PART-A

Answer all questions

1. A relation R on $A=\{1,2,3\}$ defined by $R=\{(1,1),(2,1),(3,3)\}$ is not symmetric. Why?
2. Find the principal value branch of $\sec ^{-1} x$.
3. Define a Scalar matrix.
4. Find the values of x for which $\left|\begin{array}{ll}3 & x \\ x & 1\end{array}\right|=\left|\begin{array}{ll}3 & 2 \\ 4 & 1\end{array}\right|$.
5. Differentiate $\tan (2 x+3)$ with respect to x.

PART-B

Answer any FIVE questions

6. Given an example of a relation, which is Reflexive and symmetric but not transitive.
7. Find the value of $\tan ^{-1}\left(2 \cos \left(2 \sin ^{-1}\left(\frac{1}{2}\right)\right)\right)$.
8. Find the value of $\tan ^{-1}(1)+\cos ^{-1}\left(-\frac{1}{2}\right)+\sin ^{-1}\left(\frac{1}{2}\right)$.
9. Find the area of the triangle with vertices $(2,7),(1,1)$ and $(10,8)$.
10. If $A=\left[\begin{array}{ll}1 & 2 \\ 4 & 2\end{array}\right]$, then show that $|2 A|=4|A|$.
11. Differentiate $\sin \left(\cos \left(x^{2}\right)\right)$ with respect to x.
12. If $2 x+3 y=\sin y$, find $\frac{d y}{d x}$.

PART-C

Answer any FIVE questions

13. Show that the relation R in the set R of real numbers, defined as $R=\left\{(a, b): a \leq b^{2}\right\}$ is neither reflexive nor symmetric nor transitive.
14. Let T be the set of all triangles in a plane with R a relation in T given by $R=\left\{\left(T_{1}, T_{2}\right): T_{1}\right.$ is similar to $\left.T_{2}\right\}$. Show that R is an equivalence relation.
15. Express $A=\left[\begin{array}{cc}3 & 5 \\ 1 & -1\end{array}\right]$ as sum of symmetric and skew symmetric matrix.
16. If $A=\left[\begin{array}{ccc}1 & -2 & 3 \\ -4 & 2 & 5\end{array}\right]$ and $B=\left[\begin{array}{ll}2 & 3 \\ 4 & 5 \\ 2 & 1\end{array}\right]$, then find $A B$ and $B A$ and verify that $A B \neq B A$.
17. If $x \sqrt{1+y}+y \sqrt{1+x}=0$, for $-1<x<1, x \neq y$, then prove that $\frac{d y}{d x}=-\frac{1}{(1+x)^{2}}$.
18. Prove that the function f given by $f(x)=|x-1|, x \in R$ is not differentiable at $x=1$.
19. Find $\frac{d y}{d x}$, if $x^{2}+x y+y^{2}=100$.

PART-D

Answer any THREE questions

20. Prove that the function $f: R \rightarrow R$ defined by $f(x)=3-4 x$ is bijective.
21. Check whether the function $f: R \rightarrow R$ defined by $f(x)=1+x^{2}$ is bijective or not. Justify your answer.
22. If $\mathrm{A}=\left[\begin{array}{ccc}0 & 6 & 7 \\ -6 & 0 & 8 \\ 7 & -8 & 0\end{array}\right], \mathrm{B}=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 0\end{array}\right], \mathrm{C}=\left[\begin{array}{c}2 \\ -2 \\ 3\end{array}\right]$, verify that $(A+B) C=A C+B C$.
23. If $A^{\prime}=\left[\begin{array}{cc}3 & 4 \\ -1 & 2 \\ 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{ccc}-1 & 2 & 1 \\ 1 & 2 & 3\end{array}\right]$, then verify that $(A+B)^{\prime}=A^{\prime}+B^{\prime}$.
24. Solve the system of linear equations, using inverse of a matrix: $x-y+2 z=7,3 x+4 y-5 z=-5,2 x-y+3 z=12$.

PART-E

Answer any ONE questions

$$
1 \times 5=5
$$

25. (a) If $A=\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right]$ satisfies the equation $A^{2}-4 A+I=O$, where I is 2×2 identity matrix and O is 2×2 zero matrix. using this equation, find A^{-1} \qquad
(b) Differentiate $\cos ^{-1}(\sin x)$ with respect to x . -1
26. (a) Find the values of a and b such that the function defined by $f(x)=\left\{\begin{array}{cl}5, & \text { if } x \leq 2 \\ a x+b, & \text { if } 2<x<10 \\ 21, & \text { if } x \geq 10\end{array}\right.$
(b) Find the derivative of $e^{\log x}$ with respect to x .
