ONLINE MATHS CLASS - X - 37 (15 / 09 / 2021)

4. SECOND DEGREE EQUATIONS - CLASS - 4

Activity 1

How many consecutive terms of the arithmetic sequence $21,19,17, \ldots$ should be added to get 112 ?

Answer
Common difference $=19-21=-2$

Sum of the first n terms $=p n^{2}+q n$

$$
\begin{aligned}
& =\quad-1 \times n^{2}+22 n \\
& =\quad-n^{2}+22 n \\
& =\quad 22 n-n^{2}
\end{aligned}
$$

$$
\begin{gathered}
p=\frac{d}{2}=\frac{-2}{2}=-1 \\
p+q=f \\
-1+q=21 \\
q=21+1=22
\end{gathered}
$$

Sum of the first \boldsymbol{n} terms $=112$

$$
\begin{aligned}
\Longrightarrow \quad 22 n-n^{2} & =112 \\
n^{2}-22 n & =-112 \\
n^{2}-22 n+11^{2} & =-112+11^{2} \\
(n-11)^{2} & =-112+121=9 \\
n-11 & =\sqrt{9}
\end{aligned}
$$

$$
\begin{array}{lll}
n-11=3 & \text { Or } & n-11=-3 \\
n=3+11=14 & \text { Or } & n=-3+11=8
\end{array}
$$

Activity 2

One side of a rectangle is 2 metres longer than the other side and its area is 224 square metres . What are the lengths of the sides ?

Answer

Take, the length of the smaller side $=x$ metre.
Length of the larger side $=x+2$ metres .

$$
\begin{array}{r}
\text { Area }=224 \mathrm{sq} \cdot \mathrm{~m} \text { (} x+2)=224 \\
x^{2}+2 x=224 \\
x^{2}+2 x+1^{2}=224+1^{2} \\
(x+1)^{2}=224+1=225 \\
x+1=\sqrt{225} \\
x+1=15 \quad \text { or } \quad x+1=-15 \\
x=15-1=14 \quad \text { or } \quad x=-15-1=-16
\end{array}
$$

Length of the smaller side $=x=14 \mathrm{~m}$.
Length of the longer side $=x+2=14+2=16 \mathrm{~m}$.

Activity 3

The product of a number and 2 more than that is 168 . What are the numbers ?

Answer

Take , first number $=\mathbf{x}$
Second number $=x+2$

$$
\begin{aligned}
\text { Product }=168 \Longrightarrow>\quad x(x+2) & =168 \\
x^{2}+2 x & =168 \\
x^{2}+2 x+1^{2} & =168+1^{2}
\end{aligned}
$$

$$
\begin{gathered}
(x+1)^{2}=168+1=169 \\
x+1=\sqrt{169} \\
x+1=13 \quad \text { or } \quad x+1=-13 \\
x=13-1=12 \quad \text { or } \quad x=-13-1=-14
\end{gathered}
$$

Numbers $=12,12+2=12,14$ or $-14,-14+2=-14,-12$

Activity 4

How many consecutive terms of the arithmetic sequence $99,97,95$, . . must be added to get 900 ?

Answer
Common difference $=97-99=-2$

Sum of the first n terms $=p n^{2}+q n$

$$
\begin{gathered}
p=\frac{d}{2}=\frac{-2}{2}=-1 \\
p+q=f \\
-1+q=99 \\
q=99+1=100
\end{gathered}
$$

Sum of the first \boldsymbol{n} terms $=900$

$$
\begin{aligned}
\Longrightarrow \quad 100 n-n^{2} & =900 \\
n^{2}-100 n & =-900 \\
n^{2}-100 n+50^{2} & =-900+50^{2}
\end{aligned}
$$

$$
\begin{aligned}
(n-50)^{2} & =-900+2500=1600 \\
n-50 & =\sqrt{1600}
\end{aligned}
$$

$$
\begin{array}{lll}
n-50=40 & \text { Or } & n-50=-40 \\
n=40+50=90 & \text { Or } & n=-40+50=10
\end{array}
$$

Number of terms = 10 Or 90

