analog to di where n is no. of bit.s So, $2^{n-1} = 2^8 - 1 =$ Hence (C) is correct answ	255	comparators is equal to 2^{n-1} ,
MCQ 1.18	(A) totem pole and comm	ies of GATE of TTL gates is non collector configuration open collector configuration uration	

Page 7	GATE EC 2003	www.gatehelp.com
	(D) common collector configuration	
SOL 1.18	When output of the 74 series gate of TTL gates is taken from configuration is either totem pole or open collector configuration. Hence (B) is correct answer.	
MCQ 1.19	Without any additional circuitry, an 8:1 MUX can be used to c (A) some but not all Boolean functions of 3 variables	btain
	(B) all functions of 3 variables but non of 4 variables(C) all functions of 3 variables and some but not all of 4 variables(D) all functions of 4 variables	les
SOL 1.19	A 2^n :1 MUX can implement all logic functions of $(n+1)$ variadditional circuitry. Here $n = 3$. Thus a $8:1$ MUX can implement of 4 variable. Here (D) is correct answer.	° .
MCQ 1.20	A 0 to 6 counter consists of 3 flip flops and a combination circuit (s). The common circuit consists of (A) one AND gate (B) one OR gate	cuit of 2 input gate
	(C) one AND gate and one OR gate (D) two AND gates	
SOL 1.20	Counter must be reset when it count 111. This can be implem circuitry	nented by following
	Hence (D) is correct answer.	
MCQ 1.21	The Fourier series expansion of a real periodic signal with function f_0 is given by $g_p(t) = \sum_{n=-\infty} c_n e^{j2\pi f_0 t}$. It is given that $c_3 = 3 + j5$. The formula $(A) \ 5 + j3$ is given that $c_3 = 3 + j5$. The formula $(B) \ -3 - j5$ is given by $(C) \ -5 + j3$ is given by $(D) \ 3 - j5$.	- •
SOL 1.21	Hence (D) is correct answer. Here $C_3 = 3 + j5$ For real periodic signal $C_{-k} = C_k^*$ Thus $C_{-3} = C_k = 3 - j5$	
MCQ 1.22	Let $x(t)$ be the input to a linear, time-invariant system. The $4\pi (t-2)$. The transfer function of the system should be (A) $4e^{j4\pi f}$ (B) $2e^{-j8\pi f}$ (C) $4e^{-j4\pi f}$ (D) $2e^{j8\pi f}$	required output is
Brought to y		t: www.nodia.co.in
	PUBLISHING FOR GATE	

- (A) always stable
- (B) unstable with one closed-loop right hand pole
- (C) unstable with two closed-loop right hand poles
- (D) unstable with three closed-loop right hand poles

Page 9

SOL 1.24	Hence (A) is correct option. Z = P - N	
	$N \rightarrow$ Net encirclement of $(-1 + j0)$ by N $P \rightarrow$ Number of open loop poles in right $Z \rightarrow$ Number of closed loop poles in right Here $N = 1$ and $P = 1$ Thus $Z = 0$ Hence there are no roots on RH of $s - p$	hand side of s – plane at hand side of s – plane
MCQ 1.25	A PD controller is used to compensate a system, the compensated system has (A) a higher type number	(B) reduced damping
	(C) higher noise amplification	(D) larger transient overshoot
SOL 1.25	PD Controller may accentuate noise at h of system and it increases the damping. Hence (C) is correct option.	higher frequency. It does not effect the type It also reduce the maximum overshoot.
MCQ 1.26	detector output is (A) the in-phase component a 1 ((C) zero	SB-SC signal plus noise. The noise at the(B) the quadrature - component(D) the envelope
SOL 1.26		B - SC signal plus noise. The noise at the lent as the quadrature component $n_q(t)$ of the detector.
MCQ 1.27	-	quency detector is white. The detector ispectral density of the noise at the output is(B) flat(D) Gaussian
SOL 1.27	The noise at the input to an ideal freque the output is parabolic Hence (C) is correct option.	ency detector is white. The PSD of noise at
MCQ 1.28	At a given probability of error, binary of PSK by.	oherent FSK is inferior to binary coherent
	(A) 6 dB	(B) 3 dB
	(C) 2 dB	(D) 0 dB
SOL 1.28	Hence (B) is correct option. We have $P_e = \frac{1}{2} \operatorname{erfc}\left(\sqrt{\frac{E_d}{2\eta}}\right)$	

Page 10	GATE EC 2003		www.gatehelp.com
	Since P_e of Bina	ry FSK is 3 dB inferior to binary PSK	
MCQ 1.29	The unit of $\nabla \times$	H is	
	(A) Ampere	(B) Ampere/meter	
	(C) Ampere/me	ter ² (D) Ampere-meter	
SOL 1.29	By Maxwells equation $\nabla \times \vec{H} =$		
	Thus $\nabla \times \vec{H}$ has Hence (C) is cor	unit of current density J that is A/m^2 rect option	
MCQ 1.30		netration of electromagnetic wave in a medium γ of 1 MHz is 25 cm. The depth of penetration	е <i>і</i>
	(A) 6.25 dm	(B) 12.50 cm	
	(C) 50.00 cm	(D) 100.00 cm	
SOL 1.30	Hence (B) is cor	rect option.	
	We know that		
	Thus	$\delta \propto \frac{1}{\sqrt{f}}$ $\frac{\delta_2}{\delta_1} = \sqrt{\frac{f}{f}}$ $\frac{\delta_2}{25} = \sqrt{\frac{1}{4}}$ help	
		$\frac{\delta_2}{25} = \sqrt{\frac{1}{4}}$ TRIP	
	or	$\delta_2 = \sqrt{\frac{1}{4}} \times 25 = 12.5 \text{ cm}$	

Q.31-90 Carry Two Marks Each

MCQ 1.31 Twelve 1 Ω resistance are used as edges to form a cube. The resistance between two diagonally opposite corners of the cube is (A) $\frac{5}{6}\Omega$ (B) 1 Ω

(C)
$$\frac{6}{5}\Omega$$
 (D) $\frac{3}{2}\Omega$

SOL 1.31 For current *i* there is 3 similar path. So current will be divide in three path

so, we get

$$V_{ab} - \left(\frac{i}{3} \times 1\right) - \left(\frac{i}{6} \times 1\right) - \left(\frac{1}{3} \times 1\right) = 0$$
$$\frac{V_{ab}}{i} = R_{eq} = \frac{1}{3} + \frac{1}{6} + \frac{1}{3} = \frac{5}{6}\Omega$$

Hence (A) is correct option.

MCQ 1.32 The current flowing through the resistance R in the circuit in the figure has the form $P\cos 4t$ where P is

SOL 1.32 Data are missing in question as $L_1 \& L_2$ are not given

The circuit for Q. 33 & 34 is given below.

Assume that the switch S is in position 1 for a long time and thrown to position 2 at t = 0.

