I Unit Test

Time: 1hr 30min

PART-A

Answer all questions

- **1.** A relation R on $A = \{1, 2, 3\}$ defined by $R = \{(1, 1), (2, 1), (3, 3)\}$ is not symmetric. Why?
- **2.** Find the principal value branch of $\sec^{-1} x$.
- **3.** Define a Scalar matrix.
- **4.** Find the values of x for which $\begin{vmatrix} 3 & x \\ x & 1 \end{vmatrix} = \begin{vmatrix} 3 & 2 \\ 4 & 1 \end{vmatrix}$.
- **5.** Differentiate tan(2x+3) with respect to x.

PART-B

Answer any FIVE questions

- 6. Given an example of a relation, which is Reflexive and symmetric but not transitive.
- 7. Find the value of $\tan^{-1}\left(2\cos\left(2\sin^{-1}\left(\frac{1}{2}\right)\right)\right)$.
- **8.** Find the value of $\tan^{-1}(1) + \cos^{-1}\left(-\frac{1}{2}\right) + \sin^{-1}\left(\frac{1}{2}\right)$.
- **9.** Find the area of the triangle with vertices (2, 7), (1, 1) and (10, 8).
- **10.** If $A = \begin{bmatrix} 1 & 2 \\ 4 & 2 \end{bmatrix}$, then show that |2A| = 4|A|.
- **11.** Differentiate $sin(cos(x^2))$ with respect to x.
- **12.** If $2x+3y = \sin y$, find $\frac{dy}{dx}$.

PART-C

Answer any FIVE questions

- **13.** Show that the relation R in the set R of real numbers, defined as $R = \{(a,b) : a \le b^2\}$ is neither reflexive nor symmetric nor transitive.
- **14.** Let T be the set of all triangles in a plane with R a relation in T given by $R = \{(T_1, T_2): T_1 \text{ is similar to } T_2\}$. Show that R is an equivalence relation.
- **15.** Express $A = \begin{bmatrix} 3 & 5 \\ 1 & -1 \end{bmatrix}$ as sum of symmetric and skew symmetric matrix.

16. If
$$A = \begin{bmatrix} 1 & -2 & 3 \\ -4 & 2 & 5 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 3 \\ 4 & 5 \\ 2 & 1 \end{bmatrix}$, then find AB and BA and verify that $AB \neq BA$.

17. If
$$x\sqrt{1+y} + y\sqrt{1+x} = 0$$
, for $-1 < x < 1$, $x \neq y$, then prove that $\frac{dy}{dx} = -\frac{1}{(1+x)^2}$

18. Prove that the function *f* given by $f(x) = |x-1|, x \in R$ is not differentiable at x = 1.

19. Find
$$\frac{dy}{dx}$$
, if $x^2 + xy + y^2 = 100$.

Total marks:50

 $2 \times 5 = 10$

 $3 \times 5 = 15$

 $1 \times 5 = 5$

PART-D

Answer any THREE questions

$$5 \times 3 = 15$$

- **20.** Prove that the function $f : R \to R$ defined by f(x) = 3 4x is bijective.
- **21.** Check whether the function $f : R \to R$ defined by $f(x) = 1 + x^2$ is bijective or not. Justify your answer.

22. If
$$A = \begin{bmatrix} 0 & 6 & 7 \\ -6 & 0 & 8 \\ 7 & -8 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 0 \end{bmatrix}$, $C = \begin{bmatrix} 2 \\ -2 \\ 3 \end{bmatrix}$, verify that $(A+B)C = AC + BC$.
23. If $A' = \begin{bmatrix} 3 & 4 \\ -1 & 2 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} -1 & 2 & 1 \\ 1 & 2 & 3 \end{bmatrix}$, then verify that $(A+B)' = A' + B'$.

24. Solve the system of linear equations, using inverse of a matrix: x - y + 2z = 7, 3x + 4y - 5z = -5, 2x - y + 3z = 12.

PART-E

Answer any ONE questions

$$1 \times 5 = 5$$

25. (a) If $A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$ satisfies the equation $A^2 - 4A + I = O$, where I is 2×2 identity matrix and O is 2×2 zero matrix. using this equation, find A^{-1} .-----4

- (b) Differentiate $\cos^{-1}(\sin x)$ with respect to x. -----1
- **26.** (a) Find the values of a and b such that the function defined by

$$f(x) = \begin{cases} 5, & \text{if } x \le 2\\ ax+b, & \text{if } 2 < x < 10 \text{ is a continuous function.} \\ 21, & \text{if } x \ge 10 \end{cases}$$

(b) Find the derivative of $e^{\log x}$ with respect to x. -----1