PUBLISHING FOR GATE

MCQ 1.33 At $t = 0^+$, the current i_1 is (A) $\frac{-V}{2R}$ Brought to you by: Nodia and Company

(B)
$$\frac{-V}{R}$$

Visit us at: www.nodia.co.in

(C)
$$\frac{-V}{4R}$$
 (D) zero

SOL 1.33 Data are missing in question as $L_1 \& L_2$ are not given

MCQ 1.34 $I_1(s)$ and $I_2(s)$ are the Laplace transforms of $i_1(t)$ and $i_2(t)$ respectively. The equations for the loop currents $I_1(s)$ and $I_2(s)$ for the circuit shown in the figure, after the switch is brought from position 1 to position 2 at t = 0, are

$$(A) \begin{bmatrix} R + Ls + \frac{1}{Cs} & -Ls \\ -Ls & R + \frac{1}{Cs} \end{bmatrix} \begin{bmatrix} I_1(s) \\ I_2(s) \end{bmatrix} = \begin{bmatrix} \frac{V}{s} \\ 0 \end{bmatrix}$$
$$(B) \begin{bmatrix} R + Ls + \frac{1}{Cs} & -Ls \\ -Ls & R + \frac{1}{Cs} \end{bmatrix} \begin{bmatrix} I_1(s) \\ I_2(s) \end{bmatrix} = \begin{bmatrix} -\frac{V}{s} \\ 0 \end{bmatrix}$$
$$(C) \begin{bmatrix} R + Ls + \frac{1}{Cs} & -Ls \\ -Ls & R + Ls + \frac{1}{Cs} \end{bmatrix} \begin{bmatrix} I_1(s) \\ I_2(s) \end{bmatrix} = \begin{bmatrix} -\frac{V}{s} \\ 0 \end{bmatrix}$$
$$(D) \begin{bmatrix} R + Ls + \frac{1}{Cs} & -Cs \\ -Ls & R + Ls + \frac{1}{Cs} \end{bmatrix} \begin{bmatrix} I_1(s) \\ I_2(s) \end{bmatrix} = \begin{bmatrix} \frac{V}{s} \\ 0 \end{bmatrix}$$

SOL 1.34

At $t = 0^{-1}$ circuit is in steady state. So inductor act as short circuit and capacitor act as open circuit.

At
$$t = 0^{-}$$
, $i_1(0^{-}) = i_2(0^{-}) = 0$
 $v_c(0^{-}) = V$

At $t = 0^+$ the circuit is as shown in fig. The voltage across capacitor and current in inductor can't be changed instantaneously. Thus

At
$$t = 0^+$$
, $i_1 = i_2 = -\frac{V}{2R}$

Hence (A) is correct option.

GATE EC 2003

MCQ 1.35 An input voltage $v(t) = 10\sqrt{2}\cos(t+10^\circ) + 10\sqrt{5}\cos(2t+10^\circ)$ V is applied to a series combination of resistance $R = 1 \Omega$ and an inductance L = 1 H. The resulting steady-state current i(t) in ampere is (A) $10\cos(t+55^\circ) + 10\cos(2t+10^\circ + \tan^{-1}2)$ (B) $10\cos(t+55^\circ) + 10\sqrt{\frac{3}{2}}\cos(2t+55^\circ)$ (C) $10\cos(t-35^\circ) + 10\cos(2t+10^\circ - \tan^{-1}2)$

(D) $10\cos(t-35^\circ) + \sqrt{\frac{3}{2}}\cos(2t-35^\circ)$

SOL 1.35 Hence (C) is correct option

$$v(t) = \underbrace{10\sqrt{2}\cos(t+10^\circ)}_{v_1} + \underbrace{10\sqrt{5}\cos(2t+10^\circ)}_{v_2}$$

Thus we get $\omega_1 = 1$ and $\omega_2 = 2$

Now

$$Z_{1} = R + j\omega_{1}L = 1 + j1$$

$$Z_{2} = R + j\omega_{2}L = 1 + j2$$

$$i(t) = \frac{v_{1}(t)}{Z_{1}} + \frac{v_{2}(t)}{Z_{2}}$$

$$= \frac{10\sqrt{2}\cos(t+10^{\circ})}{1+j} + \frac{10\sqrt{5}\cos(2t+10^{\circ})}{1+j2}$$

$$= \frac{10\sqrt{2}\cos(t+10^{\circ})}{\sqrt{1^{2}+2^{2}} \angle \tan^{-1}1} + \frac{10\sqrt{5}\cos(2t+10^{\circ})}{\sqrt{1^{2}+2^{2}}\tan^{-1}2}$$

$$= \frac{10\sqrt{2}\cos(t+10^{\circ})}{\sqrt{2} \angle \tan^{-1}45^{\circ}} + \frac{10\sqrt{5}\cos(2t+10^{\circ})}{\sqrt{5}\tan^{-1}2}$$

$$i(t) = 10\cos(t-35^{\circ}) + 10\cos(2t+10^{\circ} - \tan^{-1}2)$$

MCQ 1.36 The driving point impedance Z(s) of a network has the pole-zero locations as shown in the figure. If Z(0) = 3, then Z(s) is

SOL 1.36 Hence (B) is correct option. Zeros = -3 $Pole^1 = -1 + j$ $Pole^2 = -1 - j$

Brought to you by: Nodia and Company PUBLISHING FOR GATE

$$Z(s) = \frac{K(s+3)}{(s+1+j)(s+1-j)}$$

= $\frac{K(s+3)}{(s+1)^2 - j^2} = \frac{K(s+3)}{(s+1)^2 + 1}$
From problem statement $Z(0)|_{\omega=0} = 3$
Thus $\frac{3K}{2} = 3$ and we get $K = 2$
 $Z(s) = \frac{2(s+3)}{s^2 + 2s + 2}$

MCQ 1.37

B7 The impedance parameters z_{11} and z_{12} of the two-port network in the figure are

Now the circuit is as shown in figure below.

Visit us at: www.nodia.co.in

Hence (A) is correct option.

MCQ 1.38 An *n*-type silicon bar 0.1 cm long and 100 μm^2 i cross-sectional area has a majority carrier concentration of $5 \times 10^{20}/\text{m}^2$ and the carrier mobility is 0.13 $m^2/\text{V-s}$ at 300 K. If the charge of an electron is 1.5×10^{-19} coulomb, then the resistance of the bar is $(A) \ 10^6 \text{ Ohm}$

(A) 10 Omm	(D) 10 Omm
(C) 10^{-1} Ohm	(D) 10^{-4} Ohm

SOL 1.38 Hence option (A) is correct.

We that

$$R = \frac{\rho l}{A}, \ \rho = \frac{1}{\sigma} \text{ and } \alpha = nqu_{\sigma}$$

From above relation we have

$$R = \frac{1}{nq\mu_n A}$$
$$= \frac{0.1 \times 10^{-2}}{5 \times 10^{20} \times 1.6 \times 10^{-19} \times 0.13 \times 100 \times 10^{-12}} = 10^6 \Omega$$

MCQ 1.39 The electron concentration in a sample of uniformly doped *n*-type silicon at 300 K varies linearly from 10^{17} /cm³ at x = 0 to 6×10^{16} /cm³ at $x = 2\mu m$. Assume a situation that electrons are supplied to keep this concentration gradient constant with time. If electronic charge is 1.6×10^{-19} coulomb and the diffusion constant $D_n = 35$ cm²/s, the current density in the silicon, if no electric field is present, is (A) zero

 $(C) + 1120 \text{ A/cm}^2$

(D)
$$-1120 \text{ A/cm}^2$$

SOL 1.39 Hence option (D) is correct.

$$\frac{dn}{dx} = \frac{6 \times 10^{10} - 10^{17}}{2 \times 10^{-4} - 0}$$
$$= -2 \times 10^{20}$$

Now $J_n = nq\mu_e E + D_n q \frac{dn}{dx}$

Since no electric field is present, E = 0 and we get

So,
$$J_n = qD_n \frac{dn}{dx}$$

= $1.6 \times 10^{-19} \times 35 \times (-2 \times 10^{20}) = -1120 \text{ A/cm}^2$

MCQ 1.40Match items in Group 1 with items in Group 2, most suitably.
Group 1Group 2P. LED1. Heavy dopingQ. Avalanche photo diode2. Coherent radiationR. Tunnel diode3. Spontaneous emissionS. LASER4. Current gain

(A) P - 1, Q - 2, R - 4, S - 3 (B) P - 2, Q - 3, R - 1, S - 4 (C) P - 3 Q - 4, R - 1, S - 2 (D) P - 2, Q - 1, R - 4, S - 3 **SOL 1.40** LED works on the principal of spontaneous emission. In the avalanche photo diode due to the avalanche effect there is large current gain. Tunnel diode has very large doping. LASER diode are used for coherent radiation. Hence option (C) is correct. MCQ 1.41 At 300 K, for a diode current of 1 mA, a certain germanium diode requires a forward bias of 0.1435 V, whereas a certain silicon diode requires a forward bias of 0.718 V. Under the conditions state above, the closest approximation of the ratio of reverse saturation current in germanium diode to that in silicon diode is (A) 1 (D) 8×10^3 (C) 4×10^3 SOL 1.41 Hence option (C) is correct. We know that $I = I_{o_s} \left(e^{\eta \frac{V_{D_1}}{V_T}} 1 \right)$ where $\eta = 1$ for germanium and $\eta = 2$ silicon. As per question $I_{o_n} \left(e_{e^{\pi V}}^{V_{Dai}} - 1 \right) = I_{o_{Ge}} \left(e_{\pi V_T}^{V_{DGe}} - 1 \right) \underbrace{I_{o_{ai}}}_{I_{o_{ai}}} = \frac{e_{\pi V_T}^{V_{DGe}} - 1}{e_{\pi V_T}^{V_{DGe}} - 1} = \frac{e_{2 \times 26 \times 10^{-3}} - 1}{e_{26 \times 10^{-3}}^{0.1435} - 1} = 4 \times 10^3$ or A particular green LED emits light of wavelength 5490 A°. The energy bandgap of MCQ 1.42 the semiconductor material used there is (Plank's constant = $6.626 \times 10^{-34} J - s$) (A) 2.26 eV(B) 1.98 eV (C) 1.17 eV (D) 0.74 eV SOL 1.42 Hence option (A) is correct $E_g = \frac{hc}{\lambda} = \frac{6.626 \times 10^{-34} \times 3 \times 10^8}{54900 \times 10^{-10}} = 3.62 \text{ J}$ In eV $E_g(eV) = \frac{E_g(J)}{e} = \frac{3.62 \times 10^{-19}}{1.6 \times 10^{-19}} = 2.26 \text{ eV}$ Alternatively $E_g = \frac{1.24}{\lambda(\mu m)} \text{ eV} = \frac{1.24}{5490 \times 10^{-4} \mu m} = 2.26 \text{ eV}$ **MCQ 1.43** When the gate-to-source voltage (V_{Gs}) of a MOSFET with threshold voltage of 400 mV, working in saturation is 900 mV, the drain current is observed to be 1 mA.

Neglecting the channel width modulation effect and assuming that the MOSFET is operating at saturation, the drain current for an applied V_{GS} of 1400 mV is (B) 2.0 mA (A) 0.5 mA(C) 3.5 mA (D) 4.0 mA **SOL 1.43** We know that $I_D = K(V_{GS} - V_T)^2$ $\frac{I_{D2}}{I_{D1}} = \frac{(V_{GS2} - V_T)^2}{(V_{GS1} - V_T)^2}$ Thus Substituting the values we have $\frac{I_{D2}}{I_{D1}} = \frac{(1.4 - 0.4)^2}{(0.9 - 0.4)^2} = 4$ $I_{D2} = 4I_{DI} = 4 \text{ mA}$ or Hence option (D) is correct. **MCQ 1.44** If P is Passivation, Q is n-well implant, R is metallization and S is source/drain diffusion, then the order in which they are carried out in a standard n-well CMOS fabrication process, is (A) P - Q - R - S(B) Q - S - R - P**(**D) S - R - Q - P(C) R - P - S - Q**SOL 1.44** In n-well CMOS fabrication following are the steps : (i) n – well implant (Q) пеір (ii) Source drain diffusion (S) (iii) Metalization (R) (iv) Passivation (P) Hence option (B) is correct. **MCQ 1.45** An amplifier without feedback has a voltage gain of 50, input resistance of 1 k Ω and output resistance of 2.5 k Ω . The input resistance of the current-shunt negative feedback amplifier using the above amplifier with a feedback factor of 0.2, is (A) $\frac{1}{11}$ k Ω (B) $\frac{1}{5}$ k Ω (C) $5 k\Omega$ (D) $11 \,\mathrm{k}\Omega$ **SOL 1.45** Hence (A) is correct option. We have $R_i = 1 \mathrm{k}\Omega, \beta = 0.2, A = 50$ $R_{if} = \frac{R_i}{(1+A\beta)} = \frac{1}{11} \mathrm{k}\Omega$ Thus, In the amplifier circuit shown in the figure, the values of R_1 and R_2 are such that

MCQ 1.46 In the amplifier circuit shown in the figure, the values of R_1 and R_2 are such that the transistor is operating at $V_{CE} = 3$ V and $I_C = 1.5$ mA when its β is 150. For a transistor with β of 200, the operating point (V_{CE}, I_C) is

(A) $(2 V, 2 mA)$	(B) $(3 \text{ V}, 2 \text{ mA})$
(C) (4 V, 2 mA)	(D) $(4 \text{ V}, 1 \text{ mA})$

The DC equivalent circuit is shown as below. This is fixed bias circuit operating in active region.

$$V_{CC} - I_{C1}R_2 - V_{CE1} = 0$$

$$6 - 1.5mR_2 - 3 = 0$$

$$R_2 = 2k\Omega$$

$$I_{B1} = \frac{I_{C1}}{\beta_1} = \frac{1.5m}{150} = 0.01 \text{ mA}$$

In second case I_{B2} will we equal to I_{B1} as there is no in R_1 . Thus $I_{C2} = \beta_2 I_{B2} = 200 \times 0.01 = 2 \text{ mA}$ $V_{CE2} = V_{CC} - I_{C2} R_2 = 6 - 2 \text{m} \times 2 \text{ k}\Omega = 2 \text{ V}$ Hence (A) is a second set in

Hence (A) is correct option.

or

MCQ 1.47 The oscillator circuit shown in the figure has an ideal inverting amplifier. Its frequency of oscillation (in Hz) is

Brought to you by: Nodia and Company PUBLISHING FOR GATE

Visit us at: www.nodia.co.in

GATE EC 2003

SOL 1.47 The given circuit is a R - C phase shift oscillator and frequency of its oscillation is $f = \frac{1}{2\pi\sqrt{6}RC}$

Hence (A) is correct option.

MCQ 1.48 The output voltage of the regulated power supply shown in the figure is

SOL 1.48 If we see th figure we find that the voltage at non-inverting terminal is 3 V by the zener diode and voltage at inverting terminal will be 3 V. Thus V_o can be get by applying voltage division rule, i.e.

$$\frac{20}{20+40}V_{o} = 3$$

$$V_{0} = 9 V$$

Hence (C) is correct option.

or

MCQ 1.49 The action of JFET in its equivalent circuit can best be represented as a

- (A) Current controlled current source
- (B) Current controlled voltage source
- (C) Voltage controlled voltage source
- (D) Voltage controlled current source

SOL 1.49 For a JFET in active region we have

$$I_{DS} = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2$$

From above equation it is clear that the action of a JFET is voltage controlled current source.

Hence option (D) is correct.

MCQ 1.50 If the op-amp in the figure is ideal, the output voltage V_{out} will be equal to

(A) 1 V	(B) 6 V
(C) 14 V	(D) 17 V

The circuit is as shown below

or

$$V_o = 6 V - 10$$

= $6 \times \frac{8}{3} - 10 = 6 V$

Hence (B) is correct option.

MCQ 1.51 Three identical amplifiers with each one having a voltage gain of 50, input resistance of 1 k Ω and output resistance of 250 Ω are cascaded. The opened circuit voltages gain of the combined amplifier is

(A) 49 dB	(B) 51 dB
(C) 98 dB	(D) 102 dB

SOL 1.51 The equivalent circuit of 3 cascade stage is as shown in fig.

$$V_2 = \frac{1k}{1k + 0.25k} 50 \, V_1 = 40 \, V_1$$

Similarly $V_3 = \frac{1k}{1k + 0.25k} 50 V_2 = 40 V_2$ or $V_3 = 40 \times 40 V_1$

or
$$V_o = 50 V_3 = 50 \times 40 \times 40 V_1$$

 $A_V = \frac{V_o}{V_1} = 50 \times 40 \times 40 = 8000$

or $20 \log A_V = 20 \log 8000 = 98 \text{ dB}$ Hence (C) is correct option.

MCQ 1.52 An ideal sawtooth voltages waveform of frequency of 500 Hz and amplitude 3 V is generated by charging a capacitor of 2 μ F in every cycle. The charging requires (A) Constant voltage source of 3 V for 1 ms

- (B) Constant voltage source of 3 V for 2 ms
- (C) Constant voltage source of 1 mA for 1 ms
- (D) Constant voltage source of 3 mA for 2 ms
- **SOL 1.52** If a constant current is made to flow in a capacitor, the output voltage is integration of input current and that is sawtooth waveform as below :

$$V_C = \frac{1}{C} \int_0^t i dt$$

The time period of wave form is

$$T = \frac{1}{f} = \frac{1}{500} = 2 \text{ m sec}$$
$$3 = \frac{1}{2 \times 10^6} \int_0^{20 \times 10^{-3}} dt$$

Thus

or
$$i(2 \times 10^{-3} - 0) = 6 \times 10^{-6}$$

or $i = 3 \text{ mA}$

Thus the charging require 3 mA current source for 2 msec. Hence (D) is correct option

MCQ 1.53 The circuit in the figure has 4 boxes each described by inputs P, Q, R and outputs Y, Z with $Y = P \oplus Q \oplus R$ and $Z = RQ + \overline{P}R + Q\overline{P}$ The circuit acts as a

$$= R + S + \overline{P}Q(1 + S) + \overline{P}R(1 + \overline{P}) + \overline{P}RS$$

$$= R + S + \overline{P}Q + \overline{P}R + \overline{P}RS + P\overline{Q}S$$

$$= R + S + \overline{P}Q + \overline{P}R(1 + \overline{Q}) + P\overline{Q}S + \overline{Q}RS$$

$$= R + S + \overline{P}Q + \overline{P}R(1 + \overline{Q}) + P\overline{Q}S + \overline{Q}RS$$

$$= R + S + \overline{P}Q + \overline{P}R + P\overline{Q}S + \overline{Q}RS$$

Thus W = Z and $X = \overline{Z}$

MCQ 1.55 A 4 bit ripple counter and a bit synchronous counter are made using flip flops having a propagation delay of 10 ns each. If the worst case delay in the ripple counter and the synchronous counter be R and S respectively, then

(A)
$$R = 10$$
 ns, $S = 40$ ns (B) $R = 40$ ns, $S = 10$ ns

- (C) R = 10 ns S = 30 ns (D) R = 30 ns, S = 10 ns
- **SOL 1.55** Propagation delay of flip flop is $t_{pd} = 10$ nsec Propagation delay of 4 bit ripple counter $R = 4t_{pd} = 40$ ns and in synchronous counter all flip-flop are given clock simultaneously, so $S = t_{pd} = 10$ ns Hence (B) is correct answer.
- **MCQ 1.56** The DTL, TTL, ECL and CMOS famil GATE of digital ICs are compared in the following 4 columns

	(P)	(Q)	(R)	(S)
Fanout is minimum	DTL	DTL	TTL	CMOS
Power consumption is minimum	TTL	CMOS	ECL	DTL
Propagation delay is minimum	CMOS	ECL	TTL	TTL

The correct column is

(A) P	(B) Q
(C) R	(D) S

- SOL 1.56 The DTL has minimum fan out and CMOS has minimum power consumption.Propagation delay is minimum in ECL.Hence (B) is correct answer.
- **MCQ 1.57** The circuit shown in the figure is a 4 bit DAC

The input bits 0 and 1 are represented by 0 and 5 V respectively. The OP AMP is ideal, but all the resistance and the 5 v inputs have a tolerance of $\pm 10\%$. The specification (rounded to nearest multiple of 5%) for the tolerance of the DAC is $(A) \pm 25\%$

(A)
$$\pm 35\%$$
 (B) $\pm 20\%$

 (C) $\pm 10\%$
 (D) $\pm 5\%$

SOL 1.57 Hence (A) is correct answer.

$$V_o = -V_1 \Big[\frac{R}{R} b_o + \frac{R}{2R} b_1 + \frac{R}{4R} b_2 + \frac{R}{4R} b_3 \Big]$$
Exact value when $V_1 = 5$, for maximum output
$$V_{oExact} = -5 \Big[1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} \Big] = -9.375$$

 $V_{oExact} = -5 \begin{bmatrix} 1 + \frac{2}{2} & \frac{1}{2} & \frac{$

MCQ 1.58 The circuit shown in figure converts

Page 25

Thus it convert gray to Binary code.

MCQ 1.59 In the circuit shown in the figure, A is parallel-in, parallel-out 4 bit register, which loads at the rising edge of the clock C. The input lines are connected to a 4 bit bus, W. Its output acts at input to a 16×4 ROM whose output is floating when the input to a partial table of the contents of the ROM is as follows

Data	0011	1111	0100	1010	1011	1000	0010	1000
Address	0	2	4	6	8	10	11	14

The clock to the register is shown, and the data on the W bus at time t_1 is 0110. The data on the bus at time t_2 is

SOL 1.59 After $t = t_1$, at first rising edge of clock, the output of shift register is 0110, which in input to address line of ROM. At 0110 is applied to register. So at this time data stroed in ROM at 1010 (10), 1000 will be on bus. When W has the data 0110 and it is 6 in decimal, and it's data value at that add is 1010

Page 26	GATE EC 2003	www.gatehelp.com
	then 1010 i.e. 10 is acting as odd, at time t_2 and data at the Hence (C) is correct answer.	that movement is 1000.
MCQ 1.60	 In an 8085 microprocessor, the instruction CMP B has content of the accumulator is less than that of register B. (A) Carry flag will be set but Zero flag will be reset (B) Carry flag will be rest but Zero flag will be set (C) Both Carry flag and Zero flag will be rest (D) Both Carry flag and Zero flag will be set 	
SOL 1.60	$\begin{array}{ll} \text{CMP B} \Rightarrow & \text{Compare the accumulator content with cont}\\ \text{If A} < \text{R} & \text{CY is set and zero flag will be reset.}\\ \text{Hence (A) is correct answer.} \end{array}$	text of Register B
MCQ 1.61	Let X and Y be two statistically independent rand distributed in the ranges $(-1,1)$ and $(-2,1)$ respectivel the probability that $(z \le -1)$ is (A) zero (B) $\frac{1}{6}$ (C) $\frac{1}{3}$ (D) $\frac{1}{12}$	•
SOL 1.61	(C) $\frac{1}{3}$ The pdf of Z will be convolution of pdf of X and pdf of X Now $p[Z \le z] = \int_{-\infty}^{z} f_{Z}(z) dz$ $p[Z \le -2] = \int_{-\infty}^{-2} f_{Z}(z) dz$ $= \operatorname{Area} [z \le -2]$ $= \frac{1}{2} \times \frac{1}{6} \times 1 = \frac{1}{12}$	Y as shown below.

Hence (D) is correct option.

MCQ 1.62 Let P be linearity, Q be time-invariance, R be causality and S be stability. A discrete time system has the input-output relationship,

$$y(n) = \begin{cases} x(n) & n \ge 1 \\ 0, & n = 0 \\ x(n+1) & n \le -1 \end{cases}$$

where x(n) is the input and y(n) is the output. The above system has the properties (A) P, S but not Q, R (B) P, Q, S but not R (C) P, Q, R, S (D) Q, R, S but not P

SOL 1.62 System is non causal because output depends on future value

For $n \leq 1$	1 $y(-1) = x(-1+1) = x(0)$	
	$y(n - n_0) = x(n - n_0 + 1)$	Time varying
	y(n) = x(n+1)	Depends on Future
i.e.	y(1) = x(2)	None causal
For boun	ded input, system has bounded out	out. So it is stable.

$$y(n) = x(n) \text{ for } n \ge 1$$

= 0 for $n = 0$
= $x(x+1)$ for $n \le -1$
em is linear.

Hence (A) is correct answer.

Common data for Q 63 & 64 :

So syst

The system under consideration is an RC low-pass filter (RC-LPF) with $R = 1 \text{ k}\Omega$ and $C = 1.0 \mu$ F.

MCQ 1.63 Let H(f) denote the frequency response of the RC-LPF. Let f_i be the highest frequency such that $0 \le |f| \le f_i \frac{|H(f_i)|}{H(0)} \ge 0.95$. Then f_i (in Hz) is (A) 324.8 (B) 163.9 (C) 52.2 (D) 104.4

SOL 1.63 The frequency response of RC-LPF is

$$H(f) = \frac{1}{1 + j2\pi fRC}$$
Now
$$H(0) = 1$$

$$\frac{|H(f_{l})|}{H(0)} = \frac{1}{\sqrt{1 + 4\pi^{2}f_{1}^{2}R^{2}C^{2}}} \ge 0.95$$
or
$$1 + 4\pi^{2}f_{1}^{2}R^{2}C^{2} \le 1.108$$
or
$$4\pi^{2}f_{1}^{2}R^{2}C^{2} \le 0.108$$
or
$$2\pi f_{l}RC \le 0.329$$
or
$$f_{l} \le \frac{0.329}{2\pi RC}$$
or
$$f_{l} \le \frac{0.329}{2\pi RC}$$
or
$$f_{l} \le \frac{0.329}{2\pi RC}$$
or
$$f_{l} \le \frac{0.329}{2\pi lk \times 1\mu}$$
help or
$$f_{l} \le 52.2$$
 Hz
Thus
$$f_{l}max = 52.2$$
 Hz
Hence (C) is correct answer.

MCQ 1.64 Let $t_g(f)$ be the group delay function of the given RC-LPF and $f_2 = 100$ Hz. Then $t_g(f_2)$ in ms, is (A) 0.717 (B) 7.17 (C) 71.7 (D) 4.505

SOL 1.64 Hence (A) is correct answer

$$H(\omega) = \frac{1}{1 + j\omega RC}$$

$$\theta(\omega) = -\tan^{-1}\omega RC$$

$$t_g = -\frac{d\theta(\omega)}{d\omega} = \frac{RC}{1 + \omega^2 R^2 C^2}$$

$$= \frac{10^{-3}}{1 + 4\pi^2 \times 10^4 \times 10^{-6}} = 0.717 \text{ ms}$$

Common Data for Questions 65 & 66 :

Brought to you by: Nodia and Company PUBLISHING FOR GATE

X(t) is a random process with a constant mean value of 2 and the auto correlation function $R_{xx}(\tau) = 4(e^{-0.2|\tau|} + 1)$.

MCQ 1.65 Let X be the Gaussian random variable obtained by sampling the process at $t = t_i$ and let

$$Q(\alpha) = \int_{\alpha}^{\infty} -\frac{1}{\sqrt{2\pi}} e^{\frac{x^2}{2}} dy$$

The probability that $[x \leq 1]$ is (A) 1 - Q(0.5)

(C)
$$Q\left(\frac{1}{2\sqrt{2}}\right)$$
 (D) $1 - Q\left(\frac{1}{2\sqrt{2}}\right)$

SOL 1.65 Hend

> or mear

Hence (D) is correct option.
We have
$$R_{XX}(\tau) = 4(e^{-0.2|\tau|} + 1)$$

 $R_{XX}(0) = 4(e^{-0.2|0|} + 1) = 8 = \sigma^2$
or $\sigma = 2\sqrt{2}$ Given
mean $\mu = 0$
Now $P(x \le 1) = F_x(1)$
 $= 1 - Q\left(\frac{X - \mu}{\sigma_4}\right)$
 $= 1 - Q\left(\frac{1 - 0}{2\sqrt{2}}\right) = 1 - Q\left(\frac{1}{2\sqrt{2}}\right)$
at $x = 1$

(B) Q(0.5)

Let Y and Z be the random variable obtained by sampling X(t) at t = 2 and t = 4**MCQ 1.66** respectively. Let W = Y - Z. The variance of W is (A) 13.36 (B) 9.36 (C) 2.64 (D) 8.00

Hence (C) is correct option. **SOL 1.66** W = Y - Z $E[W^2] = E[Y - Z]^2$ $= E[Y^2] + E[Z^2] - 2E[YZ]$ $= \sigma_w^2$ We have $E[X^2(t)]$ $= R_x(10)$ $= 4[e^{-0.2|0|} + 1] = 4[1+1] = 8$ $E[Y^2] = E[X^2(2)] = 8$ $E[Z^2] = E[X^2(4)] = 8$ $E[YZ] = R_{XX}(2) = 4[e^{-0.2(4-2)} + 1] = 6.68$ $E[W^2] = \sigma_w^2 = 8 + 8 - 2 \times 6.68 = 2.64$

Let $x(t) = 2\cos(800\pi) + \cos(1400\pi t) \cdot x(t)$ is sampled with the rectangular pulse **MCQ 1.67** train shown in the figure. The only spectral components (in kHz) present in the sampled signal in the frequency range 2.5 kHz to 3.5 kHz are

SOL 1.67 Hence (D) is correct option. The frequency of pulse train is

$$f \frac{1}{10^{-3}} = 1 \text{ k Hz}$$

The Fourier Series coefficient of given pulse train is

$$\begin{split} C_n &= \frac{1}{T_o} \int_{-T_o/2}^{-T_o/2} A e^{-jn\omega_o t} dt \\ &= \frac{1}{T_o} \int_{-T_o/6}^{-T_o/6} A e^{-j\eta\omega_o t} dt \\ &= \frac{A}{T_o(-j\eta\omega_o)} [e^{-j\omega_o t}] \int_{T_o/6}^{T_o/6} \\ &= \frac{A}{(-j2\pi n)} (e^{-j\omega_o t}] e^{jm\omega_o T_o/6} \\ &= \frac{A}{j2\pi n} (e^{j\eta\pi/3} - e^{-j\eta\pi/3}) \\ C_n &= \frac{A}{\pi n} \sin(\frac{n\pi}{3}) \end{split}$$

or

From C_n it may be easily seen that 1,2,4,5,7, harmonics are present and 0,3,6,9,... are absent. Thus p(t) has 1 kHz, 2 kHz, 4 kHz, 5 kHz, 7 kHz,... frequency component and 3 kHz, 6 kHz... are absent.

The signal x(t) has the frequency components 0.4 kHz and 0.7 kHz. The sampled signal of x(t) i.e. $x(t)^* p(t)$ will have

 $\begin{array}{l} 1\pm0.4 \mbox{ and } 1\pm0.7 \mbox{ kHz}\\ 2\pm0.4 \mbox{ and } 2\pm0.7 \mbox{ kHz}\\ 4\pm0.4 \mbox{ and } 4\pm0.7 \mbox{ kHz}\\ \end{array}$ Thus in range of 2.5 kHz to 3.5 kHz the frequency present is $\begin{array}{l} 2+0.7 \ = 2.7 \mbox{ kHz}\\ 4-0.7 \ = 3.3 \mbox{ kHz} \end{array}$

MCQ 1.68 The signal flow graph of a system is shown in Fig. below. The transfer function C(s)/R(s) of the system is

SOL 1.68 Mason Gain Formula
$$\sum n_{k}$$

$$T(s) = \frac{\sum p_k \Delta_k}{\Delta}$$

In given SFG there is only forward path and 3 possible loop.

$$p_{1} = 1$$

$$\Delta_{1} = 1 + \frac{3}{s} + \frac{24}{s} = \frac{s + 27}{s}$$

$$L_{1} = \frac{-2}{s}, L_{2} = \frac{-24}{s} \text{ and } L_{3} = \frac{-3}{s}$$

where
$$L_1$$
 and L_3 are non-touching
This
$$\frac{C(s)}{R(s)} = \frac{p_1 \Delta_1}{1 - (\text{loop gain}) + \text{pair of non} - \text{touching loops}}$$

$$= \frac{\left(\frac{s+27}{s}\right)}{1 - \left(\frac{-3}{s} - \frac{24}{s} - \frac{2}{s}\right) + \frac{-2}{s} \cdot \frac{-3}{s}} = \frac{\left(\frac{s+27}{s}\right)}{1 + \frac{p_2}{s} + \frac{6}{s}}$$

$$= \frac{s(s+27)}{s^2 + 29s + 6}$$

Hence (D) is correct option.

- MCQ 1.69 The root locus of system $G(s)H(s) = \frac{K}{s(s+2)(s+3)}$ has the break-away point located at (A) (-0.5,0) (B) (-2.548,0) (C) (-4,0) (D) (-0.784,0)
- **SOL 1.69** We have

or
$$1 + G(s) H(s) = 0$$

or
$$1 + \frac{K}{s(s+2)(s+3)} = 0$$

or
$$K = -s(s^2 + 5s^2 + 6s)$$

$$\frac{dK}{ds} = -(3s^2 + 10s + 6) = 0$$

which gives

 $s = \frac{-10 \pm \sqrt{100 - 72}}{6} = -0.784, \ -2.548$

0

The location of poles on s – plane is

Since breakpoint must lie on root locus so s = -0.748 is possible. Hence (D) is correct option.

MCQ 1.70 The approximate Bode magnitude plot of a minimum phase system is shown in Fig. below. The transfer function of the system is

GATE EC 2003

 $\frac{C(s)}{R(s)} = \frac{4}{s^2 + 4s + 4}$

With r(t) as the unit-step function, the response c(t) of the system is represented by

SOL 1.73

$$\begin{array}{l} \text{(A)} \begin{bmatrix} te^{t} \\ t \end{bmatrix} & \text{(B)} \begin{bmatrix} e^{t} \\ t \end{bmatrix} \\ \text{(C)} \begin{bmatrix} e^{t} \\ te^{t} \end{bmatrix} & \text{(D)} \begin{bmatrix} t \\ te^{t} \end{bmatrix} \\ \text{We have} \\ \begin{bmatrix} \dot{x}_{1} \\ \dot{x}_{2} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} \text{ and } \begin{bmatrix} x_{1}(0) \\ x_{2}(0) \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \\ A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \\ \text{($sI-A$)} = \begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} s-1 & 0 \\ -1 & s-1 \end{bmatrix} \\ \text{($sI-A$)} = \begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} s-1 & 0 \\ -1 & s-1 \end{bmatrix} \\ \text{($sI-A$)}^{-1} = \frac{1}{(s-1)^{2}} \begin{bmatrix} (s-1) & 0 \\ +1 & (s-1) \end{bmatrix} = \begin{bmatrix} \frac{1}{s-1} & 0 \\ \frac{1}{(s-1)^{2}} & \frac{1}{s-1} \end{bmatrix} \\ L^{-1}[(sI-A)^{-1}] = e^{At} = \begin{bmatrix} e^{t} & 0 \\ te^{t} & e^{t} \end{bmatrix} \\ x(t) = e^{At} \times [x(t_{0})] = \begin{bmatrix} e^{t} & 0 \\ te^{t} & e^{t} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} e^{t} \\ te^{t} \end{bmatrix} \\ \text{Hence (C) is correct option.} \end{array}$$

Hence (C) is correct option. **A** DSB-SC signal is to be generated with a carrier frequency $f_c = 1$ MHz using a **MCQ 1.74** non-linear device with the input-output characteristic $V_0 = a_0 v_i + a_1 v_i^3$ where a_0 and a_1 are constants. The output of the non-linear device can be filtered by an appropriate band-pass filter.

> Let $V_i = A_c^i \cos(2\pi f^i c^t) + m(t)$ is the message signal. Then the value of f_c^i (in MHz) is

$$(A) 1.0 (B) 0.333$$

(B)
$$0.5$$
 (D) 3.0

Hence (C) is correct option. (2 - f)SOL 1.74

$$\begin{aligned} v_{i} &= A_{c}^{\dagger} \cos\left(2\pi f_{c}^{t} t\right) + m(t) \\ v_{0} &= a_{o} v_{i} + a v_{i}^{3} \\ v_{0} &= a_{0} \left[A_{c}^{\dagger} \cos\left(2\pi f_{c}^{t} t\right) + m(t)\right] + a_{1} \left[A_{c}^{\dagger} \cos\left(2\pi f_{c}^{t} t\right) + m(t)\right]^{3} \\ &= a_{0} A_{c}^{\dagger} \cos\left(2\pi f_{c}^{t} t\right) + a_{0} m(t) + a_{1} \left[(A_{c}^{\dagger} \cos 2\pi f_{c}^{t} t)^{3} \\ &+ (A_{c}^{\dagger} \cos\left(2\pi f_{c}^{t} t\right) + 3A_{c}^{\dagger} \cos\left(2\pi f_{c}^{t} t\right) m^{2}(t) + m^{3}(t)\right] \\ &= a_{0} A_{c}^{\dagger} \cos\left(2\pi f_{c}^{t} t\right) + a_{0} m(t) + a_{1} \left(A_{c}^{\dagger} \cos 2f_{c}^{t} t\right)^{3} + 3a_{1} A_{c}^{\prime 2} \left[\frac{1 + \cos\left(4\pi f_{c} t\right)}{2}\right] m(t) \\ &= 3a_{1} A_{c}^{\dagger} \cos\left(2\pi f_{c}^{t} t\right) m^{2}(t) + m^{3}(t) \end{aligned}$$

The term $3a_1A_c(\frac{\cos 4\pi f_c t}{2})m(t)$ is a DSB-SC signal having carrier frequency 1. MHz. Thus $2f'_c = 1$ MHz or $f'_c = 0.5$ MHz

Common Data for Question 75 & 76 :

Let $m(t) = \cos[(4\pi \times 10^3) t]$ be the message signal & $c(t) = 5\cos[(2\pi \times 10^6 t)]$ be the carrier.

MCQ 1.75 c(t) and m(t) are used to generate an AM signal. The modulation index of the generated AM signal is 0.5. Then the quantity $\frac{\text{Total sideband power}}{\text{Carrier power}}$ is

(A)
$$\frac{1}{2}$$
 (B) $\frac{1}{4}$
(C) $\frac{1}{3}$ (D) $\frac{1}{8}$

SOL 1.75 Hence (D) is correct option. $P_T = P_c \left(1 + \frac{\alpha^2}{2}\right)$

$$P_{sb} = \frac{P_c \alpha^2}{2} = \frac{P_c (0.5)^2}{2}$$
$$\frac{P_{sb}}{P_c} = \frac{1}{8}$$

or

MCQ 1.76 c(t) and m(t) are used to generated an FM signal. If the peak frequency deviation of the generated FM signal is three times the transmission bandwidth of the AM signal, then the coefficient of the term $\cos[2\pi(1008 \times 10^3 t)]$ in the FM signal (in terms of the Bessel coefficients) is (A) $5J_4(3)$ (B) $\frac{5}{2}J_8(3)$

(C)
$$\frac{5}{2}J_8(4)$$
 (D) $5J_4(6)$

SOL 1.76 Hence (D) is correct option. AM Band width $= 2f_m$ Peak frequency deviation $= 3(2f_m) = 6f_m$ Modulation index $\beta = \frac{6f_m}{f_m} = 6$

The FM signal is represented in terms of Bessel function as

$$\begin{aligned} x_{FM}(t) &= A_c \sum_{n=-\infty}^{\infty} J_n(\beta) \cos \left(\omega_c - n\omega_n\right) t\\ \omega_c + n\omega_m &= 2\pi \left(1008 \times 10^3\right)\\ 2\pi 10^6 + n4\pi \times 10^3 &= 2\pi \left(1008 \times 10^3\right), n = 4 \end{aligned}$$

Thus coefficient = $5J_4(6)$

MCQ 1.77 Choose the correct one from among the alternative A, B, C, D after matching an item in Group 1 with most appropriate item in Group 2.

Group 1	Group 2
P. Ring modulator	1. Clock recovery

	Q. VCO R. Foster-Seely discriminator S. Mixer	 Demodulation of FM Frequency conversion Summing the two inputs Generation of FM Generation of DSB-Sc 			
	(A) $P-1; Q-3; R-2; S-4$ (C) $P-6; Q-1; R-3; S-2$	(B) $P-6; Q = 5; R-2; S-3$ (D) $P-5; Q-6; R-1; S-3$			
SOL 1.77	$VCO \rightarrow Generation of$	\rightarrow Demodulation of fm			
MCQ 1.78	A superheterodyne receiver is to operate in the frequency range 550 kHz - 1650 kHz, with the intermediate frequency of 450 kHz. Let $R = C_{\text{max}}/C_{\text{min}}$ denote the required capacitance ratio of the local oscillator and I denote the image frequency (in kHz) of the incoming signal. If the receiver is tuned to 700 kHz, then (A) $R = 4.41, I = 1600$ (B) $R = 2.10, I - 1150$ (C) $R = 3.0, I = 600$ (D) $R = 9.0, I = 1150$ Hence (A) is correct option				
SOL 1.78	Hence (A) is correct option. $f_{\text{max}} = 1650 + 450 = 21$ $f_{\text{min}} = 550 + 450 = 100$ or $f = \frac{1}{2\pi\sqrt{LC}}$ frequency is minimum, capacitan $R = \frac{C_{\text{max}}}{C_{\text{min}}} = \frac{f_{\text{max}}^2}{f_{\text{min}}^2} = (0, 0)$ or $R = 4.41$ $f_i = f_c + 2f_{IF} = 700 + 100$	00 kHz 0 kHz ce will be maximum 2.1) ²			
MCQ 1.79	· ·	-peak amplitude of 1.536 V is quantized into 128 uantizer. The quantization-noise power is (B) $48 \times 10^{-6} V^2$ (D) 3.072 V			
SOL 1.79	Hence (C) is correct option.	$\frac{n_p}{L} = \frac{1.536}{128} = 0.012 \text{ V}$			

Quantization Noise power
$$=$$
 $\frac{\delta^2}{12} = \frac{(0.012)^2}{12}$
 $= 12 \times 10^{-6} V^2$

Brought to you by: Nodia and Company PUBLISHING FOR GATE

Visit us at: www.nodia.co.in

If E_b , the energy per bit of a binary digital signal, is 10^{-5} watt-sec and the one-sided **MCQ 1.80** power spectral density of the white noise, $N_0 = 10^{-6}$ W/Hz, then the output SNR of the matched filter is (A) 26 dB (B) 10 dB (C) 20 dB (D) 13 dB Hence (D) is correct option. **SOL 1.80** $E_b = 10^{-6}$ watt-sec $N_o = 10^{-5} \text{ W/Hz}$ (SNR) matched filler $=\frac{E_o}{\frac{N_o}{2}} = \frac{10^6}{2 \times 10^{-5}} = .05$ $(SNR)dB = 10 \log 10(0.05) = 13 \text{ dB}$ **MCQ 1.81** The input to a linear delta modulator having a step-size $\Delta = 0.628$ is a sine wave with frequency f_m and peak amplitude E_m . If the sampling frequency $f_x = 40$ kHz, the combination of the sine-wave <u>frequency</u> and the peak amplitude, where slope overload will take place is E_m fm 8 kHz (A) 0.3 V (B) 1.5 V 4 kHz2 kHz (C) 1.5 V (D) 3.0 V 1 kHz Hence (B) is correct option. **SOL 1.81** For slopeoverload to take place $E_m \geq \frac{\Delta f_s}{2\pi f_m}$ This is satisfied with $E_m = 1.5$ V and $f_m = 4$ kHz If S represents the carrier synchronization at the receiver and ρ represents the MCQ 1.82 bandwidth efficiency, then the correct statement for the coherent binary PSK is (A) $\rho = 0.5, S$ is required (B) $\rho = 1.0, S$ is required (C) $\rho = 0.5, S$ is not required (D) $\rho = 1.0, S$ is not required

GATE EC 2003

SOL 1.82Hence (A) is correct option.If $s \rightarrow$ carrier synchronization at receiver $\rho \rightarrow$ represents bandwidth efficiency

then for coherent binary PSK $\rho = 0.5$ and s is required.

MCQ 1.83 A signal is sampled at 8 kHz and is quantized using 8 - bit uniform quantizer. Assuming SNR^q for a sinusoidal signal, the correct statement for PCM signal with a bit rate of R is

- (A) R = 32 kbps, $SNR_q = 25.8$ dB
 - (C) $R = 64 \text{ kbps}, SNR_q = 55.8 \text{ dB}$
- (B) R = 64 kbps, $SNR_q = 49.8$ dB
 - B (D) R = 32 kbps, $SNR_q = 49.8$ dB
- **SOL 1.83** Hence (B) is correct option.

Page 37

Brought to you by:	Nodia and Company
	PUBLISHING FOR GATE

www.gatehelp.com

Bit Rate =
$$8k \times 8 = 64$$
 kbps
(SNR)^q = $1.76 + 6.02n$ dB
= $1.76 + 6.02 \times 8 = 49.8$ dB

MCQ 1.84 Medium 1 has the electrical permittivity $\varepsilon_1 = 1.5\varepsilon_0$ farad/m and occupies the region to the left of x = 0 plane. Medium 2 has the electrical permittivity $\varepsilon_2 = 2.5\varepsilon_0$ farad/m and occupies the region to the right of x = 0 plane. If E_1 in medium 1 is $E_1 = (2u_x - 3u_y + 1u_z)$ volt/m, then E_2 in medium 2 is

> (A) $(2.0u_x - 7.5u_y + 2.5u_z)$ volt/m (B) $(2.0u_x - 2.0u_y + 0.6u_z)$ volt/m (D) $(2.0u_x - 2.0u_y + 0.6u_z)$ volt/m (C) $(2.0u_x - 3.0u_y + 1.0u_z)$ volt/m

SOL 1.84 Hence (C) is correct option. We l

have
$$E_1 = 2u_x - 3u_y + 1u_z$$

$$E_{1t} = -3u_y + u_y$$
 and $E_{1n} = 2u_x$

Since for dielectric material at the boundary, tangential component of electric field are equal

$$E_{1t} = -3u_y + u_y = E_{2t}$$

$$(x = 0 \text{ plane})$$

$$E_{1n} = 2u_x$$

At the boundary the for normal component of electric field are

or
$$E_{1n} = D_{2n}$$

or $\varepsilon_1 E_{1n} = \varepsilon_2 E_{2n}$
or $1.5\varepsilon_o 2u_x = 2.5\varepsilon_o E_{2n}$
or $E_{2n} = \frac{3}{2.5}u_x = 1.2u_x$

Thus
$$E_2 = E_{2t} + E_{2n} = -3u_y + u_z + 1.2u_x$$

MCQ 1.85 If the electric field intensity is given by $E = (xu_x + yu_y + zu_z)$ volt/m, the potential difference between X(2,0,0) and Y(1,2,3) is

(A) + 1 volt	(B) - 1 volt
(C) + 5 volt	(D) + 6 volt

SOL 1.85 Hence (C) is correct option. We have

e
$$E = xu_x + yu_y + zu_z$$

 $dl = \hat{u}_x dx + \hat{u}_y dy + \hat{u}_z dz$
 $V_{XY} = -\int_X^Y E dl$
 $= \int_1^2 x dx \hat{u}_x + \int_2^0 y dy \hat{u}_z + \int_3^0 z dz \hat{u}z$
 $= -\left[\frac{x^2}{2}\Big|_1^2 + \frac{y^2}{2}\Big|_2^0 + \frac{z^2}{2}\Big|_3^0\right]$
 $= -\frac{1}{2}[2^2 - 1^2 + 0^2 - 2^2 + 0^2 - 3^2] = 5$

MCQ 1.86 A uniform plane wave traveling in air is incident on the plane boundary between

air and another dielectric medium with $\varepsilon_r = 4$. The reflection coefficient for the normal incidence, is

(A) zero (B) $0.333 \angle 0^{\circ}$ (B) $0.333 \angle 180^{\circ}$

SOL 1.86

$$\eta = \sqrt{\frac{\mu}{\varepsilon}}$$

Hence (D) is correct option.

Reflection coefficient

$$\tau = \frac{\eta_2 - \eta_1}{\eta_2 + \eta_1}$$

Substituting values for η_1 and η_2 we have

$$\tau = \frac{\sqrt{\frac{\mu_o}{\varepsilon_o \varepsilon_r}} - \sqrt{\frac{\mu_o}{\varepsilon_o}}}{\sqrt{\frac{\mu_o}{\varepsilon_o \varepsilon_r}} + \sqrt{\frac{\mu_o}{\varepsilon_o}}} = \frac{1 - \sqrt{\varepsilon_r}}{1 + \sqrt{\varepsilon_r}} = \frac{1 - \sqrt{4}}{1 + \sqrt{4}}$$
 since $\varepsilon_r = 4$
$$= \frac{-1}{3} = 0.333 \angle 180^\circ$$

- **MCQ 1.87** If the electric field intensity associated with a uniform plane electromagnetic wave traveling in a perfect dielectric medium is given by $E(z,t) = 10\cos(2\pi 10^7 t 0.1\pi z)$ V/m, then the velocity of the traveling wave is
- (A) 3.00×10^8 m/sec (C) 6.28×10^7 m/sec Hence (B) is correct option. We have $E(z,t) = 10\cos(2\pi \times 10^7 t - 0.1\pi z)$

where
$$\omega = 2\pi \times 10^{7} t$$

 $\beta = 0.1\pi$
Phase Velocity $u = \frac{\omega}{\beta} = \frac{2\pi \times 10^{7}}{0.1\pi} = 2 \times 10^{8} \text{ m/s}$

MCQ 1.88 A short - circuited stub is shunt connected to a transmission line as shown in fig. If $Z_0 = 50$ ohm, the admittance Y seen at the junction of the stub and the transmission line is

Hence (A) is correct option.

MCQ 1.89 A rectangular metal wave guide filled with a dielectric material of relative permittivity $\varepsilon_r = 4$ has the inside dimensions 3.0 cm \times 1.2 cm. The cut-off frequency for the dominant mode is
(A) 2.5 CHz

SOL 1.89 Hence (A) is correct option.

$$u = \frac{c}{\sqrt{\varepsilon_0}} = \frac{3 \times 10^8}{2} = 1.5 \times 10^8$$

In rectangular waveguide the dominant mode is TE_{10} and

$$f_{c} = \frac{v}{2} \sqrt{\left(\frac{m}{a}\right)^{2} + \left(\frac{n}{b}\right)^{2}}$$
$$= \frac{1.5 \times 10^{8}}{2} \sqrt{\left(\frac{1}{0.03}\right)^{2} + \left(\frac{0}{b}\right)^{2}} = \frac{1.5 \times 10^{8}}{0.06} = 2.5 \text{ GHz}$$

MCQ 1.90 Two identical antennas are placed in the $\theta = \pi/2$ plane as shown in Fig. The elements have equal amplitude excitation with 180° polarity difference, operating at wavelength λ . The correct value of the magnitude of the far-zone resultant electric field strength normalized with that of a single element, both computed for $\phi = 0$, is

SOL 1.90 Hence (D) is correct option. Normalized array factor $= 2 \left| \cos \frac{\psi}{2} \right|$

$$\psi = \beta d \sin \theta \cos \phi + \delta$$

$$\theta = 90^{\circ},$$

$$d = \sqrt{2} s,$$

$$\phi = 45^{\circ},$$

$$\delta = 180^{\circ}$$

Now $2 \left| \cos \frac{\psi}{2} \right| = 2 \cos \left[\frac{\beta d \sin \theta \cos \phi + \delta}{2} \right]$

$$= 2 \cos \left[\frac{2\pi}{\lambda \cdot 2} \sqrt{2} s \cos 45^{\circ} + \frac{180}{2} \right]$$

 $= 2\cos\left[\frac{\pi s}{\lambda} + 90^{\circ}\right] = 2\sin\left(\frac{\pi s}{\lambda}\right)$

Answer Sheet									
1.	(B)	19.	(D)	37.	(A)	55.	(B)	73.	(C)
2.	(C)	20.	(D)	38.	(A)	56.	(B)	74.	(C)
3.	(B)	21.	(D)	39.	(D)	57.	(A)	75.	(D)
4.	(C)	22.	(C)	40.	(C)	58.	(D)	76.	(D)
5.	(C)	23.	(B)	41.	(C)	59.	(C)	77.	(B)
6.	(D)	24.	(A)	42.	(A)	60.	(A)	78.	(A)
7.	(B)	25.	(C)	43.	(D)	61.	(D)	79.	(C)
8.	(A)	26.	(A)	44.	(B)	62.	(A)	80.	(D)
9.	(C)	27.	(C)	45.	(A)	63.	(C)	81.	(B)
10.	(D)	28.	(B)	46.	(A)	64.	(A)	82.	(A)
11.	(B)	29.	(C)	47.	(A)	65.	(D)	83.	(B)
12.	(D)	30.	(B)	48.		66.	(C)	84.	(C)
13.	(B)	31.	(A)	49.	(B)	67.	(D)	85.	(C)
14.	(C)	32.	(*)	50.	(B)	68.	(D)	86.	(D)
15.	(B)	33.	(*)	51.	(C)	69.	(D)	87.	(B)
16.	(D)	34.	(A)	52.	(D)	70	(A)	88.	(A)
17.	(C)	35.	(C)	53.	(B)	71	(B)	89.	(A)
18.	(B)	36.	(B)	54.	(A)	72	(B)	90.	(D)

Exclusive Series By Jhunjhunuwala

GATE CLOUD

By R. K . Kanodia & Ashish Murolia

GATE Cloud is an exclusive series of books which offers a completely solved question bank to GATE aspirants. The book of this series are featured as

- > Over 1300 Multiple Choice Questions with full & detailed explanations.
- > Questions are graded in the order of complexity from basic to advanced level.
- Contains all previous year GATE and IES exam questions from various branches
- > Each question is designed to GATE exam level.
- > Step by step methodology to solve problems

Available Title In this series

- **Signals and Systems (For EC and EE)**
- Network Analysis (For EC)-- Available in 2 Volumes
- Electric Circuit and Fields (For EE) -- Available in two volumes
- Electromagnetic (For EC)

Upcoming titles in this series

- Digital Electronics (Nov 2012)
- Control Systems (Dec 2012)
- Communication Systems (Jan 2012)

Exclusive Series By Jhunjhunuwala

GATE GUIDE

Theory, Example and Practice By R. K. Kanodia & Ashish Murolia

GATE GUIDE is an exclusive series of books which provides theory, solved examples & practice exercises for preparing for GATE. A book of this series includes :

- > Brief and explicit theory
- > Problem solving methodology
- > Detailed explanations of examples
- > Practice Exercises

Available Title In this series

- Signals and Systems (For EC and EE)
- Network Analysis (For EC)
- **Electric Circuit and Fields (For EE)**

Upcoming titles in this series

- Digital Electronics(For EC and EE)
- **Control Systems (For EC and EE)**
- Communication Systems (For EC and EE)